51
|
Rahim F, Arjmand B, Shirbandi K, Payab M, Larijani B. Stem cell therapy for patients with diabetes: a systematic review and meta-analysis of metabolomics-based risks and benefits. Stem Cell Investig 2018; 5:40. [PMID: 30596080 DOI: 10.21037/sci.2018.11.01] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/29/2018] [Indexed: 12/15/2022]
Abstract
Background There is a general agreement that to ensure promising results of stem cell therapy in patients with diabetes, one must first understand its risks and benefits; thus, if the risk is sufficiently low along with many benefits, it can lead to developing a novel therapeutic approach based on sound science. Methods A systematic review and meta-analysis was performed using all available clinical trials to determine the benefits and risks associated with stem cell therapy in patients with diabetes (both T1DM and T2DM). An extensive search was conducted across several databases using all MeSH words regarding stem cell therapy and diabetes. Results In T2DM, a large body of research has shown that stem cell therapy has improved the insulin daily requirement and glycosylated hemoglobin (HbA1C) levels, and also has a positive effect on these variables, but has a negative impact on c-peptide. Hence, in T1DM, stem cell therapy improves c-peptide and HbA1C levels and has a positive effect on these variables, but has a negative impact on insulin daily requirement. Conclusions A total of 639 cells have the ability to self-renew and differentiate into a variety of cells, including blood, heart, nervous and cartilage cells. Paradoxically, it has been stated that these cells also have the potential to form cancer cells. These possible risks warrant caution by both medical specialists and patients while proceeding with the treatment; thus, it is critically crucial to conduct further research on stem cell therapy but with first considering their risk and benefits.
Collapse
Affiliation(s)
- Fakher Rahim
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Shirbandi
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Ahvaz, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
52
|
Gurusamy N, Alsayari A, Rajasingh S, Rajasingh J. Adult Stem Cells for Regenerative Therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 160:1-22. [PMID: 30470288 DOI: 10.1016/bs.pmbts.2018.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell therapy has been identified as an effective method to regenerate damaged tissue. Adult stem cells, also known as somatic stem cells or resident stem cells, are a rare population of undifferentiated cells, located within a differentiated organ, in a specialized structure, called a niche, which maintains the microenvironments that regulate the growth and development of adult stem cells. The adult stem cells are self-renewing, clonogenic, and multipotent in nature, and their main role is to maintain the tissue homeostasis. They can be activated to proliferate and differentiate into the required type of cells, upon the loss of cells or injury to the tissue. Adult stem cells have been identified in many tissues including blood, intestine, skin, muscle, brain, and heart. Extensive preclinical and clinical studies have demonstrated the structural and functional regeneration capabilities of these adult stem cells, such as bone marrow-derived mononuclear cells, hematopoietic stem cells, mesenchymal stromal/stem cells, resident adult stem cells, induced pluripotent stem cells, and umbilical cord stem cells. In this review, we focus on the human therapies, utilizing adult stem cells for their regenerative capabilities in the treatment of cardiac, brain, pancreatic, and eye disorders.
Collapse
Affiliation(s)
- Narasimman Gurusamy
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sheeja Rajasingh
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, KS, United States
| | - Johnson Rajasingh
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, KS, United States.
| |
Collapse
|
53
|
Sun J, Zhao F, Zhang W, Lv J, Lv J, Yin A. BMSCs and miR-124a ameliorated diabetic nephropathy via inhibiting notch signalling pathway. J Cell Mol Med 2018; 22:4840-4855. [PMID: 30024097 PMCID: PMC6156290 DOI: 10.1111/jcmm.13747] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/01/2018] [Indexed: 02/06/2023] Open
Abstract
BMSCs are important in replacement therapy of diabetic nephropathy (DN). MiR‐124a exerts effect on the differentiation capability of pancreatic progenitor cells. The objective of this study was to explore the molecular mechanisms, the functions of miR‐124a and bone marrow mesenchymal stem cells (BMSCs) in the treatment of DN. Characterizations of BMSCs were identified using the inverted microscope and flow cytometer. The differentiations of BMSCs were analysed by immunofluorescence assay and DTZ staining. The expression levels of islet cell‐specific transcription factors, apoptosis‐related genes, podocytes‐related genes and Notch signalling components were detected using quantitative real‐time reverse transcription PCR (qRT‐PCR) and Western blot assays. The production of insulin secretion was detected by adopting radioimmunoassay. Cell proliferation and apoptosis abilities were detected by CCK‐8, flow cytometry and TUNEL assays. We found that BMSCs was induced into islet‐like cells and that miR‐124a could promote the BMSCs to differentiate into islet‐like cells. BMSCs in combination with miR‐124a regulated islet cell‐specific transcription factors, apoptosis‐related genes, podocytes‐related genes as well as the activity of Notch signalling pathway. However, BMSCs in combination with miR‐124a relieved renal lesion caused by DN and decreased podocyte apoptosis caused by HG. The protective effect of BMSCs in combination with miR‐124a was closely related to the inactivation of Notch signalling pathway. MSCs in combination with miR‐124a protected kidney tissue from impairment and inhibited nephrocyte apoptosis in DN.
Collapse
Affiliation(s)
- Jiping Sun
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Fei Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Wenjing Zhang
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Jia Lv
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Jing Lv
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Aiping Yin
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
54
|
Morais SRD, Viana ACC, Daltro AFCS, Mendonça PDS. Cardiovascular risk and use of conicity index in patients submitted to autologous hematopoietic stem cell transplantation. ACTA ACUST UNITED AC 2018; 16:eAO4253. [PMID: 29898091 PMCID: PMC5995550 DOI: 10.1590/s1679-45082018ao4253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/09/2018] [Indexed: 11/22/2022]
Abstract
Objective To analyze the prevalence of overweight and the use of conicity index for cardiovascular risk assessment in individuals submitted to autologous hematopoietic stem cell transplantation. Methods The sample comprised 91 patients of both sexes, who underwent autologous hematopoietic stem cell transplantation from September 2008 to December 2013, aged 18 years or over. To determine the nutritional profile, we collected anthropometric data on weight, height, waist circumference upon hospital admission. The body mass index and the conicity index were calculated. Results A total of 91 patients diagnosed with multiple myeloma, Hodgkin's lymphoma, non-Hodgkin's lymphoma and other conditions were evaluated. The mean age was 43.5 (14.2) years, 63.7% were male. We verified that according to the body mass index, 63.7% were overweight and, according to waist circumference, 74.7% had a higher risk for cardiovascular diseases. According to the calculation of the conicity index, 92.3% of patients presented increased cardiovascular risk. Patients with multiple myeloma had a higher conicity index when compared to other patients (p<0.01). Conclusion This study revealed a high prevalence of overweight and cardiovascular risk. It should be noted that the conicity index was a good method to evaluate cardiovascular risk and that new studies using this index should be performed.
Collapse
|
55
|
Li Q, Pang Y, Liu T, Tang Y, Xie J, Zhang B, Chen H. Effects of human umbilical cord-derived mesenchymal stem cells on hematologic malignancies. Oncol Lett 2018; 15:6982-6990. [PMID: 29731869 PMCID: PMC5920879 DOI: 10.3892/ol.2018.8254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/05/2017] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been used in hematopoietic stem cell transplantation for years. However, the safety of MSCs applied in various types of hematologic malignancy has not been comprehensively explored. In the present study, the effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on six representative hematologic malignancy cell lines were explored, including leukemia, multiple myeloma and lymphoma cells. Direct and indirect co-culture models were established, and cell proliferation was assessed by carboxyfluorescein diacetate succinimidyl ester staining. A cytometric bead array cytokine kit was used to quantify cytokines. The expression of interleukin (IL)-6 receptor elements on tumor cells was detected by reverse transcription-polymerase chain reaction and flow cytometry, and the effects of exogenous IL-6 on cell proliferation were determined using a Cell Counting kit-8 assay. The results demonstrated that hUC-MSCs inhibited the proliferation of most of the cell lines examined (THP-1, HL-60, K562 and RPMI-8226), but promoted the proliferation of Raji cells. In addition, hUC-MSCs secreted abundant IL-6, promoted the secretion of IL-10 by RPMI-8226 and Raji cells, and inhibited the secretion of tumor necrosis factor-α by THP-1 cells. These data indicate a varied effect of hUC-MSCs on various types of hematologic malignancy, including distinct mechanisms of cell-to-cell contact and cytokines. Researchers applying hUC-MSCs in lymphoma should be aware of a potential tumor growth-promoting effect.
Collapse
Affiliation(s)
- Qian Li
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China.,Cell and Gene Therapy Center, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China.,Department of Oncology, The Army General Hospital, Beijing 100010, P.R. China
| | - Yilin Pang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China.,Cell and Gene Therapy Center, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China.,Department of Emergency, Beijing Children's Hospital, Capital Medical University, Beijing 100071, P.R. China
| | - Tingting Liu
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China.,Cell and Gene Therapy Center, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Yongyong Tang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China.,Cell and Gene Therapy Center, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Jing Xie
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China.,Cell and Gene Therapy Center, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Bin Zhang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China.,Cell and Gene Therapy Center, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China.,Cell and Gene Therapy Center, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China
| |
Collapse
|
56
|
Madani S, Larijani B, Keshtkar AA, Tootee A. Safety and efficacy of hematopoietic and mesanchymal stem cell therapy for treatment of T1DM: a systematic review and meta-analysis protocol. Syst Rev 2018; 7:23. [PMID: 29373983 PMCID: PMC5787264 DOI: 10.1186/s13643-017-0662-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Insulin standard treatment of T1DM cannot cure the patients as different chronic complications occurred subsequently. Investigations on a curative treatment in T1DM propose cell replacement or maintenance instead of exogenous insulin therapy, but different dimensions of this novel treatment are not clarified. METHODS AND ANALYSIS We will include all clinical trials which have evaluated the efficacy MSC or HSC transplantation in T1DM treatment; electronically search bibliographic databases, country registration data banks, and gray literatures; and hand-search two key journals, two experts' article, and references of the included articles with no language restriction. Primary outcome is the extent of reduction in insulin requirement and secondary outcomes are safety of MSC and HSC therapy, effect of this therapy on diabetic parameters, effect of the rout of transplantation and origin of the MSC or HSC on efficacy of treatment, studies heterogeneity and potential reasons of it. Heterogeneity and its severity will be calculated with Q Cochrane test, P value, and I2 index. STATA software version 12 will be used for meta-analysis. PROSPERO Registration number: CRD42016047176. ETHICS AND DISSEMINATION We will publish the systematic review in a peer review journal; as it presents an analysis of published literature, the study does not require ethical approval. STRENGTHS AND LIMITATIONS OF THIS STUDY This systematic review and meta-analysis will investigate the efficacy of MSC and HSC transplantation in T1DM treatment with no language restriction. Also we will evaluate gray literatures after hand searching. This protocol is prepared according to Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P). Two reviewers will evaluate screened full texts, extract data, and asses risk of bias of eligible primary studies independently. As there is the possibility that we miss some unpublished primary studies due to negative results, we will use funnel plot to detect this and correct it with fill and trim method.
Collapse
Affiliation(s)
- Sedigheh Madani
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| | | | - Ali Tootee
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
57
|
IFN-γ and TNF-α Pre-licensing Protects Mesenchymal Stromal Cells from the Pro-inflammatory Effects of Palmitate. Mol Ther 2017; 26:860-873. [PMID: 29352647 DOI: 10.1016/j.ymthe.2017.12.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stromal cell (MSC) therapy for the treatment of type 2 diabetes (T2D) and T2D complications is promising; however, the investigation of MSC function in the setting of T2D has not been thoroughly explored. In our current study, we investigated the phenotype and function of MSCs in a simulated in vitro T2D environment. We show that palmitate, but not glucose, exposure impairs MSC metabolic activity with moderate increases in apoptosis, while drastically affecting proliferation and morphology. In co-culture with peripheral blood mononuclear cells (PBMCs), we found that MSCs not only lose their normal suppressive ability in high levels of palmitate, but actively support and enhance inflammation, resulting in elevated PBMC proliferation and pro-inflammatory cytokine release. The pro-inflammatory effect of MSCs in palmitate was partially reversed via palmitate removal and fully reversed through pre-licensing MSCs with interferon-gamma and tumor necrosis factor alpha. Thus, palmitate, a specific metabolic factor enriched within the T2D environment, is a potent modulator of MSC immunosuppressive function, which may in part explain the depressed potency observed in MSCs isolated from T2D patients. Importantly, we have also identified a robust and durable pre-licensing regimen that protects MSC immunosuppressive function in the setting of T2D.
Collapse
|
58
|
Sood V, Bhansali A, Mittal BR, Singh B, Marwaha N, Jain A, Khandelwal N. Autologous bone marrow derived stem cell therapy in patients with type 2 diabetes mellitus - defining adequate administration methods. World J Diabetes 2017; 8:381-389. [PMID: 28751962 PMCID: PMC5507836 DOI: 10.4239/wjd.v8.i7.381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/09/2017] [Accepted: 04/24/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To carry out randomized trial for evaluating effects of autologous bone marrow derived stem cell therapy (ABMSCT) through different routes.
METHODS Bone marrow aspirate was taken from the iliac crest of patients. Bone marrow mononuclear cells were separated and purified using centrifugation. These cells were then infused in a total of 21 patients comprising three groups of 7 patients each. Cells were infused into the superior pancreaticoduodenal artery (Group I), splenic artery (Group II) and through the peripheral intravenous route (Group III). Another group of 7 patients acted as controls and a sham procedure was carried out on them (Group IV). The cells were labelled with the PET tracer F18-FDG to see their homing and in vivo distribution. Data for clinical outcome was expressed as mean ± SE. All other data was expressed as mean ± SD. Baseline and post treatment data was compared at the end of six months, using paired t-test. Cases and controls data were analyzed using independent t-test. A probability (P) value of < 0.05 was regarded as statistically significant. Measures of clinical outcome were taken as the change or improvement in the following parameters: (1) C-peptide assay; (2) HOMA-IR and HOMA-B; (3) reduction in Insulin dose; subjects who showed reduction of insulin requirement of more than 50% from baseline requirement were regarded as responders; and (4) reduction in HbA1c.
RESULTS All the patients, after being advised for healthy lifestyle changes, were evaluated at periodical intervals and at the end of 6 mo. The changes in body weight, body mass index, waist circumference and percentage of body fat in all groups were not significantly different at the end of this period. The results of intra-group comparison before and after ABMSCT at the end of six months duration was as follows: (1) the area under C-peptide response curve was increased at the end of 6 mo however the difference remained statistically non-significant (P values for fasting C-peptide were 0.973, 0.103, 0.263 and 0.287 respectively and the P values for stimulated C-peptide were 0.989, 0.395, 0.325 and 0.408 respectively for groups I to IV); (2) the Insulin sensitivity indices of HOMA IR and HOMA B also did not show any significant differences (P values for HOMA IR were 0.368, 0.223, 0.918 and 0.895 respectively and P values for HOMA B were 0.183, 0.664, 0.206 and 0.618 respectively for groups I to IV); (3) Group Ishowed a significant reduction in Insulin dose requirement (P < 0.01). Group II patients also achieved a significant reduction in Insulin dosages (P = 0.01). The Group I and Group II patients together constituted the targeted group wherein the feeding arteries to pancreas were used for infusing stem cells. Group III, which was the intravenous group, showed a non-significant reduction in Insulin dose requirement (P = 0.137). Group IV patients which comprised the control arm also showed a significant reduction in Insulin dosages at the end of six months (P < 0.05); and (4) there was a non-significant change in the Hb A1c levels at the end of 6 mo across all groups (P = 0.355, P = 0.351, P = 0.999 and P = 0.408 respectively for groups I to IV).
CONCLUSION Targeted route showed a significant reduction in Insulin requirement at the end of six months of study period whereas the intravenous group failed to show reduction.
Collapse
|
59
|
Kim JW, Vang S, Luo JZ, Newton WC, Luo L. Effects of bone marrow on the microenvironment of the human pancreatic islet: A Protein Profile Approach. Mol Cell Endocrinol 2017; 450:32-42. [PMID: 28428043 DOI: 10.1016/j.mce.2017.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022]
Abstract
Stem cells are a new therapeutic modality that may support the viability and function of human organs and tissue. Our previous studies have revealed that human allogeneic bone marrow (BM) sustains pancreatic β cell function and survival. This paper examines whether BM creates a microenvironment that supports human pancreatic islets in vitro by evaluating 107 proteins in culture media from BM, islet, and islet/bone marrow (IB) with mass spectrometry. Proteins were considered up- or down-regulated if p-values < 0.05 and fold change was greater than 2 fold I VS. IB. In addition, proteins identified that were uniquely found in islets co-cultured with bone marrow, but not in islets or bone marrow. A 95% protein probability was used as a threshold. Twenty three proteins were upregulated, and sixteen proteins were downregulated. The function of each protein is listed based on the protein database, which include structural proteins (9 upregulated, 4 downregulated); anti-protease and anti-endopeptidase enzymes (8 upregulated); cation binding proteins (6 up-regulated). Six proteins were uniquely identified in islet co-cultured with bone marrow. Three are anti-proteases or anti-endopeptidases, and 1 is a structural protein. These findings suggest that BM, by changing culture media proteins, may be one of mechanisms to maintain human islet function and survival.
Collapse
Affiliation(s)
- Joseph W Kim
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA
| | - Souriya Vang
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA
| | - John Zq Luo
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA; Insure Health, Inc, 30 Quaker Lane Suite 35, Warwick, RI 02886, USA
| | - William C Newton
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA
| | - Luguang Luo
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA.
| |
Collapse
|
60
|
Bhansali S, Dutta P, Kumar V, Yadav MK, Jain A, Mudaliar S, Bhansali S, Sharma RR, Jha V, Marwaha N, Khandelwal N, Srinivasan A, Sachdeva N, Hawkins M, Bhansali A. Efficacy of Autologous Bone Marrow-Derived Mesenchymal Stem Cell and Mononuclear Cell Transplantation in Type 2 Diabetes Mellitus: A Randomized, Placebo-Controlled Comparative Study. Stem Cells Dev 2017; 26:471-481. [DOI: 10.1089/scd.2016.0275] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Shobhit Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pinaki Dutta
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vinod Kumar
- Department of Nephrology/Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mukesh Kumar Yadav
- Department of Radiodiagnosis, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Jain
- Department of Transfusion Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunder Mudaliar
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Shipra Bhansali
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ratti Ram Sharma
- Department of Transfusion Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivekanand Jha
- Department of Nephrology/Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Marwaha
- Department of Transfusion Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Niranjan Khandelwal
- Department of Radiodiagnosis, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anand Srinivasan
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Meredith Hawkins
- Division of Endocrinology and Diabetes Research and Training Center, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Anil Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
61
|
Berman M, Lander E. A Prospective Safety Study of Autologous Adipose-Derived Stromal Vascular Fraction Using a Specialized Surgical Processing System. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/0748806817691152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Autologous adipose-derived stromal vascular fraction (SVF) has been proposed as a remedy for a number of inflammatory, autoimmune, and degenerative conditions. This procedure had mainly been evaluated in veterinary medicine and outside the United States when this study was initiated. This study looks at adverse events to evaluate safety as its primary objective and secondarily follows efficacy of SVF as deployed through intra-articular injections and intravenous infusions for a variety of orthopedic and non-orthopedic conditions. We hypothesized that autologous SVF deployment using a specialized surgical processing system (the CSN Time Machine® system, trademark name for the MediKhan Lipokit/Maxstem system; MediKhan, Los Angeles, California) was safe (ie, minimally acceptable adverse events) and that clinical efficacy could be demonstrated. This was a prospective case series. After institutional review board approval, 1698 SVF deployment procedures were performed between 2011 and 2016 by us and other affiliates with our same system trained by us as a nearly closed sterile surgical lipotransfer procedure on 1524 patients with various degenerative, inflammatory, and autoimmune conditions with a majority involving the musculoskeletal system. All outcome test data were collected in an online database over a 5-year period. Our study shows a very low number of reported adverse events and a reduction in pain ratings after 6 months or more across a variety of musculoskeletal diseases and improvements in a variety of other degenerative conditions. Our system for producing adipose-derived SVF therapy for our patients was safe and benefits could be measured for a long time after SVF deployment. Further controlled long-term studies for specific disease conditions with large patient populations are necessary to further investigate the benefits observed.
Collapse
Affiliation(s)
- Mark Berman
- University of Southern California, Los Angeles, CA, USA
- Cell Surgical Network Corporation, Palm Desert, CA, USA
| | - Elliot Lander
- Cell Surgical Network Corporation, Palm Desert, CA, USA
| |
Collapse
|
62
|
Zang L, Hao H, Liu J, Li Y, Han W, Mu Y. Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetol Metab Syndr 2017; 9:36. [PMID: 28515792 PMCID: PMC5433043 DOI: 10.1186/s13098-017-0233-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), which is characterized by the combination of relative insulin deficiency and insulin resistance, cannot be reversed with existing therapeutic strategies. Transplantation of insulin-producing cells (IPCs) was once thought to be the most promising strategy for treating diabetes, but the pace from the laboratory to clinical application has been obstructed due to its drawbacks. Mesenchymal stem cells (MSCs) harbor differentiation potential, immunosuppressive properties, and anti-inflammatory effects, and they are considered an ideal candidate cell type for treatment of DM. MSC-related research has demonstrated exciting therapeutic effects in glycemic control both in vivo and in vitro, and these results now have been translated into clinical practice. However, some critical potential problems have emerged from current clinical trials. Multi-center, large-scale, double-blind, and placebo-controlled studies with strict supervision are required before MSC transplantation can become a routine therapeutic approach for T2DM. We briefly review the molecular mechanism of MSC treatment for T2DM as well as the merits and drawbacks identified in current clinical trials.
Collapse
Affiliation(s)
- Li Zang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Haojie Hao
- Department of Molecular Biology, Institute of Basic Medicine, College of Life Science, Chinese PLA General Hospital, Beijing, 100853 China
| | - Jiejie Liu
- Department of Molecular Biology, Institute of Basic Medicine, College of Life Science, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yijun Li
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, College of Life Science, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
63
|
Bhansali S, Dutta P, Yadav MK, Jain A, Mudaliar S, Hawkins M, Kurpad AV, Pahwa D, Yadav AK, Sharma RR, Jha V, Marwaha N, Bhansali S, Bhansali A. Autologous bone marrow-derived mononuclear cells transplantation in type 2 diabetes mellitus: effect on β-cell function and insulin sensitivity. Diabetol Metab Syndr 2017; 9:50. [PMID: 28690682 PMCID: PMC5496640 DOI: 10.1186/s13098-017-0248-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/27/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Insulin resistance and insulin deficiency are the cardinal defects in the pathogenesis of type 2 diabetes mellitus (T2DM). Despite the plethora of anti-diabetic medications, drugs specifically targeting the β-cells are still desired. Stem cell therapy has emerged as a novel therapeutics strategy to target β-cells; however, their mechanism of action has not been well defined. This study aims to examine the efficacy and safety of autologous bone marrow-derived mononuclear cells (ABM-MNCs) transplantation in T2DM, and explores the mechanistic insights into stem cells action through metabolic studies. METHODS Seven T2DM patients with the duration of disease ≥5 years, receiving triple oral anti-diabetic drugs along with insulin (≥0.4 IU per kg per day) and HbA1c ≤ 7.5% (≤58.0 mmol/mol) were enrolled for ABM-MNCs administration through a targeted approach. The primary end-point was a reduction in insulin requirement by ≥50% from baseline, while maintaining HbA1c < 7.0% (<53.0 mmol/mol) with improvement in insulin secretion, and/or insulin sensitivity after ABM-MNCs transplantation. RESULTS Six out of 7 (90%) patients achieved the primary end-point. At 6 months, there was a significant reduction in insulin requirement by 51% as compared to baseline (p < 0.003). This was accompanied by a significant increase in the 2nd phase C-peptide response during hyperglycemic clamp (p = 0.018), whereas there were no significant alterations in insulin sensitivity and glucose disposal rate during hyperinsulinemic-euglycemic clamp relative to the baseline. Other measures of β-cell indices like HOMA-β, and stimulated C-peptide response to glucagon and mixed meal tolerance test were non-contributory. CONCLUSION ABM-MNCs transplantation results in significant reduction in insulin doses and improvement in C-peptide response in patients with T2DM. Metabolic studies may be more useful than conventional indices to predict β-cell function in patients with advanced duration of T2DM. Trial registration-Clinicaltrials.gov NCT01759823.
Collapse
Affiliation(s)
- Shobhit Bhansali
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Sector-12, Chandigarh, 160012 India
| | - Pinaki Dutta
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Sector-12, Chandigarh, 160012 India
| | - Mukesh Kumar Yadav
- Department of Radiodiagnosis, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Jain
- Department of Transfusion Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunder Mudaliar
- Department of Medicine, University of California, San Diego, La Jolla, CA USA
| | - Meredith Hawkins
- Diabetes Research and Training Center and Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY USA
| | - Anura V. Kurpad
- Department of Physiology, St. John’s Medical College, Bangalore, India
| | - Deepak Pahwa
- Department of Transfusion Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashok Kumar Yadav
- Department of Nephrology/Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ratti Ram Sharma
- Department of Transfusion Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivekanand Jha
- Department of Nephrology/Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Marwaha
- Department of Transfusion Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shipra Bhansali
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Sector-12, Chandigarh, 160012 India
| |
Collapse
|
64
|
Wehbe T, Chahine NA, Sissi S, Abou-Joaude I, Chalhoub L. Bone marrow derived stem cell therapy for type 2 diabetes mellitus. Stem Cell Investig 2016; 3:87. [PMID: 28066789 DOI: 10.21037/sci.2016.11.14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/21/2016] [Indexed: 12/19/2022]
Abstract
In this study, 6 patients with type 2 diabetes (T2D) underwent autologous bone marrow mononuclear stem cell (BM-MNSC) infusion into the celiac and superior mesenteric arteries without pretreatment with any myeloablative or immune-suppressive therapy. Five of 6 (83%) showed normalization of their fasting glucose and the glycosylated hemoglobin (HbA1C) with significant reduction of their medication requirements. The HbA1C dropped on average 2.2 points. The three patients with diabetic complications showed improvement or stabilization and most patients reported improved energy and stamina. The durations of response varied between 6 months and 2 years. No patients had any significant adverse effects.
Collapse
Affiliation(s)
- Tarek Wehbe
- Hematology Department, the Lebanese Canadian and Notre Dame University Hospitals, Beirut, Lebanon
| | - Nassim Abi Chahine
- Neurosurgery Department, the Lebanese Canadian Hospital, Beirut, Lebanon
| | - Salam Sissi
- Endocrinology Department, Al-Saydet Hospital, Zgharta, Lebanon
| | - Isabelle Abou-Joaude
- Endocrinology Department, The Middle East and Notre Dame University Hospitals, Beirut, Lebanon
| | - Louis Chalhoub
- Endocrinology Department, the Lebanese Canadian Hospital, Beirut, Lebanon
| |
Collapse
|
65
|
Heilmeier U, Cheng K, Pasco C, Parrish R, Nirody J, Patsch JM, Zhang CA, Joseph GB, Burghardt AJ, Schwartz AV, Link TM, Kazakia G. Cortical bone laminar analysis reveals increased midcortical and periosteal porosity in type 2 diabetic postmenopausal women with history of fragility fractures compared to fracture-free diabetics. Osteoporos Int 2016; 27:2791-2802. [PMID: 27154435 PMCID: PMC6687459 DOI: 10.1007/s00198-016-3614-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/20/2016] [Indexed: 02/08/2023]
Abstract
UNLABELLED We investigated the characteristics and spatial distribution of cortical bone pores in postmenopausal women with type 2 diabetes (T2D). High porosity in the midcortical and periosteal layers in T2D subjects with fragility fractures suggests that these cortical zones might be particularly susceptible to T2D-induced toxicity and may reflect cortical microangiopathy. INTRODUCTION Elevated cortical porosity is regarded as one of the main contributors to the high skeletal fragility in T2D. However, to date, it remains unclear if diabetic cortical porosity results from vascular cortical changes or from an expansion in bone marrow space. Here, we used a novel cortical laminar analysis technique to investigate the characteristics and spatial radial distribution of cortical pores in a T2D group with prior history of fragility fractures (DMFx, assigned high-risk group) and a fracture-free T2D group (DM, assigned low-risk group) and to compare their results to non-diabetic controls with (Fx) and without fragility fractures (Co). METHODS Eighty postmenopausal women (n = 20/group) underwent high-resolution peripheral quantitative computed tomography (HR-pQCT) of the distal tibia and radius. Cortical bone was divided into three layers of equal width including an endosteal, midcortical, and periosteal layer. Within each layer, total pore area (TPA), total pore number (TPN), and average pore area (APA) were calculated. Statistical analysis employed Mann-Whitney tests and ANOVA with post hoc tests. RESULTS Compared to the DM group, DMFx subjects exhibited +90 to +365 % elevated global porosity (p = 0.001). Cortical laminar analysis revealed that this increased porosity was for both skeletal sites confined to the midcortical layer, followed by the periosteal layer (midcortical +1327 % TPA, p ≤ 0.001, periosteal +634 % TPA, p = 0.002), and was associated in both layers and skeletal sites with high TPN (+430 % TPN, p < 0.001) and high APA (+71.5 % APA, p < 0.001). CONCLUSION High porosity in the midcortical and periosteal layers in the high-risk T2D group suggests that these cortical zones might be particularly susceptible to T2D-induced toxicity and may reflect cortical microangiopathy.
Collapse
Affiliation(s)
- U Heilmeier
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA.
| | - K Cheng
- Department of Bioengineering, University of California Berkeley, 306 Stanley Hall, Berkeley, CA, 94720, USA
| | - C Pasco
- Department of Bioengineering, University of California Berkeley, 306 Stanley Hall, Berkeley, CA, 94720, USA
| | - R Parrish
- Department of Bioengineering, University of California Berkeley, 306 Stanley Hall, Berkeley, CA, 94720, USA
| | - J Nirody
- Biophysics Graduate Group, University of California Berkeley, 574 Stanley Hall, MC 3220, Berkeley, CA, 94720, USA
| | - J M Patsch
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - C A Zhang
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| | - G B Joseph
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA
| | - A J Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA
| | - A V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| | - T M Link
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA
| | - G Kazakia
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA
| |
Collapse
|
66
|
Dong X, Zhang T, Liu Q, Zhu J, Zhao J, Li J, Sun B, Ding G, Hu X, Yang Z, Zhang Y, Li L. Beneficial effects of urine-derived stem cells on fibrosis and apoptosis of myocardial, glomerular and bladder cells. Mol Cell Endocrinol 2016; 427:21-32. [PMID: 26952874 DOI: 10.1016/j.mce.2016.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 12/19/2022]
Abstract
Urine-derived stem cells (USCs) are isolated from voided urine and display high proliferative activity and multiple differentiation potentials. The applicability of USCs in the treatment of bladder dysfunction and in cell-based urological tissue engineering has been demonstrated. Whether they could serve as a potential stem cell source for the treatment of diabetes mellitus (DM) and its complications has not been investigated. Here, we report the repairing and protective effects of USCs on pancreatic islets, the myocardium, the renal glomerulus and the bladder detrusor in diabetic rat models. Type 2 diabetic rat models were induced by means of a high fat diet and intraperitoneal injection with streptozotocin. USCs isolated from voided urine were administered via tail veins. The functional changes of pancreatic islets, left ventricle, glomerulus and bladder micturition were assessed by means of insulin tolerance tests, echocardiography, urine biochemical indexes and cystometry. The histologic changes were evaluated by hematoxylin and eosin staining, Masson's trichrome staining and TUNEL staining. Treatment with USCs significantly alleviated the histological destruction and functional decline. Although the USC treatment did not decrease fasting blood glucose to a significantly different level, the fibrosis and apoptosis of the myocardium, glomerulus and detrusor were significantly inhibited. This study indicates that administration of USCs may be useful for the treatment of the complications of DM.
Collapse
Affiliation(s)
- Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Teng Zhang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jia Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Guolin Ding
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyan Hu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhenxing Yang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yuanyuan Zhang
- Wake Forest Institute of Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
67
|
Abstract
In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.
Collapse
Affiliation(s)
- Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Viet Nam National University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
68
|
El-Badawy A, El-Badri N. Clinical Efficacy of Stem Cell Therapy for Diabetes Mellitus: A Meta-Analysis. PLoS One 2016; 11:e0151938. [PMID: 27073927 PMCID: PMC4830527 DOI: 10.1371/journal.pone.0151938] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stem cell therapy is a promising therapeutic modality for advanced diabetes mellitus (DM). This study presents a meta-analysis of relevant clinical trials to determine the efficacy of stem cell therapy in DM. We aim to critically evaluate and synthesize clinical evidence on the safety and efficiency of different types of stem cell therapy for both T1DM and T2DM. METHODS AND FINDINGS We pooled participant-level data from twenty-two eligible clinical trials that satisfied our inclusion criteria, with a total of 524 patients. There were significant differences in the outcome based on the type and source of the infused cells. Out of all T1DM patients who received CD34+ hematopoietic stem cell (HSC) infusion, 58.9% became insulin independent for a mean period of 16 months, whereas the results were uniformly negative in patients who received umbilical cord blood (UCB). Infusion of umbilical cord mesenchymal stem cells (UC-MSCs) provided significantly beneficial outcome in T1DM, when compared to bone-marrow mesenchymal stem cells (BM-MSCs) (P<0.0001 and P = 0.1557). Administration of stem cell therapy early after DM diagnosis was more effective than intervention at later stages (relative risk = 2.0, P = 0.0008). Adverse effects were observed in only 21.72% of both T1DM and T2DM stem cell recipients with no reported mortality. Out of all poor responders, 79.5% were diagnosed with diabetic ketoacidosis. CONCLUSIONS Stem cell transplantation can represent a safe and effective treatment for selected patients with DM. In this cohort of trials, the best therapeutic outcome was achieved with CD34+ HSC therapy for T1DM, while the poorest outcome was observed with HUCB for T1DM. Diabetic ketoacidosis impedes therapeutic efficacy.
Collapse
Affiliation(s)
- Ahmed El-Badawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6 of October City, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6 of October City, Egypt
- * E-mail:
| |
Collapse
|
69
|
Bhansali S, Kumar V, Saikia UN, Medhi B, Jha V, Bhansali A, Dutta P. Authors' response. Indian J Med Res 2016; 143:112-3. [PMID: 26997025 PMCID: PMC4822353 DOI: 10.4103/0971-5916.178621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | | | | | | | - Anil Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh 160 012, India
| | | |
Collapse
|
70
|
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Mumbai 400 012, Maharashtra, India
| |
Collapse
|
71
|
Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced β-cell injury through modulation of autophagy. Cell Death Dis 2015; 6:e1885. [PMID: 26379190 PMCID: PMC4650435 DOI: 10.1038/cddis.2015.230] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/07/2015] [Accepted: 06/18/2015] [Indexed: 12/13/2022]
Abstract
Chronic hyperglycemia causes a progressive decrease of β-cell function and mass in type 2 diabetic patients. Growing evidence suggests that augment of autophagy may be an effective approach to protect β cells against various extra-/intracellular stimuli. In this study, we thus investigated whether bone marrow-derived mesenchymal stem cells (BM-MSCs) could ameliorate chronic high glucose (HG)-induced β-cell injury through modulation of autophagy. Prolonged exposure to HG decreased cell viability, increased cell apoptosis and impaired basal insulin secretion and glucose-stimulated insulin secretion of INS-1 cells, but BM-MSC treatment significantly alleviated these glucotoxic alternations. In addition, western blotting displayed upregulated expression of Beclin1 and LC3-II in INS-1 cells co-cultured with BM-MSCs. Results from immunofluorescence staining and transmission electronic microscope analysis also revealed that BM-MSCs promoted autophagosomes and autolysosomes formation in HG-treated INS-1 cells. However, it should be noted that inhibition of autophagy significantly diminished the protective effects of BM-MSCs on HG-treated INS-1 cells, suggesting that the improvement of β-cell function and survival induced by BM-MSCs was mediated through autophagy. Furthermore, our results showed that BM-MSCs improved mitochondrial function and reduced reactive oxygen species production in HG-treated INS-1 cells, largely owing to autophagic clearance of impaired mitochondria. In vivo study was performed in rats with type 2 diabetes (T2D). BM-MSC infusion not only ameliorated hyperglycemia, but also promoted restoration of pancreatic β cells in T2D rats. Meanwhile, BM-MSC infusion upregulated LAMP2 expression and enhanced formation of autophagosomes and autolysosomes, combined with reduced β-cell apoptosis and increased number of insulin granules. These findings together indicated that BM-MSCs could protect β cells against chronic HG-induced injury through modulation of autophagy in vitro and in vivo. This study unveiled novel evidence of BM-MSCs as an ideal strategy to enhance autophagy for treatment of T2D mellitus.
Collapse
|
72
|
Van Thi Do H, Loke WT, Kee I, Liang V, David SJ, Gan SU, Lee SS, Ng WH, Koong HN, Ong HS, Lee KO, Calne RY, Kon OL. Characterization of Insulin-Secreting Porcine Bone Marrow Stromal Cells Ex Vivo and Autologous Cell Therapy in Vivo. Cell Transplant 2015; 24:1205-20. [DOI: 10.3727/096368914x679363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell therapy could potentially meet the need for pancreas and islet transplantations in diabetes mellitus that far exceeds the number of available donors. Bone marrow stromal cells are widely used in clinical trials mainly for their immunomodulatory effects with a record of safety. However, less focus has been paid to developing these cells for insulin secretion by transfection. Although murine models of diabetes have been extensively used in gene and cell therapy research, few studies have shown efficacy in large preclinical animal models. Here we report optimized conditions for ex vivo expansion and characterization of porcine bone marrow stromal cells and their permissive expression of a transfected insulin gene. Our data show that these cells resemble human bone marrow stromal cells in surface antigen expression, are homogeneous, and can be reproducibly isolated from outbred Yorkshire–Landrace pigs. Porcine bone marrow stromal cells were efficiently expanded in vitro to >1010 cells from 20 ml of bone marrow and remained karyotypically normal during expansion. These cells were electroporated with an insulin expression plasmid vector with high efficiency and viability, and secreted human insulin and C-peptide indicating appropriate processing of proinsulin. We showed that autologous insulin-secreting bone marrow stromal cells implanted and engrafted in the liver of a streptozotocin-diabetic pig that modeled type 1 diabetes resulted in partial, but significant, improvement in hyperglycemia that could not be ascribed to regeneration of endogenous β-cells. Glucose-stimulated insulin secretion in vivo from implanted cells in the treated pig was documented by a rise in serum human C-peptide levels during intravenous glucose tolerance tests. Compared to a sham-treated control pig, this resulted in significantly reduced fasting hyperglycemia, a slower rise in serum fructosamine, and prevented weight loss. Taken together, this study suggests that bone marrow stromal cells merit further development as autologous cell therapy for diabetes.
Collapse
Affiliation(s)
- Hai Van Thi Do
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Republic of Singapore
| | - Wan Ting Loke
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Republic of Singapore
| | - Irene Kee
- SingHealth Experimental Medicine Centre, The Academia, Singapore, Republic of Singapore
| | - Vivienne Liang
- SingHealth Experimental Medicine Centre, The Academia, Singapore, Republic of Singapore
| | - Sebastian J. David
- SingHealth Experimental Medicine Centre, The Academia, Singapore, Republic of Singapore
| | - Shu Uin Gan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Sze Sing Lee
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Republic of Singapore
| | - Wai Har Ng
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Republic of Singapore
| | - Heng Nung Koong
- Department of Surgical Oncology, National Cancer Centre, Singapore, Republic of Singapore
| | - Hock Soo Ong
- Department of General Surgery, Singapore General Hospital, Singapore, Republic of Singapore
| | - Kok Onn Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Roy Y. Calne
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Oi Lian Kon
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
73
|
Wang ZX, Cao JX, Li D, Zhang XY, Liu JL, Li JL, Wang M, Liu Y, Xu BL, Wang HB. Clinical efficacy of autologous stem cell transplantation for the treatment of patients with type 2 diabetes mellitus: a meta-analysis. Cytotherapy 2015; 17:956-68. [PMID: 25824289 DOI: 10.1016/j.jcyt.2015.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/29/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS In this study, we investigate whether bone marrow mononuclear cells (BM-MNC) or peripheral blood mononuclear cells (PB-MNC) have therapeutic efficacy in type 2 diabetes (T2D). METHODS Search terms included stem cell, bone marrow cell, peripheral blood cell, umbilical cord blood and T2D in MEDLINE, the Cochrane Controlled Trials Register, EMBASE, the Wanfang Database, the China Science and Technology Periodical Database and China Journal Net. RESULTS Fifteen trials met our inclusion criteria (n = 497). One group included 266 cases with BM-MNC therapy and the other group contained 231 cases with PB-MNC treatment. Glycosylated hemoglobin was decreased after BM-MNC or PB-MNC therapy compared with that before (12 months: P < 0.001; 6 months: P < 0.001; 3 months: P < 0.05). Fasting plasma glucose was reduced in BM-MNC therapy group compared with control after 12-month follow-up (P < 0.001) and after BM-MNC therapy compared with that before (9 months: P < 0.001) but was not obvious in other stages. Meanwhile, the analysis showed that C-peptide level increased after BM-MNC and PB-MNC therapy compared with the control therapy (12 months: P < 0.001) and with that before therapy (6 months: P < 0.05). Insulin requirement reduction was also observed in patients receiving BM-MNC therapy (3, 6, 9 and 12 months: P < 0.05). CONCLUSIONS To a certain extent, BM-MNC or PB-MNC therapy for T2D demonstrated superiority of glycemic control, increased insulin biosynthesis and elevated insulin secretion from existing β-cells and might prevent islet cell loss.
Collapse
Affiliation(s)
- Zheng-Xu Wang
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China.
| | - Jun-Xia Cao
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Duo Li
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Xiao-Yan Zhang
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Jin-Long Liu
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Jun-Li Li
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Min Wang
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Yishan Liu
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Bei-Lei Xu
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Hai-Bo Wang
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| |
Collapse
|
74
|
Wu Z, Luo F, Wu Z, Tao X, Zou X, Tan J. Preoperative exercise facilitates abundant bone marrow collection in patients with type 2 diabetes for mononuclear cell therapy. Cytotherapy 2015; 17:454-7. [PMID: 25559146 DOI: 10.1016/j.jcyt.2014.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/16/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND AIMS Traditional bone marrow (BM) collection is inadequate for separation of abundant mononuclear cells (MNCs). We aimed to investigate the effects of preoperative exercise on BM collection in patients with type 2 diabetes mellitus (T2DM). METHODS Sixty patients with T2DM were randomly assigned to either a control group or an exercise group (n = 30 each). The patients in the exercise group exercised before the collection. All patients underwent routine surgical care. The collected BM volume, operation duration, collecting speed, puncture times and pain scores were recorded. BM samples were tested before and after MNCs separation for CD34+ flow cytometry and whole blood cell count. RESULTS The collected BM volumes were significantly larger and collection speed was faster in the exercise group (379.77 ± 4.93 mL and 1.40 ± 0.14 mL/s) than those in the control group (356.67 ± 15.36 mL and 0.89 ± 0.16 mL/s, P = 0.00 for both). Puncture times were significantly less and pain scores were lower in the exercise group (2.07 ± 0.25 and 2.67 ± 1.56) than those in the control group (2.50 ± 0.63 and 3.43 ± 1.76, P = 0.00 and 0.02, respectively). CD34+ cells and whole blood cell count variables were comparable in the 2 groups. CONCLUSIONS Preoperative exercise facilitates BM collection by increasing collected volume, improving collecting speed, relieving patients' pains and ensuring MNC quality.
Collapse
Affiliation(s)
- Zhixian Wu
- Organ Transplant Institute, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, Fuzhou, People's Republic of China
| | - Fang Luo
- Organ Transplant Institute, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, Fuzhou, People's Republic of China
| | - Zhifen Wu
- Obstetrics and Gynecology Department, Quanzhou First Hospital, Quanzhou, People's Republic of China
| | - Xiaoqin Tao
- Organ Transplant Institute, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, Fuzhou, People's Republic of China
| | - Xuelian Zou
- Organ Transplant Institute, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, Fuzhou, People's Republic of China
| | - Jianming Tan
- Organ Transplant Institute, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, Fuzhou, People's Republic of China.
| |
Collapse
|
75
|
Very small embryonic-like stem cells are involved in regeneration of mouse pancreas post-pancreatectomy. Stem Cell Res Ther 2014; 5:106. [PMID: 25182166 PMCID: PMC4355147 DOI: 10.1186/scrt494] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction Despite numerous research efforts, mechanisms underlying regeneration of pancreas remains controversial. Views are divided whether stem cells are involved during pancreatic regeneration or it involves duplication of pre-existing islets or ductal cells or whether pancreatic islet numbers are fixed by birth or they renew throughout life. Pluripotent embryonic stem (ES) and induced pluripotent stem (iPS) cells have been used by several groups to regenerate diabetic mouse pancreas but the beneficial effects are short-lived. It has been suggested that cells obtained after directed differentiation of ES/iPS cells resemble fetal and not their adult counterparts; thus are functionally different and may be of little use to regenerate adult pancreas. A novel population of pluripotent very small embryonic-like stem cells (VSELs) exists in several adult body tissues in both mice and humans. VSELs have been reported in the mouse pancreas, and nuclear octamer-binding transcription factor 4 (OCT-4) positive, small-sized cells have also been detected in human pancreas. VSELs are mobilized into peripheral blood in streptozotocin treated diabetic mice and also in patients with pancreatic cancer. This study aimed to evaluate whether VSELs are involved during regeneration of adult mouse pancreas after partial pancreatectomy. Methods Mice were subjected to partial pancreatectomy wherein almost 70% of pancreas was surgically removed and residual pancreas was studied on Days 1, 3 and 5 post-surgery. Results VSELs were detected in Hematoxylin and Eosin stained smears of pancreatic tissue as spherical, small sized cells with a large nucleus surrounded by a thin rim of cytoplasm and could be sorted as LIN-/CD45-/SCA-1+ cells by flow cytometry. Results reveal that although neutrophils with multi-lobed nuclei are mobilized into the pancreas on day 1 after pancreatectomy, by day 5 VSELs with spherical nuclei, high nucleo-cytoplasmic ratio and nuclear OCT-4 are mobilized into the residual pancreas. VSELs undergo differentiation and give rise to PDX-1 and OCT-4 positive progenitors which possibly regenerate both acinar cells and islets. Conclusions Results provide direct evidence supporting the presence of VSELs in adult mouse pancreas and their role during regeneration. VSELs are an interesting alternative to ES/iPS cells to regenerate a diabetic pancreas in future.
Collapse
|
76
|
Ikehara S, Li M. Stem cell transplantation improves aging-related diseases. Front Cell Dev Biol 2014; 2:16. [PMID: 25364723 PMCID: PMC4206983 DOI: 10.3389/fcell.2014.00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/14/2014] [Indexed: 01/20/2023] Open
Abstract
Aging is a complex process of damage accumulation, and has been viewed as experimentally and medically intractable. The number of patients with age-associated diseases such as type 2 diabetes mellitus (T2DM), osteoporosis, Alzheimer's disease (AD), Parkinson's disease, atherosclerosis, and cancer has increased recently. Aging-related diseases are related to a deficiency of the immune system, which results from an aged thymus and bone marrow cells. Intra bone marrow-bone marrow transplantation (IBM-BMT) is a useful method to treat intractable diseases. This review summarizes findings that IBM-BMT can improve and treat aging-related diseases, including T2DM, osteoporosis and AD, in animal models.
Collapse
Affiliation(s)
- Susumu Ikehara
- Department of Stem Cell Disorders, Kansai Medical University Hirakata, Osaka, Japan
| | - Ming Li
- Department of Stem Cell Disorders, Kansai Medical University Hirakata, Osaka, Japan
| |
Collapse
|