51
|
Ciebiera M, Esfandyari S, Siblini H, Prince L, Elkafas H, Wojtyła C, Al-Hendy A, Ali M. Nutrition in Gynecological Diseases: Current Perspectives. Nutrients 2021; 13:1178. [PMID: 33918317 PMCID: PMC8065992 DOI: 10.3390/nu13041178] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Diet and nutrition are fundamental in maintaining the general health of populations, including women's health. Health status can be affected by nutrient deficiency and vice versa. Gene-nutrient interactions are important contributors to health management and disease prevention. Nutrition can alter gene expression, as well as the susceptibility to diseases, including cancer, through several mechanisms. Gynecological diseases in general are diseases involving the female reproductive system and include benign and malignant tumors, infections, and endocrine diseases. Benign diseases such as uterine fibroids and endometriosis are common, with a negative impact on women's quality of life, while malignant tumors are among the most common cause of death in the recent years. In this comprehensive review article, a bibliographic search was performed for retrieving information about nutrients and how their deficiencies can be associated with gynecological diseases, namely polycystic ovary syndrome, infertility, uterine fibroids, endometriosis, dysmenorrhea, and infections, as well as cervical, endometrial, and ovarian cancers. Moreover, we discussed the potential beneficial impact of promising natural compounds and dietary supplements on alleviating these significant diseases.
Collapse
Affiliation(s)
- Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
| | - Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.)
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.S.); (A.A.-H.)
| | - Lillian Prince
- Biological Sciences Division, Public Health Sciences, University of Chicago, Chicago, IL 60637, USA;
| | - Hoda Elkafas
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.)
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA), Cairo 15301, Egypt
| | - Cezary Wojtyła
- International Prevention Research Institute-Collaborating Centre, Calisia University, 62-800 Kalisz, Poland;
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.S.); (A.A.-H.)
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
52
|
Li X, He X, Chen S, Le Y, Bryant MS, Guo L, Witt KL, Mei N. The genotoxicity potential of luteolin is enhanced by CYP1A1 and CYP1A2 in human lymphoblastoid TK6 cells. Toxicol Lett 2021; 344:58-68. [PMID: 33727136 DOI: 10.1016/j.toxlet.2021.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Luteolin (5,7,3',4'-tetrahydroxyflavone) belongs to the flavone subclass of flavonoids. Luteolin and its glycosides are present in many botanical families, including edible plants, fruits, and vegetables. While the beneficial properties of luteolin have been widely studied, fewer studies have investigated its toxicity. In the present study, using human lymphoblastoid TK6 cells and our newly developed TK6-derived cell lines that each stably express a single human cytochrome P450 (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C18, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7), we systematically evaluated luteolin-induced cytotoxicity and genotoxicity, and the role of specific CYPs in the bioactivation of luteolin. Treatments with luteolin for 4-24 h induced cytotoxicity, apoptosis, DNA damage, and chromosome damage in a concentration-dependent manner. Subsequently, we observed that luteolin-induced cytotoxicity and genotoxicity, measured by the high-throughput micronucleus assay, were significantly increased in TK6 cells transduced with CYP1A1 and 1A2. In addition, key apoptosis and DNA damage biomarkers, including cleaved PARP-1, cleaved caspase-3, and phosphorylated histone 2AX (γH2A.X), were all significantly increased in the CYP1A1- and 1A2-expressing cells compared with the empty vector controls. Analysis by LC-MS/MS revealed that TK6 cells biotransformed the majority of luteolin into diosmetin, a less toxic O-methylated flavone, after 24 h; the presence of CYP1A1 and 1A2 partially reversed this process. Altogether, these results indicate that metabolism by CYP1A1 and 1A2 enhanced the toxicity of luteolin in vitro. Our results further support the utility of our TK6 cell system for identification of the specific CYPs responsible for chemical bioactivation and toxicity potential.
Collapse
Affiliation(s)
- Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Matthew S Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
53
|
Garcia-Oliveira P, Otero P, Pereira AG, Chamorro F, Carpena M, Echave J, Fraga-Corral M, Simal-Gandara J, Prieto MA. Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals (Basel) 2021; 14:ph14020157. [PMID: 33673021 PMCID: PMC7918405 DOI: 10.3390/ph14020157] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, cancer is one of the deadliest diseases in the world, which has been estimated to cause 9.9 million deaths in 2020. Conventional treatments for cancer commonly involve mono-chemotherapy or a combination of radiotherapy and mono-chemotherapy. However, the negative side effects of these approaches have been extensively reported and have prompted the search of new therapeutic drugs. In this context, scientific community started to look for innovative sources of anticancer compounds in natural sources, including traditional plants. Currently, numerous studies have evaluated the anticancer properties of natural compounds derived from plants, both in vitro and in vivo. In pre-clinical stages, some promising compounds could be mentioned, such as the sulforaphane or different phenolic compounds. On the other hand, some phytochemicals obtained positive results in clinical stages and were further approved for cancer treatment, such as vinca alkaloids or the paclitaxel. Nevertheless, these compounds are not exempt of limitations, such as low solubility, restricted effect on their own, negative side-effects, etc. This review aims to compile the information about the current phytochemicals used for cancer treatment and also promising candidates, main action mechanisms and also reported limitations. In this sense, some strategies to face the limitations have been considered, such as nano-based formulations to improve solubility or chemical modification to reduce toxicity. In conclusion, although more research is still necessary to develop more efficient and safe phytochemical drugs, more of these compounds might be used in future cancer therapies.
Collapse
Affiliation(s)
- Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Antia Gonzalez Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Correspondence: (J.S.-G.); (M.A.P.)
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Correspondence: (J.S.-G.); (M.A.P.)
| |
Collapse
|
54
|
Effect of phenolic compounds on the activity of proteolytic enzymes during rennet induced coagulation of milk and ripening of miniature cheese. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
55
|
Ahmed SA, Parama D, Daimari E, Girisa S, Banik K, Harsha C, Dutta U, Kunnumakkara AB. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci 2020; 267:118814. [PMID: 33333052 DOI: 10.1016/j.lfs.2020.118814] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the remarkable advances made in the diagnosis and treatment of cancer during the past couple of decades, it remains the second largest cause of mortality in the world, killing approximately 9.6 million people annually. The major challenges in the treatment of the advanced stage of this disease are the development of chemoresistance, severe adverse effects of the drugs, and high treatment cost. Therefore, the development of drugs that are safe, efficacious, and cost-effective remains a 'Holy Grail' in cancer research. However, the research over the past four decades shed light on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action. Apigenin is one such compound, which is known to be safe and has significant potential in the prevention and therapy of this disease. AIM To assess the literature available on the potential of apigenin and its analogs in modulating the key molecular targets leading to the prevention and treatment of different types of cancer. METHOD A comprehensive literature search has been carried out on PubMed for obtaining information related to the sources and analogs, chemistry and biosynthesis, physicochemical properties, biological activities, bioavailability and toxicity of apigenin. KEY FINDINGS The literature search resulted in many in vitro, in vivo and a few cohort studies that evidenced the effectiveness of apigenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK/ERK, Wnt/β-catenin, etc., which play a crucial role in the development and progression of cancer. In addition, apigenin was also shown to inhibit chemoresistance and radioresistance and make cancer cells sensitive to these agents. Reports have further revealed the safety of the compound and the adaptation of nanotechnological approaches for improving its bioavailability. SIGNIFICANCE Hence, the present review recapitulates the properties of apigenin and its pharmacological activities against different types of cancer, which warrant further investigation in clinical settings.
Collapse
Affiliation(s)
- Semim Akhtar Ahmed
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Enush Daimari
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
56
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Nano-soldiers Ameliorate Silibinin Delivery: A Review Study. Curr Drug Deliv 2020; 17:15-22. [PMID: 31721702 DOI: 10.2174/1567201816666191112113031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022]
Abstract
Flavonoids are a large group of naturally occurring compounds, which are of interest due to their great pharmacological effects and health-promoting impacts. These properties have led to their extensive application in a variety of pathological conditions, particularly cancer. Flavonoids are used in large quantities in a human's daily diet and a high amount of flavonoids are found in the intestine after oral usage. However, flavonoid concentrations in tissue/plasma are low because of their low bioavailability, the leading to the low efficacy of flavonoids in different clinical disorders. For this reason, nanotechnology application for delivering flavonoids to tumor sites has recently received significant attention. Silibinin is a key member of flavonoids and a bioactive component of silymarin, which is widely isolated from Silybum marianum. This plant-derived chemical has a number of valuable biological and therapeutic activities such as antioxidant, anti-inflammatory, neuroprotective, anti-tumor, hepatoprotective, cardioprotective and anti-diabetic. These beneficial effects have been demonstrated in in vivo and in vitro experiments. However, it seems that silibinin has a variety of limitations and poor bioavailability is the most important factor restricting its wide application. Hence, there have been attempts to improve the bioavailability of silibinin and it has been suggested that nano-soldiers are potential candidates for this aim. In the present review, we describe the different drug delivery systems for improving the bioavailability of silibinin.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Veterinary Medicine Faculty, Tabriz University, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
57
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Autophagy regulation using luteolin: new insight into its anti-tumor activity. Cancer Cell Int 2020; 20:537. [PMID: 33292250 PMCID: PMC7641824 DOI: 10.1186/s12935-020-01634-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Application of novel methods in cancer therapy is important in terms of management and treatment of the life-threatening disorder. It appears that autophagy is a potential target in cancer therapy, as a variety of drugs targeting autophagy have shown great potential in reducing the viability and proliferation of cancer cells. Autophagy is primarily a catabolic process which provides energy during starvation. Besides, this process contributes to the degradation of aged or potentially toxic components and organelles. On the other hand, the source of a variety of naturally occurring anti-tumor drugs are flavonoids which have high anti-tumor activity. Luteolin is a polyphenolic flavone with the great pharmacological effects such as anti-diabetic, hepatoprotective, antioxidant, anti-inflammation, and anti-tumor. At the present review, we demonstrate how luteolin affects on autophagy process to induce anti-tumor activity.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, 34956, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), 34956, Tuzla, Istanbul, Turkey
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
58
|
Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management? Antioxidants (Basel) 2020; 9:antiox9100973. [PMID: 33050575 PMCID: PMC7600646 DOI: 10.3390/antiox9100973] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cell signaling mechanism in maintaining redox homeostasis in humans. The role of dietary flavonoids in activating Nrf2/ARE in relation to cancer chemoprevention or cancer promotion is not well established. Here we summarize the dual effects of flavonoids in cancer chemoprevention and cancer promotion with respect to the regulation of the Nrf2/ARE pathway, while underlying the possible cellular mechanisms. Luteolin, apigenin, quercetin, myricetin, rutin, naringenin, epicatechin, and genistein activate the Nrf2/ARE pathway in both normal and cancer cells. The hormetic effect of flavonoids has been observed due to their antioxidant or prooxidant activity, depending on the concentrations. Reported in vitro and in vivo investigations suggest that the activation of the Nrf2/ARE pathway by either endogenous or exogenous stimuli under normal physiological conditions contributes to redox homeostasis, which may provide a mechanism for cancer chemoprevention. However, some flavonoids, such as luteolin, apigenin, myricetin, quercetin, naringenin, epicatechin, genistein, and daidzein, at low concentrations (1.5 to 20 µM) facilitate cancer cell growth and proliferation in vitro. Paradoxically, some flavonoids, including luteolin, apigenin, and chrysin, inhibit the Nrf2/ARE pathway in vitro. Therefore, even though flavonoids play a major role in cancer chemoprevention, due to their possible inducement of cancer cell growth, the effects of dietary flavonoids on cancer pathophysiology in patients or appropriate experimental animal models should be investigated systematically.
Collapse
|
59
|
Flavonoids Restore Platinum Drug Sensitivity to Ovarian Carcinoma Cells in a Phospho-ERK1/2-Dependent Fashion. Int J Mol Sci 2020; 21:ijms21186533. [PMID: 32906729 PMCID: PMC7555577 DOI: 10.3390/ijms21186533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) is the second most common type of gynecological malignancy; it has poor survival rates and is frequently (>75%) diagnosed at an advanced stage. Platinum-based chemotherapy, with, e.g., carboplatin, is the standard of care for OC, but toxicity and acquired resistance to therapy have proven challenging. Despite advances in OC diagnosis and treatment, approximately 85% of patients will experience relapse, mainly due to chemoresistance. The latter is attributed to alterations in the cancer cells and is also mediated by tumor microenvironment (TME). Recently, we reported the synthesis of a platinum (IV) prodrug that exhibits equal potency toward platinum-sensitive and resistant OC cell lines. Here, we investigated the effect of TME on platinum sensitivity. Co-culture of OC cells with murine or human mesenchymal stem cells (MS-5 and HS-5, respectively) rendered them resistant to chemotherapeutic agents, including platinum, paclitaxel and colchicine. Platinum resistance was also conferred by co-culture with differentiated murine adipocyte progenitor cells. Exposure of OC cells to chemotherapeutic agents resulted in activation of phospho-ERK1/2. Co-culture with MS-5, which conferred drug resistance, was accompanied by blockage of phospho-ERK1/2 activation. The flavonoids fisetin and quercetin were active in restoring ERK phosphorylation, as well as sensitivity to platinum compounds. Exposure of OC cells to cobimetinib-a MEK1 inhibitor that also inhibits extracellular signal-regulated kinase (ERK) phosphorylation-which resulted in reduced sensitivity to the platinum compound. This suggests that ERK activity is involved in mediating the function of flavonoids in restoring platinum sensitivity to OC co-cultured with cellular components of the TME. Our data show the potential of combining flavonoids with standard therapy to restore drug sensitivity to OC cells and overcome TME-mediated platinum drug resistance.
Collapse
|
60
|
Rajendran P, Maheshwari U, Muthukrishnan A, Muthuswamy R, Anand K, Ravindran B, Dhanaraj P, Balamuralikrishnan B, Chang SW, Chung WJ. Myricetin: versatile plant based flavonoid for cancer treatment by inducing cell cycle arrest and ROS-reliant mitochondria-facilitated apoptosis in A549 lung cancer cells and in silico prediction. Mol Cell Biochem 2020; 476:57-68. [PMID: 32851589 DOI: 10.1007/s11010-020-03885-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
Myricetin is categorized under the secondary metabolite flavonoid which includes a diverse range of consumable plant parts, and it has a potential against several classes of cancer including cancers and tumors. In the present study, the anticancer potential of the unique flavonoid-myricetin in A549 lung cancer cells was evaluated. Among different doses of myricetin, 73 μg/ml was more effective to prevent the cancer cell growth. It also promoted sub-G1 phase aggregation of cells and a equivalent decrease in the fraction of cells entering the S and subsequent phase which indicates apoptotic cell death. Myricetin generated enormous free radicals and, altered the potential of mitochondrial membrane in A549 cells as paralleled to untreated cells. In addition, myricetin treatment intensified the expression of P53 and relegated the expression of EGFR in A549 cells. These results suggested that myricetin exhibits cytotoxic potential by arresting the progression of cell cycle and ROS-dependent mitochondria-mediated mortality in cancer A549 lung cancer cells and it would be useful to develop as a drug candidate for lung cancer therapeutics. In silico experiments were carried out against human EGFR and P53 tumor suppressor protein to gain more insights into the binding mode of the myricetin may act as significant potential for anticancer therapy.
Collapse
Affiliation(s)
- Padmini Rajendran
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India.,Department of Biochemistry & Bioinformatics, Dr. MGR Janaki College of Arts and Science, Chennai, TamilNadu, India
| | - Uma Maheshwari
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India
| | - Arun Muthukrishnan
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Razia Muthuswamy
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India.
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa.
| | | | - Premnath Dhanaraj
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Science, Karunya Nagar, Coimbatore, 641114, India
| | | | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, South Korea
| | - Woo Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, South Korea
| |
Collapse
|
61
|
Ferraz da Costa DC, Pereira Rangel L, Quarti J, Santos RA, Silva JL, Fialho E. Bioactive Compounds and Metabolites from Grapes and Red Wine in Breast Cancer Chemoprevention and Therapy. Molecules 2020; 25:E3531. [PMID: 32752302 PMCID: PMC7436232 DOI: 10.3390/molecules25153531] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Phytochemicals and their metabolites are not considered essential nutrients in humans, although an increasing number of well-conducted studies are linking their higher intake with a lower incidence of non-communicable diseases, including cancer. This review summarizes the current findings concerning the molecular mechanisms of bioactive compounds from grapes and red wine and their metabolites on breast cancer-the most commonly occurring cancer in women-chemoprevention and treatment. Flavonoid compounds like flavonols, monomeric catechins, proanthocyanidins, anthocyanins, anthocyanidins and non-flavonoid phenolic compounds, such as resveratrol, as well as their metabolites, are discussed with respect to structure and metabolism/bioavailability. In addition, a broad discussion regarding in vitro, in vivo and clinical trials about the chemoprevention and therapy using these molecules is presented.
Collapse
Affiliation(s)
- Danielly C. Ferraz da Costa
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (D.C.F.d.C.); (R.A.S.)
| | - Luciana Pereira Rangel
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Julia Quarti
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Ronimara A. Santos
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (D.C.F.d.C.); (R.A.S.)
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eliane Fialho
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
62
|
Chen J, Hu X, Shi T, Yin H, Sun D, Hao Y, Xia X, Luo J, Fernie AR, He Z, Chen W. Metabolite-based genome-wide association study enables dissection of the flavonoid decoration pathway of wheat kernels. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1722-1735. [PMID: 31930656 PMCID: PMC7336285 DOI: 10.1111/pbi.13335] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/29/2019] [Indexed: 05/02/2023]
Abstract
The marriage of metabolomic approaches with genetic design has proven a powerful tool in dissecting diversity in the metabolome and has additionally enhanced our understanding of complex traits. That said, such studies have rarely been carried out in wheat. In this study, we detected 805 metabolites from wheat kernels and profiled their relative contents among 182 wheat accessions, conducting a metabolite-based genome-wide association study (mGWAS) utilizing 14 646 previously described polymorphic SNP markers. A total of 1098 mGWAS associations were detected with large effects, within which 26 candidate genes were tentatively designated for 42 loci. Enzymatic assay of two candidates indicated they could catalyse glucosylation and subsequent malonylation of various flavonoids and thereby the major flavonoid decoration pathway of wheat kernel was dissected. Moreover, numerous high-confidence genes associated with metabolite contents have been provided, as well as more subdivided metabolite networks which are yet to be explored within our data. These combined efforts presented the first step towards realizing metabolomics-associated breeding of wheat.
Collapse
Affiliation(s)
- Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Taotao Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Dongfa Sun
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yuanfeng Hao
- National Wheat Improvement CenterInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xianchun Xia
- National Wheat Improvement CenterInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | | | - Zhonghu He
- National Wheat Improvement CenterInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
63
|
Khodavandi A, Alizadeh F, Razis AFA. Association between dietary intake and risk of ovarian cancer: a systematic review and meta-analysis. Eur J Nutr 2020; 60:1707-1736. [PMID: 32661683 DOI: 10.1007/s00394-020-02332-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE It is unclear how dietary intake influences the ovarian cancer. The present paper sets out to systematically review and meta-analyze research on dietary intake to identify cases having high- or low-risk ovarian cancer. METHODS Scopus, PubMed, and Wiley Online Libraries were searched up to the date November 24, 2019. Two reviewers were requested to independently extract study characteristics and to assess the bias and applicability risks with reference to the study inclusion criteria. Meta-analyses were performed to specify the relationship between dietary intake and the risk of ovarian cancer identifying 97 cohort studies. RESULTS No significant association was found between dietary intake and risk of ovarian cancer. The results of subgroup analyses indicated that green leafy vegetables (RR = 0.91, 95%, 0.85-0.98), allium vegetables (RR = 0.79, 95% CI 0.64-0.96), fiber (RR = 0.89, 95% CI 0.81-0.98), flavonoids (RR = 0.83, 95% CI 0.78-0.89) and green tea (RR = 0.61, 95% CI 0.49-0.76) intake could significantly reduce ovarian cancer risk. Total fat (RR = 1.10, 95% CI 1.02-1.18), saturated fat (RR = 1.11, 95% CI 1.01-1.22), saturated fatty acid (RR = 1.19, 95% CI 1.04-1.36), cholesterol (RR = 1.13, 95% CI 1.04-1.22) and retinol (RR = 1.14, 95% CI 1.00-1.30) intake could significantly increase ovarian cancer risk. In addition, acrylamide, nitrate, water disinfectants and polychlorinated biphenyls were significantly associated with an increased risk of ovarian cancer. CONCLUSION These results could support recommendations to green leafy vegetables, allium vegetables, fiber, flavonoids and green tea intake for ovarian cancer prevention.
Collapse
Affiliation(s)
- Alireza Khodavandi
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| | - Fahimeh Alizadeh
- Department of Microbiology, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| | - Ahmad Faizal Abdull Razis
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
64
|
A review on anti-cancer properties of Quercetin in breast cancer. Life Sci 2020; 248:117463. [DOI: 10.1016/j.lfs.2020.117463] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
|
65
|
Münstedt K, Männle H. Bee products and their role in cancer prevention and treatment. Complement Ther Med 2020; 51:102390. [PMID: 32507447 DOI: 10.1016/j.ctim.2020.102390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Apitherapy, a method from the field of complementary and alternative medicine, promises better survival and even cure in cases of cancer. DESIGN 129 books on apitherapy in English, French and German languages were analysed regarding the recommendations concerning cancer. The recommendations were compared to the results from clinical studies in the literature. RESULTS Eighteen books recommend apitherapy for cancer prevention, thirty-nine for complementary cancer treatment and seventeen books considered apitherapy able to cure cancer. Pollen and Propolis were mainly recommended in order to stimulate the immune system and/or to improve cancer nutrition. Interestingly, few books provided specific information and no book provided adequate information in comparison to what is known from clinical studies on bee products. Data on relevant aspects of cancer treatment were not mentioned. This especially refers to data of bee products and radiotherapy, chemotherapy and radio-chemotherapy-induced oral mucositis, radiotherapy-induced skin toxicity, radiotherapy-induced xerostomia, cancer-related fatigue, febrile neutropenia, cisplatin-induced nephrotoxicity, tyrosine kinase inhibitor-induced toxicity, side effects of antihormonal treatment and cancer-related wounds. CONCLUSIONS Apitherapeutic books are not good advisors regarding all aspects of cancer. However, the potential of some bee products justifies further trials, especially on cancer prevention and complementary treatment.
Collapse
Affiliation(s)
- Karsten Münstedt
- Ortenau Klinikum Offenburg-Kehl, Ebertplatz 12, 77654 Offenburg, Germany.
| | - Heidrun Männle
- Ortenau Klinikum Offenburg-Kehl, Ebertplatz 12, 77654 Offenburg, Germany
| |
Collapse
|
66
|
Xu H, Yu W, Sun S, Li C, Zhang Y, Ren J. Luteolin Attenuates Doxorubicin-Induced Cardiotoxicity Through Promoting Mitochondrial Autophagy. Front Physiol 2020; 11:113. [PMID: 32116805 PMCID: PMC7033739 DOI: 10.3389/fphys.2020.00113] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/30/2020] [Indexed: 02/02/2023] Open
Abstract
Doxorubicin is a valuable antineoplastic drug although its clinical use is greatly hindered by its severe cardiotoxicity with dismal target therapy available. Luteolin is a natural product extracted from vegetables and fruits with a wide range of biological efficacies including anti-oxidative, anti-tumorigenic, and anti-inflammatory properties. This study was designed to examine the possible effect of luteolin on doxorubicin-induced cardiotoxicity, if any, and the mechanism(s) involved with a focus on mitochondrial autophagy. Luteolin application (10 μM) in adult mouse cardiomyocytes overtly improved doxorubicin-induced cardiomyocyte contractile dysfunction including elevated peak shortening amplitude and maximal velocity of shortening/relengthening along with unchanged duration of shortening and relengthening. Luteolin alleviated doxorubicin-induced cardiotoxicity including apoptosis, accumulation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential. Furthermore, luteolin attenuated doxorubicin-induced cardiotoxicity through promoting mitochondrial autophagy in association with facilitating phosphorylation of Drp1 at Ser616, and upregulating TFEB expression. In addition, luteolin treatment partially attenuated low dose doxorubicin-induced elongation of mitochondria. Treatment of Mdivi-1, a Drp1 GTPase inhibitor, negated the protective effect of luteolin on levels of TFEB, LAMP1, and LC3B, as well as loss of mitochondrial membrane potential and cardiomyocyte contractile dysfunction in the face of doxorubicin challenge. Taken together, these findings provide novel insights for the therapeutic efficacy of luteolin against doxorubicin-induced cardiotoxicity possibly through improved mitochondrial autophagy.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Wenjun Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Shiqun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| |
Collapse
|
67
|
Xu Y, Yang J, Lu Y, Qian LL, Yang ZY, Han RM, Zhang JP, Skibsted LH. Copper(II) Coordination and Translocation in Luteolin and Effect on Radical Scavenging. J Phys Chem B 2019; 124:380-388. [PMID: 31845805 DOI: 10.1021/acs.jpcb.9b10531] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Luteolin differs as a radical scavenger dramatically from apigenin in response to Cu(II) coordination despite a minor structural difference. Coordination of Cu(II) increases the radical scavenging efficiency of luteolin, especially at low pH, while decreases the efficiency of apigenin at both low and higher pH as studied by ABTS•+ radical scavenging. Luteolin forms a 1:1 complex with Cu(II) binding to 4-carbonyl and 5-phenol for pH <6 and to 3',4'-catechol for pH >6. Apigenin forms a 1:2 complex independent of pH coordinated to 4-carbonyl and 5-hydroxylyl. Cu(II) coordinated to luteolin, as studied by pH jump stopped-flow, translocates with rate constants of 11.1 ± 0.3 s-1 from 4,5 to 3',4' sites and 1.0 ± 0.1 s-1 from 3',4' to 4,5 sites independent of Cu(II) concentration, pointing toward the dissociation of Cu(II) from an intermediate with two Cu(II) coordination as rate determining. 3',4'-Catechol is suggested to be a switch for Cu(II) translocation with deprotonation initiating 4,5 to 3',4' translocation and protonation initiating 3',4' to 4,5 translocation. For dicoordinated apigenin, the coordination symmetry balances an electron withdrawal effect of Cu(II) resulting in a decrease of phenol acidity and less radical scavenging efficiency compared to parent apigenin. Compared to that of parent luteolin, the radical scavenging rate of both 4,5 and 3',4' Cu(II)-coordinated luteolin is enhanced through increased phenol acidity by electron withdrawal by Cu(II), as confirmed by density functional theory (DFT) calculations. Coordination and translocation of Cu(II) accordingly increases the antioxidant activity of luteolin at pH approaching the physiological level and is discovered as a novel class of natural molecular machinery derived from plant polyphenols, which seems to be of importance for protection against oxidative stress.
Collapse
Affiliation(s)
- Yi Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Jing Yang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Yao Lu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Ling-Ling Qian
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Zhi-Yin Yang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Rui-Min Han
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Jian-Ping Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Leif H Skibsted
- Department of Food Science , University of Copenhagen , Rolighedsvej 30 , DK-1958 Frederiksberg , Denmark
| |
Collapse
|
68
|
Park S, Song G, Lim W. Myricetin inhibits endometriosis growth through cyclin E1 down-regulation in vitro and in vivo. J Nutr Biochem 2019; 78:108328. [PMID: 31952013 DOI: 10.1016/j.jnutbio.2019.108328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/15/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
Endometriosis is a benign gynecological condition prevalent among reproductive-aged women. Although active research and studies have been carried out to discover new drugs, surgery and hormone therapy are still the gold standard for endometriosis treatment. Nowadays, various flavonoids are considered long-term supplements for different diseases. Myricetin, a flavonol, has antiproliferative, anti- or pro-oxidant, and anticancer effects in gynecological diseases. Here, we reveal for the first time, to our knowledge, the antigrowth effects of myricetin in endometriosis. Myricetin inhibited cell proliferation and cell cycle progression of human VK2/E6E7 and End1/E6E7 cells and induced apoptosis, with the loss of mitochondrial membrane potential and accumulation of reactive oxygen species and calcium ions. Additionally, myricetin decreased the activation of AKT and ERK1/2 proteins, whereas it induced p38 activation in both cell lines. Moreover, myricetin decreased lesion size in the endometriosis mouse model via Ccne1 inhibition. Thus, myricetin has antiproliferative effects on endometriosis through cell cycle regulation.
Collapse
Affiliation(s)
- Sunwoo Park
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
69
|
Ashrafizadeh M, Tavakol S, Ahmadi Z, Roomiani S, Mohammadinejad R, Samarghandian S. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytother Res 2019; 34:911-923. [PMID: 31829475 DOI: 10.1002/ptr.6577] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023]
Abstract
Regulated cell death (RCD) guarantees to preserve organismal homeostasis. Apoptosis and autophagy are two major arms of RCD, while endoplasmic reticulum (ER) as a crucial organelle involved in proteostasis, promotes cells toward autophagy and apoptosis. Alteration in ER stress and autophagy machinery is responsible for a great number of diseases. Therefore, targeting those pathways appears to be beneficial in the treatment of relevant diseases. Meantime, among the traditional herb medicine, kaempferol as a flavonoid seems to be promising to modulate ER stress and autophagy and exhibits protective effects on malfunctioning cells. There are some reports indicating the capability of kaempferol in affecting autophagy and ER stress. In brief, kaempferol modulates autophagy in noncancerous cells to protect cells against malfunction, while it induces cell mortality derived from autophagy through the elevation of p-AMP-activated protein kinase, light chain-3-II, autophagy-related geness, and Beclin-1 in cancer cells. Noteworthy, kaempferol enhances cell survival through C/EBP homologous protein (CHOP) suppression and GRP78 increment in noncancerous cells, while it enhances cell mortality through the induction of unfolding protein response and CHOP increment in cancer cells. In this review, we discuss how kaempferol modulates autophagy and ER stress in noncancer and cancer cells to expand our knowledge of new pharmacological compounds for the treatment of associated diseases.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Sahar Roomiani
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
70
|
Sun Q, Jiang S, Zhang T, Xu H, Fang H, Zhang J, Su M, Wang Y, Zhang Z, Wang N, Chen X. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110286. [PMID: 31623786 DOI: 10.1016/j.plantsci.2019.110286] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/26/2019] [Accepted: 09/25/2019] [Indexed: 05/20/2023]
Abstract
Anthocyanin and proanthocyanidin (PA) play important roles in plant growth and development. Although previous studies have identified many of the transcription factors involved in the anthocyanin and PA pathway, the regulation mechanisms of these pathways remain poorly understood. In this study, we identified a NAC transcription factor, MdNAC52, whose gene transcript levels increased during apple coloration. Apple calli overexpressing MdNAC52 accumulated anthocyanin. Yeast one-hybrid, electrophoretic mobility shift, chromatin immunoprecipitation, and luciferase reporter assays showed that MdNAC52 could interact with the promoters of MdMYB9 and MdMYB11 to regulate anthocyanin biosynthesis. MdNAC52 was targeted by MdHY5 in response to light. Interestingly, MdNAC52 participated in the regulation of PA biosynthesis through controlling the expression of MdMYB9 and MdMYB11. MdNAC52 could also bind to the LAR promoter to regulate its expression and promote PA synthesis. Overall, these findings establish that MdNAC52 binds to the promoters of MdMYB9 and MdMYB11 to promote anthocyanin and PA biosynthesis and directly regulates LAR to modulate PA metabolism. Our study provides new insights into the roles of a NAC transcription factor in regulating anthocyanin and PA accumulation in apple.
Collapse
Affiliation(s)
- Qingguo Sun
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Shenghui Jiang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Tianliang Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Haifeng Xu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Hongcheng Fang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Jing Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Mengyu Su
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yicheng Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Zongying Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Nan Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xuesen Chen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| |
Collapse
|
71
|
Association between flavonoids, flavonoid subclasses intake and breast cancer risk: a case-control study in China. Eur J Cancer Prev 2019; 29:493-500. [DOI: 10.1097/cej.0000000000000561] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
72
|
A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7010467. [PMID: 31737673 PMCID: PMC6817918 DOI: 10.1155/2019/7010467] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
Abstract
Apigenin is a flavonoid of low toxicity and multiple beneficial bioactivities. Published reviews all focused on the findings using eukaryotic cells, animal models, or epidemiological studies covering the pharmacokinetics, cancer chemoprevention, and drug interactions of apigenin; however, no review is available on the antimicrobial effects of apigenin. Research proves that dietary apigenin passes through the upper gastrointestinal tract and reaches the colon after consumption. For that reason, it is worthwhile to study the potential interactions between apigenin and human gut microbiota. This review summarizes studies on antimicrobial effects of apigenin as well as what has been reported on apigenin and human gut microbiota. Various levels of effectiveness have been reported on apigenin's antibacterial, antifungal, and antiparasitic capability. It has been shown that apigenin or its glycosides are degraded into smaller metabolites by certain gut bacteria which can regulate the human body after absorption. How apigenin contributes to the structural and functional changes in human gut microbiota as well as the bioactivities of apigenin bacterial metabolites are worth further investigation.
Collapse
|
73
|
Widely Targeted Metabolomics Analysis Reveals the Effect of Flooding Stress on the Synthesis of Flavonoids in Chrysanthemum morifolium. Molecules 2019; 24:molecules24203695. [PMID: 31615126 PMCID: PMC6832227 DOI: 10.3390/molecules24203695] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Chrysanthemum morifolium. cv "Hangju" is an important medicinal material with many functions in China. Flavonoids as the main secondary metabolites are a major class of medicinal components in "Hangju" and its composition and content can change significantly after flooding. This study mimicked the flooding stress of "Hangju" during flower bud differentiation and detected its metabolites in different growth stages. From widely targeted metabolomics data, 661 metabolites were detected, of which 46 differential metabolites exist simultaneously in the different growth stages of "Hangju". The top three types of the 46 differential metabolites were flavone C-glycosides, flavonol and flavone. Our results demonstrated that the accumulation of flavonoids in different growth stages of "Hangju" was different; however, quercetin, eriodictyol and most of the flavone C-glycosides were significantly enhanced in the two stages after flooding stress. The expression of key enzyme genes in the flavonoid synthesis pathway were determined using RT-qPCR, which verified the consistency of the expression levels of CHI, F3H, DFR and ANS with the content of the corresponding flavonoids. A regulatory network of flavonoid biosynthesis was established to illustrate that flooding stress can change the accumulation of flavonoids by affecting the expression of the corresponding key enzymes in the flavonoid synthesis pathway.
Collapse
|
74
|
An JP, Zhang XW, You CX, Bi SQ, Wang XF, Hao YJ. MdWRKY40 promotes wounding-induced anthocyanin biosynthesis in association with MdMYB1 and undergoes MdBT2-mediated degradation. THE NEW PHYTOLOGIST 2019; 224:380-395. [PMID: 31225908 DOI: 10.1111/nph.16008] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/12/2019] [Indexed: 05/04/2023]
Abstract
Wounding stress leads to anthocyanin accumulation. However, the underlying molecular mechanism remains elusive. In this study, MdWRKY40 was found to promote wounding-induced anthocyanin biosynthesis in association with MdMYB1 and undergo MdBT2-mediated degradation in apple. We found that MdMYB1, a positive regulator of anthocyanin biosynthesis, was essential for the wounding-induced anthocyanin biosynthesis in apple. MdWRKY40 was identified as an MdMYB1-interacting protein, and enhanced the binding of MdMYB1 to its target genes in response to wounding. We found that MdBT2 interacted physically with MdWRKY40 and was involved in its degradation through the 26S proteasome pathway. Our results demonstrate that MdWRKY40 is a key modulator in the wounding-induced anthocyanin biosynthesis, which provides new insights into the regulation of wounding-induced anthocyanin biosynthesis at both the transcriptional and post-translational levels in apple.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Si-Qi Bi
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
75
|
GUO Z, JIANG M, LUO W, ZHENG P, HUANG H, SUN B. Association of Lung Cancer and Tea-Drinking Habits of Different Subgroup Populations: Meta-Analysis of Case-Control Studies and Cohort Studies. IRANIAN JOURNAL OF PUBLIC HEALTH 2019; 48:1566-1576. [PMID: 31700812 PMCID: PMC6825660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND We aimed to investigate the association between lung cancer and tea-drinking habits of different subgroup populations. METHODS Systematic search of the PubMed, Web of Science, China National Knowledge Infrastructure (CNKI) and Sinomed databases from database construction until January 2017 for English and Chinese language articles on association of lung cancer and tea drinking. Meta-analysis was used to calculate the combined odds ratio (OR) value and its 95% confidence interval (95% CI). The Newcastle-Ottawa scale was used to evaluate the quality of the studies and Q-test and I2 was used for heterogeneity testing. RESULTS Forty two papers were included, 30 case-control studies included 14578 lung cancer patients and 180574 controls, 12 cohort studies included 543825 subjects, of which the outcome was 5085 with lung cancer. Tea drinkers were found to have a decreased OR of lung cancer compared with non-tea drinkers (OR 0. 80, 95% CI: 0. 73, 0. 87). Consumption of green, black or unspecified tea has a protective effect compared with not drinking tea at all. Increased intake of green tea to 7. 5 g per day can further reduce the OR of lung cancer (OR 0. 69, 95% CI: 0. 48-0. 98). Tea consumption had a protective effect against lung cancer in non-smokers, Further analysis found that drinking of one or more cups of tea a day has a protective effect on smokers (OR 0. 79, 95% CI: 0. 64-0. 96). CONCLUSION Tea drinking could be a protective factor in lung cancer.
Collapse
|
76
|
Afshari K, Haddadi NS, Haj-Mirzaian A, Farzaei MH, Rohani MM, Akramian F, Naseri R, Sureda A, Ghanaatian N, Abdolghaffari AH. Natural flavonoids for the prevention of colon cancer: A comprehensive review of preclinical and clinical studies. J Cell Physiol 2019; 234:21519-21546. [PMID: 31087338 DOI: 10.1002/jcp.28777] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
Flavonoids comprise a group of natural polyphenols consisting of more than 5,000 subtypes mostly existing in fruits and vegetables. Flavonoids consumption could potentially attenuate the incidence and recurrence risk of colorectal cancers through their antiperoxidative, antioxidant, and anti-inflammatory effects. In addition, these compounds regulate the mitochondrial function, balance the bacterial flora and promote the apoptosis process in cancerous cells. However, some previous data failed to show the effectiveness of flavonoids in reducing the risk of colorectal cancer. In this study, we have reviewed the efficacy of different flavonoids subtypes on the risk of colon cancer and molecular mechanisms involved in this process in both clinical and animal studies. In addition, we tried to elucidate the potential synergy between these compounds and current colorectal cancer treatments.
Collapse
Affiliation(s)
- Khashayar Afshari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazgol-Sadat Haddadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arvin Haj-Mirzaian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mojtaba Rohani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Freshteh Akramian
- Department of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Rozita Naseri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain.,CIBEROBN (Physiopathology of Obesity and Nutrition, CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Negar Ghanaatian
- Department of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
77
|
Yang T, Feng YL, Chen L, Vaziri ND, Zhao YY. Dietary natural flavonoids treating cancer by targeting aryl hydrocarbon receptor. Crit Rev Toxicol 2019; 49:445-460. [PMID: 31433724 DOI: 10.1080/10408444.2019.1635987] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 02/09/2023]
Abstract
The role of aryl hydrocarbon receptor (AhR) as a ligand-activated transcription factor in the field of cancer has gradually been unveiled. A strong body of evidence indicated that AhR is implicated in cell proliferation and apoptosis, immune metabolism and other processes, which further affected tumor growth, survival, migration, and invasion. Therefore, AhR targeted therapy may become a new method for cancer treatment and provide a new direction for clinical tumor treatment. Astonishingly, the largest source of exposure of animals and humans to AhR ligands (synthetic and natural) comes from the diet. Myriad studies have described that various natural dietary chemicals can directly activate and/or inhibit the AhR signaling pathway. Of note, numerous natural products contribute to AhR active, of which dietary flavonoids are the largest class of natural AhR ligands. As interest in AhR and its ligands increases, it seems sensible to summarize current research on these ligands. In this review, we highlight the role of AhR in tumorigenesis and focus on the double effect of AhR in cancer therapy. We explored the molecular mechanism of AhR ligands on cancer through a few AhR agonists/antagonists currently in clinical practice. Ultimately, we summarize and highlight the latest progression of dietary flavonoids as AhR ligands in cancer inhibition, including the limitations and deficiencies of it in clinical research. This review will offer a comprehensive understanding of AhR and its dietary ligands which may dramatically pave the way for targeted cancer treatment.
Collapse
Affiliation(s)
- Tian Yang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Ya-Long Feng
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| |
Collapse
|
78
|
Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants (Basel) 2019; 8:E103. [PMID: 30995775 PMCID: PMC6523469 DOI: 10.3390/antiox8040103] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) remains the second most common cause of cancer-related deaths in women in the US, despite advances in detection and treatment. In addition, breast cancer survivors often struggle with long-term treatment related comorbidities. Identifying novel therapies that are effective while minimizing toxicity is critical in curtailing this disease. Flavonoids, a subclass of plant polyphenols, are emerging as promising treatment options for the prevention and treatment of breast cancer. Recent evidence suggests that in addition to anti-oxidant properties, flavonoids can directly interact with proteins, making them ideal small molecules for the modulation of enzymes, transcription factors and cell surface receptors. Of particular interest is the ability of flavonoids to modulate the tumor associated macrophage function. However, clinical applications of flavonoids in cancer trials are limited. Epidemiological and smaller clinical studies have been largely hypothesis generating. Future research should aim at addressing known challenges with a broader use of preclinical models and investigating enhanced dose-delivery systems that can overcome limited bioavailability of dietary flavonoids. In this review, we discuss the structure-functional impact of flavonoids and their action on breast tumor cells and the tumor microenvironment, with an emphasis on their clinical role in the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Sagar Sardesai
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Andrea I Doseff
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Department Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
79
|
Zhao TT, Jin F, Li JG, Xu YY, Dong HT, Liu Q, Xing P, Zhu GL, Xu H, Miao ZF. Dietary isoflavones or isoflavone-rich food intake and breast cancer risk: A meta-analysis of prospective cohort studies. Clin Nutr 2019; 38:136-145. [DOI: 10.1016/j.clnu.2017.12.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/23/2017] [Accepted: 12/08/2017] [Indexed: 11/29/2022]
|
80
|
Imran M, Rauf A, Shah ZA, Saeed F, Imran A, Arshad MU, Ahmad B, Bawazeer S, Atif M, Peters DG, Mubarak MS. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother Res 2019; 33:263-275. [PMID: 30402931 DOI: 10.1002/ptr.6227] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/24/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Kaempferol, a natural flavonoid present in several plants, possesses a wide range of therapeutic properties such as antioxidant, anticancer, and anti-inflammatory. It has a significant role in reducing cancer and can act as a therapeutic agent in the treatment of diseases and ailments such as diabetes, obesity, cardiovascular diseases, oxidative stress, asthma, and microbial contamination disorders. Kaempferol acts through different mechanisms: It induces apoptosis (HeLa cervical cancer cells), decreases cell viability (G2/M phase), downregulates phosphoinositide 3-kinase (PI3K)/AKT (protein kinase B) and human T-cell leukemia/lymphoma virus-I (HTLV-I) signaling pathways, suppresses protein expression of epithelial-mesenchymal transition (EMT)-related markers including N-cadherin, E-cadherin, Slug, and Snail, and metastasis-related markers such as matrix metallopeptidase 2 (MMP-2). Accordingly, the aim of the present review is to collect information pertaining to the effective role of kaempferol against various degenerative disorders, summarize the antioxidant, anti-inflammatory, anticancer, antidiabetic, and antiaging effects of kaempferol and to review the progress of recent research and available data on kaempferol as a protective and chemotherapeutic agent against several ailments.
Collapse
Affiliation(s)
- Muhammad Imran
- University Institute of Diet & Nutritional Sciences, Faculty of Allied and Health Sciences, The University of Lahore-Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi Anbar, Swabi, Pakistan
| | - Zafar Ali Shah
- Department of Chemistry, University of Swabi Anbar, Swabi, Pakistan
| | - Farhan Saeed
- Faculty of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Faculty of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Umair Arshad
- Faculty of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Sami Bawazeer
- Department of EMS. Paramedic, College of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Dennis G Peters
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | | |
Collapse
|
81
|
Wang JL, Quan Q, Ji R, Guo XY, Zhang JM, Li X, Liu YG. Isorhamnetin suppresses PANC-1 pancreatic cancer cell proliferation through S phase arrest. Biomed Pharmacother 2018; 108:925-933. [PMID: 30372904 DOI: 10.1016/j.biopha.2018.09.105] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Isorhamnetin, a flavonoid ingredient derived from Vernonia anthelmintica (L.) Willd., has shown a spectrum of antitumor activity. However, the chemopreventive potential of isorhamnetin on advanced pancreatic cancer and the underlying molecular mechanism remain unknown. In the current study, treatment of the advanced pancreatic adenocarcinoma cell line PANC-1 with isorhamnetin resulted in robust cell growth arrest. PI-annexin V double staining and Hoechst 33258 staining revealed that isorhamnetin moderately induced early apoptosis without morphological alterations of nuclei. Instead, isorhamnetin caused cell cycle S-phase arrest through downregulation of cyclin A. In addition, isorhamnetin decreased the phosphorylation levels of MEK and ERK in the Ras/MAPK pathway, which is involved in regulating cell proliferation, differentiation and apoptosis. Wound-healing experiments demonstrated isorhamnetin significantly reduced the migratory behavior of PANC-1 cells. Altogether, the present study suggests that isorhamnetin may be a potential agent for prevention of pancreatic carcinoma.
Collapse
Affiliation(s)
- Jia-Li Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qinghua Quan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruifang Ji
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Yu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia-Mei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xia Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yong-Gang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
82
|
In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed Pharmacother 2018; 106:1513-1526. [DOI: 10.1016/j.biopha.2018.07.106] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023] Open
|
83
|
Zhang J, Xu H, Wang N, Jiang S, Fang H, Zhang Z, Yang G, Wang Y, Su M, Xu L, Chen X. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple. PLANT MOLECULAR BIOLOGY 2018; 98:205-218. [PMID: 30182194 DOI: 10.1007/s11103-018-0770-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/23/2018] [Indexed: 05/20/2023]
Abstract
The regulator MdERF1B in the apple (Malus × domestica) ethylene pathway mainly acts on MdMYB9 and MdMYB11 to regulate anthocyanin and proanthocyanidin accumulation. Dietary anthocyanins and proanthocyanidins (PAs) have health benefits for humans, and are associated with decreased risks of coronary heart disease and cancer. Ethylene can enhance reddening of apple (Malus × domestica), but the regulatory mechanism is poorly understood. In this study, an ethylene response factor (ERF), MdERF1B, was identified and functionally characterized. 'Orin' calli overexpressing MdERF1B were generated and then analyzed by quantitative reverse transcription-PCR. Compared with the control calli, the MdERF1B-overexpressing calli showed increased expression levels of MdACO1, MdERF1, and MdERF3 in the ethylene pathway and MdCHS, MdCHI, MdF3H, MdDFR, MdANS, MdLAR, MdANR, MdMYB9 and MdMYB11 in the flavonoid pathway. As a result, the levels of anthocyanins and PAs were significantly increased in the MdERF1B-overexpressing calli. MdERF1B interacted with MdMYB9, MdMYB1, and MdMYB11 proteins in yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays. Furthermore, in yeast one-hybrid and electrophoretic mobility shift assays, MdERF1B also bound to the promoters of MdMYB9, MdMYB1, and MdMYB11. In a luciferase reporter assay, MdERF1B mainly activated proMdMYB9 and proMdMYB11, promoting their expression levels. This was in agreement with MdERF1B's overexpression in calli, which barely affected MdMYB1 expression. Taken together, our findings provide an insight into the regulatory mechanisms in the ethylene pathway that increase anthocyanin and PA accumulation in apple.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongcheng Fang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Guanxian Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Mengyu Su
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Lin Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
84
|
Ko KP, Yeo Y, Yoon JH, Kim CS, Tokudome S, Ngoan LT, Koriyama C, Lim YK, Chang SH, Shin HR, Kang D, Park SK, Kang CH, Yoo KY. Plasma phytoestrogens concentration and risk of colorectal cancer in two different Asian populations. Clin Nutr 2018; 37:1675-1682. [DOI: 10.1016/j.clnu.2017.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 07/04/2017] [Accepted: 07/16/2017] [Indexed: 01/23/2023]
|
85
|
Wu YT, Chen L, Tan ZB, Fan HJ, Xie LP, Zhang WT, Chen HM, Li J, Liu B, Zhou YC. Luteolin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting TGFBR1 Signaling. Front Pharmacol 2018; 9:1059. [PMID: 30298006 PMCID: PMC6160560 DOI: 10.3389/fphar.2018.01059] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/03/2018] [Indexed: 11/24/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration play a critical role in the development of arterial remodeling during various vascular diseases including atherosclerosis, hypertension, and related diseases. Luteolin is a food-derived flavonoid that exerts protective effects on cardiovascular diseases. Here, we investigated whether transforming growth factor-β receptor 1 (TGFBR1) signaling underlies the inhibitory effects of luteolin on VSMC proliferation and migration. We found that luteolin reduced the proliferation and migration of VSMCs, specifically A7r5 and HASMC cells, in a dose-dependent manner, based on MTS and EdU, and Transwell and wound healing assays, respectively. We also demonstrated that it inhibited the expression of proliferation-related proteins including PCNA and Cyclin D1, as well as the migration-related proteins MMP2 and MMP9, in a dose-dependent manner by western blotting. In addition, luteolin dose-dependently inhibited the phosphorylation of TGFBR1, Smad2, and Smad3. Notably, adenovirus-mediated overexpression of TGFBR1 enhanced TGFBR1, Smad2, and Smad3 activation in VSMCs and partially blocked the inhibitory effect of luteolin on TGFBR1, Smad2, and Smad3. Moreover, overexpression of TGFBR1 rescued the inhibitory effects of luteolin on the proliferation and migration of VSMCs. Additionally, molecular docking showed that this compound could dock onto an agonist binding site of TGFBR1, and that the binding energy between luteolin and TGFBR1 was -10.194 kcal/mol. Simulations of molecular dynamics showed that TGFBR1-luteolin binding was stable. Collectively, these data demonstrated that luteolin might inhibit VSMC proliferation and migration by suppressing TGFBR1 signaling.
Collapse
Affiliation(s)
- Yu-Ting Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhang-Bin Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui-Jie Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling-Peng Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen-Tong Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Mei Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying-Chun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
86
|
Hüser S, Guth S, Joost HG, Soukup ST, Köhrle J, Kreienbrock L, Diel P, Lachenmeier DW, Eisenbrand G, Vollmer G, Nöthlings U, Marko D, Mally A, Grune T, Lehmann L, Steinberg P, Kulling SE. Effects of isoflavones on breast tissue and the thyroid hormone system in humans: a comprehensive safety evaluation. Arch Toxicol 2018; 92:2703-2748. [PMID: 30132047 PMCID: PMC6132702 DOI: 10.1007/s00204-018-2279-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary plant constituents of certain foods and feeds such as soy, linseeds, and red clover. Furthermore, isoflavone-containing preparations are marketed as food supplements and so-called dietary food for special medical purposes to alleviate health complaints of peri- and postmenopausal women. Based on the bioactivity of isoflavones, especially their hormonal properties, there is an ongoing discussion regarding their potential adverse effects on human health. This review evaluates and summarises the evidence from interventional and observational studies addressing potential unintended effects of isoflavones on the female breast in healthy women as well as in breast cancer patients and on the thyroid hormone system. In addition, evidence from animal and in vitro studies considered relevant in this context was taken into account along with their strengths and limitations. Key factors influencing the biological effects of isoflavones, e.g., bioavailability, plasma and tissue concentrations, metabolism, temporality (pre- vs. postmenopausal women), and duration of isoflavone exposure, were also addressed. Final conclusions on the safety of isoflavones are guided by the aim of precautionary consumer protection.
Collapse
Affiliation(s)
- S Hüser
- Institute for Food Toxicology, Senate Commission on Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - S Guth
- Institute for Food Toxicology, Senate Commission on Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - H G Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - S T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - J Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, CVK, Berlin, Germany
| | - L Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - P Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - D W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Karlsruhe, Germany
| | - G Eisenbrand
- Division of Food Chemistry and Toxicology, Molecular Nutrition, Department of Chemistry, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - G Vollmer
- Department of Biology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - U Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - D Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - A Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - T Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - L Lehmann
- Department of Food Chemistry, Institute for Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - P Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - S E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
87
|
Dong X, Zhang J, Yang F, Wu J, Cai R, Wang T, Zhang J. Effect of luteolin on the methylation status of the OPCML gene and cell growth in breast cancer cells. Exp Ther Med 2018; 16:3186-3194. [PMID: 30214542 DOI: 10.3892/etm.2018.6526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/24/2018] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the effect of luteolin on the methylation of opioid binding protein/cell adhesion molecule (OPCML) in breast cancer cells, as well as its underlying mechanism of action. Human breast cancer cell lines BT474 and MCF-7 were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum. The cells were treated with 0-30 µmol/l luteolin prior to investigation. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to determine the mRNA and protein expression, respectively. High performance liquid chromatography and electrosprary ionization-mass spectrometry was used to analyze the methylation of the OPCML promoter region and whole genome. The methylation activity in the cell nucleus was determined using a DNA methyltransferase catalytic test. ELISA analysis was used to detect changes in the activity of transcription factors Sp1 and nuclear factor (NF)-κB. An MTT assay was performed to determine cell proliferation, while flow cytometry was used to detect cell cycle stage and apoptosis. Luteolin effectively upregulated the expression of OPCML in breast cancer cells. Luteolin activated OPCML by reducing intracellular methylation levels. Luteolin downregulated intracellular methylation levels by decreasing Sp1 and NF-κB activities. Luteolin affected the expression of DNMT1 and OPCML by downregulating Sp1 activity. Luteolin inhibited the proliferation and induced the apoptosis of BT474 and MCF-7 cells. The results of the present study suggest that luteolin inhibits the growth of breast cancer cells by decreasing the methylation and upregulating the expression of the OPCML gene.
Collapse
Affiliation(s)
- Xinmin Dong
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China.,Department of Oncology, The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010010, P.R. China
| | - Jian Zhang
- Department of Radiotherapy, The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010017, P.R. China
| | - Fan Yang
- Department of Basic Medicine, Xiangnan University, Chenzhou, Hunan 423000, P.R. China
| | - Jing Wu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Rui Cai
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Tian Wang
- Department of Hematology and Oncology, Yan'an People's Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Jiren Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
88
|
Liu T, Xu J, Yan HL, Cheng FC, Liu XJ. Luteolin Suppresses Teratoma Cell Growth and Induces Cell Apoptosis via Inhibiting Bcl-2. Oncol Res 2018. [PMID: 29540256 PMCID: PMC7848233 DOI: 10.3727/096504018x15208986577685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Luteolin, which is found in plant foods, has a range of therapeutic applications. In order to examine the potential roles of luteolin in ovarian teratocarcinoma, the human ovarian teratocarcinoma cell line PA-1 was selected for functional experiments in vitro and in vivo. We demonstrated that luteolin inhibited the proliferation and colony formation of PA-1 cells in vitro. The flow cytometry results suggested that luteolin induced apoptosis of PA-1 cells in a dose-dependent manner. Immunofluorescence and qRT-PCR results showed that the expression of B-cell lymphoma-2 (Bcl-2) was decreased in luteolin-treated cells, whereas the expression of Bcl-2-associated X (Bax) was increased compared with that in the control group. In addition, luteolin inhibited the tumor growth of ovarian teratocarcinoma cells in a xenograft model. All the results suggested that luteolin induced cell apoptosis and inhibited tumor growth of PA-1 cells.
Collapse
Affiliation(s)
- Teng Liu
- Department of Pediatric Surgery, Binzhou Medical University Hospital, Binzhou City, Shandong Province, P.R. China
| | - Juan Xu
- Pediatric Respiration and Intensive Care Unit, Binzhou Medical University Hospital, Shandong Province, P.R. China
| | - Hong Li Yan
- Electrocardiogram Room, Binzhou Medical University Hospital, Binzhou City, Shandong Province, P.R. China
| | - Feng Chun Cheng
- Department of Pediatric Surgery, Binzhou Medical University Hospital, Binzhou City, Shandong Province, P.R. China
| | - Xi Jie Liu
- Department of Pediatric Surgery, Binzhou Medical University Hospital, Binzhou City, Shandong Province, P.R. China
| |
Collapse
|
89
|
Mescher M, Haarmann-Stemmann T. Modulation of CYP1A1 metabolism: From adverse health effects to chemoprevention and therapeutic options. Pharmacol Ther 2018; 187:71-87. [PMID: 29458109 DOI: 10.1016/j.pharmthera.2018.02.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cytochrome P450 (CYP) 1A1 gene encodes a monooxygenase that metabolizes multiple exogenous and endogenous substrates. CYP1A1 has become infamous for its oxidative metabolism of benzo[a]pyrene and related polycyclic aromatic hydrocarbons, converting these chemicals into very potent human carcinogens. CYP1A1 expression is mainly controlled by the aryl hydrocarbon receptor (AHR), a transcription factor whose activation is induced by binding of persistent organic pollutants, including polycyclic aromatic hydrocarbons and dioxins. Accordingly, induction of CYP1A1 expression and activity serves as a biomarker of AHR activation and associated xenobiotic metabolism as well as toxicity in diverse animal species and humans. Determination of CYP1A1 activity is integrated into modern toxicological concepts and testing guidelines, emphasizing the tremendous importance of this enzyme for risk assessment and regulation of chemicals. Further, CYP1A1 serves as a molecular target for chemoprevention of chemical carcinogenesis, although present literature is controversial on whether its inhibition or induction exerts beneficial effects. Regarding therapeutic applications, first anti-cancer prodrugs are available, which require a metabolic activation by CYP1A1, and thus enable a specific elimination of CYP1A1-positive tumors. However, the application range of these drugs may be limited due to the frequently observed downregulation of CYP1A1 in various human cancers, probably leading to a reduced metabolism of endogenous AHR ligands and a sustained activation of AHR and associated tumor-promoting responses. We here summarize the current knowledge on CYP1A1 as a key player in the metabolism of exogenous and endogenous substrates and as a promising target molecule for prevention and treatment of human malignancies.
Collapse
Affiliation(s)
- Melina Mescher
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | | |
Collapse
|
90
|
Rim CH. Development of quantitative index evaluating anticancer or carcinogenic potential of diet: the anti-cancer food scoring system 1.0. Nutr Res Pract 2018; 12:52-60. [PMID: 29399297 PMCID: PMC5792257 DOI: 10.4162/nrp.2018.12.1.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/31/2017] [Accepted: 01/02/2018] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND/OBJECTIVE Cancer is closely related to diet. One of the most reliable reports of the subject is the expert report from the World Cancer Research Fund & American Institute of Cancer Research (WCRF&AICR). However, majority of the studies including above were written with academic terms and in English. The aim of this study is to create a model, named Anti-Cancer Food Scoring System (ACFS), to provide a simple index of the anticancer potential of food. SUBJECTS/METHODS We created ACFS codes of various food groups. The evidence of the ACFS codes was provided by the literature at a level comparable to that suggested in the WCRF&AICR report or from the WCRF&AICR report. The ACFS grade was calculated considering food group, cooking, and normalization. Application was performed for Koreans' 20 common meals, which encompass multinational recipes. RESULT We calculated the ACFS grades of Koreans' 20 common meals. The results were not significantly different from the WCRF&AICR guidelines or information from the National Cancer Information Center of Korea. The grades were briefly interpreted as follows: grade S. ideal for cancer prevention; grade A. good for cancer prevention; grade B, might have anticancer potential; grade C, difficult to be regarded as preventive or carcinogenic; grade D, might against cancer prevention; grade E, probably against cancer prevention. CONCLUSIONS The ACFS provides a simple index of anticancer potential of diets. This indicator can be useful for the people without expertise, and is effective in evaluating the diets including Asian foods. The ACFS can help design of future clinical or nutritional studies of cancer prevention.
Collapse
Affiliation(s)
- Chai Hong Rim
- Department of Radiation Oncology, Ansan Hospital, Korea University Medical College, 123, Jeokgeum ro, Danwon-gu, Gyeonggi 15355, Korea
| |
Collapse
|
91
|
Targeting of stress response pathways in the prevention and treatment of cancer. Biotechnol Adv 2018; 36:583-602. [PMID: 29339119 DOI: 10.1016/j.biotechadv.2018.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The hallmarks of tumor tissue are not only genetic aberrations but also the presence of metabolic and oxidative stress as a result of hypoxia and lactic acidosis. The stress activates several prosurvival pathways including metabolic remodeling, autophagy, antioxidant response, mitohormesis, and glutaminolysis, whose upregulation in tumors is associated with a poor survival of patients, while their activation in healthy tissue with statins, metformin, physical activity, and natural compounds prevents carcinogenesis. This review emphasizes the dual role of stress response pathways in cancer and suggests the integrative understanding as a basis for the development of rational therapy targeting the stress response.
Collapse
|
92
|
Capurso A, Crepaldi G, Capurso C. Fresh Fruit. PRACTICAL ISSUES IN GERIATRICS 2018:231-261. [DOI: 10.1007/978-3-319-78084-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
93
|
Polyphenol-Rich Lentils and Their Health Promoting Effects. Int J Mol Sci 2017; 18:ijms18112390. [PMID: 29125587 PMCID: PMC5713359 DOI: 10.3390/ijms18112390] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Polyphenols are a group of plant metabolites with potent antioxidant properties, which protect against various chronic diseases induced by oxidative stress. Evidence showed that dietary polyphenols have emerged as one of the prominent scientific interests due to their role in the prevention of degenerative diseases in humans. Possible health beneficial effects of polyphenols are measured based on the human consumption and their bioavailability. Lentil (Lens culinaris; Family: Fabaceae) is a great source of polyphenol compounds with various health-promoting properties. Polyphenol-rich lentils have a potential effect on human health, possessing properties such as antioxidant, antidiabetic, anti-obesity, anti-hyperlipidemic, anti-inflammatory and anticancer. Based on the explorative study, the current comprehensive review aims to give up-to-date information on nutritive compositions, bioactive compounds and the health-promoting effect of polyphenol-rich lentils, which explores their therapeutic values for future clinical studies. All data of in vitro, in vivo and clinical studies of lentils and their impact on human health were collected from a library database and electronic search (Science Direct, PubMed and Google Scholar). Health-promoting information was gathered and orchestrated in the suitable place in the review.
Collapse
|
94
|
Sak K. Intake of Individual Flavonoids and Risk of Carcinogenesis: Overview of Epidemiological Evidence. Nutr Cancer 2017; 69:1119-1150. [PMID: 29083244 DOI: 10.1080/01635581.2017.1367934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several epidemiological findings have demonstrated that specific flavonoids can be responsible for reduction of the risk of certain cancer types. However, these results are still rather limited, inconclusive and controversial. Therefore, in this comprehensive review article the findings reported to date about the associations between dietary intake of individual flavonoid compounds and cancer incidence are compiled and analyzed. Also, the possible reasons for inconsistencies are brought forth and discussed. As diet is a potentially modifiable factor in our behavioral choices, further large-scale prospective studies with longer follow-up times, different populations, various doses and exposure timing as well as diverse well-controlled confounders are highly needed to confirm or disprove the current epidemiological knowledge about the role of flavonoids on cancer risk. Regarding the promising data to date, more research on bioavailability, metabolism and biological action mechanisms of these plant secondary metabolites is also encouraged.
Collapse
Affiliation(s)
- Katrin Sak
- a NGO Praeventio , Näituse 22-3, Tartu , Estonia
| |
Collapse
|
95
|
Luo Y, Shang P, Li D. Luteolin: A Flavonoid that Has Multiple Cardio-Protective Effects and Its Molecular Mechanisms. Front Pharmacol 2017; 8:692. [PMID: 29056912 PMCID: PMC5635727 DOI: 10.3389/fphar.2017.00692] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/19/2017] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease (CVD) has become the leading cause of morbidity and mortality worldwide. A well-monitored diet with a sufficient intake of fruits and vegetables has been confirmed as a primary prevention of CVD. Plant constituents such as flavonoids have been shown to confer healthy benefits. Luteolin (Lut), a kind of flavonoid, possesses anti-oxidative, anti-tumor, and anti-inflammatory properties. Recent scientific literature has reported the cardiac protective effects of Lut in vitro and in vivo. Therefore, the aim of this review is to provide an update and detailed overview with cardio-protective molecular mechanisms of Lut with a focus on multiple intrinsic and extrinsic effectors. We further explore how these mechanisms participate in ischemia/reperfusion (I/R) injury, heart failure (HF) and atherosclerosis (AS). A proper understanding of the cardiovascular protective effects and the relative mechanisms of Lut may provide the possibility of new drug design and development for CVD. With the previous studies mainly focused on basic research, we need to advance the prospects of its further clinical utilization against CVD, large prospective clinical trials of Lut are needed to observe its therapeutic effects on patients with I/R injury, HF and AS, especially on the effective therapeutic dosage, and safety of long-term administration.
Collapse
Affiliation(s)
- Yuanyuan Luo
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China.,The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Pingping Shang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Dongye Li
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China.,The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
96
|
Sanaei M, Kavoosi F, Atashpour S, Haghighat S. Effects of Genistein and Synergistic Action in Combination with Tamoxifen on the HepG2 Human Hepatocellular Carcinoma Cell Line. Asian Pac J Cancer Prev 2017; 18:2381-2385. [PMID: 28950682 PMCID: PMC5720640 DOI: 10.22034/apjcp.2017.18.9.2381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction: The flavonoids comprise a diverse group of polyphenolic compounds with antioxidant activity that is present in edible plants like soybeans and soy products. In vivo studies have concentrated on the effects of flavonoids on cancer and genistein (GE), a soy-derived isoflavone, has been reported to reduce prostate, colon, hepatic and breast adenocarcinoma risk. Tamoxifen (TAM) is an important drug for cancer treatment worldwide, which can induce apoptosis in various cancers, including examples in the liver, breast and ovaries. The aim of the present study was to evaluate the effects of GE and TAM, alone and in combination, on proliferation and apoptosis in the human hepatocellular carcinoma (HCC) HepG2 cell line. Materials and Methods: HepG 2 cells were treated with GE, TAM and GE/TAM and then MTT and flow cytometry assays were conducted to determine effects on viability and apoptosis, respectively. Results: GE and TAM inhibited cell proliferation and induced apoptosis in the HepG 2 cell lines. Discussion: Our findings clearly indicated that GE and TAM may exert inhibitory and apoptotic effects in liver cancer cells. Conclusion: GE and TAM can significantly inhibit growth of HCC cells and play a significant role in apoptosis.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| | | | | | | |
Collapse
|
97
|
Sak K. Epidemiological Evidences on Dietary Flavonoids and Breast Cancer Risk: A Narrative Review. Asian Pac J Cancer Prev 2017; 18:2309-2328. [PMID: 28950673 PMCID: PMC5720631 DOI: 10.22034/apjcp.2017.18.9.2309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epidemiological studies on associations between intake of flavonoids and breast cancer risk are highly needed to assess the actual effects of flavonoids in humans. Experimental investigations in vitro conditions cannot detect and model the real action of these phytochemicals due to the limitations to consider absorption and metabolic biotransformation as well as several complex interactions. Therefore, the data about association findings between intake of flavonoids and breast cancer risk are compiled and analyzed in the current review by evaluating both the results obtained using food composition databases as well as different biomarkers. Although several case-control studies demonstrate some reduction in breast cancer risk related to high consumption of flavones and flavonols, large-scale prospective cohort studies with follow-up times of many years do not confirm these findings. Intake of isoflavones can be associated with a decrease in breast tumorigenesis only in Asian countries where the consumption of soy foods is high but not among Western women with significantly lower ingestion amounts, suggesting the presence of so-called threshold level of effect. Besides doses, the timing of exposure to isoflavones seems also to be a significant factor as childhood and prepubertal age can be critical periods. Although women may need to consume high amounts of isoflavones typical to Asian diets to gain beneficial effects and protection against mammary carcinogenesis, it is still too early to give any specific recommendations to prevent breast tumors by diet rich in certain flavonoids.
Collapse
Affiliation(s)
- Katrin Sak
- NGO Praeventio, Näituse 22-3, Tartu 50407, Estonia.
| |
Collapse
|
98
|
Tohge T, de Souza LP, Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4013-4028. [PMID: 28922752 DOI: 10.1093/jxb/erx177] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Flavonoids are a signature class of secondary metabolites formed from a relatively simple collection of scaffolds. They are extensively decorated by chemical reactions including glycosylation, methylation, and acylation. They are present in a wide variety of fruits and vegetables and as such in Western populations it is estimated that 20-50 mg of flavonoids are consumed daily per person. In planta they have demonstrated to contribute to both flower color and UV protection. Their consumption has been suggested to presenta wide range of health benefits. Recent technical advances allowing affordable whole genome sequencing, as well as a better inventory of species-by-species chemical diversity, have greatly advanced our understanding as to how flavonoid biosynthesis pathways vary across species. In parallel, reverse genetics combined with detailed molecular phenotyping is currently allowing us to elucidate the functional importance of individual genes and metabolites and by this means to provide further mechanistic insight into their biological roles. Here we provide an inventory of current knowledge of pathways of flavonoid biosynthesis in both the model plant Arabidopsis thaliana and a range of crop species, including tomato, maize, rice, and bean.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm
| |
Collapse
|
99
|
Lu D, Pan C, Ye C, Duan H, Xu F, Yin L, Tian W, Zhang S. Meta-analysis of Soy Consumption and Gastrointestinal Cancer Risk. Sci Rep 2017; 7:4048. [PMID: 28642459 PMCID: PMC5481399 DOI: 10.1038/s41598-017-03692-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 05/15/2017] [Indexed: 12/13/2022] Open
Abstract
Soy consumption has received considerable attention for its potential role in reducing cancer incidence and mortality. However, its effects on gastrointestinal (GI) cancer are controversial. Therefore, we performed a meta-analysis to evaluate the association between soy consumption and gastrointestinal cancer risk by searching for prospective studies in PubMed, Web of Science, EMBASE and the reference lists of the included articles. The study-specific odds ratio (OR), relative risk (RR) or hazard ratio (HR) estimates and 95% confidence intervals (CIs) were pooled using either a fixed-effect or random-effect model. Twenty-two independent prospective studies were eligible for our meta-analysis, including 21 cohort studies and one nested case-control study. Soy product consumption was inversely associated with the incidence of overall GI cancer (0.857; 95% CI: 0.766, 0.959) and the gastric cancer subgroup (0.847; 95% CI: 0.722, 0.994) but not the colorectal cancer subgroup. After stratifying the results according to gender, an inverse association was observed between soy product intake and the incidence of GI cancer for females (0.711; 95% CI: 0.506, 0.999) but not for males.
Collapse
Affiliation(s)
- Demin Lu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Medical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chi Pan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huijie Duan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Yin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Tian
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Suzhan Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Reseach Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
100
|
Zocchi E, Hontecillas R, Leber A, Einerhand A, Carbo A, Bruzzone S, Tubau-Juni N, Philipson N, Zoccoli-Rodriguez V, Sturla L, Bassaganya-Riera J. Abscisic Acid: A Novel Nutraceutical for Glycemic Control. Front Nutr 2017; 4:24. [PMID: 28660193 PMCID: PMC5468461 DOI: 10.3389/fnut.2017.00024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/19/2017] [Indexed: 01/03/2023] Open
Abstract
Abscisic acid is naturally present in fruits and vegetables, and it plays an important role in managing glucose homeostasis in humans. According to the latest U.S. dietary survey, about 92% of the population might have a deficient intake of ABA due to their deficient intake of fruits and vegetables. This review summarizes the in vitro, preclinical, mechanistic, and human translational findings obtained over the past 15 years in the study of the role of ABA in glycemic control. In 2007, dietary ABA was first reported to ameliorate glucose tolerance and obesity-related inflammation in mice. The most recent findings regarding the topic of ABA and its proposed receptor lanthionine synthetase C-like 2 in glycemic control and their interplay with insulin and glucagon-like peptide-1 suggest a major role for ABA in the physiological response to a glucose load in humans. Moreover, emerging evidence suggests that the ABA response might be dysfunctional in diabetic subjects. Follow on intervention studies in healthy individuals show that low-dose dietary ABA administration exerts a beneficial effect on the glycemia and insulinemia profiles after oral glucose load. These recent findings showing benefits in humans, together with extensive efficacy data in mouse models of diabetes and inflammatory disease, suggest the need for reference ABA values and its possible exploitation of the glycemia-lowering effects of ABA for preventative purposes. Larger clinical studies on healthy, prediabetic, and diabetic subjects are needed to determine whether addressing the widespread dietary ABA deficiency improves glucose control in humans.
Collapse
Affiliation(s)
- Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Raquel Hontecillas
- BioTherapeutics Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Andrew Leber
- BioTherapeutics Inc., Blacksburg, VA, United States
| | | | - Adria Carbo
- BioTherapeutics Inc., Blacksburg, VA, United States
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | | | | | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Josep Bassaganya-Riera
- BioTherapeutics Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|