51
|
Valenti GE, Marengo B, Milanese M, Zuccari G, Brullo C, Domenicotti C, Alfei S. Imidazo-Pyrazole-Loaded Palmitic Acid and Polystyrene-Based Nanoparticles: Synthesis, Characterization and Antiproliferative Activity on Chemo-Resistant Human Neuroblastoma Cells. Int J Mol Sci 2023; 24:15027. [PMID: 37834475 PMCID: PMC10573130 DOI: 10.3390/ijms241915027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Neuroblastoma (NB) is a childhood cancer, commonly treated with drugs, such as etoposide (ETO), whose efficacy is limited by the onset of resistance. Here, aiming at identifying new treatments for chemo-resistant NB, the effects of two synthesized imidazo-pyrazoles (IMPs) (4G and 4I) were investigated on ETO-sensitive (HTLA-230) and ETO-resistant (HTLA-ER) NB cells, detecting 4I as the more promising compound, that demonstrated IC50 values lower than those of ETO on HTLA ER. Therefore, to further improve the activity of 4I, we developed 4I-loaded palmitic acid (PA) and polystyrene-based (P5) cationic nanoparticles (P5PA-4I NPs) with high drug loading (21%) and encapsulation efficiency (97%), by a single oil-in-water emulsification technique. Biocompatible PA was adopted as an emulsion stabilizer, while synthesized P5 acted as an encapsulating agent, solubilizer and hydrophilic-lipophilic balance (HLB) improver. Optic microscopy and cytofluorimetric analyses were performed to investigate the micromorphology, size and complexity distributions of P5PA-4I NPs, which were also structurally characterized by chemometric-assisted Fourier transform infrared spectroscopy (FTIR). Potentiometric titrations allowed us to estimate the milliequivalents of PA and basic nitrogen atoms present in NPs. P5PA-4I NPs afforded dispersions in water with excellent buffer capacity, essential to escape lysosomal degradation and promote long residence time inside cells. They were chemically stable in an aqueous medium for at least 40 days, while in dynamic light scattering (DLS) analyses, P5PA-4I showed a mean hydrodynamic diameter of 541 nm, small polydispersity (0.194), and low positive zeta potentials (+8.39 mV), assuring low haemolytic toxicity. Biological experiments on NB cells, demonstrated that P5PA-4I NPs induced ROS-dependent cytotoxic effects significantly higher than those of pristine 4I, showing a major efficacy compared to ETO in reducing cell viability in HTLA-ER cells. Collectively, this 4I-based nano-formulation could represent a new promising macromolecular platform to develop a new delivery system able to increase the cytotoxicity of the anticancer drugs.
Collapse
Affiliation(s)
- Giulia Elda Valenti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Marco Milanese
- Department of Pharmacy, Section of Chemistry and Pharmaceutical and Food Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry and Cosmetic Product, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.Z.); (C.B.)
| | - Chiara Brullo
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry and Cosmetic Product, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.Z.); (C.B.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Silvana Alfei
- Department of Pharmacy, Section of Chemistry and Pharmaceutical and Food Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy;
| |
Collapse
|
52
|
Alfei S, Milanese M, Brullo C, Valenti GE, Domenicotti C, Russo E, Marengo B. Antiproliferative Imidazo-Pyrazole-Based Hydrogel: A Promising Approach for the Development of New Treatments for PLX-Resistant Melanoma. Pharmaceutics 2023; 15:2425. [PMID: 37896185 PMCID: PMC10610107 DOI: 10.3390/pharmaceutics15102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Aiming at developing a dermal formulation against melanoma, the synthesized imidazo-pyrazoles 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylic acid (3-methoxy-4-phenoxy-benzylidene)-hydrazide (4G) and 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylic acid (4-benzyloxy-3-methoxy-benzylidene)-hydrazide (4I) were screened on patient-isolated melanoma cells (MEOV NT) and on Vemurafenib (PLX4032)-resistant (MEOV PLX-R) ones. Since 4I on MEOV PLX-R cells was 1.4-fold more effective than PLX, a hydrogel formulation containing 4I (R4HG-4I) was prepared in parallel with an empty R4-based hydrogel (R4HG) using a synthesized antibacterial resin (R4) as gelling agent. Thanks to its high hydrophilicity, porosity (85%), and excellent swelling capability (552%), R4 allowed to achieve R4HG and R4HG-4I with high equilibrium degree of swelling (EDS) and equilibrium water content (EWC). Chemometric-assisted ATR-FTIR analyses confirmed the chemical structure of swollen and fully dried (R4HG-D and R4HG-4I-D) hydrogels. The morphology of R4HG-D and R4HG-4I-D was examined by optical microscopy and SEM, while UV-vis analyses were carried out to obtain the drug loading (DL%) and the encapsulation efficiency (EE%) of R4HG-4I. Potentiometric titrations were performed to determine the equivalents of NH3+ in both R4HG and R4HG-4I. The swelling and water release profiles of both materials and related kinetics were assessed by equilibrium swelling rate and water loss studies, respectively, while their biodegradability over time was assessed by in vitro degradation experiments determining their mass loss. Rheological experiments established that both R4HG and R4HG-4I are shear-thinning Bingham pseudoplastic fluids with low yield stress, thus assuring easy spreadability in a future topical application. Release studies evidenced a sustained and quantitative release of 4I governed mainly by diffusion. Upon favorable results from further experiments in a more realistic 3D model of melanoma, R4HG-4I could represent a starting point to develop new topical therapeutic options to adjuvate the treatments of melanoma cells also when resistant to currently available drugs.
Collapse
Affiliation(s)
- Silvana Alfei
- Section of Chemistry and Pharmaceutical and Food Technologies, Department of Pharmacy, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy;
| | - Marco Milanese
- Section of Chemistry and Pharmaceutical and Food Technologies, Department of Pharmacy, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy;
| | - Chiara Brullo
- Section of Medicinal Chemistry and Cosmetic Product, Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (C.B.); (E.R.)
| | - Giulia Elda Valenti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (C.D.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (C.D.)
| | - Eleonora Russo
- Section of Medicinal Chemistry and Cosmetic Product, Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (C.B.); (E.R.)
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (C.D.)
| |
Collapse
|
53
|
Funes M, Tosso RD, Machado ND, Fernández MA, Garro M, Díaz DD, Hikawczuk VJ, Enriz RD. Antinociceptive effect of cyclic and linear diterpenoids as new atypical agonists of κ-opioid receptors obtained from four species of the Baccharis genus, and vehiculated in nanometric niosomes. Fitoterapia 2023; 169:105622. [PMID: 37524126 DOI: 10.1016/j.fitote.2023.105622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
New natural analgesic compounds that act in KORs are important alternatives for potential therapeutical use in medicine. In this work, we report and compare here the antinociceptive activity displayed by cyclic and linear diterpenes, obtained from the genus Baccharis. The antinociceptive activities determined were relatively strong, in comparison whit morphine. The antinociceptive mechanism of action was made through naloxone administration (a non-selective antagonist of opioid receptors). The more active compounds were vehiculized successfully in niosomes at nanometric scale. The observed antinociceptive activity for Bartemidiolide oxide (BARTO), obtain from Baccharis artemisioides, was greater than Flabeloic acid dimer (DACD), the first compound isolated from Baccharis flabellata that was reported possessing antinociceptive effects. We also conducted docking calculations and molecular dynamics simulations, which suggested that the newly identified diterpenes might share the molecular action mechanism reported for Salvinorin A (SalA). Molecular simulations have allowed us to appreciate some subtle differences between molecular interactions of these ligands stabilizing their respective complexes; such information might be useful for designing and searching for new inhibitors of KORs.
Collapse
Affiliation(s)
- Matías Funes
- Pharmacognosy, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, Av. Ejército de los Andes 950, 5700 San Luis, Argentina; Multidisciplinary Institute for Biological Research (IMIBIO-CONICET), Av. Ejército de los Andes 950, 5700 San Luis, Argentina.
| | - Rodrigo D Tosso
- Multidisciplinary Institute for Biological Research (IMIBIO-CONICET), Av. Ejército de los Andes 950, 5700 San Luis, Argentina
| | - Noelia D Machado
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina; Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA-UNC-CONICET), Avda. Vélez Sársfield 1611, Córdoba X5016GCA, Argentina
| | - Mariana A Fernández
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina; Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - María Garro
- Pharmacognosy, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, Av. Ejército de los Andes 950, 5700 San Luis, Argentina
| | - David Díaz Díaz
- Departamento de Química Orgánica, Universidad de la Laguna, La Laguna, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de la Laguna, La Laguna, Spain; Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, Regensburg 93053, Germany
| | - Virginia Juan Hikawczuk
- Organic Chemistry, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, Av. Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Ricardo D Enriz
- Pharmacognosy, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, Av. Ejército de los Andes 950, 5700 San Luis, Argentina; Multidisciplinary Institute for Biological Research (IMIBIO-CONICET), Av. Ejército de los Andes 950, 5700 San Luis, Argentina.
| |
Collapse
|
54
|
Xu S, Liu W, Peng M, Ma D, Liu Z, Tang L, Li X, Chen S. Biodegradable Microneedles Array with Dual-Release Behavior and Parameter Optimization by Finite Element Analysis. J Pharm Sci 2023; 112:2506-2515. [PMID: 37072050 DOI: 10.1016/j.xphs.2023.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
Microneedles (MNs) are particularly attractive for transdermal administration because of the improved safety, patient compliance and convenience. Dissolving MNs could provide rapid transdermal delivery, but with relatively low mechanical strength and almost no sustainability. On the other hand, hydrogel MNs are complicated to fabricate and have risk concerns. Herein, we developed a biodegradable MNs array composed of biocompatible silk fibroin and poly(vinyl alcohol) to overcome these limitations. Finite element analysis was employed for parameter optimization. The MNs array fabricated by the optimal parameters and material displayed sufficient mechanical strength to disrupt stratum corneum and formed microchannels for transdermal delivery. Dual-release profile was observed in the MNs array, with rapid release in the beginning, and prolonged release afterward. This release behavior fits Weibull release model and is favorable for topical application. The initial immediate release can quickly deliver active compounds to reach the therapeutic effective concentration and facilitate skin penetration, and the sustained release may supply the skin with active compounds over a prolonged period. This biodegradable MNs array is easy to fabricate, mechanically robust, could eliminate safety concerns, and provide the sustainability and advantage for large-scale production.
Collapse
Affiliation(s)
- Shuai Xu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, China
| | - Wenyuan Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, China
| | - Mingwei Peng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, China
| | - Dewei Ma
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, China
| | - Zhixiang Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Lingfeng Tang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaoniu Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
55
|
Martínez-Olivo AO, Zamora-Gasga VM, Medina-Torres L, Pérez-Larios A, Sáyago-Ayerdi SG, Sánchez-Burgos JA. Biofunctionalization of natural extracts, trends in biological activity and kinetic release. Adv Colloid Interface Sci 2023; 318:102938. [PMID: 37329675 DOI: 10.1016/j.cis.2023.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
The health benefits provided by plant matrices is due to the presence of certain compounds that, in studies carried out in vitro and in vivo, have shown to have biological activity in certain conditions, not only as a natural treatment against various conditions, but also for the quality of preventing chronic diseases, these compounds, already identified and studied, they can increase their biological function by undergoing structural chemical modifications or by being incorporated into polymer matrices that allow, in the first instance, to protect said compound and increase its bioaccessibility, as well as to preserve or increase the biological effects. Although the stabilization of compounds is an important aspect, it is also the study of the kinetic parameters of the system that contains them, since, due to these studies, the potential application to these systems can be designated. In this review we will address some of the work focused on obtaining compounds with biological activity from plant sources, the functionalization of extracts through double emulsions and nanoemulsions, as well as their toxicity and finally the pharmacokinetic aspects of entrapment systems.
Collapse
Affiliation(s)
- Abraham Osiris Martínez-Olivo
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Víctor Manuel Zamora-Gasga
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Luis Medina-Torres
- Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510 Ciudad de México, Mexico
| | - Alejandro Pérez-Larios
- Universidad de Guadalajara, Centro Universitario de los Altos, División de Ciencias Agropecuarias e Ingenierías, Laboratorio de Materiales, Agua y Energía, Av. Rafael Casillas Aceves 1200, C.P. 47600, Tepatitlán de Morelos, Mexico
| | - Sonia Guadalupe Sáyago-Ayerdi
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Jorge Alberto Sánchez-Burgos
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico.
| |
Collapse
|
56
|
Coulter SM, Pentlavalli S, Vora LK, An Y, Cross ER, Peng K, McAulay K, Schweins R, Donnelly RF, McCarthy HO, Laverty G. Enzyme-Triggered l-α/d-Peptide Hydrogels as a Long-Acting Injectable Platform for Systemic Delivery of HIV/AIDS Drugs. Adv Healthc Mater 2023; 12:e2203198. [PMID: 36880399 PMCID: PMC11469249 DOI: 10.1002/adhm.202203198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Eradicating HIV/AIDS by 2030 is a central goal of the World Health Organization. Patient adherence to complicated dosage regimens remains a key barrier. There is a need for convenient long-acting formulations that deliver drugs over sustained periods. This paper presents an alternative platform, an injectable in situ forming hydrogel implant to deliver a model antiretroviral drug (zidovudine [AZT]) over 28 days. The formulation is a self-assembling ultrashort d or l-α peptide hydrogelator, namely phosphorylated (naphthalene-2-ly)-acetyl-diphenylalanine-lysine-tyrosine-OH (NapFFKY[p]-OH), covalently conjugated to zidovudine via an ester linkage. Rheological analysis demonstrates phosphatase enzyme instructed self-assembly, with hydrogels forming within minutes. Small angle neutron scattering data suggest hydrogels form narrow radius (≈2 nm), large length fibers closely fitting the flexible cylinder elliptical model. d-Peptides are particularly promising for long-acting delivery, displaying protease resistance for 28 days. Drug release, via hydrolysis of the ester linkage, progress under physiological conditions (37 °C, pH 7.4, H2 O). Subcutaneous administration of Napffk(AZT)Y[p]G-OH in Sprague Dawley rats demonstrate zidovudine blood plasma concentrations within the half maximal inhibitory concentration (IC50 ) range (30-130 ng mL-1 ) for 35 days. This work is a proof-of-concept for the development of a long-acting combined injectable in situ forming peptide hydrogel implant. These products are imperative given their potential impact on society.
Collapse
Affiliation(s)
- Sophie M. Coulter
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Sreekanth Pentlavalli
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Lalitkumar K. Vora
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Yuming An
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Emily R. Cross
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Ke Peng
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Kate McAulay
- School of ChemistryUniversity of GlasgowJoseph Black BuildingGlasgowScotlandG12 8QQUK
- School of Computing, Engineering and Built EnvironmentGlasgow Caledonian UniversityGlasgowScotlandG4 0BAUK
| | - Ralf Schweins
- Large Scale Structures GroupInstitut Laue – Langevin71 Avenue des Martyrs, CS 20156Grenoble Cedex 938042France
| | - Ryan F. Donnelly
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Helen O. McCarthy
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Garry Laverty
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| |
Collapse
|
57
|
Nguyen DT, Nguyen TP, Dinh VT, Nguyen NH, Nguyen KTH, Nguyen TH, Ngan TT, Nhi TTY, Le BHT, Le Thi P, Dang LH, Tran NQ. Potential from synergistic effect of quercetin and paclitaxel co-encapsulated in the targeted folic-gelatin-pluronic P123 nanogels for chemotherapy. Int J Biol Macromol 2023:125248. [PMID: 37307971 DOI: 10.1016/j.ijbiomac.2023.125248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Dual-drug delivery systems for anticancer therapy have recently attracted substantial attention due to their potency to overcome limitations of conventional anti-cancer drugs, tackle drug resistance problems, as well as improve the therapeutic efficacy. In this study, we introduced a novel nanogel based on folic acid-gelatin-pluronic P123 (FA-GP-P123) conjugate to simultaneously deliver quercetin (QU) and paclitaxel (PTX) to the targeted tumor. The results indicated that the drug loading capacity of FA-GP-P123 nanogels was significantly higher than that of P123 micelles. The kinetic release profiles of QU and PTX from the nanocarriers were governed by Fickian diffusion and swelling behavior, respectively. Notably, FA-GP-P123/QU/PTX dual-drug delivery system induced higher toxicity to MCF-7 and Hela cancer cells than either QU or PTX individual delivery system, and the non-targeted dug delivery system (GP-P123/QU/PTX), indicating the synergistic combination of dual drugs and FA positive targeting effect. Furthermore, FA-GP-P123 could effectively deliver QU and PTX to tumors in vivo after administration into MCF-7 tumor-bearing mice, which resulted in 94.20 ± 5.90 % of tumor volume reduced at day 14. Moreover, the side effects of the dual-drug delivery system were significantly reduced. Overall, we suggest FA-GP-P123 as potential nanocarrier for dual-drug delivery for targeted chemotherapy.
Collapse
Affiliation(s)
- Dinh Trung Nguyen
- Graduate University of Science and Technology, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam; Institute of Applied Materials Science, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam
| | - Thi Phuong Nguyen
- Faculty of Chemical Technology, HCMC University of Food Industry, Ho Chi Minh City 700000, Viet Nam
| | - Van Thoai Dinh
- Graduate University of Science and Technology, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam
| | - Ngoc Hao Nguyen
- Institute of Applied Materials Science, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam
| | - Kim Thi Hoang Nguyen
- Institute of Applied Materials Science, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam
| | - Thi Hiep Nguyen
- Vietnam Department of Tissue Engineering and Regenerative Medicine, School of Biomedical Engineering, International University, Vietnam National University, Ho Chi Minh City (VNU-HCM) 700000, Viet Nam
| | - Tang Tuan Ngan
- Vietnam Department of Tissue Engineering and Regenerative Medicine, School of Biomedical Engineering, International University, Vietnam National University, Ho Chi Minh City (VNU-HCM) 700000, Viet Nam
| | - Tran Thi Yen Nhi
- Institute of Technology Application and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Bao Ha Tran Le
- University of Science - Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Phuong Le Thi
- Graduate University of Science and Technology, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam; Institute of Applied Materials Science, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam.
| | - Le Hang Dang
- Graduate University of Science and Technology, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam; Institute of Applied Materials Science, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam.
| | - Ngoc Quyen Tran
- Graduate University of Science and Technology, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam; Institute of Applied Materials Science, VAST, TL29, Thanh Loc ward, Dist. 12, HCMC, Viet Nam.
| |
Collapse
|
58
|
Farzan M, Roth R, Schoelkopf J, Huwyler J, Puchkov M. The processes behind drug loading and release in porous drug delivery systems. Eur J Pharm Biopharm 2023:S0939-6411(23)00141-8. [PMID: 37230292 DOI: 10.1016/j.ejpb.2023.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Porous materials are ubiquitous and exhibit properties suitable for depositing therapeutic compounds. Drug loading in porous materials can protect the drug, control its release rate, and improve its solubility. However, to achieve such outcomes from porous delivery systems, effective incorporation of the drug in the internal porosity of the carrier must be guaranteed. Mechanistic knowledge of the factors influencing drug loading and release from porous carriers allows rational design of formulations by selecting a suitable carrier for each application. Much of this knowledge exists in research areas other than drug delivery. Thus, a comprehensive overview of this topic from the drug delivery aspect is warranted. This review aims to identify the loading processes and carrier characteristics influencing the drug delivery outcome with porous materials. Additionally, the kinetics of drug release from porous materials are elucidated, and the common approaches to mathematical modeling of these processes are outlined.
Collapse
Affiliation(s)
- Maryam Farzan
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Roger Roth
- Fundamental Research, Omya International AG, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - Joachim Schoelkopf
- Fundamental Research, Omya International AG, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Maxim Puchkov
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| |
Collapse
|
59
|
Hornsby TK, Jakhmola A, Kolios MC, Tavakkoli J. A Quantitative Study of Thermal and Non-thermal Mechanisms in Ultrasound-Induced Nano-drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1288-1298. [PMID: 36822894 DOI: 10.1016/j.ultrasmedbio.2023.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE The primary objective of this study was to quantify the contributions to drug release for thermal and non-thermal mechanisms in ultrasound-induced release from gold nanoparticles (GNPs) for the first time. METHODS We studied doxorubicin (DOX) and curcumin release from the surface of GNPs using two different methods to induce drug release in an ex vivo tissue model: (i) localized tissue heating with a water bath and (ii) low-intensity pulsed ultrasound (LIPUS) exposure. Both methods have similar temperature profiles and can induce the release of both hydrophobic (curcumin) and hydrophilic (DOX) drugs from the surface of GNPs. Quantitative drug release in both cases was compared via fluorescence measurements. DISCUSSION The water bath heating method induced drug release using thermal effects only, whereas LIPUS exposure induced drug release used a combination of thermal and non-thermal mechanisms. It was found that there were increases of 70 ± 16% (curcumin) and 127 ± 20% (DOX) in drug release when LIPUS was used to induce drug release (both thermal and non-thermal mechanisms) as compared with the water bath (thermal mechanisms only) mediated release. CONCLUSION We determined that non-thermal mechanisms account for 41 ± 3% of curcumin release and 56 ± 4% of DOX release. It was concluded that in our ex vivo tissue model, the non-thermal mechanisms play a significant role in LIPUS-induced drug release from GNP drug carriers and that the contributions of non-thermal mechanisms to drug release depend on the type of anticancer drug loaded on the GNP surface.
Collapse
Affiliation(s)
- Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jahangir Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
60
|
Shabab T, Bas O, Dargaville BL, Ravichandran A, Tran PA, Hutmacher DW. Microporous/Macroporous Polycaprolactone Scaffolds for Dental Applications. Pharmaceutics 2023; 15:pharmaceutics15051340. [PMID: 37242582 DOI: 10.3390/pharmaceutics15051340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
This study leverages the advantages of two fabrication techniques, namely, melt-extrusion-based 3D printing and porogen leaching, to develop multiphasic scaffolds with controllable properties essential for scaffold-guided dental tissue regeneration. Polycaprolactone-salt composites are 3D-printed and salt microparticles within the scaffold struts are leached out, revealing a network of microporosity. Extensive characterization confirms that multiscale scaffolds are highly tuneable in terms of their mechanical properties, degradation kinetics, and surface morphology. It can be seen that the surface roughness of the polycaprolactone scaffolds (9.41 ± 3.01 µm) increases with porogen leaching and the use of larger porogens lead to higher roughness values, reaching 28.75 ± 7.48 µm. Multiscale scaffolds exhibit improved attachment and proliferation of 3T3 fibroblast cells as well as extracellular matrix production, compared with their single-scale counterparts (an approximate 1.5- to 2-fold increase in cellular viability and metabolic activity), suggesting that these structures could potentially lead to improved tissue regeneration due to their favourable and reproducible surface morphology. Finally, various scaffolds designed as a drug delivery device were explored by loading them with the antibiotic drug cefazolin. These studies show that by using a multiphasic scaffold design, a sustained drug release profile can be achieved. The combined results strongly support the further development of these scaffolds for dental tissue regeneration applications.
Collapse
Affiliation(s)
- Tara Shabab
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Onur Bas
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD 4000, Australia
| | - Bronwin L Dargaville
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD 4000, Australia
| | - Akhilandeshwari Ravichandran
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Phong A Tran
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Dietmar W Hutmacher
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD 4000, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
61
|
Pontes MS, Santos JS, da Silva JL, Miguel TBAR, Miguel EC, Souza Filho AG, Garcia F, Lima SM, da Cunha Andrade LH, Arruda GJ, Grillo R, Caires ARL, Felipe Santiago E. Assessing the Fate of Superparamagnetic Iron Oxide Nanoparticles Carrying Usnic Acid as Chemical Cargo on the Soil Microbial Community. ACS NANO 2023; 17:7417-7430. [PMID: 36877273 DOI: 10.1021/acsnano.2c11985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In the present study we evaluate the effect of superparamagnetic iron oxide nanoparticles (SPIONs) carrying usnic acid (UA) as chemical cargo on the soil microbial community in a dystrophic red latosol (oxysol). Herein, 500 ppm UA or SPIONs-framework carrying UA were diluted in sterile ultrapure deionized water and applied by hand sprayer on the top of the soil. The experiment was conducted in a growth chamber at 25 °C, with a relative humidity of 80% and a 16 h/8 h light-dark cycle (600 lx light intensity) for 30 days. Sterile ultrapure deionized water was used as the negative control; uncapped and oleic acid (OA) capped SPIONs were also tested to assess their potential effects. Magnetic nanostructures were synthesized by a coprecipitation method and characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), zeta potential, hydrodynamic diameter, magnetic measurements, and release kinetics of chemical cargo. Uncapped and OA-capped SPIONs did not significantly affect soil microbial community. Our results showed an impairment in the soil microbial community exposed to free UA, leading to a general decrease in negative effects on soil-based parameters when bioactive was loaded into the nanoscale magnetic carrier. Besides, compared to control, the free UA caused a significant decrease in microbial biomass C (39%), on the activity of acid protease (59%), and acid phosphatase (23%) enzymes, respectively. Free UA also reduced eukaryotic 18S rRNA gene abundance, suggesting a major impact on fungi. Our findings indicate that SPIONs as bioherbicide nanocarriers can reduce the negative impacts on soil. Therefore, nanoenabled biocides may improve agricultural productivity, which is important for food security due to the need of increasing food production.
Collapse
Affiliation(s)
- Montcharles S Pontes
- Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, 79804-970, Brazil
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, 79070-900, Brazil
| | - Jaqueline Silva Santos
- Genetics Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900, Brazil
| | - José Luiz da Silva
- Department of Analytical, Physico-Chemical and Inorganic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, 14800-060, Brazil
| | - Thaiz B A R Miguel
- Laboratory of Biotechnology, Department of Food Engineering (DEAL), Federal University of Ceará (UFC), Fortaleza, 60440-554, Brazil
| | - Emilio Castro Miguel
- Laboratory of Biomaterials, Department of Metallurgical and Materials Engineering, Federal University of Ceará (UFC), Fortaleza, 60440-554, Brazil
| | - Antonio G Souza Filho
- Department of Physics, Federal University of Ceará (UFC), Fortaleza, 60440-554, Brazil
| | - Flavio Garcia
- Brazilian Center for Research in Physics, Urca, Rio de Janeiro 22290-180, Brazil
| | - Sandro Marcio Lima
- Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, 79804-970, Brazil
| | - Luís Humberto da Cunha Andrade
- Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, 79804-970, Brazil
| | - Gilberto J Arruda
- Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, 79804-970, Brazil
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, São Paulo 15385-000, Brazil
| | - Anderson R L Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, 79070-900, Brazil
| | - Etenaldo Felipe Santiago
- Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, 79804-970, Brazil
| |
Collapse
|
62
|
Ghasemizadeh H, Pourmadadi M, Yazdian F, Rashedi H, Navaei-Nigjeh M, Rahdar A, Díez-Pascual AM. Novel carboxymethyl cellulose-halloysite-polyethylene glycol nanocomposite for improved 5-FU delivery. Int J Biol Macromol 2023; 232:123437. [PMID: 36708898 DOI: 10.1016/j.ijbiomac.2023.123437] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Drug nano-carriers are crucial for achieving targeted treatment against cancer disorders with minimal side effects. In this study, a pH-responsive nanocomposite based on halloysite nanotube (HNT) coated with carboxymethyl cellulose (CMC)/polyethylene glycol (PEG) hydrogel for controlled delivery of 5-Fluorouracil (5-FU), a hydrophobic chemotherapy drug prescribed for different types of cancers was synthesized for the first time using the water-in-oil-in-water (W/O/W) technique. The developed CMC/PEG/HNT/5-FU nanocomposite was characterized by dynamic light scattering (DLS), zeta potential, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Field emission scanning electron microscope (FE-SEM) to get information about the particle size, surface charge, interactions between functional groups, crystalline structure and morphology, respectively. High efficiencies in terms of drug entrapment and loading (46 % and 87 %, respectively) were attained. In-vitro drug release results revealed an improved and sustained 5-FU delivery in an acid environment compared to the physiological medium, corroborating the pH-sensitivity of the developed nano-carrier. Flow cytometry and MTT assays demonstrated that the 5-FU loaded nanocomposite had considerable cytotoxicity on MCF-7 breast cancer cells while it is not toxic against L929 fibroblast cells. The nanocomposite synthesized herein could serve as a platform for the pH-sensitive release of anti-cancer drugs.
Collapse
Affiliation(s)
- Haniyeh Ghasemizadeh
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
63
|
Mabroum H, El Baza H, Ben Youcef H, Oudadesse H, Noukrati H, Barroug A. Design of Antibacterial Apatitic Composite Cement Loaded with Ciprofloxacin: Investigations on the Physicochemical Properties, Release Kinetics, and Antibacterial Activity. Int J Pharm 2023; 637:122861. [PMID: 36948475 DOI: 10.1016/j.ijpharm.2023.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
This work aims to develop an injectable and antibacterial composite cement for bone substitution and prevention/treatment of bone infections. This cement is composed of calcium phosphate, calcium carbonate, bioactive glass, sodium alginate, and ciprofloxacin. The effect of ciprofloxacin on the microstructure, chemical composition, setting properties, cohesion, injectability, and compressive strength was investigated. The in vitro drug release kinetics and the antibacterial activity of ciprofloxacin-loaded composites against staphylococcus aureus and Escherichia coli pathogens were investigated. XRD and FTIR analysis demonstrated that the formulated cements are composed of a nanocrystalline carbonated apatite analogous to the mineral part of the bone. The evaluation of the composite cement's properties revealed that the incorporation of 3 and 9 wt% of ciprofloxacin affects the microstructural and physicochemical properties of the cement, resulting in a prolonged setting time, and a slight decrease in injectability and compressive strength. The in vitro drug release study revealed sustained release profiles over 18 days. The amounts of ciprofloxacin released per day (0.2 -15.2 mg/L) depend on the cement composition and the amount of ciprofloxacin incorporated. The antibacterial activity of ciprofloxacin-loaded cement composites attested to their effectiveness to inhibit the growth of Staphylococcus aureus and Escherichia coli.
Collapse
Affiliation(s)
- Hanaa Mabroum
- Cadi Ayyad University, Faculty of Sciences Semlalia, 2390, 40000, Marrakech, Morocco; Institute of Biological Sciences, ISSB, Faculty of medical sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Hamza El Baza
- Institute of Biological Sciences, ISSB, Faculty of medical sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Hicham Ben Youcef
- High Throughput Multidisciplinary Research Laboratory (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | | | - Hassan Noukrati
- Institute of Biological Sciences, ISSB, Faculty of medical sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Allal Barroug
- Cadi Ayyad University, Faculty of Sciences Semlalia, 2390, 40000, Marrakech, Morocco; Institute of Biological Sciences, ISSB, Faculty of medical sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| |
Collapse
|
64
|
Rao Z, Lei X, Chen Y, Ling J, Zhao J, Ming J. Facile fabrication of robust bilayer film loaded with chitosan active microspheres for potential multifunctional food packing. Int J Biol Macromol 2023; 231:123362. [PMID: 36690235 DOI: 10.1016/j.ijbiomac.2023.123362] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The utilization of microcarriers is an effective technique to protect and slow down the release of active ingredients, while the combination of microcarriers and film materials is an important way to expand the application scenario of active ingredients. The aim of this study was to develop a simple and facile strategy for designing a multifunctional bilayer bioactive film that combines stable mechanical properties, sustained-release characteristics for active ingredients with good antioxidant and antibacterial properties. The EGCG-loaded chitosan active microspheres were prepared by sol-gel method, and then the carboxymethyl cellulose solution containing the active microspheres was assembled onto the carboxymethyl chitosan gel substrate based on intermolecular hydrogen bonding to construct a film with a stable bilayer structure. The results indicated that the bilayer film had dense microstructure and excellent mechanical strength (37.05 MPa), and exhibited UV-blocking properties and excellent gas barrier performance. Meanwhile, the loading of active ingredients (EGCG) in the microspheres enabled the bilayer film to exhibit excellent antioxidant and antibacterial properties, and the controlled release of EGCG by the film was sustainable and showed pH responsiveness. The results of this work provide a new perspective for the design and development of bio-based active packaging film with tunable functional characteristics.
Collapse
Affiliation(s)
- Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jiang Ling
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
65
|
Saeedi M, Moghbeli MR, Vahidi O. Chitosan/glycyrrhizic acid hydrogel: Preparation, characterization, and its potential for controlled release of gallic acid. Int J Biol Macromol 2023; 231:123197. [PMID: 36639089 DOI: 10.1016/j.ijbiomac.2023.123197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
In the present work, chitosan (CHT) as a biodegradable polymer was crosslinked using various amounts of glycyrrhizic acid (GLA) as a novel crosslinking agent to prepare biocompatible hydrogels. The prepared hydrogels were used for the controlled release of gallic acid (GA) in transdermal therapy application. FTIR, XRD, and SEM were used to characterize the prepared gels. The results indicated that the carboxylic acid groups of GLA react with the amine groups of the CHT in the presence of activating coupling reagents to form covalent amide linkage between the polymer chains of CHT and construct CHT cross-linked hydrogel (CCH) network structure. The prepared CCH samples were characterized and used for the controlled release of a drug, i.e. (GA). For this purpose, the swelling kinetic, loading and encapsulation efficiency, in vitro drug release, drug release kinetics, cell viability assay, and anti-bacterial activity of the samples were evaluated. The swelling ratio of CCH samples were in the range of 455-37 % depending on the pH of environment. Swelling kinetic results showed an aggregate to the non-linear second-order kinetic model. Drug release results were fitted by kinetic models while the Korsmeyer-Peppas model was fitted better. The CCH samples exhibited high biocompatibility for 5 mg/ml hydrogel concentration. In addition, the CHT and CCH sample without the GA did not show anti-bacterial properties for 1200 and 150 μg/ml concentrations, respectively. The CCH sample containing the GA exhibited enough anti-bacterial activity on the S. aureus bacteria strain at 150 μg/ml concentration. In contrast, the CCH sample containing the GA has a light anti-bacterial effect on the E. coli bacteria strain. The calculated mesh size of hydrogel networks, drug size, and kinetics models revealed that the CCH samples could release GA based on a diffusion mechanism. In conclusion, the designed CCH samples have enough ability for controlled drug release in transdermal applications.
Collapse
Affiliation(s)
- Mostafa Saeedi
- Smart Polymers and Nanocomposites Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran
| | - Mohammad Reza Moghbeli
- Smart Polymers and Nanocomposites Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran.
| | - Omid Vahidi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran
| |
Collapse
|
66
|
Estimating the asymptotic characteristic time scales for diffusion-controlled drug release systems using partially sampled data. Int J Pharm 2023; 634:122674. [PMID: 36736966 DOI: 10.1016/j.ijpharm.2023.122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Drug release experiments and numerical simulations only give access to partial release data (i.e., within a finite time range t∈[0,tf]). In this article, we propose fitting-based procedures to estimate the asymptotic time scales of the release process, namely the global relaxation time τ∗ and the longest (or terminal) relaxation time τ0, from partially sampled data of diffusion-controlled drug release systems. We test these procedures on both synthetic and experimental data using, as an example, the well-known Weibull function. Our results show that the Weibull function must be used with great care because the values of the fitting parameters can vary significantly depending on the ratio tf/τ0. Beyond their practical simplicity, the usefulness of our procedures is evidenced by the fact that: (1) the initial loading profile does not need to be known and (2) the chosen fitting function does not require any physical basis. These two advantages allow us to determine the diffusion coefficient of the molecules directly from the characteristic time τ0.
Collapse
|
67
|
Hadinugroho W, Martodihardjo S, Fudholi A, Riyanto S, Prasetyo J. Hydroxypropyl Methylcellulose as Hydrogel Matrix and Citric Acid-Locust Bean Gum as Negative Matrix for Controlled Release Tablet. ACS OMEGA 2023; 8:7767-7778. [PMID: 36873007 PMCID: PMC9979311 DOI: 10.1021/acsomega.2c07432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Purpose: This study aimed at determining the optimum concentration of hydroxypropyl methylcellulose (HPMC) as hydrogel matrix and citric acid-locust bean gum (CA-LBG) as negative matrix for controlled release tablet formulation. In addition, the study was to determine the effect of CA-LBG and HPMC. CA-LBG accelerates the disintegration of tablets into granules so that the HPMC granule matrix swells immediately and controls drug release. The advantage of this method is that the tablets do not produce large HPMC gel lumps without drug (ghost matrix) but form HPMC gel granules, which can be rapidly degraded after all of the drug is released. Methods : The experiment followed the simplex lattice design to obtain the optimum tablet formula with CA-LBG and HPMC concentrations as optimization factors. Tablet production by the wet granulation method and ketoprofen is the model of the active ingredient. The kinetics of ketoprofen release was studied using several models. Results : Based on the coefficients of each polynomial equation that HPMC and CA-LBG increased the value of angle of repose (29.91:27.87), tap index (18.99:18.77), hardness (13.60:13.32), friability (0.41:0.73), and release of ketoprofen (52.48:99.44). Interaction of HPMC and CA-LBG increased the value of angle of repose (3.25), tap index (5.64), and hardness (2.42). Interaction of HPMC and CA-LBG too decreased the friability value (-1.10) and release of ketoprofen (-26.36). The Higuchi, Korsmeyer-Peppas, and Hixson-Crowell model is the kinetics of eight experimental tablet formulas. Conclusions : The optimum concentrations of HPMC and CA-LBG for controlled release tablets are 32.97 and 17.03%, respectively. HPMC, CA-LBG, and a combination of both affect the physical quality of tablet and tablet mass. CA-LBG is a new excipient candidate that can control drug release from tablets by the matrix disintegration mechanism on the tablet.
Collapse
Affiliation(s)
- Wuryanto Hadinugroho
- Faculty
of Pharmacy, Widya Mandala Surabaya Catholic
University, Kalisari Selatan No. 1, Pakuwon City, Surabaya 60112, Indonesia
| | - Suwaldi Martodihardjo
- Faculty
of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Achmad Fudholi
- Faculty
of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Sugeng Riyanto
- Faculty
of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Jefri Prasetyo
- Faculty
of Pharmacy, Widya Mandala Surabaya Catholic
University, Kalisari Selatan No. 1, Pakuwon City, Surabaya 60112, Indonesia
| |
Collapse
|
68
|
Păncescu FM, Rikabi AAKK, Oprea OC, Grosu AR, Nechifor AC, Grosu VA, Tanczos SK, Dumitru F, Nechifor G, Bungău SG. Chitosan-sEPDM and Melatonin-Chitosan-sEPDM Composite Membranes for Melatonin Transport and Release. MEMBRANES 2023; 13:282. [PMID: 36984671 PMCID: PMC10057635 DOI: 10.3390/membranes13030282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Melatonin is the hormone that focuses the attention of the researchers in the medical, pharmaceutical, materials, and membranes fields due to its multiple biomedical implications. The variety of techniques and methods for the controlled release of melatonin is linked to the multitude of applications, among which sports medicine occupies a special place. This paper presents the preparation and characterization of composite membranes based on chitosan (Chi) and sulfonated ethylene-propylene-diene terpolymer (sEPDM). The membranes were obtained by controlled vacuum evaporation from an 8% sEPDM solution in toluene (w/w), in which chitosan was dispersed in an ultrasonic field (sEPDM:Chi = 1:1, w/w). For the comparative evaluation of the membranes' performances, a melatonin-chitosan-sulfonated ethylene-propylene-diene terpolymer (Mel:Chi:sEPDM = 0.5:0.5:1.0, w/w/w) test membrane was made. The prepared membranes were morphologically and structurally characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive spectroscopy analysis (EDAX), thermal analysis (TG, DSC), thermal analysis coupled with chromatography and infrared analysis, and contact angle measurements, but also from the point of view of performance in the process of transport and release of melatonin in dedicated environments (aqueous solutions with controlled pH and salinity). The prepared membranes can release melatonin in amounts between 0.4 mg/cm2·per day (sEPDM), 1.6 mg/ cm2·per day (Chi/sEPDM), and 1.25 mg/cm2·per day (Mel/Chi/SEPDM).
Collapse
Affiliation(s)
- Florentina Mihaela Păncescu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Abbas Abdul Kadhim Klaif Rikabi
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Al–Mussaib Technical College, Al–Furat Al–Awsat Technical University (ATU), Babylon–Najaf Street, Kufa 54003, Iraq
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea-Ciuc, Romania
| | - Florina Dumitru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Gheorghe Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Simona Gabriela Bungău
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
69
|
Guedes MDV, Marques MS, Berlitz SJ, Facure MHM, Correa DS, Steffens C, Contri RV, Külkamp-Guerreiro IC. Lamivudine and Zidovudine-Loaded Nanostructures: Green Chemistry Preparation for Pediatric Oral Administration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:770. [PMID: 36839138 PMCID: PMC9965208 DOI: 10.3390/nano13040770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Here, we report on the development of lipid-based nanostructures containing zidovudine (1 mg/mL) and lamivudine (0.5 mg/mL) for oral administration in the pediatric population, eliminating the use of organic solvents, which is in accordance with green chemistry principles. The formulations were obtained by ultrasonication using monoolein (MN) or phytantriol (PN), which presented narrow size distributions with similar mean particle sizes (~150 nm) determined by laser diffraction. The zeta potential and the pH values of the formulations were around -4.0 mV and 6.0, respectively. MN presented a slightly higher incorporation rate compared to PN. Nanoemulsions were obtained when using monoolein, while cubosomes were obtained when using phytantriol, as confirmed by Small-Angle X-ray Scattering. The formulations enabled drug release control and protection against acid degradation. The drug incorporation was effective and the analyses using an electronic tongue indicated a difference in palatability between the nanotechnological samples in comparison with the drug solutions. In conclusion, PN was considered to have the strongest potential as a novel oral formulation for pediatric HIV treatment.
Collapse
Affiliation(s)
- Marina D. V. Guedes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Morgana S. Marques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Simone J. Berlitz
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre 35400-000, RS, Brazil
| | - Murilo H. M. Facure
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação, São Carlos 70770-901, SP, Brazil
- Programa de Pós-Graduação em Química (PPGQ), Universidade Federal de São Carlos, São Carlos 66075-110, SP, Brazil
| | - Daniel S. Correa
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação, São Carlos 70770-901, SP, Brazil
- Programa de Pós-Graduação em Química (PPGQ), Universidade Federal de São Carlos, São Carlos 66075-110, SP, Brazil
| | - Clarice Steffens
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e Missões, Erechim 99709-910, RS, Brazil
| | - Renata V. Contri
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Irene C. Külkamp-Guerreiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre 35400-000, RS, Brazil
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
70
|
Ünal S, Varan G, Benito JM, Aktaş Y, Bilensoy E. Insight into oral amphiphilic cyclodextrin nanoparticles for colorectal cancer: comprehensive mathematical model of drug release kinetic studies and antitumoral efficacy in 3D spheroid colon tumors. Beilstein J Org Chem 2023; 19:139-157. [PMID: 36814451 PMCID: PMC9940600 DOI: 10.3762/bjoc.19.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer type globally and ranks second in cancer-related deaths. With the current treatment possibilities, a definitive, safe, and effective treatment approach for CRC has not been presented yet. However, new drug delivery systems show promise in this field. Amphiphilic cyclodextrin-based nanocarriers are innovative and interesting formulation approaches for targeting the colon through oral administration. In our previous studies, oral chemotherapy for colon tumors was aimed and promising results were obtained with formulation development studies, mucin interaction, mucus penetration, cytotoxicity, and permeability in 2D cell culture, and furthermore in vivo antitumoral and antimetastatic efficacy in early and late-stage colon cancer models and biodistribution after single dose oral administration. This study was carried out to further elucidate oral camptothecin (CPT)-loaded amphiphilic cyclodextrin nanoparticles for the local treatment of colorectal tumors in terms of their drug release behavior and efficacy in 3-dimensional tumor models to predict the in vivo efficacy of different nanocarriers. The main objective was to build a bridge between formulation development and in vitro phase and animal studies. In this context, CPT-loaded polycationic-β-cyclodextrin nanoparticles caused reduced cell viability in CT26 and HT29 colon carcinoma spheroid tumors of mice and human origin, respectively. In addition, the release profile, which is one of the critical quality parameters in new drug delivery systems, was investigated mathematically by release kinetic modeling for the first time. The overall findings indicated that the strategy of orally targeting anticancer drugs such as CPT with positively charged poly-β-CD-C6 nanoparticles to colon tumors for local and/or systemic efficacy is a promising approach.
Collapse
Affiliation(s)
- Sedat Ünal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Gamze Varan
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06100, Ankara, Turkey
| | - Juan M Benito
- Institute for Chemical Research, CSIC - University of Sevilla, Av. Americo Vespucio 49, 41092, Sevilla, Spain
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| |
Collapse
|
71
|
The Fundamental Role of Lipids in Polymeric Nanoparticles: Dermal Delivery and Anti-Inflammatory Activity of Cannabidiol. Molecules 2023; 28:molecules28041774. [PMID: 36838759 PMCID: PMC9962451 DOI: 10.3390/molecules28041774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
This report presents a nanoparticulate platform for cannabidiol (CBD) for topical treatment of inflammatory conditions. We have previously shown that stabilizing lipids improve the encapsulation of CBD in ethyl cellulose nanoparticles. In this study, we examined CBD release, skin permeation, and the capability of lipid-stabilized nanoparticles (LSNs) to suppress the release of IL-6 and IL-8. The nanoparticles were stabilized with cetyl alcohol (CA), stearic acid (SA), lauric acid (LA), and an SA/LA eutectic combination (SALA). LSN size and concentration were measured and characterized by differential scanning calorimetry (DSC), in vitro release of loaded CBD, and skin permeability. IL-6 and IL-8 secretions from TNF-α-induced HaCaT cells were monitored following different LSN treatments. CBD released from the LSNs in dispersion at increasing concentrations of polysorbate 80 showed non-linear solubilization, which was explained by recurrent precipitation. A significant high release of CBD in a cell culture medium was shown from SALA-stabilized nanoparticles. Skin permeation was >30% lower from SA-stabilized nanoparticles compared to the other LSNs. Investigation of the CBD-loaded LSNs' effect on the release of IL-6 and IL-8 from TNF-α-induced HaCaT cells showed that nanoparticles stabilized with CA, LA, or SALA were similarly effective in suppressing cytokine release. The applicability of the CBD-loaded LSNs to treat topical inflammatory conditions has been supported by their dermal permeation and release inhibition of pro-inflammatory cytokines.
Collapse
|
72
|
Ιnclusion Complexes of Magnesium Phthalocyanine with Cyclodextrins as Potential Photosensitizing Agents. Bioengineering (Basel) 2023; 10:bioengineering10020244. [PMID: 36829738 PMCID: PMC9951963 DOI: 10.3390/bioengineering10020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
In this work, the preparation of inclusion complexes, (ICs) using magnesium phthalocyanine (MgPc) and various cyclodextrins (β-CD, γ-CD, HP-β-CD, Me-β-CD), using the kneading method is presented. Dynamic light scattering (DLS) indicated that the particles in dispersion possessed mean size values between 564 to 748 nm. The structural characterization of the ICs by infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy provides evidence of the formation of the ICs. The release study of the MgPc from the different complexes was conducted at pH 7.4 and 37 °C, and indicated that a rapid release ("burst effect") of ~70% of the phthalocyanine occurred in the first 20 min. The kinetic model that best describes the release profile is the Korsmeyer-Peppas. The photodynamic therapy studies against the squamous carcinoma A431 cell line indicated a potent photosensitizing activity of MgPc (33% cell viability after irradiation for 3 min with 18 mW/cm2), while the ICs also presented significant activity. Among the different ICs, the γ-CD-MgPc IC exhibited the highest photokilling capacity under the same conditions (cell viability 26%). Finally, intracellular localization studies indicated the enhanced cellular uptake of MgPc after incubation of the cells with the γ-CD-MgPc complex for 4 h compared to MgPc in its free form.
Collapse
|
73
|
Özakar E, Sevinç-Özakar R, Yılmaz B. Preparation, Characterization, and Evaluation of Cytotoxicity of Fast Dissolving Hydrogel Based Oral Thin Films Containing Pregabalin and Methylcobalamin. Gels 2023; 9:gels9020147. [PMID: 36826317 PMCID: PMC9957442 DOI: 10.3390/gels9020147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The oral availability of many drugs is problematic due to the pH of the stomach, enzymes, and first-pass effects through the liver. However, especially geriatric, pediatric, bedridden, or mentally handicapped patients and those with dysphagia have difficulty swallowing or chewing solid dosage forms. Oral Thin Films (OTFs) are one of the new drug delivery systems that can solve these problems. Pregabalin (PG) and Methylcobalamin (MC), which are frequently preferred for pain originating in the central nervous system, were brought together for the first time using OTF technology in this study. In this study, a quantification method for PG and MC was developed and validated simultaneously. Optimum formulations were selected with organoleptic and morphological controls, moisture absorption capacity, swelling capacity, percent elongation, foldability, pH, weight variability, thickness, disintegration time, and transparency tests on OTFs prepared by the solvent pouring method. Content uniformity, dissolution rate, determination of release kinetics, SEM, XRD, FT-IR, DSC, long-term stability, and cytotoxicity studies on the tongue epithelial cell line (SCC-9) were performed on selected OTFs. As a result, OTFs containing PG-MC, which are non-toxic, highly flexible, transparent, compatible with intraoral pH, with fast disintegration time (<30 s), and acceptable in taste and appearance, have been developed successfully.
Collapse
Affiliation(s)
- Emrah Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey
| | - Rukiye Sevinç-Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey
- Correspondence: ; Tel.: +90-442-2315247
| | - Bilal Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
74
|
Alfei S, Grasso F, Orlandi V, Russo E, Boggia R, Zuccari G. Cationic Polystyrene-Based Hydrogels as Efficient Adsorbents to Remove Methyl Orange and Fluorescein Dye Pollutants from Industrial Wastewater. Int J Mol Sci 2023; 24:ijms24032948. [PMID: 36769270 PMCID: PMC9918298 DOI: 10.3390/ijms24032948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Water pollution from dyes is harmful to the environment, plants, animals, and humans and is one of the most widespread problems afflicting people throughout the world. Adsorption is a widely used method to remove contaminants derived from the textile industry, food colorants, printing, and cosmetic manufacturing from water. Here, aiming to develop new low-cost and up-scalable adsorbent materials for anionic dye remediation and water decontamination by electrostatic interactions, two cationic resins (R1 and R2) were prepared. In particular, they were obtained by copolymerizing 4-ammonium methyl and ethyl styrene monomers (M1 and M2) with dimethylacrylamide (DMAA), using N-(2-acryloylamino-ethyl)-acrylamide (AAEA) as cross-linker. Once characterized by several analytical techniques, upon their dispersion in an excess of water, R1 and R2 provided the R1- and R2-based hydrogels (namely R1HG and R2HG) with equilibrium degrees of swelling (EDS) of 900% and 1000% and equilibrium water contents (EWC) of 90 and 91%, respectively. By applying Cross' rheology equation to the data of R1HG and R2HG's viscosity vs. shear rate, it was established that both hydrogels are shear thinning fluids with pseudoplastic/Bingham plastic behavior depending on share rate. The equivalents of -NH3+ groups, essential for the electrostatic-based absorbent activity, were estimated by the method of Gaur and Gupta on R1 and R2 and by potentiometric titrations on R1HG and R2HG. In absorption experiments in bulk, R1HG and R2HG showed high removal efficiency (97-100%) towards methyl orange (MO) azo dye, fluorescein (F), and their mixture (MOF). Using F or MO solutions (pH = 7.5, room temperature), the maximum absorption was 47.8 mg/g in 90' (F) and 47.7 mg/g in 120' (MO) for R1, while that of R2 was 49.0 mg/g in 20' (F) and 48.5 mg/g in 30' (MO). Additionally, R1HG and R2HG-based columns, mimicking decontamination systems by filtration, were capable of removing MO, F, and MOF from water with a 100% removal efficiency, in different conditions of use. R1HG and R2HG represent low-cost and up-scalable column packing materials that are promising for application in industrial wastewater treatment.
Collapse
Affiliation(s)
- Silvana Alfei
- Correspondence: (S.A.); (G.Z.); Tel.: +39-010-355-2296 (S.A.)
| | | | | | | | | | | |
Collapse
|
75
|
Biomaterials Based on Chitosan and Polyvinyl Alcohol as a Drug Delivery System with Wound-Healing Effects. Gels 2023; 9:gels9020122. [PMID: 36826292 PMCID: PMC9957424 DOI: 10.3390/gels9020122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The excellent biological properties of chitosan (CS) together with the increased oxygen permeability of polyvinyl alcohol (PVA) were the prerequisites for the creation of a wound healing dressing that would also function as a system for L-arginine (L-arg) and caffeine (Caff) delivery. Using the freezing/thawing method, 12 hydrogels were obtained in PVA:CS polymer ratios of 90:10, 75:25, and 60:40, and all were loaded with L-arg, Caff, and the mixture of L-arg and Caff, respectively. Afterwards, an inorganic material (zeolite-Z) was added to the best polymeric ratio (75:25) and loaded with active substances. The interactions between the constituents of the hydrogels were analyzed by FTIR spectroscopy, the uniformity of the network was highlighted by the SEM technique, and the dynamic water vapor sorption capacity was evaluated. In the presence of the inorganic material, the release profile of the active substances is delayed, and in vitro permeation kinetics proves that the equilibrium state is not reached even after four hours. The synergy of the constituents in the polymer network recommends that they be used in medical applications, such as wound healing dressings.
Collapse
|
76
|
Darson J, Thirunellai Seshadri R, Katariya K, Mohan M, Srinivas Kamath M, Etyala MA, Chandrasekaran G. Design development and optimisation of multifunctional Doxorubicin-loaded Indocynanine Green proniosomal gel derived niosomes for tumour management. Sci Rep 2023; 13:1697. [PMID: 36717736 PMCID: PMC9886914 DOI: 10.1038/s41598-023-28891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
This study presents the design, development, and optimization of multifunctional Doxorubicin (Dox)-loaded Indocyanine Green (ICG) proniosomal gel-derived niosomes, using Design of Experiments (23 factorial model). Herein, the multifunctional proniosomal gel was prepared using the coacervation phase separation technique, which on hydration forms niosomes. The effect of formulation variables on various responses including Zeta potential, Vesicle size, entrapment efficiency of Dox, entrapment efficiency of ICG, Invitro drug release at 72nd hour, and NIR hyperthermia temperature were studied using statistical models. On the basis of the high desirability factor, optimized formulation variables were identified and validated with the experimental results. Further, the chemical nature, vesicle morphology, surface charge, and vesicle size of optimized proniosomal gel-derived niosomes were evaluated. In addition, the effect of free ICG and bound ICG on NIR hyperthermia efficiency has been investigated to demonstrate the heating rate and stability of ICG in the aqueous environment and increased temperature conditions. The drug release and kinetic studies revealed a controlled biphasic release profile with complex mechanisms of drug transport for optimized proniosomal gel-derived niosomes. The potential cytotoxic effect of the optimised formulation was also demonstrated invitro using HeLa cell lines.
Collapse
Affiliation(s)
- Jaison Darson
- Department of Pharmaceutics, SRM College of Pharmacy, Kattankulathur, 603 203, India
| | - Radha Thirunellai Seshadri
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - Kajal Katariya
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, Kattankulathur, 603 203, India
| | - Manjunath Srinivas Kamath
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Jeppair Nagar, Chennai, 600119, Tamil Nadu, India
| | - Meher Abhinav Etyala
- K G Reddy College of Engineering and Technology, Moinabad, 500059, Telangana, India
| | | |
Collapse
|
77
|
Jamaledin R, Sartorius R, Di Natale C, Onesto V, Manco R, Mollo V, Vecchione R, De Berardinis P, Netti PA. PLGA microparticle formulations for tunable delivery of a nano-engineered filamentous bacteriophage-based vaccine: in vitro and in silico-supported approach. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2023:1-16. [PMID: 36687278 PMCID: PMC9838389 DOI: 10.1007/s40097-022-00519-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Bacteriophages have attracted great attention in the bioengineering field in diverse research areas from tissue engineering to therapeutic and clinical applications. Recombinant filamentous bacteriophage, carrying multiple copies of foreign peptides on protein capsid has been successfully used in the vaccine delivery setting, even if their plasma instability and degradation have limited their use on the pharmaceutical market. Encapsulation techniques in polymeric materials can be applied to preserve bacteriophage activity, extend its half-life, and finely regulate their release in the target environment. The main goal of this study was to provide tunable formulations of the bacteriophage encapsulated in polymeric microparticles (MPs). We used poly (lactic-co-glycolic-acid) as a biocompatible and biodegradable polymer with ammonium bicarbonate as a porogen to encapsulate bacteriophage expressing OVA (257-264) antigenic peptide. We demonstrate that nano-engineered fdOVA bacteriophages encapsulated in MPs preserve their structure and are immunologically active, inducing a strong immune response towards the delivered peptide. Moreover, MP encapsulation prolongs bacteriophage stability over time also at room temperature. Additionally, in this study, we show the ability of in silico-supported approach to predict and tune the release of bacteriophages. These results lay the framework for a versatile bacteriophage-based vaccine delivery system that could successfully generate robust immune responses in a sustained manner, to be used as a platform against cancer and new emerging diseases. Graphical abstract Synopsis: administration of recombinant bacteriophage-loaded PLGA microparticles for antigen delivery. PLGA microparticles release the bacteriophages, inducing activation of dendritic cells and enhancing antigen presentation and specific T cell response. Bacteriophage-encapsulated microneedles potentially can be administered into human body and generate robust immune responses.
Collapse
Affiliation(s)
- Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King’s Buildings, Edinburgh, EH9 3JL, UK
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 80131 Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre On Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Roberta Manco
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 80131 Naples, Italy
| | - Valentina Mollo
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | | | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre On Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
78
|
Alfei S, Zuccari G, Russo E, Villa C, Brullo C. Hydrogel Formulations of Antibacterial Pyrazoles Using a Synthesized Polystyrene-Based Cationic Resin as a Gelling Agent. Int J Mol Sci 2023; 24:ijms24021109. [PMID: 36674627 PMCID: PMC9862678 DOI: 10.3390/ijms24021109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Here, to develop new topical antibacterial formulations to treat staphylococcal infections, two pyrazoles (3c and 4b) previously reported as antibacterial agents, especially against staphylococci, were formulated as hydrogels (R1-HG-3c and R1HG-4b) using a cationic polystyrene-based resin (R1) and here synthetized and characterized as gelling agents. Thanks to the high hydrophilicity, high-level porosity, and excellent swelling capabilities of R1, R1HG-3c and R1HG-4b were achieved with an equilibrium degree of swelling (EDS) of 765% (R1HG-3c) and 675% (R1HG-4b) and equilibrium water content (EWC) of 88% and 87%, respectively. The chemical structure of soaked and dried gels was investigated by PCA-assisted attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy, while their morphology was investigated by optical microscopy. Weight loss studies were carried out with R1HG-3c and R1HG-4b to investigate their water release profiles and the related kinetics, while their stability was evaluated over time both by monitoring their inversion properties to detect possible impairments of the 3D network and by PCA-assisted ATR-FTIR spectroscopy to detect possible structural changes. The flow and dynamic rheological characterization of the gels was assessed by determining their viscosity vs. shear rate, applying the Cross rheological equation to achieve the curves of shear stress vs. shear rate, and carrying out amplitude and frequency sweep experiments. Finally, their content in NH3+ groups was determined by potentiometric titrations. Due to their favorable physicochemical characteristic and the antibacterial effects of 3c and 4b possibly improved by the cationic R1, the pyrazole-enriched gels reported here could represent new weapons to treat severe skin and wound infections sustained by MDR bacteria of staphylococcal species.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, Section of Chemistry and Pharmaceutical and Food Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
- Correspondence: (S.A.); (G.Z.); Tel.: +39-010-355-2296 (S.A.)
| | - Guendalina Zuccari
- Department of Pharmacy, Section of Chemistry and Pharmaceutical and Food Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
- Correspondence: (S.A.); (G.Z.); Tel.: +39-010-355-2296 (S.A.)
| | - Eleonora Russo
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry and Cosmetic Product, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Carla Villa
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry and Cosmetic Product, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Chiara Brullo
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry and Cosmetic Product, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| |
Collapse
|
79
|
Di Francesco V, Di Francesco M, Palomba R, Brahmachari S, Decuzzi P, Ferreira M. Towards potent anti-inflammatory therapies in atherosclerosis: The case of methotrexate and colchicine combination into compartmentalized liposomes. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
80
|
Laser thrombolysis and in vitro release kinetics of tPA encapsulated in chitosan polysulfate-coated nanoliposome. Carbohydr Polym 2023; 299:120225. [PMID: 36876826 DOI: 10.1016/j.carbpol.2022.120225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
A major challenge in managing coronary artery disease is to find an effective thrombolytic therapy with minimal side effects. Laser thrombolysis is a practical procedure to remove the thrombus from inside blocked arteries, although it can cause embolism and re-occlusion of the vessel. The present study aimed to design a liposome drug delivery system for the controlled release of tissue plasminogen activator (tPA) and delivery of drug system into the thrombus by Nd:YAG laser at a wavelength of 532 nm for the treatment of arterial occlusive diseases. In this study, tPA encapsulated into the chitosan polysulfate-coated liposome (Lip/PSCS-tPA) was fabricated by a thin-film hydration technique. The particle size of Lip/tPA and Lip/PSCS-tPA was 88 and 100 nm, respectively. The release rate of tPA from Lip/PSCS-tPA was measured to be 35 % and 66 % after 24 h and 72 h, respectively. Thrombolysis through the delivery of Lip/PSCS-tPA into the thrombus during the laser irradiation was higher compared to irradiated thrombus without the nanoliposomes. The expression of IL-10 and TNF-α genes was studied by RT-PCR. The level of TNF-α for Lip/PSCS-tPA was lower than that of tPA, which can lead to improved cardiac function. Also, in this study, the thrombus dissolution process was studied using a rat model. After 4 h, the thrombus area in the femoral vein was significantly lower for groups treated with Lip/PSCS-tPA (5 %) compared to the groups treated with tPA alone (45 %). Thus, according to our results, the combination of Lip/PSCS-tPA and laser thrombolysis can be introduced as an appropriate technique for accelerating thrombolysis.
Collapse
|
81
|
Szekalska M, Wróblewska M, Czajkowska-Kośnik A, Sosnowska K, Misiak P, Wilczewska AZ, Winnicka K. The Spray-Dried Alginate/Gelatin Microparticles with Luliconazole as Mucoadhesive Drug Delivery System. MATERIALS (BASEL, SWITZERLAND) 2023; 16:403. [PMID: 36614742 PMCID: PMC9822401 DOI: 10.3390/ma16010403] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Candida species are opportunistic fungi, which are primary causative agents of vulvovaginal candidiasis. The cure of candidiasis is difficult, lengthy, and associated with the fungi resistivity. Therefore, the research for novel active substances and unconventional drug delivery systems providing effective and safe treatment is still an active subject. Microparticles, as multicompartment dosage forms due to larger areas, provide short passage of drug diffusion, which might improve drug therapeutic efficiency. Sodium alginate is a natural polymer from a polysaccharide group, possessing swelling, mucoadhesive, and gelling properties. Gelatin A is a natural high-molecular-weight polypeptide obtained from porcine collagen. The purpose of this study was to prepare microparticles by the spray-drying of alginate/gelatin polyelectrolyte complex mixture, with a novel antifungal drug-luliconazole. In the next stage of research, the effect of gelatin presence on pharmaceutical properties of designed formulations was assessed. Interrelations among polymers were evaluated with thermal analysis and Fourier transform infrared spectroscopy. A valid aspect of this research was the in vitro antifungal activity estimation of designed microparticles using Candida species: C. albicans, C. krusei, and C. parapsilosis. It was shown that the gelatin addition affected the particles size, improved encapsulation efficiency and mucoadhesiveness, and prolonged the drug release. Moreover, gelatin addition to the formulations improved the antifungal effect against Candida species.
Collapse
Affiliation(s)
- Marta Szekalska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Magdalena Wróblewska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Anna Czajkowska-Kośnik
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Katarzyna Sosnowska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Paweł Misiak
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, 15-245 Białystok, Poland
| | - Agnieszka Zofia Wilczewska
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, 15-245 Białystok, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| |
Collapse
|
82
|
Transethosomal Gel for the Topical Delivery of Celecoxib: Formulation and Estimation of Skin Cancer Progression. Pharmaceutics 2022; 15:pharmaceutics15010022. [PMID: 36678651 PMCID: PMC9864437 DOI: 10.3390/pharmaceutics15010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The topical delivery of therapeutics is a promising strategy for managing skin conditions. Cyclooxygenase-2 (COX-2) inhibitors showed a possible target for chemoprevention and cancer management. Celecoxib (CXB) is a selective COX-2 inhibitor that impedes cell growth and generates apoptosis in different cell tumors. Herein, an investigation proceeded to explore the usefulness of nano lipid vesicles (transethosomes) (TES) of CXB to permit penetration of considerable quantities of the drug for curing skin cancer. The prepared nanovesicles were distinguished for drug encapsulation efficiency, vesicle size, PDI, surface charge, and morphology. In addition, FT-IR and DSC analyses were also conducted to examine the influence of vesicle components. The optimized formulation was dispersed in various hydrogel bases. Furthermore, in vitro CXB release and ex vivo permeability studies were evaluated. A cytotoxicity study proceeded using A431 and BJ1 cell lines. The expression alteration of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene and DNA damage and fragmentation using qRT-PCR and comet assays were also investigated. Optimized CXB-TES formulation was spherically shaped and displayed a vesicle size of 75.9 ± 11.4 nm, a surface charge of -44.7 ± 1.52 mV, and an entrapment efficiency of 88.8 ± 7.2%. The formulated TES-based hydrogel displayed a sustained in vitro CXB release pattern for 24 h with an enhanced flux and permeation across rat skin compared with the control (free drug-loaded hydrogel). Interestingly, CXB-TES hydrogel has a lower cytotoxic effect on normal skin cells compared with TES suspension and CXB powder. Moreover, the level of expression of the CDKN2A gene was significantly (p ≤ 0.01, ANOVA/Tukey) decreased in skin tumor cell lines compared with normal skin cell lines, indicating that TES are the suitable carrier for topical delivery of CXB to the cancer cells suppressing their progression. In addition, apoptosis demonstrated by comet and DNA fragmentation assays was evident in skin cancer cells exposed to CXB-loaded TES hydrogel formulation. In conclusion, our results illustrate that CXB-TES-loaded hydrogel could be considered a promising carrier and effective chemotherapeutic agent for the management of skin carcinoma.
Collapse
|
83
|
Nejabat M, Kalani MR, Nejabat M, Hadizadeh F. Molecular dynamic and in vitro evaluation of chitosan/tripolyphosphate nanoparticles as an insulin delivery system at two different pH values. J Biomol Struct Dyn 2022; 40:10153-10161. [PMID: 34154515 DOI: 10.1080/07391102.2021.1940280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding the atomic interaction mechanism between chitosan and insulin at different pH levels is essential in the design of chitosan-based drug-delivery systems. In the present study, insulin-loaded nanoparticles were prepared via ionic gelation of tripolyphosphate (TPP) and chitosan with 76 ± 5.5% encapsulation efficiency. Our results showed that the nanoparticles were spherical with a size of 254 nm. Furthermore, the in vitro release profile of insulin was evaluated for two different pH levels. The release of insulin from nanoparticles after 48 h at pH 4.0 was 92%, compared to 56% at pH 7.4. The kinetics of the release were best fitted by the Weibull equation, which described a burst release in the first five hours followed by a sustained insulin release for up to 48 h. Moreover, we designed a long single chain chitosan (128 kDa)/TPP nanoparticles in real size for the first time and studied the system behavior in acidic and neutral environments using molecular dynamic simulation for 40 nanoseconds (ns). Our results showed that chitosan chains opened more with higher root-mean-square deviation (RMSD) values at pH 4.0 than at pH 7.4. Also, RMSD plots for insulin and TPP molecules showed that insulin molecules diffused away from chitosan chains, and that TPP were randomly dispersed further away from the chitosan chain in an acidic medium than in a neutral one. The in silico studies were in agreement with our in vitro data. Thus self-assembled chitosan/TPP nanoparticles show promise as a means to release protein drugs in acidic environments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Kalani
- School of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoud Nejabat
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
84
|
Elmowafy M, Shalaby K, Elkomy MH, Awad Alsaidan O, Gomaa HAM, Abdelgawad MA, Massoud D, Salama A, El-Say KM. Development and assessment of phospholipid-based luteolin-loaded lipid nanocapsules for skin delivery. Int J Pharm 2022; 629:122375. [PMID: 36351506 DOI: 10.1016/j.ijpharm.2022.122375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
Luteolin is an excellent flavone possessing several beneficial properties such as antioxidant and anti-inflammatory effects which are interesting for skin delivery. Development of an appropriate skin delivery system could be a promising strategy to improve luteolin cutaneous performance.So, the main aim of this work was to fabricate, characterize and evaluate phospholipid-based luteolin-loaded lipid nanocapsules for skin delivery. The influence of phospholipid/oil ratio, surfactant type and chitosan coating were investigated. The prepared formulations underwent in vitro assessment and the selected formulations were evaluated ex vivo and in vivo. The mean diameters of investigated formulations varied between 174 nm and 628 nm while zeta potential varied between -25.7 ± 4.8 mV and 6.8 ± 1.7 mV. Increasing in phospholipid/oil ratios resulted in decrease in particles size with little effect on zeta potential and drug encapsulation. Cremophor EL showed the lowest particle sizes and the highest drug encapsulation. Chitosan coating shifted zeta potential towards positive values. Structural analyses showed that luteolin is incorporated into lipid core of nanocapsules. Selected formulations (LNC4 and LNC13) exhibited sustained in vitro release and antioxidant activity. LNC13 (chitosan coated) showed higher flux (0.457 ± 0.113 µg/cm2/h), permeability (45.70 ± 11.66 *10-5 cm2/h) and skin retention (121.66 ± 7.6 µg/cm2 after 24 h) when compared to LNC4 and suspension. It also showed disordered the integrity of the stratum corneum, increased epidermal thickness and relieving most of inflammatory features in animal model. In conclusion, this study proves that lipid nanocapsules could effectively deliver luteolin into skin and then can be established as a potential system in the pharmaceutical and cosmeceutical horizons.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia.
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
85
|
Design of double functionalized carbon nanotube for amphotericin B and genetic material delivery. Sci Rep 2022; 12:21114. [PMID: 36476955 PMCID: PMC9729229 DOI: 10.1038/s41598-022-25222-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
In the present work, single wall carbon nanotubes (SWCNT) were successively functionalized with phospholipid DSPE-PEG carboxylic acid, and then, with ethylenediamine (EDA), to obtain double functionalized single wall carbon nanotube (DFSWCNT). Then, DFSWCNT was applied as a carrier for delivering amphotericin B (Amb) and EGFP plasmid. FSWCNT's concentration obtained via UV-visible analysis was 0.99 mg/mL. The TGA analysis results provided the lost weights of DSPE-PEG-COOH, EDA, Amb and SWCNT impurities. XPS results showed that carbon atoms' percentage decreased during the functionalization processes from 97.2% (SWCNT) to 76.4% (FSWCNT) and 69.9% (DFSWNCT). Additionally, the oxygen atoms' percentage increased from 2.3% (SWCNT) to 21% and 22.5% for FSWCNT and DFSWCNT, respectively. New bonds such as C-N and N-C=O appeared in the synthesized nanocarrier. The IG/ID ratio in Raman analysis decreased from 7.15 (SWCNT) to 4.08 (FSWCNT). The amount of Amb released to phosphate buffer saline medium was about 33% at pH = 5.5 and 75% at pH = 7.4 after 48 h. CCK8 results confirmed that the toxicity of functionalized SWCNT had decreased. In a 2:1 ratio of DFSWCNT/EGFP plasmid, the cell viability (87%) and live transfected cells (56%) were at their maximum values. The results indicate that carbon nanotubes have the potential to be applied as drug/gene delivery systems with outstanding properties such as high loading capacity and easy penetration to cell membrane.
Collapse
|
86
|
Rutin Nanocrystals with Enhanced Anti-Inflammatory Activity: Preparation and Ex Vivo/In Vivo Evaluation in an Inflammatory Rat Model. Pharmaceutics 2022; 14:pharmaceutics14122727. [PMID: 36559220 PMCID: PMC9788119 DOI: 10.3390/pharmaceutics14122727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Rutin is a polyphenolic flavonoid with an interestingly wide therapeutic spectrum. However, its clinical benefits are limited by its poor aqueous solubility and low bioavailability. In an attempt to overcome these limitations, rutin nanocrystals were prepared using various stabilizers including nonionic surfactants and nonionic polymers. The nanocrystals were evaluated for particle size, zeta potential, drug entrapment efficiency, morphology, colloidal stability, rutin photostability, dissolution rate, and saturation solubility. The selected nanocrystal formulation was dispersed in a hydrogel base and the drug release kinetics and permeability through mouse skin were characterized. Rutin's anti-inflammatory efficacy was studied in a carrageenan-induced rat paw edema model. The nanocrystals had a size in the range of around 270-500 nm and a polydispersity index of around 0.3-0.5. Nanocrystals stabilized by hydroxypropyl beta-cyclodextrin (HP-β-CD) had the smallest particle size, highest drug entrapment efficiency, best colloidal stability, and highest drug photostability. Nanocrystals had around a 102- to 202-fold and 2.3- to 6.7-fold increase in the drug aqueous solubility and dissolution rate, respectively, depending on the type of stabilizer. HP-β-CD nanocrystals hydrogel had a significantly higher percent of drug released and permeated through the mouse skin compared with the free drug hydrogel. The cumulative drug amount permeated through the skin was 2.5-fold higher than that of the free drug hydrogel. In vivo studies showed that HP-β-CD-stabilized rutin nanocrystals hydrogel had significantly higher edema inhibition compared with the free drug hydrogel and commercial diclofenac sodium gel. These results highlight the potential of HP-β-CD-stabilized nanocrystals as a promising approach to enhance drug solubility, dissolution rate, and anti-inflammatory properties.
Collapse
|
87
|
Nayak J, Prajapati KS, Kumar S, Vashistha VK, Sahoo SK, Kumar R. Thiolated β-cyclodextrin modified iron oxide nanoparticles for effective targeted cancer therapy. MATERIALS TODAY COMMUNICATIONS 2022; 33:104644. [DOI: 10.1016/j.mtcomm.2022.104644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
88
|
Mihailova L, Tchekalarova J, Shalabalija D, Geskovski N, Stoilkovska Gjorgievska V, Stefkov G, Krasteva P, Simonoska Crcarevska M, Glavas Dodov M. Lipid nano-carriers loaded with Cannabis sativa extract for epilepsy treatment - in vitro characterization and in vivo efficacy studies. J Pharm Sci 2022; 111:3384-3396. [PMID: 36189477 DOI: 10.1016/j.xphs.2022.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 01/05/2023]
Abstract
Taking into consideration the latest reported beneficial anticolvusant effects of cannabidiol (CBD) and cannabiodiolic acid (CBDA) for clinical applications and the advantages of lipid nano-systems as carriers for targeted brain delivery, the aim of this study was set in direction of in vitro physico-chemical and biopharmaceutical characterization and in vivo evaluation of nanoliposomes and nanostructured lipid carriers loaded with Cannabis sativa extract intended for safe and efficient transport via blood-brain barrier and treatment of epilepsy. These nanoliposomes and nanostructured lipid formulations were characterized with z-average diameter <200 nm, following unimodal particle size distribution, negative values for Z-potential, high drug encapsulation efficiency and prolonged release during 24h (38.84-60.91 %). Prepared formulations showed statistically significant higher antioxidant capacity compared to the extract. The results from in vivo studies of the anticonvulsant activity demonstrated that all formulations significantly elevated the latencies for myoclonic, clonic and tonic seizures and, therefore, could be used in preventing different types of seizures. A distinction in the potential of the nano-systems was noted, which was probably anticipated by the type and the characteristics of the prepared formulations.
Collapse
Affiliation(s)
- Ljubica Mihailova
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, Republic of North Macedonia.
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Dushko Shalabalija
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, Republic of North Macedonia
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, Republic of North Macedonia
| | - Veronika Stoilkovska Gjorgievska
- Institute of Pharmacognosy, Center for Natural Products, Faculty of Pharmacy, Ss. Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, Republic of North Macedonia
| | - Gjoshe Stefkov
- Institute of Pharmacognosy, Center for Natural Products, Faculty of Pharmacy, Ss. Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, Republic of North Macedonia
| | - Paoleta Krasteva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Maja Simonoska Crcarevska
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, Republic of North Macedonia
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, Republic of North Macedonia
| |
Collapse
|
89
|
A Self-Forming Hydrogel from a Bactericidal Copolymer: Synthesis, Characterization, Biological Evaluations and Perspective Applications. Int J Mol Sci 2022; 23:ijms232315092. [PMID: 36499417 PMCID: PMC9741259 DOI: 10.3390/ijms232315092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Objects touched by patients and healthcare workers in hospitals may harbor pathogens, including multi-drug resistant (MDR) staphylococci, enterococci (VRE), Escherichia coli, Acinetobacter, and Pseudomonas species. Medical devices contaminated by these pathogens may also act as a source of severe and difficult-to-treat human infections, thus becoming a critical public health concern requiring urgent resolutions. To this end, we recently reported the bactericidal effects of a cationic copolymer (CP1). Here, aiming at developing a bactericidal formulation possibly to be used either for surfaces disinfection or to treat skin infections, CP1 was formulated as a hydrogel (CP1_1.1-Hgel). Importantly, even if not cross-linked, CP1 formed the gel upon simple dispersion in water, without requiring gelling agents or other additives which could be skin-incompatible or interfere with CP1 bactericidal effects in possible future topical applications. CP1_1.1-Hgel was characterized by attenuated-total-reflectance Fourier transform infrared (ATR-FTIR) and UV-Vis spectroscopy, as well as optic and scanning electron microscopy (OM and SEM) to investigate its chemical structure and morphology. Its stability was assessed by monitoring its inversion properties over time at room temperature, while its mechanical characteristics were assessed by rheological experiments. Dose-dependent cytotoxicity studies performed on human fibroblasts for 24 h with gel samples obtained by diluting CP_1.1-Hgel at properly selected concentrations established that the 3D network formation did not significantly affect the cytotoxic profile of CP1. Also, microbiologic investigations carried out on two-fold serial dilutions of CP1-gel confirmed the minimum inhibitory concentrations (MICs) previously reported for the not formulated CP1.Selectivity indices values up to 12 were estimated by the values of LD50 and MICs determined here on gel samples.
Collapse
|
90
|
Shahlaei M, Saeidifar M, Zamanian A. Sustained release of sulforaphane by bioactive extracellular vesicles for neuroprotective effect on chick model. J Biomed Mater Res B Appl Biomater 2022; 110:2636-2648. [PMID: 35785470 DOI: 10.1002/jbm.b.35117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Novel studies have shown neurological treatment possibilities with extracellular vesicles (EVs) as natural particles with a special composition that are produced by different cell types. Their stability, natural structure, composition, and bioavailability make them good candidates as drug vehicles. Here, EVs were isolated from amniotic fluid (AF) through differential centrifugation, and characterized for size (<200 nm), structure, and composition, their effectiveness on the human PC12 cell line, and brain of chick embryos exposed to sodium valproate (animal autistic model). Sulforaphane (SFN) was employed as a bioactive compound and then encapsulated into Evs using three methods including passive (incubation), active (sonication), and active-passive (sonication-incubation). Further, the loading and in vitro releases of SFN fitted the Korsmeyer-Peppas (R2 = 0.99) kinetic model by non-Fickian diffusion case II (n = 0.44, passive loading) and Fickian diffusion case I (n = 0.41, active and active-passive loading). SFN-loaded EVs (SFN@EVs; 11 μM: 103 nM) stimulated hPC-12 cell proliferation. The gene expression analysis revealed that SFN@EVs could upregulate Nrf2 and reduce IL-6 expression. Eventually, histopathological results of the coronal cross-section of the chick embryos brain showed treatment with SFN@EVs. This treatment illustrated normality in the gray and white matter and the orientation of the bipolar neurons. Our findings showed EVs' potentially acting as a gene expression regulator in autism spectrum disorder.
Collapse
Affiliation(s)
- Mona Shahlaei
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Centre, Karaj, Iran
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Centre, Karaj, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Centre, Karaj, Iran
| |
Collapse
|
91
|
Fleitas-Salazar N, Lamazares E, Pedroso-Santana S, Kappes T, Pérez-Alonso A, Hidalgo Á, Altamirano C, Sánchez O, Fernández K, Toledo JR. Long-term release of bioactive interferon-alpha from PLGA-chitosan microparticles: in vitro and in vivo studies. BIOMATERIALS ADVANCES 2022; 143:213167. [PMID: 36356469 DOI: 10.1016/j.bioadv.2022.213167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Effective cytokine treatments often require high- and multiple-dose due to the short half-life of these molecules. Here, porcine interferon-alpha (IFNα) is encapsulated in PLGA-chitosan microparticles (IFNα-MPs) to accomplish both slow drug release and drug protection from degradation. A procedure that combines emulsion and spray-drying techniques yielded almost spherical microspheres with an average diameter of 3.00 ± 1.50 μm. SEM, Microtrac, and Z-potential analyses of three IFNα-MP batches showed similar results, indicating the process is reproducible. These studies supported molecular evidence obtained in FTIR analysis, which indicated a compact structure of IFNα-MPs. Consistently, IFNα release kinetics assessed in vitro followed a zero-order behavior typical of sustained release from a polymeric matrix. This study showed that IFNα-MPs released bioactive molecules for at least 15 days, achieving IFNα protection. In addition, pigs treated with IFNα-MPs exhibited overexpression of IFNα-stimulated genes 16 days after treatment. Instead, the expression levels of these genes decreased after day 4th in pigs treated with non-encapsulated IFNα. In vitro and in vivo experiments demonstrated that the formulation improved the prophylactic and therapeutic potential of IFNα, accomplishing molecule protection and long-term release for at least two weeks. The procedure used to obtain IFNα-MPs is reproducible, scalable, and suitable for encapsulating other drugs.
Collapse
Affiliation(s)
- Noralvis Fleitas-Salazar
- Biotecnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| | - Emilio Lamazares
- Biotecnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| | - Seidy Pedroso-Santana
- Biotecnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| | - Tomás Kappes
- Laboratory of Biomaterials, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| | - Alain Pérez-Alonso
- Departamento de Electrónica e Informática, Universidad Técnica Federico Santa María, Concepción CP. 4030000, Chile
| | - Ángela Hidalgo
- Biotecnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| | - Claudia Altamirano
- Laboratorio de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, 2362803 Valparaíso, Chile
| | - Oliberto Sánchez
- Recombinant Biopharmaceuticals Laboratory, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| | - Katherina Fernández
- Laboratory of Biomaterials, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| | - Jorge R Toledo
- Biotecnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile.
| |
Collapse
|
92
|
Fabrication of PEGylated Chitosan Nanoparticles Containing Tenofovir Alafenamide: Synthesis and Characterization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238401. [PMID: 36500493 PMCID: PMC9736062 DOI: 10.3390/molecules27238401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Tenofovir alafenamide (TAF) is an antiretroviral (ARV) drug that is used for the management and prevention of human immunodeficiency virus (HIV). The clinical availability of ARV delivery systems that provide long-lasting protection against HIV transmission is lacking. There is a dire need to formulate nanocarrier systems that can help in revolutionizing the way to fight against HIV/AIDS. Here, we aimed to synthesize a polymer using chitosan and polyethylene glycol (PEG) by the PEGylation of chitosan at the hydroxyl group. After successful modification and confirmation by FTIR, XRD, and SEM, TAF-loaded PEGylated chitosan nanoparticles were prepared and analyzed for their particle size, zeta potential, morphology, crystallinity, chemical interactions, entrapment efficacy, drug loading, in vitro drug release, and release kinetic modeling. The fabricated nanoparticles were found to be in a nanosized range (219.6 nm), with ~90% entrapment efficacy, ~14% drug loading, and a spherical uniform distribution. The FTIR analysis confirmed the successful synthesis of PEGylated chitosan and nanoparticles. The in vitro analysis showed ~60% of the drug was released from the PEGylated polymeric reservoir system within 48 h at pH 7.4. The drug release kinetics were depicted by the Korsmeyer-Peppas release model with thermodynamically nonspontaneous drug release. Conclusively, PEGylated chitosan has the potential to deliver TAF from a nanocarrier system, and in the future, cytotoxicity and in vivo studies can be performed to further authenticate the synthesized polymer.
Collapse
|
93
|
Mutual Jellification of Two Bactericidal Cationic Polymers: Synthesis and Physicochemical Characterization of a New Two-Component Hydrogel. Pharmaceutics 2022; 14:pharmaceutics14112444. [PMID: 36432635 PMCID: PMC9692830 DOI: 10.3390/pharmaceutics14112444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Here, a new two-component hydrogel (CP1OP2-Hgel) was developed, simply by dispersing in water two cationic bactericidal polymers (CP1 and OP2) effective against several multidrug-resistant (MDR) clinical isolates of the most relevant Gram-positive and Gram-negative species. Interestingly, while OP2 acts only as an antibacterial ingredient when in gel, CP1 works as both an antibacterial and a gelling agent. To verify whether it would be worthwhile to use CP1 and OP2 as bioactive ingredients of a new hydrogel supposed for a future treatment of skin infections, dose-dependent cytotoxicity studies with CP1 and OP2 were performed on human fibroblasts for 24 h, before preparing the formulation. Although a significant cytotoxicity at concentrations > 2 µM was evidenced for both polymers, selectivity indices (SIs) over 12 (CP1) and up to six (OP2) were determined, due to the powerful antibacterial properties of the two polymers, thus supporting the rationale for their formulation as a hydrogel. The chemical structure and morphology of CP1OP2-Hgel were investigated by PCA-assisted attenuated total reflectance (ATR) Fourier-transform infrared (FTIR) analysis and scanning electron microscopy (SEM), while its rheological properties were assessed by determining its dynamic viscosity. The cumulative weight loss and swelling percentage curves, the porosity, and the maximum swelling capability of CP1OP2-Hgel were also determined and reported. Overall, due to the potent bactericidal effects of CP1 and OP2 and their favorable selectivity indices against several MDR pathogens, good rheological properties, high porosity, and strong swelling capability, CP1OP2-Hgel may, in the future, become a new weapon for treating severe nosocomial skin infections or infected chronic wounds. Further investigations in this sense are currently being carried out.
Collapse
|
94
|
Schito AM, Caviglia D, Piatti G, Alfei S. A Highly Efficient Polystyrene-Based Cationic Resin to Reduce Bacterial Contaminations in Water. Polymers (Basel) 2022; 14:polym14214690. [PMID: 36365682 PMCID: PMC9654381 DOI: 10.3390/polym14214690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Nowadays, new water disinfection materials attract a lot of attention for their cost-saving and ease of application. Nevertheless, the poor durability of the matrices and the loss of physically incorporated or chemically attached antibacterial agents that can occur during water purification processes considerably limit their prolonged use. In this study, a polystyrene-based cationic resin (R4) with intrinsic broad-spectrum antibacterial effects was produced without needing to be enriched with additional antibacterial agents that could detach during use. Particularly, R4 was achieved by copolymerizing 4-ammonium-butyl-styrene (4-ABSTY) with N,N-dimethylacrylamide (DMAA) and using N-(2-acryloylamino-ethyl)-acrylamide (AAEA) as a cross-linker. The R4 obtained showed a spherical morphology, micro-dimensioned particles, high hydrophilicity, high-level porosity, and excellent swelling capabilities. Additionally, the swollen R4 to its maximum swelling capability, when dried with gentle heating for 3 h, released water following the Higuchi’s kinetics, thus returning to the original structure. In time–kill experiments on the clinical isolates of multidrug-resistant (MDR) pathogens of fecal origin, such as enterococci, Group B Salmonella species, and Escherichia coli, R4 showed rapid bactericidal effects on enterococci and Salmonella, and reduced E. coli viable cells by 99.8% after 4 h. When aqueous samples artificially infected by a mixture of the same bacteria of fecal origin were exposed for different times to R4 in a column, simulating a water purification system, 4 h of contact was sufficient for R4 to show the best bacterial killing efficiency of 99%. Overall, thanks to its physicochemical properties, killing efficiency, low costs of production, and scalability, R4 could become a cost-effective material for building systems to effectively reduce bacterial, even polymicrobial, water contamination.
Collapse
Affiliation(s)
- Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
- Correspondence: (A.M.S.); (S.A.); Tel.: +39-010-355-2296 (S.A.)
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
- Correspondence: (A.M.S.); (S.A.); Tel.: +39-010-355-2296 (S.A.)
| |
Collapse
|
95
|
Hybrid Ultrasound-Activated Nanoparticles Based on Graphene Quantum Dots for Cancer Treatment. Int J Pharm 2022; 629:122373. [DOI: 10.1016/j.ijpharm.2022.122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
96
|
Yang M, Abdalkarim SYH, Yu HY, Asad RA, Ge D, Zhou Y. Thermo-sensitive composite microspheres incorporating cellulose nanocrystals for regulated drug release kinetics. Carbohydr Polym 2022; 301:120350. [DOI: 10.1016/j.carbpol.2022.120350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
|
97
|
Oliveira CBP, Gomes V, Ferreira PMT, Martins JA, Jervis PJ. Peptide-Based Supramolecular Hydrogels as Drug Delivery Agents: Recent Advances. Gels 2022; 8:706. [PMID: 36354614 PMCID: PMC9689023 DOI: 10.3390/gels8110706] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/19/2023] Open
Abstract
Supramolecular peptide hydrogels have many important applications in biomedicine, including drug delivery applications for the sustained release of therapeutic molecules. Targeted and selective drug administration is often preferential to systemic drug delivery, as it can allow reduced doses and can avoid the toxicity and side-effects caused by off-target binding. New discoveries are continually being reported in this rapidly developing field. In this review, we report the latest developments in supramolecular peptide-based hydrogels for drug delivery, focusing primarily on discoveries that have been reported in the last four years (2018-present). We address clinical points, such as peptide self-assembly and drug release, mechanical properties in drug delivery, peptide functionalization, bioadhesive properties and drug delivery enhancement strategies, drug release profiles, and different hydrogel matrices for anticancer drug loading and release.
Collapse
Affiliation(s)
| | | | | | | | - Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
98
|
Dourado D, Oliveira MCD, Araujo GRSD, Amaral-Machado L, Porto DL, Aragão CFS, Alencar EDN, Egito ESTD. Low-surfactant microemulsion, a smart strategy intended for curcumin oral delivery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
99
|
Arif ST, Zaman SU, Khan MA, Tabish TA, Sohail MF, Arshad R, Kim JK, Zeb A. Augmented Oral Bioavailability and Prokinetic Activity of Levosulpiride Delivered in Nanostructured Lipid Carriers. Pharmaceutics 2022; 14:2347. [PMID: 36365165 PMCID: PMC9695558 DOI: 10.3390/pharmaceutics14112347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
The present study is aimed to develop and optimize levosulpiride-loaded nanostructured lipid carriers (LSP-NLCs) for improving oral bioavailability and prokinetic activity of LSP. LSP-NLCs were optimized with D-optimal mixture design using solid lipid, liquid lipid and surfactant concentrations as independent variables. The prepared LSP-NLCs were evaluated for physicochemical properties and solid-state characterization. The in vivo oral pharmacokinetics and prokinetic activity of LSP-NLCs were evaluated in rats. LSP-NLCs formulation was optimized at Precirol® ATO 5/Labrasol (80.55/19.45%, w/w) and Tween 80/Span 80 concentration of 5% (w/w) as a surfactant mixture. LSP-NLCs showed a spherical shape with a particle size of 152 nm, a polydispersity index of 0.230 and an entrapment efficiency of 88%. The DSC and PXRD analysis revealed conversion of crystalline LSP to amorphous state after loading into the lipid matrix. LSP-NLCs displayed a 3.42- and 4.38-flods increase in AUC and Cmax after oral administration compared to LSP dispersion. In addition, LSP-NLCs showed enhanced gastric emptying (61.4%), intestinal transit (63.0%), and fecal count (68.8) compared to LSP dispersion (39.7%, 38.0% and 51.0, respectively). Taken together, these results show improved oral bioavailability and prokinetic activity of LSP-NLCs and presents a promising strategy to improve therapeutic activity of LSP for efficient treatment of gastric diseases.
Collapse
Affiliation(s)
- Sadia Tabassam Arif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Shahiq uz Zaman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Muhammad Ayub Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford OX37BN, UK
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore 54000, Pakistan
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 54000, Pakistan
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Gyeonggi, Korea
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|
100
|
Dutta S, Chakraborty P, Basak S, Ghosh S, Ghosh N, Chatterjee S, Dewanjee S, Sil PC. Synthesis, characterization, and evaluation of in vitro cytotoxicity and in vivo antitumor activity of asiatic acid-loaded poly lactic-co-glycolic acid nanoparticles: A strategy of treating breast cancer. Life Sci 2022; 307:120876. [PMID: 35961595 DOI: 10.1016/j.lfs.2022.120876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 01/22/2023]
Abstract
Asiatic acid (AA), an aglycone of pentacyclic triterpene glycoside, obtained from the leaves of Centella asiatica exerts anticancer effects by inhibiting cellular proliferation and inducing apoptosis in a wide range of carcinogenic distresses. However, its chemotherapeutic efficacy is dampened by its low bioavailability. Polymeric nanoparticles (NPs) exhibit therapeutic efficacy and compliance by improving tissue penetration and lowering toxicity. Thus, to increase the therapeutic effectiveness of AA in the treatment of breast cancer, AA-loaded poly lactic-co-glycolic acid (PLGA) NPs (AA-PLGA NPs) have been formulated. The AA-PLGA NPs were characterized on the basis of their average particle size, zeta potential, electron microscopic imaging, drug loading, and entrapment efficiency. The NPs exhibited sustained drug release profile in vitro. Developed NPs exerted dose-dependent cytotoxicity to MCF-7 and MDA-MB-231 cells without damaging normal cells. The pro-oxidant and pro-apoptotic properties of AA-PLGA NPs were determined by the study of the cellular levels of SOD, CAT, GSH-GSSG, MDA, protein carbonylation, ROS, mitochondrial membrane potential, and FACS analyses on MCF-7 cells. Immunoblotting showed that AA-PLGA NPs elicited an intrinsic pathway of apoptosis in MCF-7 cells. In vivo studies on female BALB/c mice exhibited reduced volume of mammary pad tumor tissues and augmented expression of caspase-3 when administered with AA-PLGA NPs. No systemic adverse effect of AA-PLGA NPs was observed in our studies. Thus, AA-PLGA NPs can act as an efficient drug delivery system against breast cancer.
Collapse
Affiliation(s)
- Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Susmita Basak
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|