51
|
Comparison of antioxidant compounds in pig meat from Italian autochthonous pig Suino Nero Lucano and a modern crossbred pig before and after cooking. Food Chem 2019; 292:108-112. [PMID: 31054652 DOI: 10.1016/j.foodchem.2019.04.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/15/2019] [Accepted: 04/16/2019] [Indexed: 11/23/2022]
Abstract
This study aimed to evaluate and compare the antioxidant compounds of raw and cooked Longissimus lumborum muscles from Suino Nero Lucano (SNL) and a modern crossbred (CG) pig. Vitamin E, phenols, histidine-containing peptides, and superoxide dismutase (SOD) activity have been detected in the raw and cooked meat of both genetic types. Cooking process decreased the content of all considered antioxidant compounds (P < 0.05). The antioxidant compounds of meat were significantly influenced by genetic type (P < 0.001). Autochthonous SNL raw and cooked meat showed a higher endogenous antioxidants content (P < 0.001) and SOD activity (P < 0.02) compared to CG meat. The results of this research highlighted that the pig meat, in particular autochthonous pig meat, showed good concentrations of endogenous antioxidant compounds that could confer functional properties to the product.
Collapse
|
52
|
Kennedy DO. Phytochemicals for Improving Aspects of Cognitive Function and Psychological State Potentially Relevant to Sports Performance. Sports Med 2019; 49:39-58. [PMID: 30671903 PMCID: PMC6445817 DOI: 10.1007/s40279-018-1007-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Subjective alertness and optimal cognitive function, including in terms of attention, spatial/working memory and executive function, are intrinsic to peak performance in many sports. Consumption of a number of plant-derived 'secondary metabolite' phytochemicals can modulate these psychological parameters, although there is a paucity of evidence collected in a sporting context. The structural groups into which these phytochemicals fall-phenolics, terpenes and alkaloids-vary in terms of the ecological roles they play for the plant, their toxicity and the extent to which they exert direct effects on brain function. The phenolics, including polyphenols, play protective roles in the plant, and represent a natural, benign component of the human diet. Increased consumption has been shown to improve cardiovascular function and is associated with long-term brain health. However, whilst short-term supplementation with polyphenols has been shown to consistently modulate cerebral blood-flow parameters, evidence of direct effects on cognitive function and alertness/arousal is currently comparatively weak. Terpenes play both attractant and deterrent roles in the plant, and typically occur less frequently in the diet. Single doses of volatile monoterpenes derived from edible herbs such as sage (Salvia officinalis/lavandulaefolia) and peppermint (Mentha piperita), diterpene-rich Ginkgo biloba extracts and triterpene-containing extracts from plants such as ginseng (Panax ginseng/quinquefolius) and Bacopa monnieri have all been shown to enhance relevant aspects of cognitive function and alertness. The alkaloids play toxic defensive roles in the plant, including via interference with herbivore brain function. Whilst most alkaloids are inappropriate in a sporting context due to toxicity and legal status, evidence suggests that single doses of nicotine and caffeine may be able to enhance relevant aspects of cognitive function and/or alertness. However, their benefits may be confounded by habituation and withdrawal effects in the longer term. The efficacy of volatile terpenes, triterpene-rich extracts and products combining low doses of caffeine with other phytochemicals deserves more research attention.
Collapse
Affiliation(s)
- David O Kennedy
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK.
| |
Collapse
|
53
|
Perna A, Simonetti A, Grassi G, Gambacorta E. Effect of a cauliflower (Brassica oleraceae var. Botrytis) leaf powder-enriched diet on performance, carcass and meat characteristics of growing rabbit. Meat Sci 2018; 149:134-140. [PMID: 30522046 DOI: 10.1016/j.meatsci.2018.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/26/2018] [Accepted: 11/14/2018] [Indexed: 01/30/2023]
Abstract
The aim of this study was to investigate the effect of a cauliflower leaf powder (CLP)-enriched diet on the performance, quality and antioxidative potential of rabbit meat. No significant differences were found for live performance parameters between rabbits fed with standard (SD) and CLP diet. Dietary supplementation influenced the meat traits of rabbits: CLP meat showed significantly lower drip loss after 48 h, cooking loss, and a significantly higher lightness (L*) and redness (a*) values, vitamin A and vitamin E content, and oxidative stability, compared to SD meat. Moreover, the CLP supplementation caused a significant decrease in SFA and increase in PUFA percentage of rabbit intramuscular fat. The statistical analysis also showed a significant effect of dietary fortification on phenolic content and antioxidant activity of rabbit meat which resulted higher in meat of CLP group. This study highlighted that dietary fortification with CLP is a valid strategy to produce rabbit meat with better technological and functional quality.
Collapse
Affiliation(s)
- Annamaria Perna
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Amalia Simonetti
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Giulia Grassi
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Emilio Gambacorta
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
54
|
Resuello DL, Lirio SB, Porto AE, Macabeo APG, Huang HY, Corpuz MJAT, Villaflores OB. β-secretase 1 inhibitory activity and AMP-activated protein kinase activation of Callyspongia samarensis extracts. Nat Prod Res 2018; 34:525-529. [PMID: 30427208 DOI: 10.1080/14786419.2018.1488699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The methanolic extract of Callyspongia samarensis (MCS) significantly inhibited β-secretase 1 (IC50 99.82 µg/mL) in a dose-dependent manner and demonstrated a noncompetitive type of inhibition. Furthermore, it exhibited the highest AMPK activation (EC50 14.47 μg/mL) as compared with the standard, Aspirin (EC50 >100 μg/mL). HPLC/ESI-MS analysis of MCS extract revealed 15 peaks, in which nine peaks demonstrated similar fragmentation pattern with the known compounds in literature and in database library: 5-aminopentanoic acid (1), 4-aminobutanoic acid (3), Luotonin A (4), (E)-3-(1H-imidazol-5-yl) prop-2-enoic acid (8), Galactosphingosine (10), D-sphingosine (11), 5,7,4'-trihydroxy-3',5'-dimethoxyflavone (12), hydroxydihydrovolide (13), and 3,5-dibromo-4-methoxyphenylpyruvic acid (14); and 6 peaks are not identified (2, 5-7, 9, and 15). Acute oral toxicity test of MCS extract revealed that it is nontoxic, with an LD50 of >2000 mg/kg. Assessment of BBB permeability of MCS extract showed that compound 15 was able to cross the BBB making it a suitable candidate for developing CNS drugs.
Collapse
Affiliation(s)
| | - Stephen B Lirio
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Analin E Porto
- Natural Science Department, College of Science, University of Santo Tomas, Manila, Philippines
| | - Allan Patrick G Macabeo
- The Graduate School, University of Santo Tomas, Manila, Philippines.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines.,Department of Chemistry, College of Science, University of Santo Tomas, Manila, Philippines
| | - Hsi-Ya Huang
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Mary Jho-Anne T Corpuz
- The Graduate School, University of Santo Tomas, Manila, Philippines.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines.,Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Oliver B Villaflores
- The Graduate School, University of Santo Tomas, Manila, Philippines.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines.,Department of Chemistry, College of Science, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
55
|
|
56
|
Epigallocatechin-3-gallate confers protection against corticosterone-induced neuron injuries via restoring extracellular signal-regulated kinase 1/2 and phosphatidylinositol-3 kinase/protein kinase B signaling pathways. PLoS One 2018; 13:e0192083. [PMID: 29373584 PMCID: PMC5786317 DOI: 10.1371/journal.pone.0192083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Extensive studies suggested epigallocatechin-3-gallate (EGCG) has significant neuroprotection against multiple central neural injuries, but the underlying mechanisms still remain poorly elucidated. Here we provide evidence to support the possible involvement of extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol-3 kinase/ protein kinase B (PI3K/AKT) pathways in EGCG-mediated protection against corticosterone-induced neuron injuries. As an essential stress hormone, corticosterone could induce obvious neurotoxicity in primary hippocampal neurons. Pre-treatment with EGCG ameliorated the corticosterone-induced neuronal injuries; however, it was blocked by pharmacological inhibitors for ERK1/2 (U0126) and PI3K/AKT (LY294002). Furthermore, the results confirmed that EGCG restored the corticosterone-induced decrease of ERK1/2 and PI3K/AKT phosphorylation, and attenuated the corticosterone-induced reduction of peroxisome proliferators-activated receptor-γ coactivator-1α (PGC-1α) expression and ATP production. Taken together, these findings indicated that EGCG has significant neuroprotection against corticosterone-induced neuron injuries partly via restoring the ERK1/2 and PI3K/AKT signaling pathways as well as the PGC-1α-mediated ATP production.
Collapse
|
57
|
Ramos-Hryb AB, Cunha MP, Kaster MP, Rodrigues ALS. Natural Polyphenols and Terpenoids for Depression Treatment: Current Status. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-64068-0.00006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
58
|
Kennedy DO, Wightman EL, Forster J, Khan J, Haskell-Ramsay CF, Jackson PA. Cognitive and Mood Effects of a Nutrient Enriched Breakfast Bar in Healthy Adults: A Randomised, Double-Blind, Placebo-Controlled, Parallel Groups Study. Nutrients 2017; 9:nu9121332. [PMID: 29215606 PMCID: PMC5748782 DOI: 10.3390/nu9121332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
Objectives: Few previous studies have assessed the effects of concomitant administration of multiple potentially psychoactive nutrients. Methods: 95 healthy adult participants consumed either a nutrient enriched breakfast bar (containing α-Linolenic acid, l-tyrosine, l-theanine, vitamins, minerals and 21.5 mg of caffeine) or an isocaloric, macronutrient matched control bar for 56 days. Cognitive function and mood were assessed pre-dose and at 40- and 160-min post-dose on the 1st and 56th day of the intervention period. Results: The results demonstrated acute effects of treatment across post-dose assessments on both assessment days in terms of alertness, and on tasks assessing attention, working and episodic memory and executive function, including cognitively demanding Serial subtraction and Rapid Visual Information Processing tasks. There were no evident chronic effects independent of the breakfast bars’ acute effects. Discussion: These results demonstrate that a nutrient enriched breakfast bar with low caffeine content can exert striking beneficial effects on acute cognitive function and alertness.
Collapse
Affiliation(s)
- David O Kennedy
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Emma L Wightman
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Joanne Forster
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Julie Khan
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Crystal F Haskell-Ramsay
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Philippa A Jackson
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| |
Collapse
|
59
|
Maatouk M, Mustapha N, Mokdad-Bzeouich I, Chaaban H, Abed B, Iaonnou I, Ghedira K, Ghoul M, Ghedira LC. Thermal treatment of luteolin-7-O-β-glucoside improves its immunomodulatory and antioxidant potencies. Cell Stress Chaperones 2017; 22:775-785. [PMID: 28578499 PMCID: PMC5655366 DOI: 10.1007/s12192-017-0808-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 02/27/2017] [Accepted: 05/14/2017] [Indexed: 12/18/2022] Open
Abstract
Phytochemicals extracted from flowers, roots and bark, leaves, and other plant sources have been used extensively throughout human history with varying levels of efficacy in prevention and treatment of disease. Recently, advanced methods for characterization and clinical use of these materials have allowed modern understanding of their properties to be used as immunomodulatory agents that act by enhancement of endogenous cytoprotective mechanisms, avoiding interference with normal physiologic signaling and highly effective medical treatment with minimal adverse side effects. Simple methods have been identified for improving their biological effects, such as thermal conditioning by heating or freezing-prominent example being heat treatment of lycopene and tetrahydrocannabinol. The present investigation shows improvement of the ability of heat to augment splenocyte proliferation, natural killer (NK) cell activities, and antioxidant capacity of the flavonoid luteolin-7-O-β-glucoside (L7G) in comparison with the native (non heat-treated) molecule, while further demonstrating that both the native and the heat-treated variants exhibit comparable antioxidant properties, as evidenced by their effects in macrophages by inhibition of nitric oxide production and lysosomal enzyme activity in experiments that strengthen lysosomal membrane integrity. Outcomes of these studies suggest that heat-treated L7G shows promise for use in immunotherapy, including anti-cancer regimens, as shown by its improvement of NK cell cytotoxicity.
Collapse
Affiliation(s)
- Mouna Maatouk
- Unité des Substances Naturelles Bioactives et Biotechnologie UR12ES12, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Nadia Mustapha
- Unité des Substances Naturelles Bioactives et Biotechnologie UR12ES12, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Imen Mokdad-Bzeouich
- Unité des Substances Naturelles Bioactives et Biotechnologie UR12ES12, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Hind Chaaban
- Laboratoire d'Ingénierie des Biomolécules, ENSAIA-INPL, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Besma Abed
- Unité des Substances Naturelles Bioactives et Biotechnologie UR12ES12, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Irina Iaonnou
- Laboratoire d'Ingénierie des Biomolécules, ENSAIA-INPL, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Kamel Ghedira
- Unité des Substances Naturelles Bioactives et Biotechnologie UR12ES12, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Mohamed Ghoul
- Laboratoire d'Ingénierie des Biomolécules, ENSAIA-INPL, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Leila Chekir Ghedira
- Unité des Substances Naturelles Bioactives et Biotechnologie UR12ES12, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia.
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia.
- Laboratory of Cellular and Molecular Biology, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, 5000, Monastir, Tunisia.
| |
Collapse
|
60
|
Estrela JM, Mena S, Obrador E, Benlloch M, Castellano G, Salvador R, Dellinger RW. Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy. J Med Chem 2017; 60:9413-9436. [PMID: 28654265 DOI: 10.1021/acs.jmedchem.6b01026] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural polyphenols are organic chemicals which contain phenol units in their structures. They show antitumor properties. However, a key problem is their short half-life and low bioavailability under in vivo conditions. Still, definitively demonstrating the human benefits of isolated polyphenolic compounds (alone or in combination) using modern scientific methodology has proved challenging. The most common discrepancy between experimental and clinical observations is the use of nonphysiologically relevant concentrations of polyphenols in mechanistic studies. Thus, it remains highly controversial how applicable underlying mechanisms are with bioavailable concentrations and biological half-life. The present Perspective analyses proposed antitumor mechanisms, in vivo reported antitumor effects, and possible mechanisms that may explain discrepancies between bioavailability and bioefficacy. Polyphenol metabolism and possible toxic side effects are also considered. Our main conclusion emphasizes that these natural molecules (and their chemical derivatives) indeed can be very useful, not only as cancer chemopreventive agents but also in oncotherapy.
Collapse
Affiliation(s)
- José M Estrela
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - Salvador Mena
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - Elena Obrador
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - María Benlloch
- Department of Health and Functional Valorization, San Vicente Martir Catholic University , 46008 Valencia, Spain
| | - Gloria Castellano
- Department of Health and Functional Valorization, San Vicente Martir Catholic University , 46008 Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | | |
Collapse
|
61
|
Biasutto L, Mattarei A, Azzolini M, La Spina M, Sassi N, Romio M, Paradisi C, Zoratti M. Resveratrol derivatives as a pharmacological tool. Ann N Y Acad Sci 2017; 1403:27-37. [PMID: 28675763 DOI: 10.1111/nyas.13401] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
Prodrugs of resveratrol are under development. Among the long-term goals, still largely elusive, are (1) modulating physical properties (e.g., water-soluble derivatives bearing polyethylene glycol chains), (2) changing distribution in the body (e.g., galactosyl derivatives restricted to the intestinal lumen), (3) increasing absorption from the gastrointestinal tract (e.g., derivatives imitating the natural substrates of endogenous transporters), and (4) hindering phase II metabolism (e.g., temporarily blocking the hydroxyls), all contributing to (5) increasing bioavailability. The chemical bonds that have been tested for functionalization include carboxyester, acetal, and carbamate groups. A second approach, which can be combined with the first, seeks to reinforce or modify the biochemical activities of resveratrol by concentrating the compound at specific subcellular sites. An example is provided by mitochondria-targeted derivatives. These proved to be pro-oxidant and cytotoxic in vitro, selectively killing fast-growing and tumor cells when supplied in the low micromolar range. This suggests the possibility of anticancer applications.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Mattarei
- Department of Chemical Sciences, University of Padova, Padova, Italy.,Department of Pharmaceutical & Pharmacological Sciences, University of Padova, Padova, Italy
| | - Michele Azzolini
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Martina La Spina
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nicola Sassi
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Matteo Romio
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
62
|
Teo L, Crawford C, Snow J, Deuster PA, Bingham JJ, Gallon MD, O'Connell ML, Chittum HK, Arzola SM, Berry K. Phytochemicals to optimize cognitive function for military mission-readiness: a systematic review and recommendations for the field. Nutr Rev 2017; 75:49-72. [PMID: 28969340 DOI: 10.1093/nutrit/nux005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Context Optimizing cognitive performance and preventing cognitive impairments that result from exposure to high-stress situations are important to ensure mission-readiness for military personnel. Objective This systematic review assesses the quality of the evidence for plant-based foods and beverages, or their phytochemical constituents, across various outcomes related to cognitive function in healthy adult populations to develop research recommendations for the military. Data Sources PubMed, CINAHL, Embase, PsycInfo, and the Cochrane Library were searched. Study Selection Peer-reviewed randomized controlled trials published in the English language were eligible. Data Extraction Twenty-five trials were included and assessed for methodological quality, and descriptive data were extracted. Data Synthesis The acceptable (n = 16) to high-quality (n = 4) studies produced either no statistically significant effect or mixed results for enhancing cognitive function. Conclusions The evidence suggested that healthy populations do not experience significant changes in cognitive performance when consuming soy- and non-soy-sourced isoflavones or cocoa. Heterogeneity among other interventions precluded reaching formal conclusions surrounding the evidence. Research recommendations are offered, including conducting more studies on the effect of plant-based interventions on populations reflective of military populations when exposed to military-like situations.
Collapse
Affiliation(s)
- Lynn Teo
- Samueli Institute, Alexandria, Virginia, USA
- Thought Leadership & Innovation Foundation, McLean, Virginia, USA
| | - Cindy Crawford
- Samueli Institute, Alexandria, Virginia, USA
- Thought Leadership & Innovation Foundation, McLean, Virginia, USA
| | - James Snow
- Maryland University of Integrative Health, Laurel, Maryland, USA
| | - Patricia A Deuster
- Department of Military and Emergency Medicine, Consortium for Health and Military Performance, Uniformed Services University, Bethesda, Maryland, USA
| | | | | | | | | | | | - Kevin Berry
- Samueli Institute, Alexandria, Virginia, USA
- Thought Leadership & Innovation Foundation, McLean, Virginia, USA
| |
Collapse
|
63
|
Malakar S, Gibson PR, Barrett JS, Muir JG. Naturally occurring dietary salicylates: A closer look at common Australian foods. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2016.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
64
|
Martín-Aragón S, Jiménez-Aliaga KL, Benedí J, Bermejo-Bescós P. Neurohormetic responses of quercetin and rutin in a cell line over-expressing the amyloid precursor protein (APPswe cells). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1285-1294. [PMID: 27765347 DOI: 10.1016/j.phymed.2016.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/23/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Plant secondary metabolites may induce adaptive cellular stress-responses in a variety of cells including neurons at the sub-toxic doses ingested by humans. Such 'neurohormesis' phenomenon, activated by flavonoids such as quercetin or rutin, may involve cell responses driven by modulation of signaling pathways which are responsible for its neuroprotective effects. PURPOSE We attempt to explore the molecular mechanisms involved in the neurohormetic responses to quercetin and rutin exposure, in a SH-SY5Y cell line which stably overexpresses the amyloid precursor protein (APP) Swedish mutation, based on a biphasic concentration-response relationship for cell viability. METHODS We examined the impact of both natural compounds, at concentrations in its hormetic range on the following cell parameters: chymotrypsin-like activity of the proteasome system; PARP-1 protein levels and expression and caspase activation; APP processing; and the main endogenous antioxidant enzymes. RESULTS Proteasome activities following quercetin or rutin treatment were significantly augmented in comparison with non-treated cells. Activity of caspase-3 was significantly attenuated by treatment with quercetin or rutin. Modest increased levels of PARP-1 protein and mRNA transcripts were observed in relation to the mild increase of proteasome activity. Significant reductions of the full-length APP and sAPP protein and APP mRNA levels were related to significant enhancements of α-secretase ADAM-10 protein and mRNA transcripts and significant increases of BACE processing in cells exposed to rutin. Furthermore, quercetin or rutin treatment displayed an overall increase of the four antioxidant enzymes. CONCLUSIONS The upregulation of the proteasome activity observed upon quercetin or rutin treatment could be afforded by a mild increased of PARP-1. Consequently, targeting the proteasome by quercetin or rutin to enhance its activity in a mild manner could avoid caspase activation. Moreover, it is likely that APP processing of cells upon rutin treatment is mostly driven by the non-amyloidogenic pathway leading to a putative reduction of βA production. Overall induction of endogenous antioxidant enzymes under quercetin or rutin treatments of APPswe cells might modulate its proteasome activity. We might conclude that quercetin and rutin might exert a neurohormetic cell response affecting various signaling pathways and molecular networks associated with modulation of proteasome function.
Collapse
Affiliation(s)
- Sagrario Martín-Aragón
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Karim Lizeth Jiménez-Aliaga
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Juana Benedí
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Paloma Bermejo-Bescós
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
65
|
Hussain SA, Sulaiman AA, Balch C, Chauhan H, Alhadidi QM, Tiwari AK. Natural Polyphenols in Cancer Chemoresistance. Nutr Cancer 2016; 68:879-91. [DOI: 10.1080/01635581.2016.1192201] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
66
|
Singh NA, Mandal AKA, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 2016; 15:60. [PMID: 27268025 PMCID: PMC4897892 DOI: 10.1186/s12937-016-0179-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) enforce an overwhelming social and economic burden on society. They are primarily characterized through the accumulation of modified proteins, which further trigger biological responses such as inflammation, oxidative stress, excitotoxicity and modulation of signalling pathways. In a hope for cure, these diseases have been studied extensively over the last decade to successfully develop symptom-oriented therapies. However, so far no definite cure has been found. Therefore, there is a need to identify a class of drug capable of reversing neural damage and preventing further neural death. This review therefore assesses the reliability of the neuroprotective benefits of epigallocatechin-gallate (EGCG) by shedding light on their biological, pharmacological, antioxidant and metal chelation properties, with emphasis on their ability to invoke a range of cellular mechanisms in the brain. It also discusses the possible use of nanotechnology to enhance the neuroprotective benefits of EGCG.
Collapse
Affiliation(s)
- Neha Atulkumar Singh
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Abul Kalam Azad Mandal
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Zaved Ahmed Khan
- Centre for Interdisciplinary Biomedical Research, Adesh University, Bathinda, Punjab, India.
| |
Collapse
|
67
|
Ahn S, Shin SY, Jung Y, Jung H, Kim BS, Koh D, Lim Y. (1) H and (13) C NMR spectral assignments of novel flavonoids bearing benzothiazepine. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:382-390. [PMID: 26594038 DOI: 10.1002/mrc.4388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Seunghyun Ahn
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, 143-701, Korea
| | - Soon Young Shin
- Department of Biological Sciences, Konkuk University, Seoul, 143-701, Korea
| | - Yearam Jung
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, 143-701, Korea
| | - Hyeryoung Jung
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, 143-701, Korea
| | - Beom Soo Kim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, 143-701, Korea
| | - Dongsoo Koh
- Department of Applied Chemistry, Dongduk Women's University, Seoul, 136-714, Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, 143-701, Korea
| |
Collapse
|
68
|
Mu C, Yang Y, Zhu W. Gut Microbiota: The Brain Peacekeeper. Front Microbiol 2016; 7:345. [PMID: 27014255 PMCID: PMC4794499 DOI: 10.3389/fmicb.2016.00345] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/04/2016] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota regulates intestinal and extraintestinal homeostasis. Accumulating evidence suggests that the gut microbiota may also regulate brain function and behavior. Results from animal models indicate that disturbances in the composition and functionality of some microbiota members are associated with neurophysiological disorders, strengthening the idea of a microbiota–gut–brain axis and the role of microbiota as a “peacekeeper” in the brain health. Here, we review recent discoveries on the role of the gut microbiota in central nervous system-related diseases. We also discuss the emerging concept of the bidirectional regulation by the circadian rhythm and gut microbiota, and the potential role of the epigenetic regulation in neuronal cell function. Microbiome studies are also highlighted as crucial in the development of targeted therapies for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chunlong Mu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University Nanjing, China
| | - Yuxiang Yang
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University Nanjing, China
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
69
|
Hao DC, Xiao PG. Genomics and Evolution in Traditional Medicinal Plants: Road to a Healthier Life. Evol Bioinform Online 2015; 11:197-212. [PMID: 26461812 PMCID: PMC4597484 DOI: 10.4137/ebo.s31326] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Medicinal plants have long been utilized in traditional medicine and ethnomedicine worldwide. This review presents a glimpse of the current status of and future trends in medicinal plant genomics, evolution, and phylogeny. These dynamic fields are at the intersection of phytochemistry and plant biology and are concerned with the evolution mechanisms and systematics of medicinal plant genomes, origin and evolution of the plant genotype and metabolic phenotype, interaction between medicinal plant genomes and their environment, the correlation between genomic diversity and metabolite diversity, and so on. Use of the emerging high-end genomic technologies can be expanded from crop plants to traditional medicinal plants, in order to expedite medicinal plant breeding and transform them into living factories of medicinal compounds. The utility of molecular phylogeny and phylogenomics in predicting chemodiversity and bioprospecting is also highlighted within the context of natural-product-based drug discovery and development. Representative case studies of medicinal plant genome, phylogeny, and evolution are summarized to exemplify the expansion of knowledge pedigree and the paradigm shift to the omics-based approaches, which update our awareness about plant genome evolution and enable the molecular breeding of medicinal plants and the sustainable utilization of plant pharmaceutical resources.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, P. R. China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, P. R. China
| |
Collapse
|
70
|
The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochem Int 2015; 89:126-39. [PMID: 26260546 DOI: 10.1016/j.neuint.2015.08.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 02/01/2023]
Abstract
The projected increase in the incidence of dementia in the population highlights the urgent need for a more comprehensive understanding of how different aspects of lifestyle, in particular exercise and diet, may affect neural function and consequent cognitive performance throughout the life course. In this regard, flavonoids, found in a variety of fruits, vegetables and derived beverages, have been identified as a group of promising bioactive compounds capable of influencing different aspects of brain function, including cerebrovascular blood flow and synaptic plasticity, both resulting in improvements in learning and memory in mammalian species. However, the precise mechanisms by which flavonoids exert these actions are yet to be fully established, although accumulating data indicate an ability to interact with neuronal receptors and kinase signaling pathways which are key to neuronal activation and communication and synaptic strengthening. Alternatively or concurrently, there is also compelling evidence derived from human clinical studies suggesting that flavonoids can positively affect peripheral and cerebrovascular blood flow, which may be an indirect effective mechanism by which dietary flavonoids can impact on brain health and cognition. The current review examines the beneficial effects of flavonoids on both human and animal brain function and attempts to address and link direct and indirect actions of flavonoids and their derivatives within the central nervous system (CNS).
Collapse
|
71
|
Longevity extension by phytochemicals. Molecules 2015; 20:6544-72. [PMID: 25871373 PMCID: PMC6272139 DOI: 10.3390/molecules20046544] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
Phytochemicals are structurally diverse secondary metabolites synthesized by plants and also by non-pathogenic endophytic microorganisms living within plants. Phytochemicals help plants to survive environmental stresses, protect plants from microbial infections and environmental pollutants, provide them with a defense from herbivorous organisms and attract natural predators of such organisms, as well as lure pollinators and other symbiotes of these plants. In addition, many phytochemicals can extend longevity in heterotrophic organisms across phyla via evolutionarily conserved mechanisms. In this review, we discuss such mechanisms. We outline how structurally diverse phytochemicals modulate a complex network of signaling pathways that orchestrate a distinct set of longevity-defining cellular processes. This review also reflects on how the release of phytochemicals by plants into a natural ecosystem may create selective forces that drive the evolution of longevity regulation mechanisms in heterotrophic organisms inhabiting this ecosystem. We outline the most important unanswered questions and directions for future research in this vibrant and rapidly evolving field.
Collapse
|