51
|
Forma A, Chilimoniuk Z, Januszewski J, Sitarz R. The Potential Application of Allium Extracts in the Treatment of Gastrointestinal Cancers. GASTROENTEROLOGY INSIGHTS 2021; 12:136-146. [DOI: 10.3390/gastroent12020012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herbal medicine is currently widely practiced, since natural resources are reported to alleviate side effects during oncological treatment while modifying cancer cell responses at the same time. Allium vegetables and their constituents have recently been extensively investigated due to the numerous possible beneficial properties, establishing them as an additional treatment modality in different cancers. According to the epidemiological evidence, as well as many in vivo and in vitro studies, the abovementioned substances seem to be effective in the prevention and inhibition of the progression of carcinogenesis. Due to high concentrations of organosulfur compounds, which exhibit anticarcinogenic, antimicrobial, as well as anti-inflammatory properties, Allium constituents are believed to constitute a promising prevention and supportive therapy for oncological patients. Besides, it was demonstrated that a combination of Allium extracts with chemotherapy provided satisfactory clinical outcomes while at the same time being cost-effective. The aim of this review was to present and discuss currently investigated Allium extracts and their effects on several gastrointestinal cancers including gastric, colon, liver, esophageal, and pancreatic cancer.
Collapse
Affiliation(s)
- Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| | - Zuzanna Chilimoniuk
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jacek Januszewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| | - Robert Sitarz
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland
| |
Collapse
|
52
|
Network Pharmacology-Based Study on the Molecular Biological Mechanism of Action for Qingdu Decoction against Chronic Liver Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6661667. [PMID: 33747110 PMCID: PMC7952185 DOI: 10.1155/2021/6661667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
Background Qingdu Decoction (QDD) is a traditional Chinese medicine formula for treating chronic liver injury (CLI). Materials and methods. A network pharmacology combining experimental validation was used to investigate potential mechanisms of QDD against CLI. We firstly screened the bioactive compounds with pharmacology analysis platform of the Chinese medicine system (TCMSP) and gathered the targets of QDD and CLI. Then, we constructed a compound-target network and a protein-protein interaction (PPI) network and enriched core targets in Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. At last, we used a CLI rat model to confirm the effect and mechanism of QDD against CLI. Enzyme-linked immunosorbent assay (ELISA), western blot (WB), and real-time quantitative polymerase chain reaction (RT-qPCR) were used. Results 48 bioactive compounds of QDD passed the virtual screening criteria, and 53 overlapping targets were identified as core targets of QDD against CLI. A compound-CLI related target network containing 94 nodes and 263 edges was constructed. KEGG enrichment of core targets contained some pathways related to CLI, such as hepatitis B, tumor necrosis factor (TNF) signaling pathway, apoptosis, hepatitis C, interleukin-17 (IL-17) signaling pathway, and hypoxia-inducible factor (HIF)-1 signaling pathway. Three PPI clusters were identified and enriched in hepatitis B and tumor necrosis factor (TNF) signaling pathway, apoptosis and hepatitis B pathway, and peroxisome pathway, respectively. Animal experiment indicated that QDD decreased serum concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), endotoxin (ET), and IL-17 and increased prothrombin time activity (PTA) level. WB and RT-qPCR analyses indicated that, compared with the model group, the expression of cysteinyl aspartate specific proteinase-9 (caspase-9) protein, caspase-3 protein, B-cell lymphoma-2 associated X protein (Bax) mRNA, and cytochrome c (Cyt c) mRNA was inhibited and the expression of B-cell lymphoma-2 (Bcl-2) mRNA was enhanced in the QDD group. Conclusions QDD has protective effect against CLI, which may be related to the regulation of hepatocyte apoptosis. This study provides novel insights into exploring potential biological basis and mechanisms of clinically effective formula systematically.
Collapse
|
53
|
Nowak AJ, Relja B. The Impact of Acute or Chronic Alcohol Intake on the NF-κB Signaling Pathway in Alcohol-Related Liver Disease. Int J Mol Sci 2020; 21:E9407. [PMID: 33321885 PMCID: PMC7764163 DOI: 10.3390/ijms21249407] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Ethanol misuse is frequently associated with a multitude of profound medical conditions, contributing to health-, individual- and social-related damage. A particularly dangerous threat from this classification is coined as alcoholic liver disease (ALD), a liver condition caused by prolonged alcohol overconsumption, involving several pathological stages induced by alcohol metabolic byproducts and sustained cellular intoxication. Molecular, pathological mechanisms of ALD principally root in the innate immunity system and are especially associated with enhanced functionality of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB is an interesting and convoluted DNA transcription regulator, promoting both anti-inflammatory and pro-inflammatory gene expression. Thus, the abundancy of studies in recent years underlines the importance of NF-κB in inflammatory responses and the mechanistic stimulation of inner molecular motifs within the factor components. Hereby, in the following review, we would like to put emphasis on the correlation between the NF-κB inflammation signaling pathway and ALD progression. We will provide the reader with the current knowledge regarding the chronic and acute alcohol consumption patterns, the molecular mechanisms of ALD development, the involvement of the NF-κB pathway and its enzymatic regulators. Therefore, we review various experimental in vitro and in vivo studies regarding the research on ALD, including the recent active compound treatments and the genetic modification approach. Furthermore, our investigation covers a few human studies.
Collapse
Affiliation(s)
- Aleksander J. Nowak
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
54
|
Naeini F, Namkhah Z, Ostadrahimi A, Tutunchi H, Hosseinzadeh-Attar MJ. A Comprehensive Systematic Review of the Effects of Naringenin, a Citrus-Derived Flavonoid, on Risk Factors for Nonalcoholic Fatty Liver Disease. Adv Nutr 2020; 12:413-428. [PMID: 32879962 PMCID: PMC8009752 DOI: 10.1093/advances/nmaa106] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of liver dysfunction worldwide. Recently, some natural compounds have attracted growing interest in the treatment of NAFLD. In this context, most attention has been paid to natural products derived from fruits, vegetables, and medicinal herbs. Naringenin, a natural flavanone, has been revealed to have pharmacological effects in the treatment of obesity and associated metabolic disorders such as NAFLD. The aim of this study was to examine the therapeutic effects of naringenin and its possible mechanisms of action in the management of NAFLD and related risk factors. The current systematic review was performed according to the guidelines of the 2015 PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) statements. We searched PubMed/Medline, Science Direct, Scopus, ProQuest, and Google Scholar databases up until February 2020. Of 1217 full-text articles assessed, 36 studies met the inclusion criteria. The evidence reviewed in the present study indicates that naringenin modulates several biological processes related to NAFLD including energy balance, lipid and glucose metabolism, inflammation, and oxidative stress by different mechanisms. Overall, the favorable effects of naringenin along with its more potency and efficacy, compared with other antioxidants, indicate that naringenin may be a promising therapeutic approach for the management of NAFLD and associated complications. However, due to the lack of clinical trials, future robust human randomized clinical trials that address the effects of naringenin on NAFLD and other liver-related diseases are crucial. Further careful human pharmacokinetic studies are also needed to establish dosage ranges, as well as addressing preliminary safety and tolerability of naringenin, before proceeding to larger-scale endpoint trials.
Collapse
Affiliation(s)
- Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Namkhah
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
55
|
Lin Z, Lin Y, Zhang Z, Shen J, Yang C, Jiang M, Hou Y. Systematic analysis of bacteriostatic mechanism of flavonoids using transcriptome and its therapeutic effect on vaginitis. Aging (Albany NY) 2020; 12:6292-6305. [PMID: 32271160 PMCID: PMC7185132 DOI: 10.18632/aging.103024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/02/2020] [Indexed: 01/25/2023]
Abstract
The flavonoids in Ageratum conyzoides L. have been used in traditional medicine due to its anti-inflammatory and antibacterial properties. However, the specific mechanism of its antibacterial effect, and the potential therapeutic effect on vaginitis have not been well explained. The growth curves of E. coli, S. aurues, and P. aeruginosa after treatment with flavonoids were measured. The influences of flavonoids on the conductivity of bacterial culture medium and exudation of bacterial nucleic acid were also detected. Transcriptomics analysis was applied to analyze the potential mechanism of flavonoids. Flavonoids significantly suppressed the growth curves of E. coli, S. aurues, and P. aeruginosa, and increased the conductivity of bacteria and nucleic acid exudation. Transcriptomics analysis indicated that flavonoids could suppress bacteria by affecting the transcription and metabolism pathways. The obvious therapeutic effect of flavonoids on bacterial vaginitis was also observed. This study systematically analyzed the bacteriostatic mechanism of flavonoids, which should be helpful to develop new drugs based on the bacteriostatic effect of flavonoids.
Collapse
Affiliation(s)
- Zeyan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.,Department of Pharmacy, Zhangzhou Health Vocational College, Zhangzhou, Fujian, China
| | - Yanyan Lin
- Faculty of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou, Fujian, China
| | - Zhengbing Zhang
- Department of Pharmacy, Zhangzhou Health Vocational College, Zhangzhou, Fujian, China
| | - Jinxing Shen
- Biobank, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Caimei Yang
- Faculty of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou, Fujian, China
| | - Meijiao Jiang
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
56
|
Grape-Leaf Extract Attenuates Alcohol-Induced Liver Injury via Interference with NF-κB Signaling Pathway. Biomolecules 2020; 10:biom10040558. [PMID: 32268521 PMCID: PMC7225955 DOI: 10.3390/biom10040558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023] Open
Abstract
Grape (Vitis vinifera) leaf extracts (GLEs) are known to be rich in phenolic compounds that exert potent antioxidant effects. Given the vulnerability of the liver to oxidative damage, antioxidants have been proposed as therapeutic agents and coadjuvant drugs to ameliorate liver pathologies. The current study was designed to characterize secondary metabolites and investigate the hepatoprotective effects of GLE and its underlying mechanisms. The secondary metabolites were profiled using HPLC–PDA–ESI-MS, and forty-five compounds were tentatively identified. In experimental in vivo design, liver injury was induced by oral administration of high doses of ethanol (EtOH) for 12 days to male Sprague Dawley rats that were split into five different groups. Blood samples and livers were then collected, and used for various biochemical, immunohistochemical, and histopathological analyses. Results showed that GLE-attenuated liver injury and promoted marked hepatic antioxidant effects, in addition to suppressing the increased heat-shock protein-70 expression. Moreover, GLE suppressed EtOH-induced expression of nuclear factor-κB (NF-κB) p65 subunit and proinflammatory cytokine tumor necrosis factor-α. Caspase-3 and survivin were enhanced by EtOH intake and suppressed by GLE intake. Finally, EtOH-induced histopathological changes in liver sections were markedly normalized by GLE. In conclusion, our results suggested that GLE interferes with NF-κB signaling and induces antioxidant effects, which both play a role in attenuating apoptosis and associated liver injury in a model of EtOH-induced liver damage in rats.
Collapse
|
57
|
Jia S, Guan T, Zhang X, Liu Y, Liu Y, Zhao X. Serum metabonomics analysis of quercetin against the toxicity induced by cadmium in rats. J Biochem Mol Toxicol 2020; 34:e22448. [PMID: 31967702 DOI: 10.1002/jbt.22448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/28/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
This study aimed to investigate the protective effect of quercetin against the toxicity induced by chronic exposure to low levels of cadmium in rats by an ultra performance liquid chromatography mass spectrometer. Rats were randomly divided into six groups as follows: control group (C), low dose of quercetin group (Q1: 10 mg/kg·bw), high dose of quercetin group (Q2: 50 mg/kg·bw), cadmium chloride group (D), low dose of quercetin plus cadmium chloride group (DQ1), and high dose of quercetin plus cadmium chloride group (DQ2). Cadmium chloride (CdCl2 ) was administered to rats by drinking water ad libitum in a concentration of 40 mg/L. The final amount of CdCl2 ingested was estimated from the water consumption data to be 4.85, 4.91, and 4.89 mg/kg·bw/day, for D, DQ1, and DQ2 groups, respectively. After a 12-week treatment, the serum samples of rats were collected for metabonomics analysis. Ten potential biomarkers were identified for which intensities were significantly increased or reduced as a result of the treatment. These metabolites included isorhamnetin 4'-O-glucuronide, 3-indolepropionic acid, tetracosahexaenoic acid, lysophosphatidylcholine (LysoPC) (20:5), lysoPC (18:3), lysophosphatidylethanolamine (LysoPE) (20:5/0:0), bicyclo-prostaglandin E2, sulpholithocholylglycine, lithocholyltaurine, and glycocholic acid. Results indicated that quercetin exerted a protective effect against cadmium-induced toxicity by regulating lipid and amino acid metabolism, enhancing the antioxidant defense system and protecting liver and kidney function.
Collapse
Affiliation(s)
- Siqi Jia
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Tong Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Xia Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yajing Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yanli Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
58
|
Lin TA, Ke BJ, Cheng CS, Wang JJ, Wei BL, Lee CL. Red Quinoa Bran Extracts Protects against Carbon Tetrachloride-Induced Liver Injury and Fibrosis in Mice via Activation of Antioxidative Enzyme Systems and Blocking TGF-β1 Pathway. Nutrients 2019; 11:nu11020395. [PMID: 30781895 PMCID: PMC6412755 DOI: 10.3390/nu11020395] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
The late stages of liver fibrosis are considered to be irreversible. Red quinoa (Chenopodium formosanum Koidz), a traditional food for Taiwanese aborigines, was gradually developed as a novel supplemental food due to high dietary fibre and polyphenolic compounds. Its bran was usually regarded as the agricultural waste, but it contained a high concentration of rutin known as an antioxidant and anti-inflammatory agent. This study is to explore the effect of red quinoa bran extracts on the prevention of carbon tetrachloride (CCl4)-induced liver fibrosis. BALB/c mice were intraperitoneally injected CCl4 to induce liver fibrosis and treated with red quinoa whole seed powder, bran ethanol extracts, bran water extracts, and rutin. In the results, red quinoa powder provided more protection than rutin against CCl4-induced oxidative stress, pro-inflammatory factor expression and fibrosis development. However, the bran ethanol extract with high rutin content provided the most liver protection and anti-fibrosis effect via blocking the tumor necrosis factor alpha (TNF-α)/interleukin 6 (IL-6) pathway and transforming growth factor beta 1 (TGF-β1) pathway.
Collapse
Affiliation(s)
- Ting-An Lin
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| | - Bo-Jun Ke
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| | | | - Jyh-Jye Wang
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung 831, Taiwan.
| | - Bai-Luh Wei
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| | - Chun-Lin Lee
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| |
Collapse
|