51
|
The Treatment of Cognitive, Behavioural and Motor Impairments from Brain Injury and Neurodegenerative Diseases through Cannabinoid System Modulation-Evidence from In Vivo Studies. J Clin Med 2020; 9:jcm9082395. [PMID: 32726998 PMCID: PMC7464236 DOI: 10.3390/jcm9082395] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Neurological disorders such as neurodegenerative diseases or traumatic brain injury are associated with cognitive, motor and behavioural changes that influence the quality of life of the patients. Although different therapeutic strategies have been developed and tried until now to decrease the neurological decline, no treatment has been found to cure these pathologies. In the last decades, the implication of the endocannabinoid system in the neurological function has been extensively studied, and the cannabinoids have been tried as a new promising potential treatment. In this study, we aimed to overview the recent available literature regarding in vivo potential of natural and synthetic cannabinoids with underlying mechanisms of action for protecting against cognitive decline and motor impairments. The results of studies on animal models showed that cannabinoids in traumatic brain injury increase neurobehavioral function, working memory performance, and decrease the neurological deficit and ameliorate motor deficit through down-regulation of pro-inflammatory markers, oedema formation and blood–brain barrier permeability, preventing neuronal cell loss and up-regulating the levels of adherence junction proteins. In neurodegenerative diseases, the cannabinoids showed beneficial effects in decreasing the motor disability and disease progression by a complex mechanism targeting more signalling pathways further than classical receptors of the endocannabinoid system. In light of these results, the use of cannabinoids could be beneficial in traumatic brain injuries and multiple sclerosis treatment, especially in those patients who display resistance to conventional treatment.
Collapse
|
52
|
Ding Q, Zhang X, Chen P. Intraoperative Dexmedetomidine in Peripheral or Emergency Neurologic Surgeries of Patients With Mild-to-Moderate Traumatic Brain Injuries: A Retrospective Cohort Study. Dose Response 2020; 18:1559325820920119. [PMID: 32489336 PMCID: PMC7238827 DOI: 10.1177/1559325820920119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 11/16/2022] Open
Abstract
Background Although animal models have demonstrated dexmedetomidine (DEX) as neuroprotective in craniocerebral and subarachnoid injuries, but its role in humans remains to be elucidated. The objectives of the study were to compare plasma brain-derived neurotrophic factor (BDNF), cytokine, and superoxide dismutase levels of patients between those who received intraoperative DEX and those who received intraoperative normal saline (NSE) during peripheral or emergency neurologic surgeries. Methods Intra- and postoperative data of blood biomarkers and surgical outcomes of patients who underwent peripheral or emergency neurologic surgeries with mild-to-moderate traumatic brain injuries were analyzed retrospectively. Patients received intraoperative DEX group (n = 109) or NSE group (n = 116). Results At 15 minutes after intubation and before the operation, in the DEX group, plasma BDNF concentration decreased but remained much higher than the NSE group (P < .0001, q = 15.82). After 24 hours of surgeries, levels of cytokine were higher in the NSE group than the DEX group (P < .05 for all). Dexmedetomidine increased malondialdehyde (P < .0001) and superoxide dismutase (P < .0001) levels in DEX group. Conclusions Intraoperative infusion of DEX may have a neuroprotective, anti-inflammatory, and antioxidant effects during peripheral or emergency neurologic surgeries. Level of Evidence III.
Collapse
Affiliation(s)
- Qin Ding
- Department of Anesthesiology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Xianhe Zhang
- Department of Infection Management, Shandong Energy Zaozhuang Mining Group Central Hospital, Zaozhuang, Shandong, China
| | - Peng Chen
- Department of Anesthesiology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
53
|
Singh J, Barrett J, Sangaletti R, Dietrich WD, Rajguru SM. Additive Protective Effects of Delayed Mild Therapeutic Hypothermia and Antioxidants on PC12 Cells Exposed to Oxidative Stress. Ther Hypothermia Temp Manag 2020; 11:77-87. [PMID: 32302519 DOI: 10.1089/ther.2019.0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mild therapeutic hypothermia is protective against several cellular stresses, but the mechanisms underlying this protection are not completely resolved. In the present study, we used an in vitro model to investigate whether therapeutic hypothermia at 33°C applied following a peroxide-induced oxidative stress would protect PC12 cells. A 1-hour exposure to tert-butyl peroxide increased cell death measured 24 hours later. This cell death was dose-dependent in the range of 100-1000 μM tert-butyl peroxide with ∼50% cell death observed at 24 hours from 500 μM peroxide exposure. Cell survival/death was measured with an alamarBlue viability assay, and propidium iodide/Hoechst imaging for counts of living and dead cells. Therapeutic hypothermia at 33°C applied for 2 hours postperoxide exposure significantly increased cell survival measured 24 hours postperoxide-induced stress. This protection was present even when delayed hypothermia, 15 minutes after the peroxide washout, was applied. Addition of any of the three FDA-approved antioxidants (Tempol, EUK134, Edaravone at 100 μM) in combination with hypothermia improved cell survival. With the therapeutic hypothermia treatment, a significant downregulation of caspases-3 and -8 and tumor necrosis factor-α was observed at 3 and 24 hours poststress. Consistent with this, a cell-permeable pan-caspase inhibitor Z-VAD-FMK applied in combination with hypothermia significantly increased cell survival. Overall, these results suggest that the antioxidants quenching of reactive oxygen species likely works with hypothermia to reduce mitochondrial damage and/or apoptotic mechanisms. Further studies are required to confirm and extend these results to other cell types, including neuronal cells, and other forms of oxidative stress as well as to optimize the critical parameters of hypothermia treatment such as target temperature and duration.
Collapse
Affiliation(s)
- Jayanti Singh
- Department of Otolaryngology, University of Miami, Miami, Florida, USA
| | - John Barrett
- Department of Physiology and Biophysics, University of Miami, Miami, Florida, USA
| | | | - W Dalton Dietrich
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA.,Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - Suhrud M Rajguru
- Department of Otolaryngology, University of Miami, Miami, Florida, USA.,Department of Biomedical Engineering, University of Miami, Miami, Florida, USA
| |
Collapse
|
54
|
Derakhshanfar H, Pourbakhtyaran E, Rahimi S, Sayyah S, Soltantooyeh Z, Karbasian F. Clinical guidelines for traumatic brain injuries in children and boys. Eur J Transl Myol 2020; 30:8613. [PMID: 32499878 PMCID: PMC7254418 DOI: 10.4081/ejtm.2019.8613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/30/2019] [Indexed: 11/26/2022] Open
Abstract
The main aim of management of pediatric traumatic brain injury (TBI) is to hold normal ranges for optimizing the most proper outcomes. However, to provide physiologic requirements to an injured brain it is very important to enhance the quality of recovery and minimize secondary injuries. The aim of study is to identify proper guidelines to manage pediatric TBI. A comprehensive research was conducted on biomedical and pharmacologic bibliographic databases of life sciences, i.e., PubMed, EMBASE, MEDLINE, LILACS database, global independent network of Cochrane, Science Direct and global health library of Global Index Medicus (GIM) from 2000 to 2019. Main objective of this study was to provide a comprehensive review of available clinical practice guidelines for TBI. These guidelines can be administered to a pediatric population to improve the quality of clinical practice for TBI. These guidelines could be applied worldwide, despite different traditional demographic and geographic boundaries, which could affect pediatric populations in various ranges of ages. Accordingly, advances in civil foundations and reforms of health policies may decrease pediatric TBI socioeconomic burdens.
Collapse
Affiliation(s)
- Hojjat Derakhshanfar
- Department of Pediatric Emergency Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Pourbakhtyaran
- Department of Pediatric Emergency Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samane Rahimi
- Department of Pediatric Emergency Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Sayyah
- Department of Pediatric Emergency Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Karbasian
- Department of Pediatric Emergency Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
55
|
Rosyidi RM, Priyanto B, Sari SF, Anggraini MA, Kamil M, Wardhana DPW. Subdural drainage of liquor cerebrospinal and early tracheostomy: Alternative management of severe traumatic brain injury with minimal lesion in limited facility and rural area. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2019.100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
56
|
Pilar MR, Proctor EK, Pineda JA. Development, implementation, and evaluation of a novel guideline engine for pediatric patients with severe traumatic brain injury: a study protocol. Implement Sci Commun 2020; 1:31. [PMID: 32885190 PMCID: PMC7427929 DOI: 10.1186/s43058-020-00012-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Severe traumatic brain injury (TBI) is a leading cause of death and disability for children. The Brain Trauma Foundation released evidence-based guidelines, a series of recommendations regarding care for pediatric patients with severe TBI. Clinical evidence suggests that adoption of guideline-based care improves outcomes in patients with severe TBI. However, guideline implementation has not been systematic or consistent in clinical practice. There is also a lack of information about implementation strategies that are effective given the nature of severe TBI care and the complex environment in the intensive care unit (ICU). Novel technology-based strategies may be uniquely suited to the fast-paced, transdisciplinary care delivered in the ICU, but such strategies must be carefully developed and evaluated to prevent unintended consequences within the system of care. This challenge presents a unique opportunity for intervention to more appropriately implement guideline-based care for pediatric patients with severe TBI. METHODS This mixed-method study will develop a novel technology-based bedside guideline engine (the implementation strategy) to facilitate uptake of evidence-based guidelines (the intervention) for management of severe TBI. Group model building and systems dynamics will inform the guideline engine design, and bedside functionality will be initially assessed through patient simulation. Using the Promoting Action on Research Implementation in Health Services (PARIHS) framework, we will determine the feasibility of incorporating the guideline engine in the ICU. Study participants will include pediatric patients with severe TBI and providers at three trauma centers. Quantitative data will include measures of guideline engine acceptance and organizational readiness for change. Qualitative data will include semi-structured interviews from clinicians. We will test the feasibility of incorporating the guideline engine in "real life practice" in preparation for a future clinical trial that will assess clinical and implementation outcomes, including feasibility, acceptability, and adoption of the guideline engine. DISCUSSION This study will lead to the development and feasibility testing of an adaptable strategy for implementing guideline-based care for severe TBI, a strategy that meets the needs of individual critical care environments and patients. A future study will test the adaptability and impact of the bedside guideline engine in a randomized clinical trial.
Collapse
Affiliation(s)
- Meagan R. Pilar
- Washington University in St. Louis, Brown School, One Brookings Drive, Campus Box 1196, St. Louis, MO 63130 USA
| | - Enola K. Proctor
- Washington University in St. Louis, Brown School, One Brookings Drive, Campus Box 1196, St. Louis, MO 63130 USA
| | - Jose A. Pineda
- Children’s Hospital Los Angeles/University of Southern California, Keck School of Medicine, 4650 Sunset Blvd, Los Angeles, CA 90027 USA
| |
Collapse
|
57
|
Lee SH, Ok SH, Subbarao RB, Kim JY, Bae SI, Hwang Y, Tak S, Sohn JT. Nitric oxide-mediated inhibition of phenylephrine-induced contraction in response to hypothermia is partially modulated by endothelial Rho-kinase. Int J Med Sci 2020; 17:21-32. [PMID: 31929735 PMCID: PMC6945562 DOI: 10.7150/ijms.39074] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
This study examined the possible upstream cellular signaling pathway associated with nitric oxide (NO)-mediated inhibition of phenylephrine-induced contraction in isolated rat aortae in response to mild hypothermia, with a particular focus on endothelial Rho-kinase. We examined the effects of mild hypothermia (33°C), wortmannin, Nω-nitro-L-arginine methyl ester (L-NAME), Y-27632, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and methylene blue, alone and combined, on phenylephrine-induced contraction in isolated rat aortae. Finally, we examined the effects of mild hypothermia, wortmannin, Y-27632 and L-NAME, alone and combined, on endothelial nitric oxide synthase (eNOS) and endothelial Rho-kinase membrane translocation induced by phenylephrine. Mild hypothermia attenuated phenylephrine-induced contraction only in endothelium-intact aortae. L-NAME, wortmannin, ODQ and methylene blue increased phenylephrine-induced contraction of endothelium-intact aortae pretreated at 33°C. Wortmannin did not significantly alter the L-NAME-induced enhancement of phenylephrine-induced maximal contraction of endothelium-intact aortae pretreated at 33°C. Wortmannin abolished the ability of Y-27632 to magnify the hypothermic inhibition of maximal phenylephrine-induced contraction. Wortmannin and L-NAME inhibited the enhancing effect of mild hypothermia on phenylephrine-induced eNOS phosphorylation. Y-27632 and L-NAME attenuated the enhancing effect of hypothermia on phenylephrine-induced endothelial Rho-kinase membrane translocation. The results suggest that hypothermia-induced, NO-dependent inhibition of phenylephrine-induced contraction is mediated by phosphoinositide 3-kinase and inhibited by endothelial Rho-kinase activation.
Collapse
Affiliation(s)
- Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon, 51427, Republic of Korea
| | - Raghavendra Baregundi Subbarao
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Sung Il Bae
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Yeran Hwang
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Seongyeong Tak
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju-si, 52727, Republic of Korea
| |
Collapse
|
58
|
M Selveindran S, Khan MM, Simadibrata DM, Hutchinson PJA, Brayne C, Hill C, Kolias A, Joannides AJ, Servadei F, Rubiano AM, Shabani HK. Mapping global evidence on strategies and interventions in neurotrauma and road traffic collisions prevention: a scoping review protocol. BMJ Open 2019; 9:e031517. [PMID: 31722947 PMCID: PMC6858136 DOI: 10.1136/bmjopen-2019-031517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Neurotrauma is an important global health problem. This 'silent epidemic' is a major cause of death and disability in adolescents and young adults, with significant societal and economic impacts. Globally, the largest cause of neurotrauma is road traffic collisions (RTCs). Neurotrauma and RTCs are largely preventable, and many preventative strategies and interventions have been established and implemented over the last decades, particularly in high-income countries. However, these approaches may not be applicable globally, due to variations in environment, resources, population, culture and infrastructure. This paper outlines the protocol for a scoping review, which seeks to map the evidence on strategies and interventions in neurotrauma and RTCs prevention globally, and to ascertain contextual factors that influence their implementation. METHODS AND ANALYSIS This scoping review will use the established methodology by Arksey and O'Malley. Eligible studies will be identified from five electronic databases (MEDLINE, EMBASE, CINAHL, Global Health/EBSCO and Cochrane Database of Systematic Reviews) and grey literature sources. We will also carry out bibliographical and citation searching of included studies. A two-stage selection process, which involves screening of titles and abstracts, followed by full-text screening, will be used to determine eligible studies which will undergo data abstraction using a customised, piloted data extraction sheet. The extracted data will be presented using evidence mapping and a narrative summary. ETHICS AND DISSEMINATION Ethical approval is not required for this scoping review, which is the first step in a multiphase public health research project on the global prevention of neurotrauma. The final review will be submitted for publication to a scientific journal, and results will be presented at appropriate conferences, workshops and meetings. Protocol registered on 5 April 2019 with Open Science Framework (https://osf.io/s4zk3/).
Collapse
Affiliation(s)
- Santhani M Selveindran
- Institute of Public Health, University of Cambridge, Cambridge, Cambridgeshire, UK
- NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Muhammad Mukhtar Khan
- NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge, Cambridgeshire, UK
- Department of Neurosurgery, Northwest School of Medicine and Northwest General Hospital and Research Centre, Peshawar, Pakistan
| | - Daniel Martin Simadibrata
- Faculty of Medicine, University of Indonesia, Depok, Jawa Barat, Indonesia
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Peter J A Hutchinson
- NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge, Cambridgeshire, UK
- Department of Clinical Neurosciences, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, Cambridgeshire, UK
- NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Christine Hill
- Institute of Public Health, University of Cambridge, Cambridge, Cambridgeshire, UK
- NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Angelos Kolias
- NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge, Cambridgeshire, UK
- Department of Clinical Neurosciences, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - Alexis J Joannides
- NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge, Cambridgeshire, UK
- Department of Clinical Neurosciences, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - Franco Servadei
- Department of Neurosurgery, Humanitas University and Research Hospital, Milan, Italy
- World Federation of Neurosurgical Societies, Nyon, Switzerland
| | - Andres M Rubiano
- NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge, Cambridgeshire, UK
- Department of Neurosurgery, Universidad El Bosque, Bogota, Colombia
| | - Hamisi K Shabani
- NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge, Cambridgeshire, UK
- Neurological Surgery Unit, Muhimbili Orthopaedic Institute and Muhimbili University College of Allied Health Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
59
|
Rege SD, Royes L, Tsai B, Zhang G, Yang X, Gomez-Pinilla F. Brain Trauma Disrupts Hepatic Lipid Metabolism: Blame It on Fructose? Mol Nutr Food Res 2019; 63:e1801054. [PMID: 31087499 DOI: 10.1002/mnfr.201801054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Indexed: 02/06/2023]
Abstract
SCOPE The action of brain disorders on peripheral metabolism is poorly understood. The impact of traumatic brain injury (TBI) on peripheral organ function and how TBI effects can be influenced by the metabolic perturbation elicited by fructose ingestion are studied. METHODS AND RESULTS It is found that TBI affects glucose metabolism and signaling proteins for insulin and growth hormone in the liver; these effects are exacerbated by fructose ingestion. Fructose, principally metabolized in the liver, potentiates the action of TBI on hepatic lipid droplet accumulation. Studies in isolated cultured hepatocytes identify GH and fructose as factors for the synthesis of lipids. The liver has a major role in the synthesis of lipids used for brain function and repair. TBI results in differentially expressed genes in the hypothalamus, primarily associated with lipid metabolism, providing cues to understand central control of peripheral alterations. Fructose-fed TBI animals have elevated levels of markers of inflammation, lipid peroxidation, and cell energy metabolism, suggesting the pro-inflammatory impact of TBI and fructose in the liver. CONCLUSION Results reveal the impact of TBI on systemic metabolism and the aggravating action of fructose. The hypothalamic-pituitary-growth axis seems to play a major role in the regulation of the peripheral TBI pathology.
Collapse
Affiliation(s)
- Shraddha D Rege
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Luiz Royes
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Centro De Educacao Fisica e Desportos, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, 97105, Brazil
| | - Brandon Tsai
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Guanglin Zhang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xia Yang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
60
|
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Contrast Agents Delivery: An Up-to-Date Review of Nanodiagnostics in Neuroimaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E542. [PMID: 30987211 PMCID: PMC6523665 DOI: 10.3390/nano9040542] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
Neuroimaging is a highly important field of neuroscience, with direct implications for the early diagnosis and progression monitoring of brain-associated diseases. Neuroimaging techniques are categorized into structural, functional and molecular neuroimaging, each possessing advantages and disadvantages in terms of resolution, invasiveness, toxicity of contrast agents and costs. Nanotechnology-based approaches for neuroimaging mostly involve the development of nanocarriers for incorporating contrast agents or the use of nanomaterials as imaging agents. Inorganic and organic nanoparticles, liposomes, micelles, nanobodies and quantum dots are some of the most studied candidates for the delivery of contrast agents for neuroimaging. This paper focuses on describing the conventional modalities used for imaging and the applications of nanotechnology for developing novel strategies for neuroimaging. The aim is to highlight the roles of nanocarriers for enhancing and/or overcome the limitations associated with the most commonly utilized neuroimaging modalities. For future directions, several techniques that could benefit from the increased contrast induced by using imaging probes are presented.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, Politehnica University of Bucharest, 060042 Bucharest, Romania.
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
- ICUB - Research Institute of University of Bucharest, University of Bucharest, 36-46 M. Kogalniceanu Blvd., Bucharest 050107, Romania.
| | - Adrian Volceanov
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Raluca Ioana Teleanu
- "Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
61
|
Kuan CY, Lin YY, Chen CY, Yang CC, Chi CY, Li CH, Dong GC, Lin FH. The preparation of oxidized methylcellulose crosslinked by adipic acid dihydrazide loaded with vitamin C for traumatic brain injury. J Mater Chem B 2019. [DOI: 10.1039/c9tb00816k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxi-MC-ADH-VC can open up a new avenue for clinical TBI treatment and rehabilitation.
Collapse
Affiliation(s)
- Che-Yung Kuan
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Yu-Ying Lin
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Ching-Yun Chen
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
- Taiwan
| | - Chun-Chen Yang
- Institute of Biomedical Engineering
- College of Medicine and College of Engineering
- National Taiwan University
- Taipei
- Taiwan
| | - Chih-Ying Chi
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Chi-Han Li
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Guo-Chung Dong
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Feng-Huei Lin
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| |
Collapse
|