51
|
Zhang L, Pan X, Xu L, Zhang L, Huang H. Mitochondria-targeted curcumin loaded CTPP–PEG–PCL self-assembled micelles for improving liver fibrosis therapy. RSC Adv 2021; 11:5348-5360. [PMID: 35423083 PMCID: PMC8694685 DOI: 10.1039/d0ra09589c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis, originating from activated hepatic stellate cells (HSCs), is receiving much attention in the treatment of clinical liver disease. In this study, mitochondria-targeted curcumin (Cur) loaded 3-carboxypropyl-triphenylphosphonium bromide–poly(ethylene glycol)–poly(ε-caprolactone) (CTPP–PEG–PCL) micelles were constructed to prolong the systemic circulation of Cur, improve the bioavailability of Cur and play a precise role in anti-fibrosis. The prepared Cur–CTPP–PEG–PCL micelles with a spherical shape had satisfactory dispersion, low critical micelle concentration (CMC) and high encapsulation efficiency (92.88%). The CTPP modification endowed good endosomal escape ability to the CTPP–PEG–PCL micelles, and micelles could be selectively accumulated in mitochondria, thereby inducing the enhanced cell proliferation inhibition of HSC-T6 cells. Mitochondrial Membrane Potential (MMP) was greatly reduced due to the mitochondrial-targeting of Cur. Moreover, the system circulation of Cur was extended and bioavailability was significantly enhanced in vivo. As expected, Cur loaded CTPP–PEG–PCL micelles were more effective in improving liver fibrosis compared with Cur and Cur–mPEG–PCL micelles. In conclusion, the Cur–CTPP–PEG–PCL based micelles can be a potential candidate for liver fibrosis treatment in future clinical applications. A mitochondria-targeting micelle system based on CTPP–PEG–PCL polymer was designed to deliver curcumin to active HSC-T6 cells and prolong the systemic circulation and bioavailability of curcumin in vivo for effective treatment of liver fibrosis.![]()
Collapse
Affiliation(s)
- Liqiao Zhang
- Department of Pharmacy
- Chengdu Women's and Children's Central Hospital
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 611731
| | - Xiuhua Pan
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Lixing Xu
- College of Pharmacy
- Nantong University
- Nantong 226001
- PR China
| | - Linlin Zhang
- Nanjing Chia Tai Tianqing Pharmaceutical CO., Ltd
- Nanjing 210000
- PR China
| | - Haiqin Huang
- College of Pharmacy
- Nantong University
- Nantong 226001
- PR China
| |
Collapse
|
52
|
Novel Surface-Modified Bilosomes as Functional and Biocompatible Nanocarriers of Hybrid Compounds. NANOMATERIALS 2020; 10:nano10122472. [PMID: 33321762 PMCID: PMC7763575 DOI: 10.3390/nano10122472] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
In the present contribution, we demonstrate a new approach for functionalization of colloidal nanomaterial consisting of phosphatidylcholine/cholesterol-based vesicular systems modified by FDA-approved biocompatible components, i.e., sodium cholate hydrate acting as a biosurfactant and Pluronic P123—a symmetric triblock copolymer comprising poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) blocks Eight novel bilosome formulations were prepared using the thin-film hydration method followed by sonication and extrusion in combination with homogenization technique. The optimization studies involving the influence of the preparation technique on the nanocarrier size (dynamic light scattering), charge (electrophoretic light scattering), morphology (transmission electron microscopy) and kinetic stability (backscattering profiles) revealed the most promising candidate for the co-loading of model active compounds of various solubility; namely, hydrophilic methylene blue and hydrophobic curcumin. The studies of the hybrid cargo encapsulation efficiency (UV-Vis spectroscopy) exhibited significant potential of the formulated bilosomes in further biomedical and pharmaceutical applications, including drug delivery, anticancer treatment or diagnostics.
Collapse
|
53
|
Karpenko LI, Apartsin EK, Dudko SG, Starostina EV, Kaplina ON, Antonets DV, Volosnikova EA, Zaitsev BN, Bakulina AY, Venyaminova AG, Ilyichev AA, Bazhan SI. Cationic Polymers for the Delivery of the Ebola DNA Vaccine Encoding Artificial T-Cell Immunogen. Vaccines (Basel) 2020; 8:vaccines8040718. [PMID: 33271964 PMCID: PMC7760684 DOI: 10.3390/vaccines8040718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Background: According to current data, an effective Ebola virus vaccine should induce both humoral and T-cell immunity. In this work, we focused our efforts on methods for delivering artificial T-cell immunogen in the form of a DNA vaccine, using generation 4 polyamidoamine dendrimers (PAMAM G4) and a polyglucin:spermidine conjugate (PG). Methods: Optimal conditions were selected for obtaining complexes of previously developed DNA vaccines with cationic polymers. The sizes, mobility and surface charge of the complexes with PG and PAMAM 4G have been determined. The immunogenicity of the obtained vaccine constructs was investigated in BALB/c mice. Results: It was shown that packaging of DNA vaccine constructs both in the PG envelope and the PAMAM 4G envelope results in an increase in their immunogenicity as compared with the group of mice immunized with the of vector plasmid pcDNA3.1 (a negative control). The highest T-cell responses were shown in mice immunized with complexes of DNA vaccines with PG and these responses significantly exceeded those in the groups of animals immunized with both the combination of naked DNAs and the combination DNAs coated with PAMAM 4G. In the group of animals immunized with complexes of the DNA vaccines with PAMAM 4G, no statistical differences were found in the ability to induce T-cell responses, as compared with the group of mice immunized with the combination of naked DNAs. Conclusions: The PG conjugate can be considered as a promising and safe means to deliver DNA-based vaccines. The use of PAMAM requires further optimization.
Collapse
Affiliation(s)
- Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
- Correspondence: (L.I.K.); (S.I.B.); Tel.: +7-383-363-47-00 (ext. 2001) (L.I.K. & S.I.B.)
| | - Evgeny K. Apartsin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.K.A.); (A.G.V.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Laboratoire de Chimie de Coordination, CNRS, 31077 Toulouse, France
| | - Sergei G. Dudko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Ekaterina V. Starostina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Olga N. Kaplina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Denis V. Antonets
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Boris N. Zaitsev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Anastasiya Yu. Bakulina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aliya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.K.A.); (A.G.V.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Sergei I. Bazhan
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
- Correspondence: (L.I.K.); (S.I.B.); Tel.: +7-383-363-47-00 (ext. 2001) (L.I.K. & S.I.B.)
| |
Collapse
|