51
|
Panzer U, Steinmetz OM, Turner JE, Meyer-Schwesinger C, von Ruffer C, Meyer TN, Zahner G, Gómez-Guerrero C, Schmid RM, Helmchen U, Moeckel GW, Wolf G, Stahl RAK, Thaiss F. Resolution of renal inflammation: a new role for NF-kappaB1 (p50) in inflammatory kidney diseases. Am J Physiol Renal Physiol 2009; 297:F429-39. [PMID: 19458123 DOI: 10.1152/ajprenal.90435.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In renal tissue injury, activation of the transcription factor NF-kappaB has a central role in the induction of proinflammatory gene expression, which are involved in the development of progressive renal inflammatory disease. The function of NF-kappaB during the switch from the inflammatory process toward resolution, however, is largely unknown. Therefore, we assessed the time-dependent activation and function of NF-kappaB in two different models of acute nephritis. Our experiments demonstrate a biphasic activation of NF-kappaB in the anti-Thy-1 model of glomerulonephritis in rats and the LPS-induced nephritis in mice, with a first peak during the induction phase and a second peak during the resolution period. After induction of glomerular immune injury in rats, predominantly NF-kappaB p65/p50 heterodimer complexes are shifted to the nucleus whereas during the resolution phase predominantly p50 homodimers could be demonstrated in the nuclear compartment. In addition, we could demonstrate that p50 protein plays a pivotal role in the resolution of LPS-induced renal inflammation since NF-kappaB p50 knockout mice demonstrate significantly higher chemokine expression, prolonged renal inflammatory cell infiltration with consecutive tissue injury, and reduced survival. In conclusion, our studies indicate that NF-kappaB subunit p50 proteins have critical in vivo functions in immunologically mediated renal disease by downregulating inflammation during the resolution period.
Collapse
Affiliation(s)
- Ulf Panzer
- III. Medizinische Klinik, Zentrum für Innere Medizin, Universitätsklinikum Hamburg Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Poellinger L, Lendahl U. Modulating Notch signaling by pathway-intrinsic and pathway-extrinsic mechanisms. Curr Opin Genet Dev 2008; 18:449-54. [DOI: 10.1016/j.gde.2008.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 01/08/2023]
|
53
|
Ellinghaus U, Rupec RA, Pabst O, Ignatius R, Förster R, Dörken B, Jundt F. IkappaBalpha is required for marginal zone B cell lineage development. Eur J Immunol 2008; 38:2096-105. [PMID: 18604869 DOI: 10.1002/eji.200838254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inactivation of members of the nuclear factor-kappaB (NF-kappaB) family results in the decrease or defect of marginal zone B (MZB) cells. It is not known which inhibitors of the NF-kappaB family (IkappaB) are required for MZB cell development. Here, we show that mice with B cell-specific inactivation of the main NF-kappaB inhibitor IkappaBalpha have a marked decrease of MZB cells and their presumed precursors. They exhibited increased mortality rates after blood-borne bacterial infection, indicating the importance of MZB cells for bacterial clearance. In contrast, response to T cell-dependent and -independent antigens resulted only in minor changes in immunoglobulin production. Our data demonstrate the importance of the intact NF-kappaB/IkappaBalpha pathway for proper MZB cell development.
Collapse
Affiliation(s)
- Ursula Ellinghaus
- Department of Hematology and Oncology, Charité, Campus Virchow-Klinikum, University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
54
|
Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, Wiethe C, Winkler TH, Kalden JR, Manz RA, Voll RE. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 2008; 14:748-55. [PMID: 18542049 DOI: 10.1038/nm1763] [Citation(s) in RCA: 468] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 04/02/2008] [Indexed: 01/17/2023]
Abstract
Autoantibody-mediated diseases like myasthenia gravis, autoimmune hemolytic anemia and systemic lupus erythematosus represent a therapeutic challenge. In particular, long-lived plasma cells producing autoantibodies resist current therapeutic and experimental approaches. Recently, we showed that the sensitivity of myeloma cells toward proteasome inhibitors directly correlates with their immunoglobulin synthesis rates. Therefore, we hypothesized that normal plasma cells are also hypersensitive to proteasome inhibition owing to their extremely high amount of protein biosynthesis. Here we show that the proteasome inhibitor bortezomib, which is approved for the treatment of multiple myeloma, eliminates both short- and long-lived plasma cells by activation of the terminal unfolded protein response. Treatment with bortezomib depleted plasma cells producing antibodies to double-stranded DNA, eliminated autoantibody production, ameliorated glomerulonephritis and prolonged survival of two mouse strains with lupus-like disease, NZB/W F1 and MRL/lpr mice. Hence, the elimination of autoreactive plasma cells by proteasome inhibitors might represent a new treatment strategy for antibody-mediated diseases.
Collapse
Affiliation(s)
- Kirsten Neubert
- Interdisciplinary Center for Clinical Research, research group N2, Nikolaus Fiebiger-Center of Molecular Medicine, University Hospital Erlangen, Glückstrasse 6, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
Our understanding of the origins and the biological functions of different peripheral B cell subsets continues to evolve. Some understanding has been obtained regarding the synergy between BCR-derived signals and other receptors and signaling pathways that drive the development of follicular, marginal zone, and B-1 B cells, but this remains a complex and poorly understood issue. More recent information regarding the origins of B-1 and B-2 B cells, the ability of follicular B cells to mature both in the bone marrow and the spleen, the existence of a definable precursor for MZ B cells, and the ability of follicular B cells to occupy two distinct niches are all highlighted in this review.
Collapse
Affiliation(s)
- David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA. e-mail:
| | - Shiv Pillai
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA. e-mail:
| |
Collapse
|
56
|
Laky K, Fowlkes BJ. Notch signaling in CD4 and CD8 T cell development. Curr Opin Immunol 2008; 20:197-202. [PMID: 18434124 PMCID: PMC2475578 DOI: 10.1016/j.coi.2008.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 03/11/2008] [Indexed: 12/16/2022]
Abstract
Because Notch often acts in concert with other signaling pathways, it is able to regulate a diverse set of biological processes in a cell-context dependent manner. In lymphocytes, Notch is essential for specifying the T cell fate and for promoting early stages of T cell differentiation. At later stages of development, Notch signaling is proposed to direct CD4 versus CD8 T lineage commitment. This hypothesis has been challenged by recent studies of conditional Presenilin-deficient mice showing that Notch promotes the selection and maturation of CD4 and CD8 T cells by potentiating TCR signal transduction in immature thymocytes. While similar conclusions have not been reported with conditional mutation of other downstream mediators of Notch activation, it appears that functional inhibition may not have been achieved at a comparable stage of development and/or analogous issues have not been addressed. The differences also question whether in thymocytes Notch signals only through the canonical pathway. Further study of conditional mutants, signaling intermediates, and transcriptional regulators are needed to elucidate how Notch facilitates TCR signaling in generating mature T cells.
Collapse
Affiliation(s)
- Karen Laky
- Laboratory of Cellular and Molecular Immunology, NIAID, National Institutes of Health, Bethesda, MD 20892-0420, USA.
| | | |
Collapse
|
57
|
MacKenzie S, Balasch JC, Novoa B, Ribas L, Roher N, Krasnov A, Figueras A. Comparative analysis of the acute response of the trout, O. mykiss, head kidney to in vivo challenge with virulent and attenuated infectious hematopoietic necrosis virus and LPS-induced inflammation. BMC Genomics 2008; 9:141. [PMID: 18366750 PMCID: PMC2291046 DOI: 10.1186/1471-2164-9-141] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 03/26/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The response of the trout, O. mykiss, head kidney to bacterial lipopolysaccharide (LPS) or active and attenuated infectious hematopoietic necrosis virus (IHNV and attINHV respectively) intraperitoneal challenge, 24 and 72 hours post-injection, was investigated using a salmonid-specific cDNA microarray. RESULTS The head kidney response to i.p. LPS-induced inflammation in the first instance displays an initial stress reaction involving suppression of major cellular processes, including immune function, followed by a proliferative hematopoietic-type/biogenesis response 3 days after administration. The viral response at the early stage of infection highlights a suppression of hematopoietic and protein biosynthetic function and a stimulation of immune response. In fish infected with IHNV a loss of cellular function including signal transduction, cell cycle and transcriptional activity 72 hours after infection reflects the tissue-specific pathology of IHNV infection. attIHNV treatment on the other hand shows a similar pattern to native IHNV infection at 24 hours however at 72 hours a divergence from the viral response is seen and replace with a recovery response more similar to that observed for LPS is observed. CONCLUSION In conclusion we have been able to identify and characterise by transcriptomic analysis two different types of responses to two distinct immune agents, a virus, IHNV and a bacterial cell wall component, LPS and a 'mixed' response to an attenuated IHNV. This type of analysis will lead to a greater understanding of the physiological response and the development of effective immune responses in salmonid fish to different pathogenic and pro-inflammatory agents.
Collapse
Affiliation(s)
- Simon MacKenzie
- Unitat de Fisiologia Animal, Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
58
|
Osipo C, Golde TE, Osborne BA, Miele LA. Off the beaten pathway: the complex cross talk between Notch and NF-kappaB. J Transl Med 2008; 88:11-7. [PMID: 18059366 DOI: 10.1038/labinvest.3700700] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The canonical Notch pathway that has been well characterized over the past 25 years is relatively simple compared to the plethora of recently published data suggesting non-canonical signaling mechanisms and cross talk with other pathways. The manner in which other pathways cross talk with Notch signaling appears to be extraordinarily complex and, not surprisingly, context-dependent. While the physiological relevance of many of these interactions remains to be established, there is little doubt that Notch signaling is integrated with numerous other pathways in ways that appear increasingly complex. Among the most intricate cross talks described for Notch is its interaction with the NF-kappaB pathway, another major cell fate regulatory network involved in development, immunity, and cancer. Numerous reports over the last 11 years have described multiple cross talk mechanisms between Notch and NF-kappaB in diverse experimental models. This article will provide a brief overview of the published evidence for Notch-NF-kappaB cross talk, focusing on vertebrate systems.
Collapse
Affiliation(s)
- Clodia Osipo
- Breast Cancer Program, Cardinal Bernadin Cancer Center, Loyola University Medical Center, Maywood, IL 60513, USA
| | | | | | | |
Collapse
|
59
|
Abstract
Hematopoietic stem cells give rise to multiple lineages of cells. This process is governed by a tightly controlled signaling network regulated by cytokines and a direct cell-cell contact. Notch signaling represents one of the major pathways activated during direct interaction between hematopoietic progenitor cells and bone marrow stroma. A critical role of Notch signaling in differentiation of T- and B-lymphocytes has now been established. Until recently, the role of Notch signaling in the development of myeloid cells and particular dendritic cells remained unclear. In this review, we discuss recent exciting findings that shed light on the critical role of Notch in differentiation and the function of dendritic cells and its impact on immune responses.
Collapse
Affiliation(s)
- Pingyan Cheng
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | |
Collapse
|
60
|
Cariappa A, Boboila C, Moran ST, Liu H, Shi HN, Pillai S. The recirculating B cell pool contains two functionally distinct, long-lived, posttransitional, follicular B cell populations. THE JOURNAL OF IMMUNOLOGY 2007; 179:2270-81. [PMID: 17675488 DOI: 10.4049/jimmunol.179.4.2270] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Disparate models for the development of peripheral B cells may reflect significant heterogeneity in recirculating long-lived B cells that have not been previously accounted for. We show in this study that the murine recirculating B cell pool contains two distinct, long-lived, posttransitional, follicular B cell populations. Follicular Type I IgM(low) B cells require Ag-derived and Btk-dependent signals for their development and make up the majority of cells in the recirculating follicular B cell pool. Follicular type II B cells do not require Btk- or Notch-2-derived signals, make up about a third of the long-lived recirculating B cell pool, and can develop in the absence of Ag. These two follicular populations exhibit differences in basal tyrosine phosphorylation and in BCR-induced proliferation, suggesting that they may represent functionally distinct populations of long-lived recirculating B cells.
Collapse
Affiliation(s)
- Annaiah Cariappa
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | |
Collapse
|