51
|
Tiffany AS, Dewey MJ, Harley BAC. Sequential sequestrations increase the incorporation and retention of multiple growth factors in mineralized collagen scaffolds. RSC Adv 2020; 10:26982-26996. [PMID: 33767853 PMCID: PMC7990239 DOI: 10.1039/d0ra03872e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Trauma induced injuries of the mouth, jaw, face, and related structures present unique clinical challenges due to their large size and complex geometry. Growth factor signaling coordinates the behavior of multiple cell types following an injury, and effective coordination of growth factor availability within a biomaterial can be critical for accelerating bone healing. Mineralized collagen scaffolds are a class of degradable biomaterial whose biophysical and compositional parameters can be adjusted to facilitate cell invasion and tissue remodeling. Here we describe the use of modified simulated body fluid treatments to enable sequential sequestration of bone morphogenic protein 2 and vascular endothelial growth factor into mineralized collagen scaffolds for bone repair. We report the capability of these scaffolds to sequester 60–90% of growth factor from solution without additional crosslinking treatments and show high levels of retention for individual (>94%) and multiple growth factors (>88%) that can be layered into the material via sequential sequestration steps. Sequentially sequestering growth factors allows prolonged release of growth factors in vitro (>94%) and suggests the potential to improve healing of large-scale bone injury models in vivo. Future work will utilize this sequestration method to induce cellular activities critical to bone healing such as vessel formation and cell migration. Trauma induced injuries of the mouth, jaw, face, and related structures present unique clinical challenges due to their large size and complex geometry.![]()
Collapse
Affiliation(s)
- Aleczandria S Tiffany
- Dept. Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Marley J Dewey
- Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
52
|
Thakar H, Sebastian SM, Mandal S, Pople A, Agarwal G, Srivastava A. Biomolecule-Conjugated Macroporous Hydrogels for Biomedical Applications. ACS Biomater Sci Eng 2019; 5:6320-6341. [DOI: 10.1021/acsbiomaterials.9b00778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
53
|
Slavnic D, Tong D, Barrett R, Soo TM. Repair of encephalocele and cerebrospinal fluid leak with the use of bone morphogenetic protein: A case report. Surg Neurol Int 2019; 10:55. [PMID: 31528393 PMCID: PMC6743700 DOI: 10.25259/sni-137-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/20/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Encephaloceles are rare phenomena which occur when brain parenchyma herniates through a skull defect which, if left untreated, may lead to significant issues such as cerebrospinal fluid (CSF) fistulas, meningitis, and intractable seizures. Due to the rarity and variety in size and location of encephaloceles, no standard technique has been established for the resultant defect. Herein, we demonstrate the safe and effective use of bone morphogenetic protein (BMP) in the repair of CSF leak caused by encephalocele. Case Description: A retrospective chart review was conducted on a 50-year-old female who presented with sudden onset spontaneous right nostril CSF leak due to the right lateral sphenoid sinus recess encephalocele, for which she underwent surgical repair. After resecting the encephalocele, cadaver crushed bone was used to fill the skull base defect. Following, an absorbable sponge from the extra-small BMP kit was cut in half and soaked with recombinant human BMP-2 (rhBMP-2) before being laid over the bony defect. On postoperative clinic visits at 2 weeks and at 3 months, the patient demonstrated good recovery without evidence of recurrent CSF leak. On follow-up computed tomography imaging at 9 months’ postsurgery, there was no evidence of recurrent CSF leak or encephalocele, infection, ectopic bone formation, excessive inflammation, or neoplasm. Conclusion: In this case, we demonstrate the successful use of BMP for the repair of CSF leak due to encephalocele. It is our extrapolation that the pro-inflammatory properties of rhBMP-2 lead to the prevention of recurrent CSF leak.
Collapse
Affiliation(s)
- Dejan Slavnic
- Division of Neurosurgery, Ascension Providence Hospital, College of Human Medicine, Michigan State University, Michigan, United States
| | - Doris Tong
- Division of Neurosurgery, Ascension Providence Hospital, College of Human Medicine, Michigan State University, Michigan, United States
| | - Ryan Barrett
- Division of Neurosurgery, Ascension Providence Hospital, College of Human Medicine, Michigan State University, Michigan, United States
| | - Teck-Mun Soo
- Division of Neurosurgery, Ascension Providence Hospital, College of Human Medicine, Michigan State University, Michigan, United States
| |
Collapse
|
54
|
Kjalarsdóttir L, Dýrfjörd A, Dagbjartsson A, Laxdal EH, Örlygsson G, Gíslason J, Einarsson JM, Ng CH, Jónsson H. Bone remodeling effect of a chitosan and calcium phosphate-based composite. Regen Biomater 2019; 6:241-247. [PMID: 31402983 PMCID: PMC6683952 DOI: 10.1093/rb/rbz009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/06/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
Chitosan is a biocompatible polymer that has been widely studied for tissue engineering purposes. The aim of this research was to assess bone regenerative properties of an injectable chitosan and calcium phosphate-based composite and identify optimal degree of deacetylation (%DDA) of the chitosan polymer. Drill holes were generated on the left side of a mandible in Sprague-Dawley rats, and the hole was either left empty or filled with the implant. The animals were sacrificed at several time points after surgery (7–22 days) and bone was investigated using micro-CT and histology. No significant new bone formation was observed in the implants themselves at any time points. However, substantial new bone formation was observed in the rat mandible further away from the drill hole. Morphological changes indicating bone formation were found in specimens explanted on Day 7 in animals that received implant. Similar bone formation pattern was seen in control animals with an empty drill hole at later time points but not to the same extent. A second experiment was performed to examine if the %DDA of the chitosan polymer influenced the bone remodeling response. The results suggest that chitosan polymers with %DDA between 50 and 70% enhance the natural bone remodeling mechanism.
Collapse
Affiliation(s)
- Lilja Kjalarsdóttir
- Department of Orthopaedic Surgery, Landspítali University Hospital, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland.,Genís hf., Siglufjördur, Iceland
| | - Arna Dýrfjörd
- Department of Materials, Biotechnology and Energy, Innovation Center Iceland, Reykjavík, Iceland
| | | | - Elín H Laxdal
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland.,Department of Vascular Surgery, Landspítali University Hospital, Reykjavík, Iceland
| | - Gissur Örlygsson
- Department of Materials, Biotechnology and Energy, Innovation Center Iceland, Reykjavík, Iceland
| | | | | | | | - Halldór Jónsson
- Department of Orthopaedic Surgery, Landspítali University Hospital, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
55
|
Yao Q, Liu Y, Sun H. Heparin-dopamine functionalized graphene foam for sustained release of bone morphogenetic protein-2. J Tissue Eng Regen Med 2018; 12:1519-1529. [PMID: 29702734 PMCID: PMC6013394 DOI: 10.1002/term.2681] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022]
Abstract
The recently developed three-dimensional (3D) graphene foam (GrF) is intriguing for potential bone tissue engineering applications because it provides stem cells with a 3D porous substrate for osteogenic differentiation. However, the nature of graphene's structure lacks functional groups, thus making it difficult for further modification such as immobilization or conjugation of growth factors, which are normally required to promote tissue regeneration. To explore the potential of GrF functionalization and sustained release of therapeutic proteins, we fabricated a modified 3D GrF scaffold with bio-inspired heparin-dopamine (Hepa-Dopa) molecules using a highly scalable chemical vapour deposition method. Our data indicated that Hepa-Dopa modification resulted in significantly higher bone morphogenetic protein-2 (BMP2) binding ability and longer release capacity compared with the untreated scaffolds. Importantly, the heparin-functionalized 3D GrF significantly improved the exogenous BMP2-induced osteogenic differentiation. Therefore, our study, for the first time, indicated that the 3D GrF can be biomimetically functionalized with Hepa-Dopa and be used for sustained release of BMP2, thereby inducing osteogenic differentiation and suggesting promising potential as a new multifunctional carrier for therapeutic proteins and stem cells in bone tissue engineering.
Collapse
Affiliation(s)
- Qingqing Yao
- School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
- Institute of Advanced Materials for Nano-Bio Applications, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA
| | - Yangxi Liu
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA
| | - Hongli Sun
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA
| |
Collapse
|
56
|
Degli Esposti L, Carella F, Adamiano A, Tampieri A, Iafisco M. Calcium phosphate-based nanosystems for advanced targeted nanomedicine. Drug Dev Ind Pharm 2018. [PMID: 29528248 DOI: 10.1080/03639045.2018.1451879] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Synthetic calcium phosphates (CaPs) are the most widely accepted bioceramics for the repair and reconstruction of bone tissue defects. The recent advancements in materials science have prompted a rapid progress in the preparation of CaPs with nanometric dimensions, tailored surface characteristics, and colloidal stability opening new perspectives in their use for applications not strictly related to bone. In particular, the employment of CaPs nanoparticles as carriers of therapeutic and imaging agents has recently raised great interest in nanomedicine. CaPs nanoparticles, as well as other kinds of nanoparticles, can be engineered to specifically target the site of the disease (cells or organs), thus minimizing their dispersion in the body and undesired organism-nanoparticles interactions. The most promising and efficient approach to improve their specificity is the 'active targeting', where nanoparticles are conjugated with a targeting moiety able to recognize and bind with high efficacy and selectivity to receptors that are highly expressed only in the therapeutic site. The aim of this review is to give an overview on advanced targeted nanomedicine with a focus on the most recent reports on CaP nanoparticles-based systems, specifically designed for the active targeting. The distinctive characteristics of CaP nanoparticles with respect to the other kinds of nanomaterials used in nanomedicine are also discussed.
Collapse
Affiliation(s)
- Lorenzo Degli Esposti
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| | - Francesca Carella
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| | - Alessio Adamiano
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| | - Anna Tampieri
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| | - Michele Iafisco
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| |
Collapse
|
57
|
Miszuk JM, Xu T, Yao Q, Fang F, Childs JD, Hong Z, Tao J, Fong H, Sun H. Functionalization of PCL-3D Electrospun Nanofibrous Scaffolds for Improved BMP2-Induced Bone Formation. APPLIED MATERIALS TODAY 2018; 10:194-202. [PMID: 29577064 PMCID: PMC5863927 DOI: 10.1016/j.apmt.2017.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bone morphogenic protein 2 (BMP2) is a key growth factor for bone regeneration, possessing FDA approval for orthopedic applications. BMP2 is often required in supratherapeutic doses clinically, yielding adverse side effects and substantial treatment costs. Considering the crucial role of materials for BMPs delivery and cell osteogenic differentiation, we devote to engineering an innovative bone-matrix mimicking niche to improve low dose of BMP2-induced bone formation. Our previous work describes a novel technique, named thermally induced nanofiber self-agglomeration (TISA), for generating 3D electrospun nanofibrous (NF) polycaprolactone (PCL) scaffolds. TISA process could readily blend PCL with PLA, leading to increased osteogenic capabilities in vitro, however, these bio-inert synthetic polymers produced limited BMP2-induced bone formation in vivo. We therefore hypothesize that functionalization of NF 3D PCL scaffolds with bone-like hydroxyapatite (HA) and BMP2 signaling activator phenamil will provide a favorable osteogenic niche for bone formation at low doses of BMP2. Compared to PCL-3D scaffolds, PCL/HA-3D scaffolds demonstrated synergistically enhanced osteogenic differentiation capabilities of C2C12 cells with phenamil. Importantly, in vivo studies showed this synergism was able to generate significantly increased new bone in an ectopic mouse model, suggesting PCL/HA-3D scaffolds act as a favorable synthetic extracellular matrix for bone regeneration.
Collapse
Affiliation(s)
- Jacob M. Miszuk
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA
| | - Tao Xu
- Program of Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Qingqing Yao
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA
| | - Fang Fang
- Children’s Health Research Center at Sanford Research, Sioux Falls, SD 57104, USA
| | - Josh D. Childs
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA
| | - Zhongkui Hong
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA
| | - Jianning Tao
- Children’s Health Research Center at Sanford Research, Sioux Falls, SD 57104, USA
| | - Hao Fong
- Program of Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Professor Hao Fong, Ph.D. Phone: (+1) 605-394-1229; Fax: (+1) 605-394-1232;
| | - Hongli Sun
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA
- Corresponding Authors: Professor Hongli Sun, Ph.D. Phone: (+1) 605-275-7470; Fax: (+1) 605-782-3280;
| |
Collapse
|
58
|
Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes. MATERIALS 2018; 11:ma11020215. [PMID: 29385747 PMCID: PMC5848912 DOI: 10.3390/ma11020215] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 12/23/2022]
Abstract
The indication-oriented Dental Bone Graft Substitutes (DBGS) selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties’ influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA) of xenograft (cerabone®), synthetic (maxresorb®), and allograft (maxgraft®, Puros®) blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone® and maxresorb® blocks showed a slight height decrease in wet state, whereas both maxgraft® and Puros® had an almost identical height increase. In addition, cerabone® and maxresorb® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft® and Puros® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone®, Bio-Oss®, NuOss®, SIC® nature graft) and synthetic DBGS granules (maxresorb®, BoneCeramic®, NanoBone®, Ceros®). The highest level of hydrophilicity was detected in cerabone® and maxresorb®, while Bio-Oss® and BoneCeramic® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this study initiates a new insight into the DBGS differences and their importance for successful clinical results.
Collapse
|
59
|
Yao Q, Jing J, Zeng Q, Lu TL, Liu Y, Zheng X, Chen Q. Bilayered BMP2 Eluting Coatings on Graphene Foam by Electrophoretic Deposition: Electroresponsive BMP2 Release and Enhancement of Osteogenic Differentiation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39962-39970. [PMID: 29076717 DOI: 10.1021/acsami.7b10180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent development of three-dimensional graphene foam (GF) with conductive and interconnected macroporous structure is attracting particular attention as platforms for tissue engineering. However, widespread application of GF as bone scaffolds is restricted due to its poor mechanical property and inert surface character. To overcome these drawbacks, in this study, a bilayered biopolymer coating was designed and successfully deposited covering the entire surface area of GF skeleton. A poly(lactic-co-glycolic acid) layer was first dip-coated to strengthen the GF substrate, followed by the electrophoretic codeposition of a hybrid layer, consisting of chitosan and BMP2, to functionalize GF with the ability to recruit and induce osteogenic differentiation of hMSC. Our data indicated that the mechanical property of GF was significantly increased without compromising the macroporous structure. Importantly, the immobilized BMP2 exhibited sustained and electroresponsive release profiles with rapid response to the electric field exerted on GF, which is beneficial to balancing BMP2 dose in a physiological environment. Moreover, the osteogenic differentiation of hMSC was significantly improved on the functionalized GF. Taking advantage of the unique macrostructure from GF as well as the superior mechanical properties and BMP2 release profile supported by the deposited coatings, it is therefore expected that the developed GF could be a promising alternative as innovative bone-forming favorable scaffolds.
Collapse
Affiliation(s)
| | - Jiajia Jing
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an 710072, China
| | - Qingyan Zeng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an 710072, China
| | - T L Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an 710072, China
| | | | | | - Qiang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an 710072, China
| |
Collapse
|
60
|
Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res 2017; 21:9. [PMID: 28593053 PMCID: PMC5460509 DOI: 10.1186/s40824-017-0095-5] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
Periodontal disease is categorized by the destruction of periodontal tissues. Over the years, there have been several clinical techniques and material options that been investigated for periodontal defect repair/regeneration. The development of improved biomaterials for periodontal tissue engineering has significantly improved the available treatment options and their clinical results. Bone replacement graft materials, barrier membranes, various growth factors and combination of these have been used. The available bone tissue replacement materials commonly used include autografts, allografts, xenografts and alloplasts. These graft materials mostly function as osteogenic, osteoinductive and/or osteoconductive scaffolds. Polymers (natural and synthetic) are more widely used as a barrier material in guided tissue regeneration (GTR) and guided bone regeneration (GBR) applications. They work on the principle of epithelial cell exclusion to allow periodontal ligament and alveolar bone cells to repopulate the defect before the normally faster epithelial cells. However, in an attempt to overcome complications related to the epithelial down-growth and/or collapse of the non-rigid barrier membrane and to maintain space, clinicians commonly use a combination of membranes with hard tissue grafts. This article aims to review various available natural tissues and biomaterial based bone replacement graft and membrane options used in periodontal regeneration applications.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, 25 Orde St, Toronto, ON M5T 3H7 Canada
| | - Nader Hamdan
- Department of Dental Clinical Sciences, Faculty of Dentistry, Dalhousie University, 5981 University Avenue, PO Box 15000, Halifax, Nova Scotia B3H 4R2 Canada
| | - Yuichi Ikeda
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-5810 Japan
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, 25 Orde St, Toronto, ON M5T 3H7 Canada
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
| |
Collapse
|
61
|
Yao Q, Sandhurst ES, Liu Y, Sun H. BBP-Functionalized Biomimetic Nanofibrous Scaffold Can Capture BMP2 and Promote Osteogenic Differentiation. J Mater Chem B 2017; 5:5196-5205. [PMID: 29250330 DOI: 10.1039/c7tb00744b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bone morphogenetic proteins (BMPs, e.g., BMP2 and 7) are potent mediators for bone repair, however, their clinical use has been limited by their safety and cost-effectiveness. Therefore, innovative strategies that can improve the efficacy of BMPs, and thereby, use a lower dose of exogenous BMPs are highly desired. Inspired by the natural interaction between extracellular matrix (ECM) and growth factors, we hypothesize that bone matrix-mimicking nanofibrous scaffold functionalized with BMP binding moieties can selectively capture and stabilize BMPs, and thereby, promote BMP-induced osteogenic differentiation. To test our hypothesis, a gelatin nanofibrous scaffold was fabricated using thermally induced phase separation together with a porogen leaching technique (TIPS&P) and functionalized by a BMP-binding peptide (BBP) through cross-linking. Our data indicated that BBP decoration largely improved the BMP2 binding and retention capacity of the nanofibrous scaffolds without compromising their macro/microstructure and mechanical properties. Importantly, the BBP-functionalized gelatin scaffolds were able to significantly promote BMP2-induced osteogenic differentiation. Moreover, BBP alone was able to significantly stimulate endogenous BMP2 expression and improve osteogenic differentiation. Compared to other affinity-based drug delivery strategies, e.g., heparin and antibody-mediated growth factor delivering techniques, we expect BBP-functionalized scaffolds will be a safer, more feasible and selective strategy for endogenous BMP stimulating and binding. Therefore, our data suggests a promising application of using the BBP-decorated gelatin nanofibrous scaffold to stimulate/capture BMPs and promote endogenous bone formation in situ in contrast to relying on the administration of high doses of exogenous BMPs and transplantation of cells.
Collapse
Affiliation(s)
- Qingqing Yao
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD 57107, USA.,BioSNTR, Sioux Falls, SD 57107, USA.,School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China.,Institute of Advanced Materials for Nano-Bio Applications, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Eric S Sandhurst
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD 57107, USA.,BioSNTR, Sioux Falls, SD 57107, USA
| | - Yangxi Liu
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD 57107, USA.,BioSNTR, Sioux Falls, SD 57107, USA
| | - Hongli Sun
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD 57107, USA.,BioSNTR, Sioux Falls, SD 57107, USA
| |
Collapse
|
62
|
López-Cebral R, Civantos A, Ramos V, Seijo B, López-Lacomba JL, Sanz-Casado JV, Sanchez A. Gellan gum based physical hydrogels incorporating highly valuable endogen molecules and associating BMP-2 as bone formation platforms. Carbohydr Polym 2017; 167:345-355. [PMID: 28433171 DOI: 10.1016/j.carbpol.2017.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 12/20/2022]
Abstract
Physical hydrogels have been designed for a double purpose: as growth factor delivery systems and as scaffolds to support cell colonization and formation of new bone. Specifically, the polysaccharide gellan gum and the ubiquitous endogenous molecules chondroitin, albumin and spermidine have been used as exclusive components of these hydrogels. The mild ionotropic gelation technique was used to preserve the bioactivity of the selected growth factor, rhBMP-2. In vitro tests demonstrated the effective delivery of rhBMP-2 in its bioactive form. In vivo experiments performed in the muscle tissue of Wistar rats provided a proof of concept of the ability of the developed platforms to elicit new bone formation. Furthermore, this biological effect was better than that of a commercial formulation currently used for regenerative purposes, confirming the potential of these hydrogels as new and innovative growth factor delivery platforms and scaffolds for regenerative medicine applications.
Collapse
Affiliation(s)
- Rita López-Cebral
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain
| | - Ana Civantos
- Institute of Biofunctional Studies, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Viviana Ramos
- Institute of Biofunctional Studies, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Begoña Seijo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain; Genetics and Biology of the Development of Kidney Diseases Unit, Sanitary Research Institute (IDIS) of the University Hospital Complex of Santiago de Compostela (CHUS), Travesía da Choupana, s/n, 15706 Santiago de Compostela, Spain
| | - José Luis López-Lacomba
- Institute of Biofunctional Studies, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | | | - Alejandro Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain; Genetics and Biology of the Development of Kidney Diseases Unit, Sanitary Research Institute (IDIS) of the University Hospital Complex of Santiago de Compostela (CHUS), Travesía da Choupana, s/n, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
63
|
Poon B, Kha T, Tran S, Dass CR. Bone morphogenetic protein-2 and bone therapy: successes and pitfalls. J Pharm Pharmacol 2016; 68:139-47. [DOI: 10.1111/jphp.12506] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/19/2015] [Indexed: 01/05/2023]
Abstract
Abstract
Objectives
Bone morphogenetic proteins (BMPs), more specifically BMP-2, are being increasingly used in orthopaedic surgery due to advanced research into osteoinductive factors that may enhance and improve bone therapy. There are many areas in therapy that BMP-2 is being applied to, including dental treatment, open tibial fractures, cancer and spinal surgery. Within these areas of treatment, there are many reports of successes and pitfalls. This review explores the use of BMP-2 and its successes, pitfalls and future prospects in bone therapy.
Methods
The PubMed database was consulted to compile this review.
Key findings
With successes in therapy, there were descriptions of a more rapid healing time with no signs of rejection or infection attributed to BMP-2 treatment. Pitfalls included BMP-2 ‘off-label’ use, which lead to various adverse effects.
Conclusions
Our search highlighted that optimising treatment with BMP-2 is a direction that many researchers are exploring, with areas of current research interest including concentration and dose of BMP-2, carrier type and delivery.
Collapse
Affiliation(s)
- Bonnie Poon
- School of Pharmacy, Curtin University, Bentley, WA, Australia
| | - Tram Kha
- School of Pharmacy, Curtin University, Bentley, WA, Australia
| | - Sally Tran
- School of Pharmacy, Curtin University, Bentley, WA, Australia
| | - Crispin R Dass
- School of Pharmacy, Curtin University, Bentley, WA, Australia
- Curtin Biosciences Research Precinct, Bentley, WA, Australia
| |
Collapse
|
64
|
Biodegradable Materials for Bone Repair and Tissue Engineering Applications. MATERIALS 2015; 8:5744-5794. [PMID: 28793533 PMCID: PMC5512653 DOI: 10.3390/ma8095273] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/09/2015] [Accepted: 08/24/2015] [Indexed: 12/21/2022]
Abstract
This review discusses and summarizes the recent developments and advances in the use of biodegradable materials for bone repair purposes. The choice between using degradable and non-degradable devices for orthopedic and maxillofacial applications must be carefully weighed. Traditional biodegradable devices for osteosynthesis have been successful in low or mild load bearing applications. However, continuing research and recent developments in the field of material science has resulted in development of biomaterials with improved strength and mechanical properties. For this purpose, biodegradable materials, including polymers, ceramics and magnesium alloys have attracted much attention for osteologic repair and applications. The next generation of biodegradable materials would benefit from recent knowledge gained regarding cell material interactions, with better control of interfacing between the material and the surrounding bone tissue. The next generations of biodegradable materials for bone repair and regeneration applications require better control of interfacing between the material and the surrounding bone tissue. Also, the mechanical properties and degradation/resorption profiles of these materials require further improvement to broaden their use and achieve better clinical results.
Collapse
|
65
|
Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2015; 8:5671-5701. [PMID: 28793529 PMCID: PMC5512621 DOI: 10.3390/ma8095269] [Citation(s) in RCA: 448] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022]
Abstract
All biomaterials, when implanted in vivo, elicit cellular and tissue responses. These responses include the inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the implanted materials. Macrophages are myeloid immune cells that are tactically situated throughout the tissues, where they ingest and degrade dead cells and foreign materials in addition to orchestrating inflammatory processes. Macrophages and their fused morphologic variants, the multinucleated giant cells, which include the foreign body giant cells (FBGCs) are the dominant early responders to biomaterial implantation and remain at biomaterial-tissue interfaces for the lifetime of the device. An essential aspect of macrophage function in the body is to mediate degradation of bio-resorbable materials including bone through extracellular degradation and phagocytosis. Biomaterial surface properties play a crucial role in modulating the foreign body reaction in the first couple of weeks following implantation. The foreign body reaction may impact biocompatibility of implantation devices and may considerably impact short- and long-term success in tissue engineering and regenerative medicine, necessitating a clear understanding of the foreign body reaction to different implantation materials. The focus of this review article is on the interactions of macrophages and foreign body giant cells with biomaterial surfaces, and the physical, chemical and morphological characteristics of biomaterial surfaces that play a role in regulating the foreign body response. Events in the foreign body response include protein adsorption, adhesion of monocytes/macrophages, fusion to form FBGCs, and the consequent modification of the biomaterial surface. The effect of physico-chemical cues on macrophages is not well known and there is a complex interplay between biomaterial properties and those that result from interactions with the local environment. By having a better understanding of the role of macrophages in the tissue healing processes, especially in events that follow biomaterial implantation, we can design novel biomaterials-based tissue-engineered constructs that elicit a favorable immune response upon implantation and perform for their intended applications.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Patricia J Brooks
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Oriyah Barzilay
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Noah Fine
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Michael Glogauer
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
66
|
Sheikh Z, Sima C, Glogauer M. Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation. MATERIALS 2015. [PMCID: PMC5455762 DOI: 10.3390/ma8062953] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alveolar bone augmentation in vertical dimension remains the holy grail of periodontal tissue engineering. Successful dental implant placement for restoration of edentulous sites depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical techniques used alone or in combination with natural or synthetic graft materials to achieve vertical alveolar bone augmentation. While continuously improving surgical techniques combined with the use of auto- or allografts provide the most predictable clinical outcomes, their success often depends on the status of recipient tissues. The morbidity associated with donor sites for auto-grafts makes these techniques less appealing to both patients and clinicians. New developments in material sciences offer a range of synthetic replacements for natural grafts to address the shortcoming of a second surgical site and relatively high resorption rates. This narrative review focuses on existing techniques, natural tissues and synthetic biomaterials commonly used to achieve vertical bone height gain in order to successfully restore edentulous ridges with implant-supported prostheses.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2, Canada; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-514-224-7490
| | - Corneliu Sima
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; E-Mail:
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2, Canada; E-Mail:
| |
Collapse
|