51
|
Additive or subtractive manufacturing of crown patterns used for pressing or casting: A trueness analysis. J Dent 2022; 124:104221. [PMID: 35820503 DOI: 10.1016/j.jdent.2022.104221] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES To investigate the effect of subtractive and additive manufacturing techniques on the trueness of crown patterns used for pressing or casting. MATERIAL AND METHODS A complete-coverage mandibular right first molar crown was designed in standard tessellation language (STL) format. This STL served as the control (C-STL) and was used to fabricate 30 crown patterns in 3D-printed resin (PR, ProArt Print Wax), millable wax suitable for casting (BW, ProArt CAD Wax Blue), and millable wax suitable for pressing (YW, ProArt CAD Wax Yellow) (n = 10). Subtractively manufactured patterns were fabricated by using a 5-axis milling unit (PrograMill PM7), while 3D-printed patterns were fabricated by using a digital light processing-based 3D printer (PrograPrint PR5; Ivoclar Vivadent, Schaan, Liechtenstein). All fabricated patterns were digitized by using an intraoral scanner (CEREC Primescan SW 5.2) to generate test-STLs. C-STL and test-STLs were transferred into a 3D analysis software (Medit Link v 2.4.4). Trueness evaluation was performed at 4 different surfaces (external, intaglio with margin, marginal, and intaglio without margin) and for complete scan meshes (overall) by using the root mean square (RMS) method. Data were analyzed with Kruskal-Wallis and Mann-Whitney U tests (α = .05). RESULTS RMS values varied significantly at all surfaces (P < .001), except for marginal surface (P = .151). PR had the highest RMS values at external surface (P ≤ .007), intaglio surfaces (with (P ≤ .003) and without margin (P ≤ .005)), and overall (P ≤ .01). No significant differences were observed between YW and BW (P ≥ .223). CONCLUSION Patterns fabricated by using subtractive manufacturing exhibited high trueness. The deviation values, in general, were small, particularly at intaglio and marginal surfaces; thus, clinical difference in crown-fit may be negligible using additive or subtractive technique. CLINICAL SIGNIFICANCE The fit of definitive crowns may be similar when tested crown patterns are additively or subtractively manufactured. However, crowns fabricated by using tested 3D-printed resin patterns may require more chairside adjustments compared with those fabricated by using subtractively manufactured wax patterns.
Collapse
|
52
|
Frasheri I, Aumer K, Keßler A, Miosge N, Folwaczny M. Effects of resin materials dedicated for additive manufacturing of temporary dental restorations on human gingival keratinocytes. J ESTHET RESTOR DENT 2022; 34:1105-1112. [PMID: 35731110 DOI: 10.1111/jerd.12938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study investigated the effect of eluates of conventional and 3D-printed resin materials for manufacturing temporary dental restorations on gingival keratinocytes. METHODS Three-dimensional (3D)-printed resin materials: 3Delta temp (Deltamed), NextDent MFH (Nextdent), Freeprint temp (Detax), GC temp (GC), were compared to Grandio disc (Voco) and Luxatemp (DMG). Human gingival keratinocytes (IHGKs) were exposed to eluates of the materials and XTT assays were performed at 24 h, 48 h, 72 h, or 144 h. For quantification of the proinflammatory response, the protein amount of IL-6 and 8 was determined in the supernatants using ELISA. One-way ANOVA with post hoc analysis was used to compare differences in cell viability and IL-6 and IL-8 levels between groups. RESULTS At 24 h, and more remarkably at 48 h, a significant decrease in cell viability occurred for the 3D-printed materials compared to the untreated IHGKs, but also compared to Grandio disc and Luxatemp. Except for the expression of IL-8 in presence of the eluate of Grandio disc at 24 and 48 h, all tested materials caused attenuation of IL-6 and 8 from IHGKs for any observation period. CONCLUSIONS The materials for additive manufacturing affect cell proliferation differently than the subtractive manufactured material Grandio disc and the conventional material Luxatemp. CLINICAL SIGNIFICANCE In comparison to conventional and subtractive manufactured restorations, 3D printed temporary restorations might induce more negative effects on the gingival and probably also on pulpal health since viability and the proinflammatory response of oral keratinocytes are more intensively affected by these materials.
Collapse
Affiliation(s)
- Iris Frasheri
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Aumer
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Andreas Keßler
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Nicolai Miosge
- Tissue Regeneration Work Group, Department of Prosthodontics, Medical Faculty, Georg-August-University, Göttingen, Germany
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
53
|
Pantea M, Ciocoiu RC, Greabu M, Ripszky Totan A, Imre M, Țâncu AMC, Sfeatcu R, Spînu TC, Ilinca R, Petre AE. Compressive and Flexural Strength of 3D-Printed and Conventional Resins Designated for Interim Fixed Dental Prostheses: An In Vitro Comparison. MATERIALS 2022; 15:ma15093075. [PMID: 35591410 PMCID: PMC9104158 DOI: 10.3390/ma15093075] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/19/2022]
Abstract
A provisionalization sequence is essential for obtaining a predictable final prosthetic outcome. An assessment of the mechanical behavior of interim prosthetic materials could orient clinicians towards selecting an appropriate material for each clinical case. The aim of this study was to comparatively evaluate the mechanical behavior—with compressive and three-point flexural tests—of certain 3D-printed and conventional resins used to obtain interim fixed dental prostheses. Four interim resin materials were investigated: two 3D-printed resins and two conventional resins (an auto-polymerized resin and a pressure/heat-cured acrylic resin). Cylindrically shaped samples (25 × 25 mm/diameter × height) were obtained for the compression tests and bar-shaped samples (80 × 20 × 5 mm/length × width × thickness) were produced for the flexural tests, observing the producers’ recommendations. The resulting 40 resin samples were subjected to mechanical tests using a universal testing machine. Additionally, a fractographic analysis of failed samples in bending was performed. The results showed that the additive manufactured samples exhibited higher elastic moduli (2.4 ± 0.02 GPa and 2.6 ± 0.18 GPa) than the conventional samples (1.3 ± 0.19 GPa and 1.3 ± 0.38 GPa), as well as a higher average bending strength (141 ± 17 MPa and 143 ± 15 MPa) when compared to the conventional samples (88 ± 10 MPa and 76 ± 7 MPa); the results also suggested that the materials were more homogenous when produced via additive manufacturing.
Collapse
Affiliation(s)
- Mihaela Pantea
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 20221 Bucharest, Romania; (M.P.); (T.C.S.); (A.E.P.)
| | - Robert Cătălin Ciocoiu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, 060042 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (M.G.); (A.R.T.)
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (M.G.); (A.R.T.)
| | - Marina Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania;
| | - Ana Maria Cristina Țâncu
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania;
- Correspondence: (A.M.C.Ț.); (R.S.)
| | - Ruxandra Sfeatcu
- Department of Oral Health and Community Dentistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei Street, 010221 Bucharest, Romania
- Correspondence: (A.M.C.Ț.); (R.S.)
| | - Tudor Claudiu Spînu
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 20221 Bucharest, Romania; (M.P.); (T.C.S.); (A.E.P.)
| | - Radu Ilinca
- Department of Biophysics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei Street, 010221 Bucharest, Romania;
| | - Alexandru Eugen Petre
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 20221 Bucharest, Romania; (M.P.); (T.C.S.); (A.E.P.)
| |
Collapse
|
54
|
Koch GK, Gharib H, Liao P, Liu H. Guided Access Cavity Preparation Using Cost-Effective 3D Printers. J Endod 2022; 48:909-913. [PMID: 35421408 DOI: 10.1016/j.joen.2022.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE This in vitro study aimed to evaluate the accuracy and precision of desktop 3D printers when fabricating stents for guided endodontics. MATERIALS AND METHODS A stent was designed using planning software for guided endodontic access on a typodont model. Four different 3D printers were used to fabricate an identical stent, one per printer. Each stent was then used to gain access to the artificial endodontic canal on a typodont tooth, and was repeated ten times per stent by the same operator. Each of the accessed typodont teeth were scanned by a reference scanner and then imported into the inspection software. Inspection software utilized a best-fit alignment to automatically calculate absolute deviation at the base and tip of the bur. RESULTS The mean distance between the planned and actual position of the bur were low, ranging from 0.31 to 0.68mm. Statistically significant differences were found among the four groups (F (3, 36) = 10.67, p <.05). Post-hoc comparison revealed that Group Form2 significantly varied with Groups Form3 and Carbon (p <.05 and p <.05, respectively). Group Form3 obtained the most accurate and most precise axial deviation both coronally and apically. CONCLUSION All of the printers tested produced stents for guided access that allowed for a high level of accuracy in obtaining access to the artificial endodontic canal, which would justify the trial of cost-effective 3D printers for guided endodontic access and necessitates further clinical research on teeth with pulp canal obliteration.
Collapse
Affiliation(s)
- George K Koch
- Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts; Department of Endodontics, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts.
| | - Hisham Gharib
- Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts; Department of Restorative Sciences & Biomaterials, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Peixi Liao
- Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts; Department of Restorative Sciences & Biomaterials, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Hongsheng Liu
- Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts; Department of Endodontics, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
55
|
Digital Design of Different Transpalatal Arches Made of Polyether Ether Ketone (PEEK) and Determination of the Force Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The aim of this study was to investigate whether the polymer polyether ether ketone (PEEK), which is approved for (dental) medical appliances, is suitable for the production of orthodontic treatment appliances. Different geometries of transpalatal arches (TPAs) were designed by Computer Aided Design (CAD). Out of a number of different designs and dimensions, four devices were selected and manufactured by milling out of PEEK. A finite element analysis (FEA) and a mechanical in vitro testing were performed to analyze the force systems acting on the first upper molars. Up to an activation (transversal compression) of 4 mm per side (total 8 mm), the PEEK TPAs generated forces between 1.3 and 3.1 Newton (N) in the FEA and between 0.7 and 3.2 N in the mechanical testing. The moments in the oro-vestibular direction were measured between 2.1 and 6.6 Nmm in the FEA and between 1.1 and 6.0 Nmm in the mechanical testing, depending on the individual TPA geometry. With the help of the FEA, it was possible to calculate the von Mises stresses and the deformation patterns of the different TPAs. In some areas, local von Mises stresses exceeded 154–165 MPa, which could lead to a permanent deformation of the respective appliances. In the in vitro testing, however, none of the TPAs showed any visible deformation or fractures. With the help of the FEA and the mechanical testing, it could be shown that PEEK might be suitable as a material for the production of orthodontic TPAs.
Collapse
|
56
|
Schweiger J, Güth JF, Edelhoff D, Seidel K, Graf T. Application of 3D-printed colored 3D-models for the fabrication of full ceramic restorations: A technical report. J ESTHET RESTOR DENT 2022; 34:235-243. [PMID: 35040541 DOI: 10.1111/jerd.12873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVE This paper presents a novel digital workflow that expedites and facilitates the manufacturing of high-end full-ceramic restorations based on "Print and Press"-Technology combined with 3D-printed colored 3D-models. CLINICAL CONSIDERATIONS Despite ongoing innovations and developments in the digital workflow, the precision, and the final esthetic outcome is still limited compared with conventional press ceramics. The proposed method combines the advantages of digital scan- and design technologies with the proven conventional press-technology to accomplish high-end full-ceramic restorations. The restoration is digitally designed, the data set is 3D-printed in resin that can be burned out, subsequently conventionally embedded and pressed. Final esthetic finishing of the partial restorations is done on a 3D-printed physical colored 3D-model. CONCLUSION The report describes synergetic effects of digital and analog procedures. 3D-printed colored 3D-models can positively support the manufacturing of full ceramic restorations regarding their optical integration. Therefore, the use of 3D-printed colored 3D-models signifies a new innovative technique with many promising application areas. CLINICAL SIGNIFICANCE The combination of excellent clinical long-term data for pressed ceramic restorations and proven digital processes, like intraoral scanning, design, and additive manufacturing, in the dental field promise an individual workflow for predictability and excellent esthetics.
Collapse
Affiliation(s)
- Josef Schweiger
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, Munich, Germany
| | - Jan-Frederik Güth
- Department of Prosthodontics, Center for Dentistry and Oral Medicine (Carolinum), Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Daniel Edelhoff
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, Munich, Germany
| | - Kathrin Seidel
- Department of Prosthodontics, Center for Dentistry and Oral Medicine (Carolinum), Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Tobias Graf
- Department of Prosthodontics, Center for Dentistry and Oral Medicine (Carolinum), Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
57
|
Won S, Ko KH, Park CJ, Cho LR, Huh YH. Effect of barium silicate filler content on mechanical properties of resin nanoceramics for additive manufacturing. J Adv Prosthodont 2022; 14:315-323. [DOI: 10.4047/jap.2022.14.5.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/21/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Sun Won
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Kyung-Ho Ko
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Chan-Jin Park
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Lee-Ra Cho
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Yoon-Hyuk Huh
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
58
|
Pantea M, Totan AR, Imre M, Petre AE, Țâncu AMC, Tudos C, Farcașiu AT, Butucescu M, Spînu TC. Biochemical Interaction between Materials Used for Interim Prosthetic Restorations and Saliva. MATERIALS (BASEL, SWITZERLAND) 2021; 15:226. [PMID: 35009373 PMCID: PMC8746092 DOI: 10.3390/ma15010226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to analyze the oxidative stress level and inflammatory status of saliva in the presence of certain materials used for obtaining interim prosthetic restorations. Four types of interim resin materials were investigated: a pressure/heat-cured acrylic resin (Superpont C+B, SpofaDental a.s Czech Republic, /KaVo Kerr Group), a milled resin (Telio CAD polymethyl methacrylate, Ivoclar Vivadent AG, Liechtenstein), a 3D printed resin (NextDent C&B MFH, NextDent by 3D Systems, the Netherlands), and a pressure/heat-cured micro-filled indirect composite resin (SR Chromasit, Ivoclar Vivadent AG, Liechtenstein). The disk-shaped resin samples (30 mm diameter, 2 mm high) were obtained in line with the producers' recommendations. The resulting resin specimens were incubated with saliva samples collected from twenty healthy volunteers. In order to analyze the antioxidant activity of the tested materials, certain salivary parameters were evaluated before and after incubation: uric acid, gamma glutamyl transferase (GGT), oxidative stress responsive kinase-1 (OXSR-1), and total antioxidant capacity (TAC); the salivary levels of tumor necrosis factor (TNFα) and interleukin-6 (IL-6) (inflammatory markers) were measured as well. The obtained results are overall favorable, showing that the tested materials did not cause significant changes in the salivary oxidative stress level and did not influence the inflammatory salivary status.
Collapse
Affiliation(s)
- Mihaela Pantea
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania; (M.P.); (A.E.P.); (T.C.S.)
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Marina Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania;
| | - Alexandru Eugen Petre
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania; (M.P.); (A.E.P.); (T.C.S.)
| | - Ana Maria Cristina Țâncu
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania;
| | - Cristian Tudos
- Resident in General Dentistry, Emergency Hospital of Saint Pantelimon, 021661 Bucharest, Romania;
| | - Alexandru Titus Farcașiu
- Department of Removable Prosthodontics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania;
| | - Mihai Butucescu
- Department of Operative Dentistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania
| | - Tudor Claudiu Spînu
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020221 Bucharest, Romania; (M.P.); (A.E.P.); (T.C.S.)
| |
Collapse
|
59
|
Hata K, Ikeda H, Nagamatsu Y, Masaki C, Hosokawa R, Shimizu H. Development of Dental Poly(methyl methacrylate)-Based Resin for Stereolithography Additive Manufacturing. Polymers (Basel) 2021; 13:polym13244435. [PMID: 34960985 PMCID: PMC8706392 DOI: 10.3390/polym13244435] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(methyl methacrylate) (PMMA) is widely used in dental applications. However, PMMA specialized for stereolithography (SLA) additive manufacturing (3D-printing) has not been developed yet. This study aims to develop a novel PMMA-based resin for SLA 3D-printing by mixing methyl methacrylate (MMA), ethylene glycol dimethacrylate (EGDMA), and PMMA powder in various mixing ratios. The printability and the viscosity of the PMMA-based resins were examined to determine their suitability for 3D-printing. The mechanical properties (flexural strength and Vickers hardness), shear bond strength, degree of conversion, physicochemical properties (water sorption and solubility), and cytotoxicity for L929 cells of the resulting resins were compared with those of three commercial resins: one self-cured resin and two 3D-print resins. EGDMA and PMMA were found to be essential components for SLA 3D-printing. The viscosity increased with PMMA content, while the mechanical properties improved as EGDMA content increased. The shear bond strength tended to decrease as EGDMA increased. Based on these characteristics, the optimal composition was determined to be 30% PMMA, 56% EGDMA, 14% MMA with flexural strength (84.6 ± 7.1 MPa), Vickers hardness (21.6 ± 1.9), and shear bond strength (10.5 ± 1.8 MPa) which were comparable to or higher than those of commercial resins. The resin’s degree of conversion (71.5 ± 0.7%), water sorption (19.7 ± 0.6 μg/mm3), solubility (below detection limit), and cell viability (80.7 ± 6.2% at day 10) were all acceptable for use in an oral environment. The printable PMMA-based resin is a potential candidate material for dental applications.
Collapse
Affiliation(s)
- Kentaro Hata
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (K.H.); (C.M.); (R.H.)
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (Y.N.); (H.S.)
| | - Hiroshi Ikeda
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (Y.N.); (H.S.)
- Correspondence: ; Tel.: +81-93-582-1131; Fax: +81-93-592-1699
| | - Yuki Nagamatsu
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (Y.N.); (H.S.)
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (K.H.); (C.M.); (R.H.)
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (K.H.); (C.M.); (R.H.)
| | - Hiroshi Shimizu
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (Y.N.); (H.S.)
| |
Collapse
|
60
|
Li H, Ma K, Sun Y, Chen H. Design parameters of polylactic acid custom trays manufactured by fused deposition modeling for partial edentulism: Consideration of the accuracy of the definitive cast. J Prosthet Dent 2021; 127:288.e1-288.e11. [PMID: 34924189 DOI: 10.1016/j.prosdent.2021.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
STATEMENT OF PROBLEM The effects of design parameters of polylactic acid (PLA) custom trays manufactured by fused deposition modeling (FDM) on the accuracy of partially edentulous definitive casts have not been thoroughly explored. PURPOSE The purpose of this in vitro study was to explore the effects of the impression gap and base thickness of FDM-printed PLA custom trays on the accuracy of maxillary and mandibular definitive casts with Kennedy class II, modification I partial edentulism and to optimize these 2 design parameters. MATERIAL AND METHODS Custom trays with a 1-mm, 2-mm, or 3-mm impression gap and 1-mm, 1.5-mm, or 2-mm base thickness were designed on a pair of maxillary and mandibular resin casts and printed with PLA materials by using an FDM printer. Two-step silicone impressions were made by using these custom trays or stock metal trays on resin casts. Digital scans of definitive casts from these impressions were aligned one by one with those of resin casts. Three-dimensional deviations of the tooth area, mucosal area, and overall area were analyzed by using root mean square (RMS) as a metric. Two-way and 1-way analyses of variance with the RMSs as the dependent variable were carried out (α=.05). RESULTS The accuracy of definitive casts from custom trays with a 2.0-mm or 3.0-mm impression gap and 1.5-mm or 2.0-mm base thickness was significantly better than that of definitive casts from custom trays with a 1.0-mm impression gap or 1.0-mm base thickness and was not significantly different from that of definitive casts from stock metal trays. CONCLUSIONS Considering the accuracy of definitive casts, the optimal base thickness of FDM-printed PLA custom trays was 1.5 mm or 2.0 mm and the optimal impression gap was 2.0 mm or 3.0 mm for Kennedy class II, modification I partial edentulism.
Collapse
Affiliation(s)
- Hong Li
- Researcher, First Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, PR China; Researcher, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, PR China
| | - Kenan Ma
- Graduate student, Institute of Medical Technology, Peking University Health Science Center, Beijing, PR China; Researcher, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, PR China
| | - Yuchun Sun
- Professor, Institute of Medical Technology, Peking University Health Science Center, Beijing, PR China; Professor, Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, PR China; Researcher, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, PR China
| | - Hu Chen
- Researcher, Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, PR China; Researcher, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, PR China.
| |
Collapse
|
61
|
Nasiry Khanlar L, Revilla-León M, Barmak AB, Ikeda M, Alsandi Q, Tagami J, Zandinejad A. Surface roughness and shear bond strength to composite resin of additively manufactured interim restorative material with different printing orientations. J Prosthet Dent 2021; 129:788-795. [PMID: 34602276 DOI: 10.1016/j.prosdent.2021.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
STATEMENT OF PROBLEM Additive manufacturing (AM) is a technology that has been recently introduced into dentistry for fabricating dental devices, including interim restorations. Printing orientation is one of the important and influential factors in AM that affects the accuracy, surface roughness, and mechanical characteristics of printed objects. However, the optimal print orientation for best bond strength to 3D-printed interim restorations remains unclear. PURPOSE The purpose of this in vitro study was to evaluate the effect of printing orientation on the surface roughness, topography, and shear bond strength of AM interim restorations to composite resin. MATERIAL AND METHODS Disk-shaped specimens (Ø20×10 mm) were designed by a computer-aided design software program (Geomagic freeform), and a standard tessellation language (STL) file was obtained. The STL file was used for the AM of 60 disks in 3 different printing orientations (0, 45, and 90 degrees) by using E-Dent 400 C&B material. An autopolymerizing interim material (Protemp 4) was used as a control group (CNT), and specimens were fabricated by using the injecting mold technique (n=20). Surface roughness (Sa, Sz parameters) was measured by using a 3D-laser scanning confocal microscope (CLSM) at ×20 magnification. For shear bond testing, the specimens were embedded in polymethylmethacrylate autopolymerized resin (n=20). A flowable composite resin was bonded by using an adhesive system. The specimens were stored in distilled water at 37 °C for 1 day and thermocycled 5000 times. The shear bond strength (SBS) was measured at a crosshead speed of 1 mm/min. The data were analyzed by 1-way ANOVA, followed by the Tukey HSD test (α=.05). RESULTS The 45-degree angulation printing group reported the highest Sa, followed by the CNT and the 90-degree and 0-degree angulations with significant difference between them (P<.001). The CNT showed the highest Sz, followed by the 45-degree, 90-degree, and 0-degree angulations. The mean ±standard deviation SBS was 28.73 ±5.82 MPa for the 90-degree, 28.21 ±10.69 MPa for the 45-degree, 26.21 ±11.19 MPa for the 0-degree angulations and 25.39 ±4.67 MPa for the CNT. However, no statistically significant difference was found in the SBS among the groups (P=.475). CONCLUSIONS Printing orientation significantly impacted the surface roughness of 3D-printed resin for interim restorations. However, printing orientation did not significantly affect the bond strength with composite resin.
Collapse
Affiliation(s)
- Leila Nasiry Khanlar
- PhD Candidate, Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Marta Revilla-León
- Assistant Professor and Assistant Program Director AEGD Residency Program, College of Dentistry, Texas A&M University, Dallas, Texas; Affiliate Faculty Graduate Prosthodontics, School of Dentistry, University of Washington, Seattle, Wash; Researcher at Revilla Research Center, Madrid, Spain
| | - Abdul Basir Barmak
- Assistant Professor of Clinical Research and Biostatistics, EIOH Medical Center, University of Rochester, Rochester, NY
| | - Masaomi Ikeda
- Senior Lecturer, Oral Prosthetic Engineering, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Qutaiba Alsandi
- PhD Candidate, Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junji Tagami
- Professor, Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amirali Zandinejad
- Associate Professor with Tenure and Program Director AEGD Residency Program, College of Dentistry, Texas A&M University, Dallas, Texas.
| |
Collapse
|
62
|
Schweiger J, Edelhoff D, Güth JF. 3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing. J Clin Med 2021; 10:2010. [PMID: 34067212 PMCID: PMC8125828 DOI: 10.3390/jcm10092010] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
Popular media now often present 3D printing as a widely employed technology for the production of dental prostheses. This article aims to show, based on factual information, to what extent 3D printing can be used in dental laboratories and dental practices at present. It attempts to present a rational evaluation of todays´ applications of 3D printing technology in the context of dental restorations. In addition, the article discusses future perspectives and examines the ongoing viability of traditional dental laboratory services and manufacturing processes. It also shows which expertise is needed for the digital additive manufacturing of dental restorations.
Collapse
Affiliation(s)
- Josef Schweiger
- Department of Prosthetic Dentistry, University Hospital, Ludwig-Maximilians University Munich, 80336 Munich, Germany;
| | - Daniel Edelhoff
- Department of Prosthetic Dentistry, University Hospital, Ludwig-Maximilians University Munich, 80336 Munich, Germany;
| | - Jan-Frederik Güth
- Poliklinik für Zahnärztliche Prothetik, Center for Dentistry and Oral Medicine (Carolinum), Goethe-University, 60596 Frankfurt am Main, Germany
| |
Collapse
|
63
|
Lee BI, You SG, You SM, Kim DY, Kim JH. Evaluating the accuracy (trueness and precision) of interim crowns manufactured using digital light processing according to post-curing time: An in vitro study. J Adv Prosthodont 2021; 13:89-99. [PMID: 34025957 PMCID: PMC8110736 DOI: 10.4047/jap.2021.13.2.89] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/16/2021] [Accepted: 03/26/2021] [Indexed: 01/14/2023] Open
Abstract
PURPOSE This study aimed to compare the accuracy (trueness and precision) of interim crowns fabricated using DLP (digital light processing) according to post-curing time. MATERIALS AND METHODS A virtual stone study die of the upper right first molar was created using a dental laboratory scanner. After designing interim crowns on the virtual study die and saving them as Standard Triangulated Language files, 30 interim crowns were fabricated using a DLP-type 3D printer. Additively manufactured interim crowns were post-cured using three different time conditions-10-minute post-curing interim crown (10-MPCI), 20-minute post-curing interim crown (20-MPCI), and 30-minute post-curing interim crown (30-MPCI) (n = 10 per group). The scan data of the external and intaglio surfaces were overlapped with reference crown data, and trueness was measured using the best-fit alignment method. In the external and intaglio surface groups (n = 45 per group), precision was measured using a combination formula exclusive to scan data (10C2). Significant differences in accuracy (trueness and precision) data were analyzed using the Kruskal-Wallis H test, and post hoc analysis was performed using the Mann-Whitney U test with Bonferroni correction (α=.05). RESULTS In the 10-MPCI, 20-MPCI, and 30-MPCI groups, there was a statistically significant difference in the accuracy of the external and intaglio surfaces (P <.05). On the external and intaglio surfaces, the root mean square (RMS) values of trueness and precision were the lowest in the 10-MPCI group. CONCLUSION Interim crowns with 10-minute post-curing showed high accuracy.
Collapse
Affiliation(s)
- Beom-Il Lee
- Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University, Seoul, Republic of Korea.,Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Seung-Gyu You
- Health Science Research Institute, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Seung-Min You
- Health Science Research Institute, College of Health Science, Korea University, Seoul, Republic of Korea
| | | | - Ji-Hwan Kim
- Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
64
|
Khorsandi D, Fahimipour A, Abasian P, Saber SS, Seyedi M, Ghanavati S, Ahmad A, De Stephanis AA, Taghavinezhaddilami F, Leonova A, Mohammadinejad R, Shabani M, Mazzolai B, Mattoli V, Tay FR, Makvandi P. 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomater 2021; 122:26-49. [PMID: 33359299 DOI: 10.1016/j.actbio.2020.12.044] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
3D and 4D printing are cutting-edge technologies for precise and expedited manufacturing of objects ranging from plastic to metal. Recent advances in 3D and 4D printing technologies in dentistry and maxillofacial surgery enable dentists to custom design and print surgical drill guides, temporary and permanent crowns and bridges, orthodontic appliances and orthotics, implants, mouthguards for drug delivery. In the present review, different 3D printing technologies available for use in dentistry are highlighted together with a critique on the materials available for printing. Recent reports of the application of these printed platformed are highlighted to enable readers appreciate the progress in 3D/4D printing in dentistry.
Collapse
|
65
|
Saleh Alghamdi S, John S, Roy Choudhury N, Dutta NK. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers (Basel) 2021; 13:753. [PMID: 33670934 PMCID: PMC7957542 DOI: 10.3390/polym13050753] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
The use of additive manufacturing (AM) has moved well beyond prototyping and has been established as a highly versatile manufacturing method with demonstrated potential to completely transform traditional manufacturing in the future. In this paper, a comprehensive review and critical analyses of the recent advances and achievements in the field of different AM processes for polymers, their composites and nanocomposites, elastomers and multi materials, shape memory polymers and thermo-responsive materials are presented. Moreover, their applications in different fields such as bio-medical, electronics, textiles, and aerospace industries are also discussed. We conclude the article with an account of further research needs and future perspectives of AM process with polymeric materials.
Collapse
Affiliation(s)
- Saad Saleh Alghamdi
- School of Engineering, Chemical and Environmental Engineering, RMIT University, Melbourne 3000, Australia
| | - Sabu John
- School of Engineering, Manufacturing, Materials and Mechatronics, RMIT University, Bundoora 3083, Australia
| | - Namita Roy Choudhury
- School of Engineering, Chemical and Environmental Engineering, RMIT University, Melbourne 3000, Australia
| | - Naba K Dutta
- School of Engineering, Chemical and Environmental Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
66
|
Parize H, Dias Corpa Tardelli J, Bohner L, Sesma N, Muglia VA, Cândido Dos Reis A. Digital versus conventional workflow for the fabrication of physical casts for fixed prosthodontics: A systematic review of accuracy. J Prosthet Dent 2021; 128:25-32. [PMID: 33551140 DOI: 10.1016/j.prosdent.2020.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
STATEMENT OF PROBLEM A consensus on the accuracy of additively manufactured casts in comparison with those fabricated by using conventional techniques for fixed dental prostheses is lacking. PURPOSE The purpose of this systematic review was to determine the accuracy of additively manufactured casts for tooth- or implant-supported fixed dental prostheses in comparison with that of gypsum casts. MATERIAL AND METHODS This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and was registered with the International Prospective Register of Systematic Reviews (PROSPERO) database (CDR42020161006). Eight databases were searched in December 2019 and updated in September 2020. Studies evaluating the dimensional accuracy of additively manufactured casts for fixed dental prostheses in comparison with that of gypsum casts were included. An adapted checklist for reporting in vitro studies (Checklist for Reporting In vitro Studies guidelines) was used to assess the risk of bias. RESULTS Eight studies evaluating tooth-supported fixed dental prosthesis casts and 7 studies evaluating implant-supported fixed dental prosthesis casts were eligible for this review. Gypsum casts showed greater accuracy (trueness and precision) in most studies, although additively manufactured casts also yielded highly precise data. One study was associated with a low risk of bias, 9 with a moderate risk of bias, and 5 with a high risk of bias. CONCLUSIONS In vitro studies showed that additively manufactured casts and gypsum casts share similar accuracy within the acceptable range for the fabrication of casts. The quality of scanned data, additive manufacture technology, printing settings, and postprocessing procedures plays an essential role in the accuracy of additively manufactured casts. Clinical studies are required to confirm these findings.
Collapse
Affiliation(s)
- Hian Parize
- Postgraduate student, Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (FORP-USP), Ribeirão Preto, Brazil
| | - Juliana Dias Corpa Tardelli
- Postgraduate student, Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (FORP-USP), Ribeirão Preto, Brazil
| | - Lauren Bohner
- Assistant Professor, Department of Cranio-Maxillofacial Surgery, University Hospital Muenster (UKM), Muenster, Germany
| | - Newton Sesma
- Assistant Professor, Department of Prosthodontics University of São Paulo School of Dentistry (FO-USP), São Paulo, Brazil
| | - Valdir Antônio Muglia
- Associate Professor, Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (FORP-USP), Ribeirão Preto, Brazil
| | - Andréa Cândido Dos Reis
- Associate Professor, Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (FORP-USP), Ribeirão Preto, Brazil.
| |
Collapse
|
67
|
Additive Manufacturing Processes in Medical Applications. MATERIALS 2021; 14:ma14010191. [PMID: 33401601 PMCID: PMC7796413 DOI: 10.3390/ma14010191] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 12/29/2022]
Abstract
Additive manufacturing (AM, 3D printing) is used in many fields and different industries. In the medical and dental field, every patient is unique and, therefore, AM has significant potential in personalized and customized solutions. This review explores what additive manufacturing processes and materials are utilized in medical and dental applications, especially focusing on processes that are less commonly used. The processes are categorized in ISO/ASTM process classes: powder bed fusion, material extrusion, VAT photopolymerization, material jetting, binder jetting, sheet lamination and directed energy deposition combined with classification of medical applications of AM. Based on the findings, it seems that directed energy deposition is utilized rarely only in implants and sheet lamination rarely for medical models or phantoms. Powder bed fusion, material extrusion and VAT photopolymerization are utilized in all categories. Material jetting is not used for implants and biomanufacturing, and binder jetting is not utilized for tools, instruments and parts for medical devices. The most common materials are thermoplastics, photopolymers and metals such as titanium alloys. If standard terminology of AM would be followed, this would allow a more systematic review of the utilization of different AM processes. Current development in binder jetting would allow more possibilities in the future.
Collapse
|
68
|
Influence of the Postcuring Process on Dimensional Accuracy and Seating of 3D-Printed Polymeric Fixed Prostheses. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2150182. [PMID: 33274198 PMCID: PMC7683121 DOI: 10.1155/2020/2150182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 11/30/2022]
Abstract
The postcuring process is essential for 3-dimensional (3D) printing of photopolymer-based dental prostheses. However, the deformation of prostheses resulting from the postcuring process has not been fully investigated. The purpose of this study was to evaluate the effects of different postcuring methods on the fit and dimensional accuracy of 3D-printed full-arch polymeric fixed prostheses. A study stone model with four prosthetic implant abutments was prepared. A full-arch fixed dental prosthesis was designed, and the design was transferred to dental computer-aided manufacturing (CAM) software in which supports were designed to the surface of the prosthesis design for 3D printing. Using a biocompatible photopolymer and a stereolithography apparatus 3D printer, polymeric prostheses were produced (N = 21). In postcuring, the printed prostheses were polymerized in three different ways: the prosthesis alone, the prosthesis with supports, or the prosthesis on a stone model. Geometric accuracy of 3D-printed prostheses, marginal gap, internal gap, and intermolar distance was evaluated using microscopy and digital techniques. Kruskal-Wallis and Mann-Whitney U tests with Bonferroni correction were used for the comparison of results among groups (α = 0.05). In general, the mean marginal and internal gaps of cured prostheses were the smallest when the printed prostheses were cured with seating on the stone model (P < 0.05). With regard to the adaptation accuracy, the presence of supports during the postcuring process did not make a significant difference. Error in the intermolar distance was significantly smaller in the model seating condition than in the other conditions (P < 0.001). Seating 3D-printed prosthesis on the stone model reduces adverse deformation in the postcuring process, thereby enabling the fabrication of prostheses with favorable adaptation.
Collapse
|
69
|
Jaber ST, Hajeer MY, Khattab TZ, Mahaini L. Evaluation of the fused deposition modeling and the digital light processing techniques in terms of dimensional accuracy of printing dental models used for the fabrication of clear aligners. Clin Exp Dent Res 2020; 7:591-600. [PMID: 33258297 PMCID: PMC8404487 DOI: 10.1002/cre2.366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 11/17/2022] Open
Abstract
Objective The objective of this study was to assess the accuracy of physical reproductions of plaster orthodontic study casts fabricated by two different rapid prototyping techniques: Fused Deposition Modeling (FDM) and Digital Light Processing (DLP). Materials and methods Twenty pairs of pretreatment plaster models were prepared from randomly selected patients at the Orthodontic Department, University of Damascus Dental School. Twenty‐one reference points were placed on plaster models, followed by scanning and printing of these models using FDM and DLP techniques. Forty measurements were made on these models using a digital caliper. Paired t tests were used to detect significant differences in the measurements between the 3D printed replicas and the original plaster models (Gold Standard). Alpha level was adjusted due to the multiplicity of the tests. Results The intraclass correlation coefficients for all the comparisons made between the 3D replicas and the gold standard models were greater than 0.80 with ICCs ranging from 0.802 to 0.990 and from 0.853 to 0.990 for the FDM and DLP techniques, respectively. This indicated an excellent agreement. No statistically significant differences could be detected between the 3D‐printed models and their corresponding plaster models. The overall mean difference was −0.11 mm and 0.00 ranging from −0.49 to 0.17 mm and from −0.42 to 0.50 mm, for the FDM and DLP techniques, respectively. Conclusion The accuracy of the 3D models produced by the DLP and FDM techniques was acceptable. However, for the fabrication of clear aligners, the optimum fit of the produced plates in the patients' mouths is not completely guaranteed.
Collapse
Affiliation(s)
- Samer T Jaber
- Department of Orthodontics, University of Damascus Dental School, Damascus, Syria
| | - Mohammad Y Hajeer
- Department of Orthodontics, University of Damascus Dental School, Damascus, Syria
| | - Tarek Z Khattab
- Department of Orthodontics, University of Hamah Dental School, Hamah, Syria
| | - Luai Mahaini
- Department of Orthodontics, University of Damascus Dental School, Damascus, Syria
| |
Collapse
|
70
|
Yu C, Schimelman J, Wang P, Miller KL, Ma X, You S, Guan J, Sun B, Zhu W, Chen S. Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications. Chem Rev 2020; 120:10695-10743. [PMID: 32323975 PMCID: PMC7572843 DOI: 10.1021/acs.chemrev.9b00810] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the advent of additive manufacturing, known commonly as 3D printing, this technology has revolutionized the biofabrication landscape and driven numerous pivotal advancements in tissue engineering and regenerative medicine. Many 3D printing methods were developed in short course after Charles Hull first introduced the power of stereolithography to the world. However, materials development was not met with the same enthusiasm and remained the bottleneck in the field for some time. Only in the past decade has there been deliberate development to expand the materials toolbox for 3D printing applications to meet the true potential of 3D printing technologies. Herein, we review the development of biomaterials suited for light-based 3D printing modalities with an emphasis on bioprinting applications. We discuss the chemical mechanisms that govern photopolymerization and highlight the application of natural, synthetic, and composite biomaterials as 3D printed hydrogels. Because the quality of a 3D printed construct is highly dependent on both the material properties and processing technique, we included a final section on the theoretical and practical aspects behind light-based 3D printing as well as ways to employ that knowledge to troubleshoot and standardize the optimization of printing parameters.
Collapse
Affiliation(s)
- Claire Yu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Pengrui Wang
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Kathleen L Miller
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Xuanyi Ma
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shangting You
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Bingjie Sun
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wei Zhu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Chemical Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
71
|
Pituru SM, Greabu M, Totan A, Imre M, Pantea M, Spinu T, Tancu AMC, Popoviciu NO, Stanescu II, Ionescu E. A Review on the Biocompatibility of PMMA-Based Dental Materials for Interim Prosthetic Restorations with a Glimpse into their Modern Manufacturing Techniques. MATERIALS 2020; 13:ma13132894. [PMID: 32605174 PMCID: PMC7372356 DOI: 10.3390/ma13132894] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
This paper's primary aim is to outline relevant aspects regarding the biocompatibility of PMMA (poly(methyl methacrylate))-based materials used for obtaining interim prosthetic restorations, such as the interaction with oral epithelial cells, fibroblasts or dental pulp cells, the salivary oxidative stress response, and monomer release. Additionally, the oral environment's biochemical response to modern interim dental materials containing PMMA (obtained via subtractive or additive methods) is highlighted in this review. The studies included in this paper confirmed that PMMA-based materials interact in a complex way with the oral environment, and therefore, different concerns about the possible adverse oral effects caused by these materials were analyzed. Adjacent to these aspects, the present work describes several advantages of PMMA-based dental materials. Moreover, the paper underlines that recent scientific studies ascertain that the modern techniques used for obtaining interim prosthetic materials, milled PMMA, and 3D (three-dimensional) printed resins, have distinctive advantages compared to the conventional ones. However, considering the limited number of studies focusing on the chemical composition and biocompatibility of these modern interim prosthetic materials, especially for the 3D printed ones, more aspects regarding their interaction with the oral environment need to be further investigated.
Collapse
Affiliation(s)
- Silviu Mirel Pituru
- Department of Professional Organization and Medical Legislation-Malpractice, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.G.); (A.T.)
| | - Alexandra Totan
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.G.); (A.T.)
| | - Marina Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.); (A.M.C.T.)
| | - Mihaela Pantea
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (M.P.); (T.S.)
| | - Tudor Spinu
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (M.P.); (T.S.)
| | - Ana Maria Cristina Tancu
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.); (A.M.C.T.)
| | - Nicoleta Olivia Popoviciu
- Department of Orthodontics and Dento-Facial Orthopedics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (N.O.P.); (E.I.)
| | - Iulia-Ioana Stanescu
- Department of Physiology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Ecaterina Ionescu
- Department of Orthodontics and Dento-Facial Orthopedics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (N.O.P.); (E.I.)
| |
Collapse
|
72
|
Impact of Aging on the Accuracy of 3D-Printed Dental Models: An In Vitro Investigation. J Clin Med 2020; 9:jcm9051436. [PMID: 32408618 PMCID: PMC7291208 DOI: 10.3390/jcm9051436] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this in vitro study was to analyze the impact of model aging on the accuracy of 3D-printed dental models. A maxillary full-arch reference model with prepared teeth for a three-unit fixed dental prosthesis was scanned ten times with an intraoral scanner (3Shape TRIOS Pod) and ten models were 3D printed (Straumann P-Series). All models were stored under constant conditions and digitized with a desktop scanner after 1 day; 1 week; and 2, 3, and 4 weeks. For accuracy, a best-fit algorithm was used to analyze the deviations of the abutment teeth (GFaI e.V Final Surface®). Wilcoxon Rank Sum Tests were used for comparisons with the level of significance set at α = 0.05. Deviation analysis of the tested models showed homogenous intragroup distance calculations at each timepoint. The most accurate result was for 1 day of aging (3.3 ± 1.3 µm). A continuous decrease in accuracy was observed with each aging stage from day 1 to week 4. A time-dependent difference was statistically significant after 3 weeks (p = 0.0008) and 4 weeks (p < 0.0001). Based on these findings, dental models should not be used longer than 3 to 4 weeks after 3D printing for the fabrication of definitive prosthetic reconstructions.
Collapse
|