51
|
Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 2015; 5:10342. [PMID: 26022141 PMCID: PMC4448504 DOI: 10.1038/srep10342] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/10/2015] [Indexed: 12/15/2022] Open
Abstract
Genome editing is a valuable technique for gene function analysis and crop improvement. Over the past two years, the CRISPR-Cas9 system has emerged as a powerful tool for precisely targeted gene editing. In this study, we predicted 11 U6 genes in soybean (Glycine max L.). We then constructed two vectors (pCas9-GmU6-sgRNA and pCas9-AtU6-sgRNA) using the soybean U6-10 and Arabidopsis U6-26 promoters, respectively, to produce synthetic guide RNAs (sgRNAs) for targeted gene mutagenesis. Three genes, Glyma06g14180, Glyma08g02290 and Glyma12g37050, were selected as targets. Mutations of these three genes were detected in soybean protoplasts. The vectors were then transformed into soybean hairy roots by Agrobacterium rhizogenes infection, resulting in efficient target gene editing. Mutation efficiencies ranged from 3.2-9.7% using the pCas9-AtU6-sgRNA vector and 14.7-20.2% with the pCas9-GmU6-sgRNA vector. Biallelic mutations in Glyma06g14180 and Glyma08g02290 were detected in transgenic hairy roots. Off-target activities associated with Glyma06g14180 and Glyma12g37050 were also detected. Off-target activity would improve mutation efficiency for the construction of a saturated gene mutation library in soybean. Targeted mutagenesis using the CRISPR-Cas9 system should advance soybean functional genomic research, especially that of genes involved in the roots and nodules.
Collapse
Affiliation(s)
- Xianjun Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng Hu
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rui Chen
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Qiyang Jiang
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guohua Song
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hui Zhang
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
52
|
Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 2015. [PMID: 26022141 DOI: 10.1038/strep10342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Genome editing is a valuable technique for gene function analysis and crop improvement. Over the past two years, the CRISPR-Cas9 system has emerged as a powerful tool for precisely targeted gene editing. In this study, we predicted 11 U6 genes in soybean (Glycine max L.). We then constructed two vectors (pCas9-GmU6-sgRNA and pCas9-AtU6-sgRNA) using the soybean U6-10 and Arabidopsis U6-26 promoters, respectively, to produce synthetic guide RNAs (sgRNAs) for targeted gene mutagenesis. Three genes, Glyma06g14180, Glyma08g02290 and Glyma12g37050, were selected as targets. Mutations of these three genes were detected in soybean protoplasts. The vectors were then transformed into soybean hairy roots by Agrobacterium rhizogenes infection, resulting in efficient target gene editing. Mutation efficiencies ranged from 3.2-9.7% using the pCas9-AtU6-sgRNA vector and 14.7-20.2% with the pCas9-GmU6-sgRNA vector. Biallelic mutations in Glyma06g14180 and Glyma08g02290 were detected in transgenic hairy roots. Off-target activities associated with Glyma06g14180 and Glyma12g37050 were also detected. Off-target activity would improve mutation efficiency for the construction of a saturated gene mutation library in soybean. Targeted mutagenesis using the CRISPR-Cas9 system should advance soybean functional genomic research, especially that of genes involved in the roots and nodules.
Collapse
Affiliation(s)
- Xianjun Sun
- 1] College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China [2] National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng Hu
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rui Chen
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Qiyang Jiang
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guohua Song
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hui Zhang
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
53
|
Hossain M, Egan SA, Coffey T, Ward PN, Wilson R, Leigh JA, Emes RD. Virulence related sequences; insights provided by comparative genomics of Streptococcus uberis of differing virulence. BMC Genomics 2015; 16:334. [PMID: 25898893 PMCID: PMC4427978 DOI: 10.1186/s12864-015-1512-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/08/2015] [Indexed: 12/17/2022] Open
Abstract
Background Streptococcus uberis, a Gram-positive, catalase-negative member of the family Streptococcaceae is an important environmental pathogen responsible for a significant proportion of subclinical and clinical bovine intramammary infections. Currently, the genome of only a single reference strain (0140J) has been described. Here we present a comparative analysis of complete draft genome sequences of an additional twelve S. uberis strains. Results Pan and core genome analysis revealed the core genome common to all strains to be 1,550 genes in 1,509 orthologous clusters, complemented by 115-246 accessory genes present in one or more S. uberis strains but absent in the reference strain 0140J. Most of the previously predicted virulent genes were present in the core genome of all 13 strains but gene gain/loss was observed between the isolates in CDS associated with clustered regularly interspaced short palindromic repeats (CRISPRs), prophage and bacteriocin production. Experimental challenge experiments confirmed strain EF20 as non-virulent; only able to infect in a transient manner that did not result in clinical mastitis. Comparison of the genome sequence of EF20 with the validated virulent strain 0140J identified genes associated with virulence, however these did not relate clearly with clinical/non-clinical status of infection. Conclusion The gain/loss of mobile genetic elements such as CRISPRs and prophage are a potential driving force for evolutionary change. This first “whole-genome” comparison of strains isolated from clinical vs non-clinical intramammary infections including the type virulent vs non-virulent strains did not identify simple gene gain/loss rules that readily explain, or be confidently associated with, differences in virulence. This suggests that a more complex dynamic determines infection potential and clinical outcome not simply gene content. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1512-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maqsud Hossain
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, LE12 5RD, Sutton Bonington, UK.
| | - Sharon A Egan
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, LE12 5RD, Sutton Bonington, UK.
| | - Tracey Coffey
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, LE12 5RD, Sutton Bonington, UK.
| | - Philip N Ward
- Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK.
| | - Ray Wilson
- DeepSeq, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - James A Leigh
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, LE12 5RD, Sutton Bonington, UK.
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, LE12 5RD, Sutton Bonington, UK. .,Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
54
|
Nam KH, DeLisa MP, Ke A. Characterizing Metal-Dependent Nucleases of CRISPR-Cas Prokaryotic Adaptive Immunity Systems. Methods Mol Biol 2015; 1311:265-276. [PMID: 25981479 DOI: 10.1007/978-1-4939-2687-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CRISPRs (clustered regularly interspaced short palindromic repeats), together with the nearby CRISPR-associated (cas) operon, constitute a prokaryotic RNA-based adaptive immune system against exogenous genetic elements. Here, we describe nuclease assays that are useful for characterizing the substrate-specific function of CRISPR-associated protein Cas2. We also provide methods for characterizing the stoichiometry and affinity between Cas2 and divalent metal ions using isothermal titration calorimetry (ITC).
Collapse
Affiliation(s)
- Ki H Nam
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | | | | |
Collapse
|
55
|
Koonin EV, Wolf YI. Evolution of the CRISPR-Cas adaptive immunity systems in prokaryotes: models and observations on virus-host coevolution. MOLECULAR BIOSYSTEMS 2015; 11:20-7. [PMID: 25238531 PMCID: PMC5875448 DOI: 10.1039/c4mb00438h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CRISPR-Cas is an adaptive immunity system in prokaryotes that functions via a unique mechanism which involves incorporation of foreign DNA fragments into CRISPR arrays and subsequent utilization of transcripts of these inserts (known as spacers) as guide RNAs to cleave the cognate selfish element genome. Multiple attempts have been undertaken to explore the coevolution of viruses and microbial hosts carrying CRISPR-Cas using mathematical models that employ either systems of differential equations or an agent-based approach, or combinations thereof. Analysis of these models reveals highly complex co-evolutionary dynamics that ensues from the combination of the heritability of the CRISPR-mediated adaptive immunity with the existence of different degrees of immunity depending on the number of cognate spacers and the cost of carrying a CRISPR-Cas locus. Depending on the details of the models, a variety of testable, sometimes conflicting predictions have been made on the dependence of the degree of immunity and the benefit of maintaining CRISPR-Cas on the abundance and diversity of hosts and viruses. Some of these predictions have already been directly validated experimentally. In particular, both the reality of the virus-host arms race, with viruses escaping resistance and hosts reacquiring it through the capture of new spacers, and the fitness cost of CRISPR-Cas due to the curtailment of beneficial HGT have been reproduced in the laboratory. However, to test the predictions of the models more specifically, detailed studies of coevolving populations of microbes and viruses both in nature and in the laboratory are essential. Such analyses are expected to yield disagreements with the predictions of the current, oversimplified models and to trigger a new round of theoretical developments.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
56
|
Zhu LJ, Holmes BR, Aronin N, Brodsky MH. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS One 2014; 9:e108424. [PMID: 25247697 PMCID: PMC4172692 DOI: 10.1371/journal.pone.0108424] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022] Open
Abstract
CRISPR-Cas systems are a diverse family of RNA-protein complexes in bacteria that target foreign DNA sequences for cleavage. Derivatives of these complexes have been engineered to cleave specific target sequences depending on the sequence of a CRISPR-derived guide RNA (gRNA) and the source of the Cas9 protein. Important considerations for the design of gRNAs are to maximize aimed activity at the desired target site while minimizing off-target cleavage. Because of the rapid advances in the understanding of existing CRISPR-Cas9-derived RNA-guided nucleases and the development of novel RNA-guided nuclease systems, it is critical to have computational tools that can accommodate a wide range of different parameters for the design of target-specific RNA-guided nuclease systems. We have developed CRISPRseek, a highly flexible, open source software package to identify gRNAs that target a given input sequence while minimizing off-target cleavage at other sites within any selected genome. CRISPRseek will identify potential gRNAs that target a sequence of interest for CRISPR-Cas9 systems from different bacterial species and generate a cleavage score for potential off-target sequences utilizing published or user-supplied weight matrices with position-specific mismatch penalty scores. Identified gRNAs may be further filtered to only include those that occur in paired orientations for increased specificity and/or those that overlap restriction enzyme sites. For applications where gRNAs are desired to discriminate between two related sequences, CRISPRseek can rank gRNAs based on the difference between predicted cleavage scores in each input sequence. CRISPRseek is implemented as a Bioconductor package within the R statistical programming environment, allowing it to be incorporated into computational pipelines to automate the design of gRNAs for target sequences identified in a wide variety of genome-wide analyses. CRISPRseek is available under the GNU General Public Licence v3.0 at http://www.bioconductor.org.
Collapse
Affiliation(s)
- Lihua J. Zhu
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Benjamin R. Holmes
- Broad Institute of MIT and Harvard, McGovern Institute for Brain Research at MIT, Departments of Brain and Cognitive Sciences and Biological Engineering, MIT, Cambridge, MA, United States of America
| | - Neil Aronin
- RNA Therapeutics Institute and Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Michael H. Brodsky
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| |
Collapse
|
57
|
Are bacteriophage defence and virulence two sides of the same coin in Campylobacter jejuni? Biochem Soc Trans 2014; 41:1475-81. [PMID: 24256240 DOI: 10.1042/bst20130127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The continuous battle for survival in the environment has led to the development or acquisition of sophisticated defence systems in bacteria. These defence systems have contributed to the survival of the bacterial species in the environment for millions of years. Some systems appear to have evolved in a number of pathogenic bacteria towards a role in virulence and host immune evasion. Recently, different bacterial cell envelope components from diverse bacterial species have been linked not only to bacteriophage defence, but also to virulence features. In the present review we focus specifically on the bacterial cell envelope-expressed sialic-acid-containing LOS (lipo-oligosaccharide) structures and Type II CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) genes that both occur in specific Gram-negative pathogens. In Campylobacter jejuni circumstantial evidence points at a potential intertwined dual function between sialylated LOS structures and subtype II-C CRISPR-Cas, i.e. in phage defence and virulence. In the present review we discuss whether a dual functionality of sialylated LOS and subtype II-C CRISPR-Cas is exclusive to C. jejuni only or could be more widespread within the group of Type II CRISPR-Cas-harbouring bacteria. We conclude from the literature that, at least in C. jejuni, circumstantial evidence exists for a complex intertwined dual functionality between sialylated LOS and Type II CRISPR-Cas, and that other bacteria show similar genomic signatures.
Collapse
|
58
|
López-Pérez M, Gonzaga A, Ivanova EP, Rodriguez-Valera F. Genomes of Alteromonas australica, a world apart. BMC Genomics 2014; 15:483. [PMID: 24942065 PMCID: PMC4119200 DOI: 10.1186/1471-2164-15-483] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alteromonas is a genus of marine bacteria that is very easy to isolate and grow in the laboratory. There are genomes available of the species Alteromonas macleodii from different locations around the world and an Alteromonas sp. isolated from a sediment in Korea. We have analyzed the genomes of two strains classified by 16S rRNA (>99% similarity) as the recently described species Alteromonas australica, and isolated from opposite ends of the world; A. australica DE170 was isolated in the South Adriatic (Mediterranean) at 1000 m depth while A. australica H17T was isolated from a sea water sample collected in St Kilda Beach, Tasman Sea. RESULTS Although these two strains belong to a clearly different species from A. macleodii, the overall synteny is well preserved and the flexible genomic islands seem to code for equivalent functions and be located at similar positions. Actually the genomes of all the Alteromonas species known to date seem to preserve synteny quite well with the only exception of the sediment isolate SN2. Among the specific metabolic features found for the A. australica isolates there is the degradation of xylan and production of cellulose as extracellular polymeric substance by DE170 or the potential ethanol/methanol degradation by H17T. CONCLUSIONS The genomes of the two A. australica isolates are not more different than those of strains of A. macleodii isolated from the same sample. Actually the recruitment from metagenomes indicates that all the available genomes are found in most tropical-temperate marine samples analyzed and that they live in consortia of several species and multiple clones within each. Overall the hydrolytic activities of the Alteromonas genus as a whole are impressive and fit with its known capabilities to exploit sudden inputs of organic matter in their environment.
Collapse
Affiliation(s)
| | | | | | - Francisco Rodriguez-Valera
- División de Microbiología, Evolutionary Genomics Group, Universidad Miguel Hernández, Apartado 18, San Juan, 03550 Alicante, Spain.
| |
Collapse
|
59
|
Fullmer MS, Soucy SM, Swithers KS, Makkay AM, Wheeler R, Ventosa A, Gogarten JP, Papke RT. Population and genomic analysis of the genus Halorubrum. Front Microbiol 2014; 5:140. [PMID: 24782836 PMCID: PMC3990103 DOI: 10.3389/fmicb.2014.00140] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/18/2014] [Indexed: 11/13/2022] Open
Abstract
The Halobacteria are known to engage in frequent gene transfer and homologous recombination. For stably diverged lineages to persist some checks on the rate of between lineage recombination must exist. We surveyed a group of isolates from the Aran-Bidgol endorheic lake in Iran and sequenced a selection of them. Multilocus Sequence Analysis (MLSA) and Average Nucleotide Identity (ANI) revealed multiple clusters (phylogroups) of organisms present in the lake. Patterns of intein and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) presence/absence and their sequence similarity, GC usage along with the ANI and the identities of the genes used in the MLSA revealed that two of these clusters share an exchange bias toward others in their phylogroup while showing reduced rates of exchange with other organisms in the environment. However, a third cluster, composed in part of named species from other areas of central Asia, displayed many indications of variability in exchange partners, from within the lake as well as outside the lake. We conclude that barriers to gene exchange exist between the two purely Aran-Bidgol phylogroups, and that the third cluster with members from other regions is not a single population and likely reflects an amalgamation of several populations.
Collapse
Affiliation(s)
- Matthew S. Fullmer
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Shannon M. Soucy
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Kristen S. Swithers
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
- Department of Cell Biology, Yale School of Medicine, Yale UniversityNew Haven, CT, USA
| | - Andrea M. Makkay
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Ryan Wheeler
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, University of SevilleSeville, Spain
| | - J. Peter Gogarten
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - R. Thane Papke
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| |
Collapse
|
60
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
61
|
Richter H, Lange SJ, Backofen R, Randau L. Comparative analysis ofCas6b processing and CRISPR RNA stability. RNA Biol 2014; 10:700-7. [PMID: 23392318 DOI: 10.4161/rna.23715] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The prokaryotic antiviral defense systems CRISP R (clustered regularly interspaced short palindromic repeats)/Cas (CRISP Rassociated) employs short crRNAs (CRISP R RNAs) to target invading viral nucleic acids. A short spacer sequence of these crRNAs can be derived from a viral genome and recognizes a reoccurring attack of a virus via base complementarity. We analyzed the effect of spacer sequences on the maturation of crRNAs of the subtype I-B Methanococcus maripaludis C5 CRISP R cluster. The responsible endonuclease, termed Cas6b, bound non-hydrolyzable repeat RNA as a dimer and mature crRNA as a monomer. Comparative analysis of Cas6b processing of individual spacer-repeat-spacer RNA substrates and crRNA stability revealed the potential influence of spacer sequence and length on these parameters. Correlation of these observations with the variable abundance of crRNAs visualized by deep-sequencing analyses is discussed. Finally, insertion of spacer and repeat sequences with archaeal poly-T termination signals is suggested to be prevented in archaeal CRISP R/Cas systems.
Collapse
Affiliation(s)
- Hagen Richter
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | | | |
Collapse
|
62
|
Bull M, Plummer S, Marchesi J, Mahenthiralingam E. The life history ofLactobacillus acidophilusas a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol Lett 2013; 349:77-87. [DOI: 10.1111/1574-6968.12293] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Matthew Bull
- Organisms and Environment Division; Cardiff School of Biosciences; Cardiff University; Cardiff UK
| | | | - Julian Marchesi
- Organisms and Environment Division; Cardiff School of Biosciences; Cardiff University; Cardiff UK
- Department of Hepatology and Gastroenterology; St Mary's Hospital; Imperial College London; London UK
| | - Eshwar Mahenthiralingam
- Organisms and Environment Division; Cardiff School of Biosciences; Cardiff University; Cardiff UK
| |
Collapse
|
63
|
Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context. J Bacteriol 2013; 195:3834-44. [PMID: 23794616 DOI: 10.1128/jb.00412-13] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A stochastic, agent-based mathematical model of the coevolution of the archaeal and bacterial adaptive immunity system, CRISPR-Cas, and lytic viruses shows that CRISPR-Cas immunity can stabilize the virus-host coexistence rather than leading to the extinction of the virus. In the model, CRISPR-Cas immunity does not specifically promote viral diversity, presumably because the selection pressure on each single proto-spacer is too weak. However, the overall virus diversity in the presence of CRISPR-Cas grows due to the increase of the host and, accordingly, the virus population size. Above a threshold value of total viral diversity, which is proportional to the viral mutation rate and population size, the CRISPR-Cas system becomes ineffective and is lost due to the associated fitness cost. Our previous modeling study has suggested that the ubiquity of CRISPR-Cas in hyperthermophiles, which contrasts its comparative low prevalence in mesophiles, is due to lower rates of mutation fixation in thermal habitats. The present findings offer a complementary, simpler perspective on this contrast through the larger population sizes of mesophiles compared to hyperthermophiles, because of which CRISPR-Cas can become ineffective in mesophiles. The efficacy of CRISPR-Cas sharply increases with the number of proto-spacers per viral genome, potentially explaining the low information content of the proto-spacer-associated motif (PAM) that is required for spacer acquisition by CRISPR-Cas because a higher specificity would restrict the number of spacers available to CRISPR-Cas, thus hampering immunity. The very existence of the PAM might reflect the tradeoff between the requirement of diverse spacers for efficient immunity and avoidance of autoimmunity.
Collapse
|
64
|
Nickel L, Weidenbach K, Jäger D, Backofen R, Lange SJ, Heidrich N, Schmitz RA. Two CRISPR-Cas systems in Methanosarcina mazei strain Gö1 display common processing features despite belonging to different types I and III. RNA Biol 2013; 10:779-91. [PMID: 23619576 DOI: 10.4161/rna.23928] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system represents a highly adaptive and heritable defense system against foreign nucleic acids in bacteria and archaea. We analyzed the two CRISPR-Cas systems in Methanosarcina mazei strain Gö1. Although belonging to different subtypes (I-B and III-B), the leaders and repeats of both loci are nearly identical. Also, despite many point mutations in each array, a common hairpin motif was identified in the repeats by a bioinformatics analysis and in vitro structural probing. The expression and maturation of CRISPR-derived RNAs (crRNAs) were studied in vitro and in vivo. Both respective potential Cas6b-type endonucleases were purified and their activity tested in vitro. Each protein showed significant activity and could cleave both repeats at the same processing site. Cas6b of subtype III-B, however, was significantly more efficient in its cleavage activity compared with Cas6b of subtype I-B. Northern blot and differential RNAseq analyses were performed to investigate in vivo transcription and maturation of crRNAs, revealing generally very low expression of both systems, whereas significant induction at high NaCl concentrations was observed. crRNAs derived proximal to the leader were generally more abundant than distal ones and in vivo processing sites were clarified for both loci, confirming the previously well-established 8 nt 5' repeat tags. The 3'-ends were more diverse, but generally ended in a prefix of the following repeat sequence (3'-tag). The analysis further revealed a 5'-hydroxy and 3'-phosphate termini architecture of small crRNAs specific for cleavage products of Cas6 endonucleases from type I-E and I-F and type III-B.
Collapse
Affiliation(s)
- Lisa Nickel
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
65
|
Hoe CH, Raabe CA, Rozhdestvensky TS, Tang TH. Bacterial sRNAs: regulation in stress. Int J Med Microbiol 2013; 303:217-29. [PMID: 23660175 DOI: 10.1016/j.ijmm.2013.04.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/26/2013] [Accepted: 04/07/2013] [Indexed: 11/28/2022] Open
Abstract
Bacteria are often exposed to a hostile environment and have developed a plethora of cellular processes in order to survive. A burgeoning list of small non-coding RNAs (sRNAs) has been identified and reported to orchestrate crucial stress responses in bacteria. Among them, cis-encoded sRNA, trans-encoded sRNA, and 5'-untranslated regions (UTRs) of the protein coding sequence are influential in the bacterial response to environmental cues, such as fluctuation of temperature and pH as well as other stress conditions. This review summarizes the role of bacterial sRNAs in modulating selected stress conditions and highlights the alliance between stress response and clustered regularly interspaced short palindromic repeats (CRISPR) in bacterial defense.
Collapse
Affiliation(s)
- Chee-Hock Hoe
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, 13200 Penang, Malaysia.
| | | | | | | |
Collapse
|
66
|
Makarova KS, Wolf YI, Koonin EV. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res 2013; 41:4360-77. [PMID: 23470997 PMCID: PMC3632139 DOI: 10.1093/nar/gkt157] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our knowledge of prokaryotic defense systems has vastly expanded as the result of comparative genomic analysis, followed by experimental validation. This expansion is both quantitative, including the discovery of diverse new examples of known types of defense systems, such as restriction-modification or toxin-antitoxin systems, and qualitative, including the discovery of fundamentally new defense mechanisms, such as the CRISPR-Cas immunity system. Large-scale statistical analysis reveals that the distribution of different defense systems in bacterial and archaeal taxa is non-uniform, with four groups of organisms distinguishable with respect to the overall abundance and the balance between specific types of defense systems. The genes encoding defense system components in bacterial and archaea typically cluster in defense islands. In addition to genes encoding known defense systems, these islands contain numerous uncharacterized genes, which are candidates for new types of defense systems. The tight association of the genes encoding immunity systems and dormancy- or cell death-inducing defense systems in prokaryotic genomes suggests that these two major types of defense are functionally coupled, providing for effective protection at the population level.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
67
|
Koonin EV, Makarova KS. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol 2013; 10:679-86. [PMID: 23439366 DOI: 10.4161/rna.24022] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
68
|
Ravcheev DA, Best AA, Sernova NV, Kazanov MD, Novichkov PS, Rodionov DA. Genomic reconstruction of transcriptional regulatory networks in lactic acid bacteria. BMC Genomics 2013; 14:94. [PMID: 23398941 PMCID: PMC3616900 DOI: 10.1186/1471-2164-14-94] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/08/2013] [Indexed: 12/21/2022] Open
Abstract
Background Genome scale annotation of regulatory interactions and reconstruction of regulatory networks are the crucial problems in bacterial genomics. The Lactobacillales order of bacteria collates various microorganisms having a large economic impact, including both human and animal pathogens and strains used in the food industry. Nonetheless, no systematic genome-wide analysis of transcriptional regulation has been previously made for this taxonomic group. Results A comparative genomics approach was used for reconstruction of transcriptional regulatory networks in 30 selected genomes of lactic acid bacteria. The inferred networks comprise regulons for 102 orthologous transcription factors (TFs), including 47 novel regulons for previously uncharacterized TFs. Numerous differences between regulatory networks of the Streptococcaceae and Lactobacillaceae groups were described on several levels. The two groups are characterized by substantially different sets of TFs encoded in their genomes. Content of the inferred regulons and structure of their cognate TF binding motifs differ for many orthologous TFs between the two groups. Multiple cases of non-orthologous displacements of TFs that control specific metabolic pathways were reported. Conclusions The reconstructed regulatory networks substantially expand the existing knowledge of transcriptional regulation in lactic acid bacteria. In each of 30 studied genomes the obtained regulatory network contains on average 36 TFs and 250 target genes that are mostly involved in carbohydrate metabolism, stress response, metal homeostasis and amino acids biosynthesis. The inferred networks can be used for genetic experiments, functional annotations of genes, metabolic reconstruction and evolutionary analysis. All reconstructed regulons are captured within the Streptococcaceae and Lactobacillaceae collections in the RegPrecise database (http://regprecise.lbl.gov).
Collapse
|
69
|
CRISPR-Cas, a Prokaryotic Adaptive Immune System, in Endodontic, Oral, and Multidrug-resistant Hospital-acquired Enterococcus faecalis. J Endod 2012; 38:1511-5. [DOI: 10.1016/j.joen.2012.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/14/2012] [Accepted: 07/26/2012] [Indexed: 11/17/2022]
|
70
|
Complete genome sequence of Methanomassiliicoccus luminyensis, the largest genome of a human-associated Archaea species. J Bacteriol 2012; 194:4745. [PMID: 22887657 DOI: 10.1128/jb.00956-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study describes the complete and annotated genome sequence of Methanomassiliicoccus luminyensis strain B10 (DSM 24529(T), CSUR P135), which was isolated from human feces. The 2.6-Mb genome represents the largest genome of a methanogenic euryarchaeon isolated from humans. The genome data of M. luminyensis reveal unique features and horizontal gene transfer events, which might have occurred during its adaptation and/or evolution in the human ecosystem.
Collapse
|
71
|
Koonin EV, Wolf YI. Evolution of microbes and viruses: a paradigm shift in evolutionary biology? Front Cell Infect Microbiol 2012; 2:119. [PMID: 22993722 PMCID: PMC3440604 DOI: 10.3389/fcimb.2012.00119] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/27/2012] [Indexed: 01/21/2023] Open
Abstract
When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain “ribosomal Tree of Life” that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: (1) pervasive horizontal gene transfer (HGT), in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment) of the Tree of Life concept, (2) Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and (3) evolution of evolvability, i.e., dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary biology.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA.
| | | |
Collapse
|
72
|
Abstract
Prions are agents of analog, protein conformation-based inheritance that can confer beneficial phenotypes to cells, especially under stress. Combined with genetic variation, prion-mediated inheritance can be channeled into prion-independent genomic inheritance. Latest screening shows that prions are common, at least in fungi. Thus, there is non-negligible flow of information from proteins to the genome in modern cells, in a direct violation of the Central Dogma of molecular biology. The prion-mediated heredity that violates the Central Dogma appears to be a specific, most radical manifestation of the widespread assimilation of protein (epigenetic) variation into genetic variation. The epigenetic variation precedes and facilitates genetic adaptation through a general 'look-ahead effect' of phenotypic mutations. This direction of the information flow is likely to be one of the important routes of environment-genome interaction and could substantially contribute to the evolution of complex adaptive traits.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
73
|
Richter H, Zoephel J, Schermuly J, Maticzka D, Backofen R, Randau L. Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis. Nucleic Acids Res 2012; 40:9887-96. [PMID: 22879377 PMCID: PMC3479195 DOI: 10.1093/nar/gks737] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The CRISPR arrays found in many bacteria and most archaea are transcribed into a long precursor RNA that is processed into small clustered regularly interspaced short palindromic repeats (CRISPR) RNAs (crRNAs). These RNA molecules can contain fragments of viral genomes and mediate, together with a set of CRISPR-associated (Cas) proteins, the prokaryotic immunity against viral attacks. CRISPR/Cas systems are diverse and the Cas6 enzymes that process crRNAs vary between different subtypes. We analysed CRISPR/Cas subtype I-B and present the identification of novel Cas6 enzymes from the bacterial and archaeal model organisms Clostridium thermocellum and Methanococcus maripaludis C5. Methanococcus maripaludis Cas6b in vitro activity and specificity was determined. Two complementary catalytic histidine residues were identified. RNA-Seq analyses revealed in vivo crRNA processing sites, crRNA abundance and orientation of CRISPR transcription within these two organisms. Individual spacer sequences were identified with strong effects on transcription and processing patterns of a CRISPR cluster. These effects will need to be considered for the application of CRISPR clusters that are designed to produce synthetic crRNAs.
Collapse
Affiliation(s)
- Hagen Richter
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, D-35037 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
74
|
Kwon AR, Kim JH, Park SJ, Lee KY, Min YH, Im H, Lee I, Lee KY, Lee BJ. Structural and biochemical characterization of HP0315 from Helicobacter pylori as a VapD protein with an endoribonuclease activity. Nucleic Acids Res 2012; 40:4216-28. [PMID: 22241770 PMCID: PMC3351183 DOI: 10.1093/nar/gkr1305] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 01/23/2023] Open
Abstract
VapD-like virulence-associated proteins have been found in many organisms, but little is known about this protein family including the 3D structure of these proteins. Recently, a relationship between the Cas2 family of ribonucleases associated with the CRISPR system of microbial immunity and VapD was suggested. Here, we show for the first time the structure of a member of the VapD family and present a relationship of VapD with Cas2 family and toxin-antitoxin (TA) systems. The crystal structure of HP0315 from Helicobacter pylori was solved at a resolution of 2.8 Å. The structure of HP0315, which has a modified ferredoxin-like fold, is very similar to that of the Cas2 family. Like Cas2 proteins, HP0315 shows endoribonuclease activity. HP0315-cleaved mRNA, mainly before A and G nucleotides preferentially, which means that HP0315 has purine-specific endoribonuclease activity. Mutagenesis studies of HP0315 revealed that D7, L13, S43 and D76 residues are important for RNase activity, in contrast, to the Cas2 family. HP0315 is arranged as an operon with HP0316, which was found to be an antitoxin-related protein. However, HP0315 is not a component of the TA system. Thus, HP0315 may be an evolutionary intermediate which does not belong to either the Cas2 family or TA system.
Collapse
Affiliation(s)
- Ae-Ran Kwon
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Ji-Hun Kim
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Sung Jean Park
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Ki-Young Lee
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Yu-Hong Min
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Hookang Im
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Ingyun Lee
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Kyu-Yeon Lee
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Bong-Jin Lee
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| |
Collapse
|
75
|
Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 2012; 45:273-97. [PMID: 22060043 DOI: 10.1146/annurev-genet-110410-132430] [Citation(s) in RCA: 602] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria and archaea have evolved defense and regulatory mechanisms to cope with various environmental stressors, including virus attack. This arsenal has been expanded by the recent discovery of the versatile CRISPR-Cas system, which has two novel features. First, the host can specifically incorporate short sequences from invading genetic elements (virus or plasmid) into a region of its genome that is distinguished by clustered regularly interspaced short palindromic repeats (CRISPRs). Second, when these sequences are transcribed and precisely processed into small RNAs, they guide a multifunctional protein complex (Cas proteins) to recognize and cleave incoming foreign genetic material. This adaptive immunity system, which uses a library of small noncoding RNAs as a potent weapon against fast-evolving viruses, is also used as a regulatory system by the host. Exciting breakthroughs in understanding the mechanisms of the CRISPR-Cas system and its potential for biotechnological applications and understanding evolutionary dynamics are discussed.
Collapse
Affiliation(s)
- Devaki Bhaya
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305, USA.
| | | | | |
Collapse
|
76
|
Lindenstrauß AG, Pavlovic M, Bringmann A, Behr J, Ehrmann MA, Vogel RF. Comparison of genotypic and phenotypic cluster analyses of virulence determinants and possible role of CRISPR elements towards their incidence in Enterococcus faecalis and Enterococcus faecium. Syst Appl Microbiol 2011; 34:553-60. [DOI: 10.1016/j.syapm.2011.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 10/17/2022]
|
77
|
Abstract
The CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) modules are adaptive immunity systems that are present in many archaea and bacteria. These defence systems are encoded by operons that have an extraordinarily diverse architecture and a high rate of evolution for both the cas genes and the unique spacer content. Here, we provide an updated analysis of the evolutionary relationships between CRISPR-Cas systems and Cas proteins. Three major types of CRISPR-Cas system are delineated, with a further division into several subtypes and a few chimeric variants. Given the complexity of the genomic architectures and the extremely dynamic evolution of the CRISPR-Cas systems, a unified classification of these systems should be based on multiple criteria. Accordingly, we propose a 'polythetic' classification that integrates the phylogenies of the most common cas genes, the sequence and organization of the CRISPR repeats and the architecture of the CRISPR-cas loci.
Collapse
|
78
|
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011; 471:602-7. [PMID: 21455174 PMCID: PMC3070239 DOI: 10.1038/nature09886] [Citation(s) in RCA: 1737] [Impact Index Per Article: 124.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 01/28/2011] [Indexed: 12/12/2022]
Abstract
CRISPR/Cas systems constitute a widespread class of immunity systems that protect bacteria and archaea against phages and plasmids, and commonly use repeat/spacer-derived short crRNAs to silence foreign nucleic acids in a sequence-specific manner. Although the maturation of crRNAs represents a key event in CRISPR activation, the responsible endoribonucleases (CasE, Cas6, Csy4) are missing in many CRISPR/Cas subtypes. Here, differential RNA sequencing of the human pathogen Streptococcus pyogenes uncovered tracrRNA, a trans-encoded small RNA with 24-nucleotide complementarity to the repeat regions of crRNA precursor transcripts. We show that tracrRNA directs the maturation of crRNAs by the activities of the widely conserved endogenous RNase III and the CRISPR-associated Csn1 protein; all these components are essential to protect S. pyogenes against prophage-derived DNA. Our study reveals a novel pathway of small guide RNA maturation and the first example of a host factor (RNase III) required for bacterial RNA-mediated immunity against invaders.
Collapse
Affiliation(s)
- Elitza Deltcheva
- The Laboratory for Molecular Infection Medicine Sweden, Umeå, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Manica A, Zebec Z, Teichmann D, Schleper C. In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon. Mol Microbiol 2011; 80:481-91. [PMID: 21385233 DOI: 10.1111/j.1365-2958.2011.07586.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems are found widespread in bacterial and archaeal genomes and exhibit considerable diversity. However, closer insights into the action of most of the CRISPR modules have remained elusive in particular in Archaea as a result of the lack of suitable in vivo test systems. Here we demonstrate CRISPR/Cas-based immune defence in the hyperthermophilic archaeon Sulfolobus solfataricus. Recombinant variants of the SSV1 virus containing a gene of the conjugative plasmid pNOB8 that represents a target for a corresponding CRISPR spacer in the chromosome were tested in transfection experiments. Almost 100% immunity against the recombinant virus was observed when the chromosomal CRISPR spacer matched perfectly to the protospacer. Different from bacterial systems immunity was still detected, albeit at decreased levels, when mutations distinguished target and spacer. CRISPR/Cas targeting was independent of the transcription of the target gene. Furthermore, a mini-CRISPR locus introduced on the viral DNA with spacers targeting the (non-essential) chromosomal beta-galactosidase gene was unstable in host cells and triggered recombination with the indigenous CRISPR locus. Our experiments demonstrate in vivo activity of CRISPR/Cas in archaea for the first time and suggest that - unlike the recently demonstrated in vitro cleavage of RNA in Pyrococcus- DNA is targeted in this archaeon.
Collapse
Affiliation(s)
- Andrea Manica
- University of Vienna, Department of Genetics in Ecology, Althanstr. 14, 1090-Vienna, Austria
| | | | | | | |
Collapse
|