51
|
de Sousa Cunha F, Dos Santos Pereira LN, de Costa E Silva TP, de Sousa Luz RA, Nogueira Mendes A. Development of nanoparticulate systems with action in breast and ovarian cancer: nanotheragnostics. J Drug Target 2018; 27:732-741. [PMID: 30207742 DOI: 10.1080/1061186x.2018.1523418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The use of nanoparticulate systems with action in breast and ovarian cancer has been highlighted in recent years as an alternative to increasing the therapeutic index of conventional anticancer drugs. Thus, nanoparticles have advantageous characteristics in the treatment of cancer. Several nanocarriers of drugs and nanoparticles are described in the literature. The pharmacokinetics of the drugs can be modified by the use of nanocarriers, which in turn facilitate the specific delivery of the drug to the tumour cell. Therefore, the present work is a review that examines some nanosystems with nanoparticles for action in the treatment of breast cancer and ovarian cancer.
Collapse
Affiliation(s)
- Fabiana de Sousa Cunha
- a Departamento de Química, Campus Poeta Torquato Neto , Universidade Estadual do Piauí , Teresina , Brazil
| | - Laise Nayra Dos Santos Pereira
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Thâmara Pryscilla de Costa E Silva
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Roberto Alves de Sousa Luz
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Anderson Nogueira Mendes
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil.,c Departamento de Biofísica e Fisiologia, Centro de Ciências em Saúde , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| |
Collapse
|
52
|
Wang XS, Ding XZ, Li XC, He Y, Kong DJ, Zhang L, Hu XC, Yang JQ, Zhao MQ, Gao SG, Lin TY, Li Y. A highly integrated precision nanomedicine strategy to target esophageal squamous cell cancer molecularly and physically. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:2103-2114. [PMID: 30047470 PMCID: PMC6648684 DOI: 10.1016/j.nano.2018.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 01/02/2023]
Abstract
The prognosis of esophageal squamous cell carcinoma is poor. We hereby presented a highly integrated and clinically relevant precision nanomedicine strategy to target ESCC molecularly and physically for significant improvement of the treatment efficacy. We firstly identified PI3K overexpression in patient samples and its relation to poor patient survival. With our highly versatile tumor-targeted drug delivery platform (DCM), we were able to load a potent but toxic docetaxel (DTX) and a PI3K inhibitor (AZD8186) with favorable physical properties. The combination of the DTX-DCM and AZD8186-DCM showed a highly efficacious and synergistic anti-tumor effect and decreased hematotoxicity. A pro-apoptotic protein, Bax was significantly upregulated in ESCC cells treated with combination therapy compared to that with monotherapy. This study utilized a highly integrated precision nano-medicine strategy that combines the identification of cancer molecular target from human patients, precision drug delivery and effective combination therapy for the development of better ESCC treatment.
Collapse
Affiliation(s)
- Xin-Shuai Wang
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xue-Zhen Ding
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xiao-Cen Li
- Department of Biochemistry & Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Yixuan He
- Department of Biochemistry & Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - De-Jiu Kong
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Li Zhang
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xiao-Chen Hu
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Jun-Qiang Yang
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Meng-Qi Zhao
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - She-Gan Gao
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China.
| | - Tzu-Yin Lin
- Department of Internal Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
| | - Yuanpei Li
- Department of Biochemistry & Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
53
|
Zhou C, Guo C, Li W, Zhao J, Yang Q, Tan T, Wan Z, Dong J, Song X, Gong T. A novel honokiol liposome: formulation, pharmacokinetics, and antitumor studies. Drug Dev Ind Pharm 2018; 44:2005-2012. [PMID: 30058387 DOI: 10.1080/03639045.2018.1506475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chuchu Zhou
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Chenqi Guo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Wenhao Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Juan Zhao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Qin Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Tiantian Tan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Zhuoya Wan
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianxia Dong
- Department of Clinical Pharmacy, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Xu Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
54
|
Tassano M, Oddone N, Fernández M, Porcal W, García MF, Martínez-López W, Benech JC, Cabral P. Evaluation of chromosomal aberrations induced by 188Re-dendrimer nanosystem on B16f1 melanoma cells. Int J Radiat Biol 2018; 94:664-670. [PMID: 29775404 DOI: 10.1080/09553002.2018.1478161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE To study the rhenium-188 labeling of polyamidoamine (PAMAM) generation 4 (G4) dendrimer and its evaluation on biodistribution and chromosomal aberrations in melanoma cells induced by ionizing radiation as potential treatment agent. MATERIALS AND METHODS Dendrimers were first conjugated with Suc-HYNIC (succinimidyl 6-hydrazinopyridine-3-carboxylic acid hydrochloride). Dendrimer-HYNIC was then incubated with 188ReO4-. Biodistribution was performed administrating 188Re-dendrimer to normal (NM) or melanoma-bearing mice (MBM). Chromosome aberration test was conducted in order to measure treatment capacity of 188Re-dendrimer in melanoma cells. RESULTS Radiolabeling yield of dendrimer was approx. 70%. Biodistribution studies in NM showed blood clearance with hepatic and renal depuration. MBM showed a similar pattern of biodistribution with tumor uptake of 6% of injected dose. Aberrant metaphases quantified in control cells were 7%, increasing to 29.5% in cells treated with 15μCi (0.555 MBq) of 188Re-dendrimer for 24 h. CONCLUSIONS 188Re-dendrimer can produce double-stranded breaks in DNA induced by ionizing radiation in melanoma cells in vitro.
Collapse
Affiliation(s)
- Marcos Tassano
- a Area de Radiofarmacia, Facultad de Ciencias , Centro de Investigaciones Nucleares, Universidad de la República , Montevideo , Uruguay
| | - Natalia Oddone
- b Laboratorio de Señalización Celular y Nanobiología , Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura , Montevideo , Uruguay
| | - Marcelo Fernández
- a Area de Radiofarmacia, Facultad de Ciencias , Centro de Investigaciones Nucleares, Universidad de la República , Montevideo , Uruguay
| | - Williams Porcal
- d Departamento de Química Orgánica, Facultad de Química , Universidad de la República , Montevideo , Uruguay
| | - María Fernanda García
- a Area de Radiofarmacia, Facultad de Ciencias , Centro de Investigaciones Nucleares, Universidad de la República , Montevideo , Uruguay
| | - Wilner Martínez-López
- c Laboratorio de Epigenética e Inestabilidad Genómica , Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura , Montevideo , Uruguay
| | - Juan Claudio Benech
- b Laboratorio de Señalización Celular y Nanobiología , Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura , Montevideo , Uruguay
| | - Pablo Cabral
- a Area de Radiofarmacia, Facultad de Ciencias , Centro de Investigaciones Nucleares, Universidad de la República , Montevideo , Uruguay
| |
Collapse
|
55
|
Liu Y, Liu K, Li X, Xiao S, Zheng D, Zhu P, Li C, Liu J, He J, Lei J, Wang L. A novel self-assembled nanoparticle platform based on pectin-eight-arm polyethylene glycol-drug conjugates for co-delivery of anticancer drugs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 86:28-41. [PMID: 29525094 DOI: 10.1016/j.msec.2017.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/03/2017] [Accepted: 12/07/2017] [Indexed: 11/22/2022]
Abstract
The application of non-toxic carriers to increase drug loading, multi-drug delivery, and extremely small size of nano-drugs to construct a tremendous transmission system is the goal for all researchers to be pursued. The proposal of natural pectin nano-platform for delivery of multiple drugs is critical for biomedical research, especially a particle size of below 100nm with high yield. Here we design a new core-shell structure pectin-eight-arm polyethylene glycol-ursolic acid/hydrooxycampothecin nanoparticle (Pec-8PUH NPs) through a special self-assembly method for stabilizing and dispersing particles, improving water-solubility, and achieving drug controlled release. The obtained Pec-8PUH NPs possessed appropriate size (~91nm), drug-loaded efficiency and encapsulation efficiency through the regulation of eight-arm polyethylene glycol. In addition, Pec-8PUH NPs could enhance cell cytotoxicity, shorten blood retention time (7.3-fold UA, 7.2-fold HCPT) and more effective cellular uptake than free drugs, which exhibited an obvious synergistic effect of UA and HCPT by the co-delivery. 4T1 tumor-bearing mice also showed a higher survival rate than free UA and free HCPT. The result further shows that this novel drug delivery system has a promising potential for anti-cancer combination therapy.
Collapse
Affiliation(s)
- Yanxue Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Kefeng Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Xiaomin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Shangzhen Xiao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Dan Zheng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Pengbo Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Chunxiao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China.
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
56
|
Liu Y, Zheng D, Ma Y, Dai J, Li C, Xiao S, Liu K, Liu J, Wang L, Lei J, He J. Self-Assembled Nanoparticles Platform Based on Pectin-Dihydroartemisinin Conjugates for Codelivery of Anticancer Drugs. ACS Biomater Sci Eng 2018; 4:1641-1650. [PMID: 33445320 DOI: 10.1021/acsbiomaterials.7b00842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural pectin is an important carrier for delivering drugs in biomedical research, however, there are only a few reports on the preparation of pectin nanoparticles, especially a particle size of below 100 nm with high yield. Here we design pectin-dihydroartemisinin/hydrooxycampothecin nanoparticles (PDC-H NPs) through a self-assembly method. The prepared PDC-H NPs contained hydrophilic part of pectin and hydrophobic anticancer drugs of dihydroartemisinin and hydroxycamptothecin, which could increase drug loading, improve water solubility, and achieve controlled release of drugs. The results indicated that the particle size of PDC-H NPs was about 70 nm, drug-loaded efficiency of DHA was 20.33 wt %, and encapsulation efficiency of HCPT was 14.11 wt %. PDC-H NPs exhibited a higher cytotoxicity, the blood retention time of PDC-H NPs was 4.8-fold longer than DHA and was 6.8-fold longer than HCPT. In addition, effective cellular uptake exhibited an obvious synergistic effect compared with DHA and HCPT. 4T1 tumor-bearing mice also showed a higher survival rate than free DHA and free HCPT. The result show that the self-assembled PDC-H NPs is a promising anticancer drug for codelivery.
Collapse
Affiliation(s)
- Yanxue Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Dan Zheng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Yunyun Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Juan Dai
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Chunxiao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Shangzhen Xiao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Kefeng Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
57
|
Lu A, Wu Z, Luo X, Li S. Protein adsorption and macrophage uptake of zwitterionic sulfobetaine containing micelles. Colloids Surf B Biointerfaces 2018; 167:252-259. [PMID: 29674293 DOI: 10.1016/j.colsurfb.2018.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/30/2018] [Accepted: 04/08/2018] [Indexed: 11/15/2022]
Abstract
Micelles of poly(ε-caprolactone)-b-poly(N,N-diethylaminoethyl methacrylate)/(N-(3-sulfopropyl-N-methacryloxyethy-N,N-diethylammonium betaine)) (PCL-PDEAPS) and poly(ε-caprolactone)-b-poly(ethylene glycol) (PCL-PEG) were prepared and characterized. The interactions of micelles with model proteins such as bovine serum albumin (BSA), lysozyme (Ly), fibrinogen (Fg) and plasma were studied from adsorption quantity, micelle size, polydispersity index (PDI) and zeta-potential measurements. The adsorption quantity of negatively charged proteins on PCL-PDEAPS micelles containing zwitterionic sulfobetaine is larger than on non-ionic PEG-PCL micelles. The adsorption amount increases with the increase of zwitterionic content. And the quantity of adsorbed Fg is much higher than that of BSA because the former is much larger than the latter. In contrast, adsorption of positively charged Ly on copolymer micelle is very low. The interactions between micelles and model proteins are not only dependent on the hydration of zwitterions in PCL-PDEAPS micelles, but also on the electrostatic effect between proteins and micelles. Moreover, the adsorption of three model proteins on the mixed micelles of PCL-PDEAPS and PCL-PEG copolymers is related to the ratio of two copolymers. Denaturation of the proteins is not detected during adsorption and detachment process. PCL-PDEAPS micelles with positive charge are not swallowed by the macrophages after plasma absorption, in contrast to PCL-PEG micelles.
Collapse
Affiliation(s)
- Aijing Lu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China; Institut Européen des Membranes, UMR CNRS 5635, Université de Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| | - Zhengzhong Wu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xianglin Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China; State Key Lab of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Suming Li
- Institut Européen des Membranes, UMR CNRS 5635, Université de Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France.
| |
Collapse
|
58
|
Paca AM, Ajibade PA. Synthesis, Optical, and Structural Studies of Iron Sulphide Nanoparticles and Iron Sulphide Hydroxyethyl Cellulose Nanocomposites from Bis-(Dithiocarbamato)Iron(II) Single-Source Precursors. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E187. [PMID: 29570612 PMCID: PMC5923517 DOI: 10.3390/nano8040187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 01/13/2023]
Abstract
In this study, Fe(II) complexes of phenyldithiocarbamate, dimethyldithiocarbamate and imidazolyldithiocarbamate were used as single-source precursors to prepare iron sulphide nanoparticles by thermolysis in oleic acid/octadecylamine (ODA) at 180 °C. The nanoparticles were dispersed into hydroxyethyl cellulose (HEC) to prepare iron sulphide/HEC nanocomposites. Ultraviolet-Visible (UV-Vis), Photoluminescence (PL), Fourier Transform Infrared (FTIR), powder X-ray diffraction (pXRD), high-resolution transmission electron microscopy (HRTEM), Field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDS) were used to characterize the iron sulphide nanoparticles and corresponding HEC nanocomposites. The absorption spectra studies revealed that the nanoparticles were blue shifted due to quantum confinement and the optical band gaps of the nanoparticles are 4.85 eV for FeS1, 4.36 eV for FeS2, and 4.77 eV for FeS3. The emission maxima are red-shifted and broader for the nanoparticles prepared from phenyldithiocarbamate. Rod-like and spherically shaped iron sulphide particles were observed from the HRTEM images. The crystallite sizes from the HRTEM images are 23.90-38.89 nm for FeS1, 4.50-10.50 nm for FeS2, and 6.05-6.19 nm for FeS3 iron sulphide nanoparticles, respectively. pXRD diffraction patterns confirmed that FeS1 is in the pyrrhotite-4M crystalline phase, FeS2 is in the pyrrhotite phase, and FeS3 is in the troilite phase of iron sulphide. The phases of the iron sulphide nanoparticles indicate that the nature of the precursor complex affects the obtained crystalline phase. FTIR spectra studies confirmed the incorporation of the nanoparticles in the HEC matrix by the slight shift of the O-H and C-O bonds and the intense peaks on the nanoparticles. FESEM images of the iron sulphide nanoparticles showed flake-like or leaf-like morphologies with some hollow spheres. The EDS confirmed the formation of iron sulphide nanoparticles by showing the peaks of Fe and S.
Collapse
Affiliation(s)
- Athandwe M Paca
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
| | - Peter A Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
| |
Collapse
|
59
|
Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther 2018; 183:160-176. [DOI: 10.1016/j.pharmthera.2017.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
60
|
Shandilya S, Rani P, Onteru SK, Singh D. Small Interfering RNA in Milk Exosomes Is Resistant to Digestion and Crosses the Intestinal Barrier In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9506-9513. [PMID: 28967249 DOI: 10.1021/acs.jafc.7b03123] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Milk is not only a composite of nutrients but emerged as a source of exosomes acting as a promising drug delivery vehicle for small interfering RNA (siRNA). siRNA is known for its immense therapeutic potential but has various physiological limitations, including stable delivery. To investigate the suitability of siRNA for physiological stability and oral delivery, we encapsulated scrambled Alexa Fluor (AF)-488 siRNA in milk whey exosomes using lipofection and evaluated stability against the digestive processes along with its uptake and transepithelial transport by intestinal epithelial cells. Milk exosomal siRNA were found resistant to different digestive juices, including saliva, gastric, bile, and pancreatic juices, in vitro and were internalized by Caco-2 cells. The stable delivery of exosomal AF-488 siRNA along with its transepithelial transport was confirmed by fluorescence microscopy and fluorescence intensity measurements. In summary, the encapsulation of siRNA in milk exosomes resists harsh digestive processes, improving intestinal permeability and payload protection.
Collapse
Affiliation(s)
- Shruti Shandilya
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute (NDRI) , Karnal, Haryana 132001, India
| | - Payal Rani
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute (NDRI) , Karnal, Haryana 132001, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute (NDRI) , Karnal, Haryana 132001, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute (NDRI) , Karnal, Haryana 132001, India
| |
Collapse
|
61
|
Aqil F, Munagala R, Jeyabalan J, Agrawal AK, Gupta R. Exosomes for the Enhanced Tissue Bioavailability and Efficacy of Curcumin. AAPS JOURNAL 2017; 19:1691-1702. [PMID: 29047044 DOI: 10.1208/s12248-017-0154-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022]
Abstract
Exosomes are extracellular microvesicles with a particle size of 30-100 nm and carry a cargo of proteins, lipids, RNA, and DNA. Their properties of shuttling in-and-out of the cells suggest that these particles can be exploited as a nano drug carrier. In this manuscript, we show that curcumin can be delivered effectively using milk-derived exosomes. Curcumin when mixed with exosomes in the presence of 10% ethanol:acetonitrile (1:1) provided a drug load of 18-24%, and the formulation stored at - 80°C was stable for 6 months as determined by particle size analysis, drug load, and antiproliferative activity. The uptake of exosomes by cancer cells involved caveolae/clathrin-mediated endocytosis. Oral administration of exosomal curcumin (ExoCUR) in Sprague-Dawley rats demonstrated 3-5 times higher levels in various organs versus free agent. ExoCUR showed enhanced antiproliferative activity against multiple cancer cell lines including, breast, lung, and cervical cancer compared with the free curcumin. ExoCUR showed significantly higher anti-inflammatory activity measured as NF-κB activation in human lung and breast cancer cells. To determine in vivo antitumor activity, nude mice bearing the cervical CaSki tumor xenograft were treated with ExoCUR by oral gavage, curcumin diet, exosomes alone, and PBS as controls. While curcumin via dietary route failed to elicit any effect, exosomes had a modest (25-30%) tumor growth inhibition. However, ExoCUR showed significant inhibition (61%; p < 0.01) of the cervical tumor xenograft. No gross or systemic toxicity was observed in the rats administered with the exosomes or ExoCUR. These results suggest that exosomes can be developed as potential nano carriers for delivering curcumin which otherwise has encountered significant tissue bioavailability issues in the past.
Collapse
Affiliation(s)
- Farrukh Aqil
- Department of Medicine, University of Louisville, Louisville, Kentucky, 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, USA
| | - Radha Munagala
- Department of Medicine, University of Louisville, Louisville, Kentucky, 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, USA
| | - Jeyaprakash Jeyabalan
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, USA
| | - Ashish Kumar Agrawal
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, USA
| | - Ramesh Gupta
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, USA. .,Department of Pharmacology and Toxicology, University of Louisville, Delia Baxter II, Room 304E, 580 S. Preston Street, Louisville, Kentucky, 40202, USA.
| |
Collapse
|
62
|
Su T, Wang YB, Han D, Wang J, Qi S, Gao L, Shao YH, Qiao HY, Chen JW, Liang SH, Nie YZ, Li JY, Cao F. Multimodality Imaging of Angiogenesis in a Rabbit Atherosclerotic Model by GEBP11 Peptide Targeted Nanoparticles. Am J Cancer Res 2017; 7:4791-4804. [PMID: 29187904 PMCID: PMC5706100 DOI: 10.7150/thno.20767] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Angiogenesis is an important pathological process during progression of plaque formation, which can result in plaque hemorrhage and vulnerability. This study aims to explore non-invasive imaging of angiogenesis in atherosclerotic plaque through magnetic resonance imaging (MRI) and positron emission tomography (PET) by using GEBP11 peptide targeted magnetic iron oxide nanoparticles in a rabbit model of atherosclerosis. Methods: The dual-modality imaging probe was constructed by coupling 2, 3-dimercaptosuccinnic acid-coated paramagnetic nanoparticles (DMSA-MNPs) and the PET 68Ga chelator 1,4,7-triazacyclononane-N, N', N''-triacetic acid (NOTA) to GEBP11 peptide. The atherosclerosis model was induced in New Zealand white rabbits by abdominal aorta balloon de-endothelialization and atherogenic diet for 12 weeks. The plaque areas in abdominal artery were detected by ultrasound imaging and Oil Red O staining. Immunofluorescence staining and Prussian blue staining were applied respectively to investigate the affinity of GEBP11 peptide. MTT and flow cytometric analysis were performed to detect the effects of NGD-MNPs on cell proliferation, cell cycle and apoptosis in Human umbilical vein endothelial cells (HUVECs). In vivo MRI and PET imaging of atherosclerotic plaque were carried out at different time points after intravenous injection of nanoparticles. Results: The NGD-MNPs with hydrodynamic diameter of 130.8 nm ± 7.1 nm exhibited good imaging properties, high stability, low immunogenicity and little cytotoxicity. In vivo PET/MR imaging revealed that 68Ga-NGD-MNPs were successfully applied to visualize atherosclerotic plaque angiogenesis in the rabbit abdominal aorta. Prussian blue and CD31 immunohistochemical staining confirmed that NGD-MNPs were well co-localized within the blood vessels' plaques. Conclusion:68Ga-NGD-MNPs might be a promising MR and PET dual imaging probe for visualizing the vulnerable plaques.
Collapse
|
63
|
Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12:7291-7309. [PMID: 29042776 PMCID: PMC5634382 DOI: 10.2147/ijn.s146315] [Citation(s) in RCA: 790] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanotechnology has recently gained increased attention for its capability to effectively diagnose and treat various tumors. Nanocarriers have been used to circumvent the problems associated with conventional antitumor drug delivery systems, including their nonspecificity, severe side effects, burst release and damaging the normal cells. Nanocarriers improve the bioavailability and therapeutic efficiency of antitumor drugs, while providing preferential accumulation at the target site. A number of nanocarriers have been developed; however, only a few of them are clinically approved for the delivery of antitumor drugs for their intended actions at the targeted sites. The present review is divided into three main parts: first part presents introduction of various nanocarriers and their relevance in the delivery of anticancer drugs, second part encompasses targeting mechanisms and surface functionalization on nanocarriers and third part covers the description of selected tumors, including breast, lungs, colorectal and pancreatic tumors, and applications of relative nanocarriers in these tumors. This review increases the understanding of tumor treatment with the promising use of nanotechnology.
Collapse
Affiliation(s)
- Fakhar ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad
| | - Waqar Aman
- Department of Pharmacy, Kohat University of Science and Technology, Kohat
| | - Izhar Ullah
- Department of Health and Medical Sciences, University of Poonch, Rawalakot, Azad Kashmir
| | | | | | - Shumaila Shafique
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
64
|
Grillone A, Li T, Battaglini M, Scarpellini A, Prato M, Takeoka S, Ciofani G. Preparation, Characterization, and Preliminary In Vitro Testing of Nanoceria-Loaded Liposomes. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E276. [PMID: 28926967 PMCID: PMC5618387 DOI: 10.3390/nano7090276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023]
Abstract
Cerium oxide nanoparticles (nanoceria), well known for their pro- and antioxidant features, have been recently proposed for the treatment of several pathologies, including cancer and neurodegenerative diseases. However, interaction between nanoceria and biological molecules such as proteins and lipids, short blood circulation time, and the need of a targeted delivery to desired sites are some aspects that require strong attention for further progresses in the clinical application of these nanoparticles. The aim of this work is the encapsulation of nanoceria into a liposomal formulation in order to improve their therapeutic potentialities. After the preparation through a reverse-phase evaporation method, size, Z-potential, morphology, and loading efficiency of nanoceria-loaded liposomes were investigated. Finally, preliminary in vitro studies were performed to test cell uptake efficiency and preserved antioxidant activity. Nanoceria-loaded liposomes showed a good colloidal stability, an excellent biocompatibility, and strong antioxidant properties due to the unaltered activity of the entrapped nanoceria. With these results, the possibility of exploiting liposomes as carriers for cerium oxide nanoparticles is demonstrated here for the first time, thus opening exciting new opportunities for in vivo applications.
Collapse
Affiliation(s)
- Agostina Grillone
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Tianshu Li
- Research Organization for Nano & Life innovation, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480 Tokyo, Japan.
| | - Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Alice Scarpellini
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering (TWIns), Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480 Tokyo, Japan.
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
65
|
Naz S, Shahzad H, Ali A, Zia M. Nanomaterials as nanocarriers: a critical assessment why these are multi-chore vanquisher in breast cancer treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:899-916. [PMID: 28914553 DOI: 10.1080/21691401.2017.1375937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Breast cancer is a group of diseases with various subtypes and leads to high mortality throughout the globe. Various conventional techniques are in practice to cure breast cancer but these techniques are linked with various shortcomings. Mostly these treatments are not site directed and cause toxicity towards normal cells. In order to overcome these issues, we need smart system that can deliver anticancer drugs to specific sites. Targeted drug delivery can be achieved via passive or active drug delivery using nanocarriers. This mode of drug delivery is more effective against breast cancer and may help in the reduction of mortality rate. Potentially used nanocarriers for targeted drug delivery belong to organic and inorganic molecules. Various FDA approved nano products are in use to cure breast cancer. However, body's defense system is main limitation for potential use of nano systems. However, this can be overcome by surface modification of nanocarriers. In this review, breast cancer and its types, targeted drug delivery and nanocarriers used to cure breast cancer are discussed. By progressing nanotechnology, we will be able to fight against this life threatening issue and serve the humanity, which is the basic aim of scientific knowledge.
Collapse
Affiliation(s)
- Sania Naz
- a Department of Biotechnology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Hira Shahzad
- b Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture , Rawalpindi , Pakistan
| | - Attarad Ali
- a Department of Biotechnology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Muhammad Zia
- a Department of Biotechnology , Quaid-i-Azam University , Islamabad , Pakistan
| |
Collapse
|
66
|
Irimie AI, Sonea L, Jurj A, Mehterov N, Zimta AA, Budisan L, Braicu C, Berindan-Neagoe I. Future trends and emerging issues for nanodelivery systems in oral and oropharyngeal cancer. Int J Nanomedicine 2017; 12:4593-4606. [PMID: 28721037 PMCID: PMC5500515 DOI: 10.2147/ijn.s133219] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oral cancer is a prevalent cancer type on a global scale, whose traditional treatment strategies have several drawbacks that could in the near future be overcome through the development of novel therapeutic and prognostic strategies. Nanotechnology provides an alternative to traditional therapy that leads to enhanced efficiency and less toxicity. Various nanosystems have been developed for the treatment of oral cancer, including polymeric, metallic, and lipid-based formulations that incorporate chemotherapeutics, natural compounds, siRNA, or other molecules. This review summarizes the main benefits of using these nanosystems, in parallel with a particular focus on the issues encountered in medical practice. These novel strategies have provided encouraging results in both in vitro and in vivo studies, but few have entered clinical trials. The use of nanosystems in oral cancer has the potential of becoming a valid therapeutic option for patients suffering from this malignancy, considering that clinical trials have already been completed and others are currently being developed.
Collapse
Affiliation(s)
| | - Laura Sonea
- MedFuture Research Center for Advanced Medicine
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv.,Technological Center for Emergency Medicine, Plovdiv, Bulgaria
| | - Alina Andreea Zimta
- MedFuture Research Center for Advanced Medicine.,Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MedFuture Research Center for Advanced Medicine.,Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|
67
|
Belyanina I, Kolovskaya O, Zamay S, Gargaun A, Zamay T, Kichkailo A. Targeted Magnetic Nanotheranostics of Cancer. Molecules 2017; 22:E975. [PMID: 28604617 PMCID: PMC6152710 DOI: 10.3390/molecules22060975] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Current advances in targeted magnetic nanotheranostics are summarized in this review. Unique structural, optical, electronic and thermal properties of magnetic materials in nanometer scale are attractive in the field of biomedicine. Magnetic nanoparticles functionalized with therapeutic molecules, ligands for targeted delivery, fluorescent and other chemical agents can be used for cancer diagnostic and therapeutic purposes. High selectivity, small size, and low immunogenicity of synthetic nucleic acid aptamers make them attractive delivery agents for therapeutic purposes. Properties, production and functionalization of magnetic nanoparticles and aptamers as ligands for targeted delivery are discussed herein. In recent years, magnetic nanoparticles have been widely used in diagnostic methods, such as scintigraphy, single photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI), and Raman spectroscopy. Therapeutic purposes of magnetic nanoconstructions are also promising. They are used for effective drug delivery, magnetic mediated hypertermia, and megnetodynamic triggering of apoptosis. Thus, magnetic nanotheranostics opens a new venue for complex differential diagnostics, and therapy of metastatic cancer.
Collapse
Affiliation(s)
- Irina Belyanina
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
| | - Olga Kolovskaya
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Sergey Zamay
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Ana Gargaun
- Independent Researcher Vancouver, Vancouver, BC V6K 1C4, Canada.
| | - Tatiana Zamay
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Anna Kichkailo
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| |
Collapse
|
68
|
Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, Bahramsoltani R, Karimi-Soureh Z, Rahimi R, Abdollahi M. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int J Nanomedicine 2017; 12:2689-2702. [PMID: 28435252 PMCID: PMC5388197 DOI: 10.2147/ijn.s131973] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer is defined as the abnormal cell growth that can cause life-threatening malignancies with high financial costs for patients as well as the health care system. Natural polyphenols have long been used for the prevention and treatment of several disorders due to their antioxidant, anti-inflammatory, cytotoxic, antineoplastic, and immunomodulatory effects discussed in the literature; thus, these phytochemicals are potentially able to act as chemopreventive and chemotherapeutic agents in different types of cancer. One of the problems regarding the use of polyphenolic compounds is their low bioavailability. Different types of formulations have been designed for the improvement of bioavailability of these compounds, nanonization being one of the most notable approaches among them. This study aimed to review current data on the nanoformulations of natural polyphenols as chemopreventive and chemotherapeutic agents and to discuss their molecular anticancer mechanisms of action. Nanoformulations of natural polyphenols as bioactive agents, including resveratrol, curcumin, quercetin, epigallocatechin-3-gallate, chrysin, baicalein, luteolin, honokiol, silibinin, and coumarin derivatives, in a dose-dependent manner, result in better efficacy for the prevention and treatment of cancer. The impact of nanoformulation methods for these natural agents on tumor cells has gained wider attention due to improvement in targeted therapy and bioavailability, as well as enhancement of stability. Today, several nanoformulations are designed for delivery of polyphenolic compounds, including nanosuspensions, solid lipid nanoparticles, liposomes, gold nanoparticles, and polymeric nanoparticles, which have resulted in better antineoplastic activity, higher intracellular concentration of polyphenols, slow and sustained release of the drugs, and improvement of proapoptotic activity against tumor cells. To conclude, natural polyphenols demonstrate remarkable anticancer potential in pharmacotherapy; however, the obstacles in terms of their bioavailability in and toxicity to normal cells, as well as targeted drug delivery to malignant cells, can be overcome using nanoformulation-based technologies, which optimize the bioefficacy of these natural drugs.
Collapse
Affiliation(s)
- Yasamin Davatgaran-Taghipour
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Salar Masoomzadeh
- Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Karimi-Soureh
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Evidence-Based Medicine Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
69
|
Parvanian S, Mostafavi SM, Aghashiri M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2016.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
70
|
Wang S, Meng X, Dong Y. Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction. Int J Oncol 2017; 50:1330-1340. [PMID: 28259944 DOI: 10.3892/ijo.2017.3890] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/12/2017] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer is a cause of cancer death, making it one of the most common causes of death among women globally. Previously, a variety of studies have revealed the molecular mechanisms by which cervical cancer develops. However, there are still limitations in treatment for cervical cancer. Ursolic acid is a naturally derived pentacyclic triterpene acid, exhibiting broad anticancer effects. Nanoparticulate drug delivery systems have been known to better the bioavailability of drugs on intranasal administration compared with only drug solutions. Administration of ursolic acid nanoparticles is thought to be sufficient to lead to considerable suppression of cervical cancer progression. We loaded gold-ursolic acid into poly(DL-lactide-co-glycolide) nanoparticles to cervical cancer cell lines due to the properties of ursolic acid in altering cellular processes and the easier absorbance of nanoparticles. In addition, in this study, ursolic acid nanoparticles were administered to cervical cancer cells to find effective treatments for cervical cancer inhibition. In the present study, ELISA, western blotting, flow cytometry and immunohistochemistry assays were carried out to calculate the molecular mechanism by which ursolic acid nanoparticles modulated cervical cancer progression. Data indicated that ursolic acid nanoparticles, indeed, significantly suppress cervial cancer cell proliferation, invasion and migration compared to the control group, and apoptosis was induced by ursolic acid nanoparticles in cervical cancer cells through activating caspases, p53 and suppressing anti-apoptosis-related signals. Furthermore, tumor size was reduced by treatment of ursolic acid nanoparticles in in vivo experiments. In conclusion, this study suggests that ursolic acid nanoparticles inhibited cervical cancer cell proliferation via apoptosis induction, which could be a potential target for future therapeutic strategy clinically.
Collapse
Affiliation(s)
- Shaoguang Wang
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xiaomei Meng
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yaozhong Dong
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
71
|
Bhowmik T, Gomes A. Down–regulation of cyclin–dependent kinase-4 and MAPK through estrogen receptor mediated cell cycle arrest in human breast cancer induced by gold nanoparticle tagged toxin protein NKCT1. Chem Biol Interact 2017; 268:119-128. [DOI: 10.1016/j.cbi.2017.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/27/2017] [Accepted: 03/16/2017] [Indexed: 11/26/2022]
|
72
|
Antimisiaris S, Mourtas S, Papadia K. Targeted si-RNA with liposomes and exosomes (extracellular vesicles): How to unlock the potential. Int J Pharm 2017; 525:293-312. [PMID: 28163221 DOI: 10.1016/j.ijpharm.2017.01.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
The concept of RNA interference therapeutics has been initiated 18 years ago, and the main bottleneck for translation of the technology into therapeutic products remains the delivery of functional RNA molecules into the cell cytoplasm. In the present review article after an introduction about the theoretical basis of RNAi therapy and the main challenges encountered for its realization, an overview of the different types of delivery systems or carriers, used as potential systems to overcome RNAi delivery issues, will be provided. Characteristic examples or results obtained with the most promising systems will be discussed. Focus will be given mostly on the applications of liposomes or other types of lipid carriers, such as exosomes, towards improved delivery of RNAi to therapeutic targets. Finally the approach of integrating the advantages of these two vesicular systems, liposomes and exosomes, as a potential solution to realize RNAi therapy, will be proposed.
Collapse
Affiliation(s)
- Sophia Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece; Institute of Chemical Engineering, FORTH/ICE-HT, Rio 26504, Greece.
| | - Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| | - Konstantina Papadia
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| |
Collapse
|
73
|
|
74
|
Nasiri R, Almaki JH, Idris A, Nasiri M, Irfan M, Abdul Majid FA, Nodeh HR, Hasham R. Targeted delivery of bromelain using dual mode nanoparticles: synthesis, physicochemical characterization, in vitro and in vivo evaluation. RSC Adv 2017. [DOI: 10.1039/c7ra06389j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The engineering, characterization, and application of dual-functional delivery vehicle “SPIONs–Br–FA” are reported.
Collapse
Affiliation(s)
- Rozita Nasiri
- Institute of Bioproduct Development
- Department of Bioprocess Engineering
- Faculty of Chemical and Energy Engineering
- Universiti Teknologi Malaysia
- Johor Bahru
| | - Javad Hamzehalipour Almaki
- Institute of Bioproduct Development
- Department of Bioprocess Engineering
- Faculty of Chemical and Energy Engineering
- Universiti Teknologi Malaysia
- Johor Bahru
| | - Ani Idris
- Institute of Bioproduct Development
- Department of Bioprocess Engineering
- Faculty of Chemical and Energy Engineering
- Universiti Teknologi Malaysia
- Johor Bahru
| | - Mahtab Nasiri
- Advanced Materials Research Centre
- Department of Materials Engineering
- Islamic Azad University
- Najafabad
- Iran
| | - Muhammad Irfan
- Institute of Bioproduct Development
- Department of Bioprocess Engineering
- Faculty of Chemical and Energy Engineering
- Universiti Teknologi Malaysia
- Johor Bahru
| | | | | | - Rosnani Hasham
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- Johor Bahru
- Malaysia
| |
Collapse
|
75
|
Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim KH. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev 2017; 46:158-196. [DOI: 10.1039/c6cs00517a] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Remarkable advances achieved in modern material technology, especially in device fabrication, have facilitated diverse materials to expand the list of their application fields.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - Ruma Rani
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - K. Tankeshwar
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
- Department of Physics
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering
- Hanyang University
- Seoul 04763
- Republic of Korea
| |
Collapse
|
76
|
Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release 2016; 241:110-124. [DOI: 10.1016/j.jconrel.2016.09.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
|
77
|
Lara-Cruz C, Jiménez-Salazar JE, Ramón-Gallegos E, Damian-Matsumura P, Batina N. Increasing roughness of the human breast cancer cell membrane through incorporation of gold nanoparticles. Int J Nanomedicine 2016; 11:5149-5161. [PMID: 27785020 PMCID: PMC5066869 DOI: 10.2147/ijn.s108768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been proposed for use in the treatment of different types of cancer, including breast cancer. At present, neither the mechanisms of AuNP interaction with the plasma membrane surface and their delivery and intracellular distribution in cancer cells nor their effect on the plasma membrane so as to allow cell incorporation of larger amounts of AuNPs is known. The objective of this work was to study the interaction of bare 20 nm diameter AuNPs with the plasma membrane of human MCF-7 breast cancer cells, as well as their uptake, intracellular distribution, and induction of changes on the cell surface roughness. The dynamics of intracellular incorporation and the distribution of AuNPs were observed by confocal laser scanning microscopy. Changes in roughness were monitored in synchronized MCF-7 cells by atomic force microscopy high-resolution imaging at 6 hour intervals for 24 hours during a single cell cycle. The results show that bare AuNPs are capable of emitting fluorescence at 626 nm, without the need for a fluorescent biomarker, which allows monitoring their uptake and intracellular distribution until they reach the nucleus. These results are correlated with changes in cell roughness, which significantly increases at 12 hours of incubation with AuNPs, when compared with control cells. The obtained data provide bases to understand molecular processes of the use of AuNPs in the treatment of different diseases, mainly breast cancer.
Collapse
Affiliation(s)
- C Lara-Cruz
- Department of Biology of Reproduction, Metropolitan Autonomous University
| | | | - E Ramón-Gallegos
- Department of Morphology, National School of Biological Sciences, National Polytechnic Institute
| | - P Damian-Matsumura
- Department of Biology of Reproduction, Metropolitan Autonomous University
| | - N Batina
- Department of Chemistry, Nanotechnology and Molecular Engineering Laboratory, Metropolitan Autonomous University, Mexico City, Mexico
| |
Collapse
|
78
|
Wang Y, Strohm EM, Sun Y, Wang Z, Zheng Y, Wang Z, Kolios MC. Biodegradable polymeric nanoparticles containing gold nanoparticles and Paclitaxel for cancer imaging and drug delivery using photoacoustic methods. BIOMEDICAL OPTICS EXPRESS 2016; 7:4125-4138. [PMID: 27867720 PMCID: PMC5102552 DOI: 10.1364/boe.7.004125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 05/20/2023]
Abstract
In this study, optical-triggered multifunctional theranostic agents for photoacoustic/fluorescent imaging and cancer therapy have been developed. This system consists of a perfluorohexane liquid and gold nanoparticles (GNPs) in the core, stabilized by a Poly (lactide-co-glycolic acid) (PLGA) polymer shell. When cancer cells containing PLGA-GNPs were exposed to laser pulses, cell viability decreased due to the vaporization of the particles in and around the cells. The particle chemo drug loading and delivery capacity was also investigated in vitro experiments. These particles show potential as photoacoustic imaging and therapy agents for future clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Yanjie Wang
- Physics Department, Ryerson University, 350 Victoria St., Toronto, Ontario M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
| | - Eric M. Strohm
- Physics Department, Ryerson University, 350 Victoria St., Toronto, Ontario M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
| | - Yang Sun
- Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Rd., Chongqing, 400010, China
| | - Zhaoxia Wang
- Department of Ultrasound, Children’s Hospital, Affiliated to Chongqing Medical University, No.136, Zhongshan No.2 Rd., Yuzhong District, Chongqing 400014, China
| | - Yuanyi Zheng
- Ultrasound Department, Sixth affiliated hospital of Shanghai Jiaotong University, 600 Yishan Rd., Xuhui District, Shanghai, 200133, China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Rd., Chongqing, 400010, China
| | - Michael C. Kolios
- Physics Department, Ryerson University, 350 Victoria St., Toronto, Ontario M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
| |
Collapse
|
79
|
Development of hematin conjugated PLGA nanoparticle for selective cancer targeting. Eur J Pharm Sci 2016; 91:138-43. [DOI: 10.1016/j.ejps.2016.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/28/2016] [Indexed: 01/06/2023]
|
80
|
Raza K, Kumar D, Kiran C, Kumar M, Guru SK, Kumar P, Arora S, Sharma G, Bhushan S, Katare OP. Conjugation of Docetaxel with Multiwalled Carbon Nanotubes and Codelivery with Piperine: Implications on Pharmacokinetic Profile and Anticancer Activity. Mol Pharm 2016; 13:2423-2432. [PMID: 27182646 DOI: 10.1021/acs.molpharmaceut.6b00183] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanotechnology-based drug products are emerging as promising agents to enhance the safety and efficacy of established chemotherapeutic molecules. Carbon nanotubes (CNTs), especially multiwalled CNTs (MWCNTs), have been explored for this potential owing to their safety and other desired attributes. Docetaxel (DTX) is an indispensable anticancer agent, which has wide applicability in variety of cancers. However, the potential of DTX is still not completely harvested due to problems like poor aqueous solubility, low tissue permeability, poor bioavailability, high first pass metabolism, and dose-related toxicity. Hence, it was proposed to attach DTX to MWCNTs and coadminister it along with piperine with an aim to enhance the tissue permeation, anticancer activity, and bioavailability. The Fourier transform infrared, UV, and NMR spectroscopic data confirmed successful conjugation of DTX to MWCNTs and adsorption of piperine onto MWCNTs. The codelivery MWCNT-based system offered drug release moderation and better cancer cell toxicity than that of plain DTX as well as DTX-CNT conjugate. The pharmacokinetic profile of DTX was exceptionally improved by the conjugation, in general, and coadministration with piperine, in specific vis-à-vis plain drug. Hence, the dual approach of MWCNTs conjugation and piperine coadministration can serve as a beneficial option for enhancement of the performance of DTX in cancer chemotherapy.
Collapse
Affiliation(s)
- Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan , Bandar Sindri, Distt. Ajmer, Rajasthan 305817, India
| | - Dinesh Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan , Bandar Sindri, Distt. Ajmer, Rajasthan 305817, India
| | - Chanchal Kiran
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan , Bandar Sindri, Distt. Ajmer, Rajasthan 305817, India
| | - Manish Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan , Bandar Sindri, Distt. Ajmer, Rajasthan 305817, India
| | - Santosh Kumar Guru
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine , Jammu 180001, India
| | - Pramod Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan , Bandar Sindri, Distt. Ajmer, Rajasthan 305817, India
| | - Shweta Arora
- Department of Biotechnology, Banasthali Vidhyapith University , P.O. Banasthali Vidhyapith, Vanasthali, Rajasthan 304022, India
| | - Gajanand Sharma
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh 160014, India
| | - Shashi Bhushan
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine , Jammu 180001, India
| | - O P Katare
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh 160014, India
| |
Collapse
|
81
|
Su H, Zeng Y, Liu G, Chen X. The Development of Cancer Theranostics. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
82
|
López-Miranda E, Cortés J. Etirinotecan pegol for the treatment of breast cancer. Expert Opin Pharmacother 2016; 17:727-34. [PMID: 26881332 DOI: 10.1517/14656566.2016.1154537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
83
|
Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery. Colloids Surf B Biointerfaces 2016; 139:249-58. [DOI: 10.1016/j.colsurfb.2015.12.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022]
|
84
|
Granata G, Consoli GML, Lo Nigro R, Malandrino G, Geraci C. Supramolecular assembly of a succinyl-calix[4]arene derivative in multilamellar vesicles. Supramol Chem 2016. [DOI: 10.1080/10610278.2015.1098639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | | | - Corrada Geraci
- Istituto di Chimica Biomolecolare-C.N.R., Catania, Italy
| |
Collapse
|
85
|
Yang Y, Yu C. Advances in silica based nanoparticles for targeted cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:317-32. [DOI: 10.1016/j.nano.2015.10.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
|
86
|
Nirmala JG, Akila S, Nadar MSAM, Narendhirakannan RT, Chatterjee S. Biosynthesized Vitis vinifera seed gold nanoparticles induce apoptotic cell death in A431 skin cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra16310f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytotoxic and apoptotic effects of Vitis vinifera seed gold nanoparticles on A431 cell lines.
Collapse
Affiliation(s)
- J. Grace Nirmala
- Department of Biotechnology
- School of Biotechnology and Health Sciences
- Karunya University
- Karunya Institute of Technology and Sciences
- Coimbatore – 641 114
| | - S. Akila
- Life Sciences Division
- AU-KBC Research Centre
- Madras Institute of Technology
- Anna University
- Chennai (Madras) – 600 044
| | - M. S. A. Muthukumar Nadar
- Department of Biotechnology
- School of Biotechnology and Health Sciences
- Karunya University
- Karunya Institute of Technology and Sciences
- Coimbatore – 641 114
| | - R. T. Narendhirakannan
- Department of Biotechnology
- School of Biotechnology and Health Sciences
- Karunya University
- Karunya Institute of Technology and Sciences
- Coimbatore – 641 114
| | - Suvro Chatterjee
- Life Sciences Division
- AU-KBC Research Centre
- Madras Institute of Technology
- Anna University
- Chennai (Madras) – 600 044
| |
Collapse
|
87
|
Zhang T, Wang H, Ye Y, Zhang X, Wu B. Micellar emulsions composed of mPEG-PCL/MCT as novel nanocarriers for systemic delivery of genistein: a comparative study with micelles. Int J Nanomedicine 2015; 10:6175-84. [PMID: 26491290 PMCID: PMC4598212 DOI: 10.2147/ijn.s91348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polymeric micelles receive considerable attention as drug delivery vehicles, depending on the versatility in drug solubilization and targeting therapy. However, their use invariably suffers with poor stability both in in vitro and in vivo conditions. Here, we aimed to develop a novel nanocarrier (micellar emulsions, MEs) for a systemic delivery of genistein (Gen), a poorly soluble anticancer agent. Gen-loaded MEs (Gen-MEs) were prepared from methoxy poly(ethylene glycol)-block-(ε-caprolactone) and medium-chain triglycerides (MCT) by solvent-diffusion technique. Nanocarriers were characterized by dynamic light scattering, transmission electron microscopy, and in vitro release. The resulting Gen-MEs were approximately 46 nm in particle size with a narrow distribution. Gen-MEs produced a different in vitro release profile from the counterpart of Gen-ME. The incorporation of MCT significantly enhanced the stability of nanoparticles against dilution with simulated body fluid. Pharmacokinetic study revealed that MEs could notably extend the mean retention time of Gen, 1.57- and 7.38-fold as long as that of micelles and solution formulation, respectively, following intravenous injection. Furthermore, MEs markedly increased the elimination half-life (t1/2β) of Gen, which was 2.63-fold larger than that of Gen solution. Interestingly, Gen distribution in the liver and kidney for MEs group was significantly low relative to the micelle group in the first 2 hours, indicating less perfusion in such two tissues, which well accorded with the elongated mean retention time. Our findings suggested that MEs may be promising carriers as an alternative of micelles to systemically deliver poorly soluble drugs.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Huan Wang
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Yanghuan Ye
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Xingwang Zhang
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Baojian Wu
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
88
|
Fan YL, Fan BY, Li Q, Di HX, Meng XY, Ling N. Preparation of 5-fluorouracil-loaded nanoparticles and study of interaction with gastric cancer cells. Asian Pac J Cancer Prev 2015; 15:7611-5. [PMID: 25292036 DOI: 10.7314/apjcp.2014.15.18.7611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIMS To prepare 5-fluorouracil (5-Fu) nanoparticles with higher encapsulation efficiency and drug loading, and then investigate interaction with the SGC-7901 gastric cancer cell line. MATERIALS AND METHODS Prescription was optimized by orthogonal experiments, the encapsulation efficiency and loading capacity were tested by high- performance liquid chromatography, and inhibition of proliferation by 5-Fu nanoparticles and 5-Fu given to cells for 24, 48 and 72 hours was investigated by methyl thiazolyl tetrazolium assay (MTT). In addition, 5-Fu nanoparticles were labeled by fluorescein isothiocyanate (FITC), and absorption into cells was tested by flow cytometry. RESULTS The optimal conditions for preparation were concentrations of 5-Fu of 5mg/ml, of CaCl2 of 60 mg/ml and of chitosan of 2 mg/ml. With a stirring speed of 1200rpm, encapsulation efficiency of 5-Fu nanoparticles was 55.4±1.10% and loading capacity was 4.22±0.14%; gastric cancer cells were significantly inhibited by 5-Fu nanoparticles in a time and concentration dependent manner, and compared to 5-Fu with slower drug release, in a certain concentration range, inhibition with 5-Fu nanoparticles was stronger. 5-Fu nanoparticles were absorbed by the cells in line with the concentration. CONCLUSIONS 5-Fu nanoparticles can inhibit growth of gastric cancer cells in vitro to a greater extent than with 5-Fu with good adsorption characteristics, supporting feasibility as a carrier.
Collapse
Affiliation(s)
- Yu-Ling Fan
- Harbin Commercial University Life Science and Environmental Science Research Center, Harbin, China E-mail :
| | | | | | | | | | | |
Collapse
|
89
|
Bazak R, Houri M, Achy SE, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 2015; 141:769-84. [PMID: 25005786 PMCID: PMC4710367 DOI: 10.1007/s00432-014-1767-3] [Citation(s) in RCA: 462] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE Cancer is one of the leading causes of death, and thus, the scientific community has but great efforts to improve cancer management. Among the major challenges in cancer management is development of agents that can be used for early diagnosis and effective therapy. Conventional cancer management frequently lacks accurate tools for detection of early tumors and has an associated risk of serious side effects of chemotherapeutics. The need to optimize therapeutic ratio as the difference with which a treatment affects cancer cells versus healthy tissues lead to idea that it is needful to have a treatment that could act a the "magic bullet"-recognize cancer cells only. Nanoparticle platforms offer a variety of potentially efficient solutions for development of targeted agents that can be exploited for cancer diagnosis and treatment. There are two ways by which targeting of nanoparticles can be achieved, namely passive and active targeting. Passive targeting allows for the efficient localization of nanoparticles within the tumor microenvironment. Active targeting facilitates the active uptake of nanoparticles by the tumor cells themselves. METHODS Relevant English electronic databases and scientifically published original articles and reviews were systematically searched for the purpose of this review. RESULTS In this report, we present a comprehensive review of literatures focusing on the active targeting of nanoparticles to cancer cells, including antibody and antibody fragment-based targeting, antigen-based targeting, aptamer-based targeting, as well as ligand-based targeting. CONCLUSION To date, the optimum targeting strategy has not yet been announced, each has its own advantages and disadvantages even though a number of them have found their way for clinical application. Perhaps, a combination of strategies can be employed to improve the precision of drug delivery, paving the way for a more effective personalized therapy.
Collapse
Affiliation(s)
- Remon Bazak
- Department of Otorhinolaryngology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamad Houri
- Department of Ophthalmology, Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Samar El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Serag Kamel
- House Officer, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Tamer Refaat
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
90
|
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93:52-79. [PMID: 25813885 DOI: 10.1016/j.ejpb.2015.03.018] [Citation(s) in RCA: 1142] [Impact Index Per Article: 114.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 02/08/2023]
Abstract
Cancer is the second worldwide cause of death, exceeded only by cardiovascular diseases. It is characterized by uncontrolled cell proliferation and an absence of cell death that, except for hematological cancers, generates an abnormal cell mass or tumor. This primary tumor grows thanks to new vascularization and, in time, acquires metastatic potential and spreads to other body sites, which causes metastasis and finally death. Cancer is caused by damage or mutations in the genetic material of the cells due to environmental or inherited factors. While surgery and radiotherapy are the primary treatment used for local and non-metastatic cancers, anti-cancer drugs (chemotherapy, hormone and biological therapies) are the choice currently used in metastatic cancers. Chemotherapy is based on the inhibition of the division of rapidly growing cells, which is a characteristic of the cancerous cells, but unfortunately, it also affects normal cells with fast proliferation rates, such as the hair follicles, bone marrow and gastrointestinal tract cells, generating the characteristic side effects of chemotherapy. The indiscriminate destruction of normal cells, the toxicity of conventional chemotherapeutic drugs, as well as the development of multidrug resistance, support the need to find new effective targeted treatments based on the changes in the molecular biology of the tumor cells. These novel targeted therapies, of increasing interest as evidenced by FDA-approved targeted cancer drugs in recent years, block biologic transduction pathways and/or specific cancer proteins to induce the death of cancer cells by means of apoptosis and stimulation of the immune system, or specifically deliver chemotherapeutic agents to cancer cells, minimizing the undesirable side effects. Although targeted therapies can be achieved directly by altering specific cell signaling by means of monoclonal antibodies or small molecules inhibitors, this review focuses on indirect targeted approaches that mainly deliver chemotherapeutic agents to molecular targets overexpressed on the surface of tumor cells. In particular, we offer a detailed description of different cytotoxic drug carriers, such as liposomes, carbon nanotubes, dendrimers, polymeric micelles, polymeric conjugates and polymeric nanoparticles, in passive and active targeted cancer therapy, by enhancing the permeability and retention or by the functionalization of the surface of the carriers, respectively, emphasizing those that have received FDA approval or are part of the most important clinical studies up to date. These drug carriers not only transport the chemotherapeutic agents to tumors, avoiding normal tissues and reducing toxicity in the rest of the body, but also protect cytotoxic drugs from degradation, increase the half-life, payload and solubility of cytotoxic agents and reduce renal clearance. Despite the many advantages of all the anticancer drug carriers analyzed, only a few of them have reached the FDA approval, in particular, two polymer-protein conjugates, five liposomal formulations and one polymeric nanoparticle are available in the market, in contrast to the sixteen FDA approval of monoclonal antibodies. However, there are numerous clinical trials in progress of polymer-protein and polymer-drug conjugates, liposomal formulations, including immunoliposomes, polymeric micelles and polymeric nanoparticles. Regarding carbon nanotubes or dendrimers, there are no FDA approvals or clinical trials in process up to date due to their unresolved toxicity. Moreover, we analyze in detail the more promising and advanced preclinical studies of the particular case of polymeric nanoparticles as carriers of different cytotoxic agents to active and passive tumor targeting published in the last 5 years, since they have a huge potential in cancer therapy, being one of the most widely studied nano-platforms in this field in the last years. The interest that these formulations have recently achieved is stressed by the fact that 90% of the papers based on cancer therapeutics with polymeric nanoparticles have been published in the last 6 years (PubMed search).
Collapse
|
91
|
Lamberti M, Pedata P, Sannolo N, Porto S, De Rosa A, Caraglia M. Carbon nanotubes: Properties, biomedical applications, advantages and risks in patients and occupationally-exposed workers. Int J Immunopathol Pharmacol 2015; 28:4-13. [DOI: 10.1177/0394632015572559] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since the beginning of the 21st century, carbon-based nanomaterials (CNTs) have been introduced in pharmacy and medicine for drug delivery system in therapeutics. CNTs have proved able to transport a wide range of molecules across membranes and into living cells; therefore, they have attracted great interest in biomedical applications such as advanced imaging, tissue regeneration, and drug or gene delivery. Although there are many data on the advantages in terms of higher efficacy and less adverse effects, several recent findings have reported unexpected toxicities induced by CNTs. The dose, shape, surface chemistry, exposure route, and purity play important roles in these differential toxicities. Mapping these risks as well as understanding their molecular mechanisms is a crucial step in the development of any CNT-containing nanopharmaceuticals. This paper seeks to provide a comprehensive review of all articles published on cellular response to CNTs, underlining their therapeutic applications and possible toxicity in patients and occupationally exposed workers.
Collapse
Affiliation(s)
- M Lamberti
- Department of Experimental Medicine, Section of Hygiene, Occupational Medicine and Forensic Medicine, Second University of Naples, Naples, Italy
| | - P Pedata
- Department of Experimental Medicine, Section of Hygiene, Occupational Medicine and Forensic Medicine, Second University of Naples, Naples, Italy
| | - N Sannolo
- Department of Experimental Medicine, Section of Hygiene, Occupational Medicine and Forensic Medicine, Second University of Naples, Naples, Italy
| | - S Porto
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Italy
| | - A De Rosa
- Department of Odontology and Surgery, Second University of Naples, Italy
| | - M Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Italy
| |
Collapse
|
92
|
|
93
|
Mignani S, Bryszewska M, Klajnert-Maculewicz B, Zablocka M, Majoral JP. Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules 2014; 16:1-27. [PMID: 25426779 DOI: 10.1021/bm501285t] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The main objective of nanomedicine research is the development of nanoparticles as drug delivery systems or drugs per se to tackle diseases as cancer, which are a leading cause of death with developed nations. Targeted treatments against solid tumors generally lead to dramatic regressions, but, unfortunately, the responses are often short-lived due to resistant cancer cells. In addition, one of the major challenges of combination drug therapy (called "cocktail") is the crucial optimization of different drug parameters. This issue can be solved using combination nanotherapy. Nanoparticles developed in oncology based on combination nanotherapy are either (a) those designed to combat multidrug resistance or (b) those used to circumvent resistance to clinical cancer drugs. This review provides an overview of the different nanoparticles currently used in clinical treatments in oncology. We analyze in detail the development of combinatorial nanoparticles including dendrimers for dual drug delivery via two strategic approaches: (a) use of chemotherapeutics and chemosensitizers to combat multidrug resistance and (b) use of multiple cytotoxic drugs. Finally, in this review, we discuss the challenges, clinical outlook, and perspectives of the nanoparticle-based combination therapy in cancer.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologique, 45, rue des Saints Pères, 75006 Paris, France
| | | | | | | | | |
Collapse
|
94
|
Solarska-Ściuk K, Gajewska A, Glińska S, Michlewska S, Balcerzak Ł, Jamrozik A, Skolimowski J, Burda K, Bartosz G. Effect of functionalized and non-functionalized nanodiamond on the morphology and activities of antioxidant enzymes of lung epithelial cells (A549). Chem Biol Interact 2014; 222:135-47. [DOI: 10.1016/j.cbi.2014.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 09/02/2014] [Accepted: 10/06/2014] [Indexed: 11/27/2022]
|
95
|
Synthesis, characterization, and pharmacological evaluation of some novel thiadiazoles and thiazoles incorporating pyrazole moiety as anticancer agents. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1303-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
96
|
Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol 2014; 2:904-908. [PMID: 25279172 DOI: 10.3892/mco.2014.356] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/02/2014] [Indexed: 12/21/2022] Open
Abstract
Cancer remains the one of the most common causes of mortality in humans; thus, cancer treatment is currently a major focus of investigation. Researchers worldwide have been searching for the optimal treatment (the 'magic bullet') that will selectively target cancer, without afflicting significant morbidity. Recent advances in cancer nanotechnology have raised exciting opportunities for specific drug delivery by an emerging class of nanotherapeutics that may be targeted to neoplastic cells, thereby offering a major advantage over conventional chemotherapeutic agents. There are two ways by which targeting of nanoparticles may be achieved, namely passive and active targeting. The aim of this study was to provide a comprehensive review of the literature focusing on passive targeting.
Collapse
Affiliation(s)
- Remon Bazak
- Department of Otorhinolaryngology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Mohamad Houri
- Department of Ophthalmology, Faculty of Medicine, Beirut Arab University, Beirut 1107 2809, Lebanon
| | - Samar El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Wael Hussein
- Department of Otorhinolaryngology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Tamer Refaat
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt ; Department of Radiation Oncology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
97
|
Intracellular transport of nanodiamond particles in human endothelial and epithelial cells. Chem Biol Interact 2014; 219:90-100. [PMID: 24882084 DOI: 10.1016/j.cbi.2014.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/13/2014] [Accepted: 05/20/2014] [Indexed: 11/20/2022]
Abstract
During the recent years nanodiamonds have been the subject of interest as possible means of targeted delivery of anticancer substances. Detonation nanodiamonds are attractive candidates for intracellular studies due to their synthesis methods, low cost, good biocompatibility and facile surface functionalizability. Our previous study, in which we used nanoparticles obtained by different methods showed the significance of size and way of production of nanodiamonds in their cellular effects. The aim of this study was to check the ability of surface-modified detonation nanodiamonds to reach intracellular compartments without degradation of the surface-conjugated drug or fluorescent marker. In this study we examined the penetration HUVEC-ST and A549 cells by detonation nanodiamonds (grain size <20 nm) modified by adding to, employing four pharmacological inhibitors of endocytosis, using optical, confocal and transmission electron microscopy We discuss the possibilities, the challenges of studying the endocytic pathways involved in cellular uptake of nanoparticles. Our results suggest that fluorescent nanomaterials are very promising for monitoring the intracellular fate of nanodiamonds.
Collapse
|
98
|
Javid A, Ahmadian S, Saboury AA, Kalantar SM, Rezaei-Zarchi S. Novel biodegradable heparin-coated nanocomposite system for targeted drug delivery. RSC Adv 2014. [DOI: 10.1039/c3ra43967d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
HP–SPIO NPs (42 nm) were formulated by co-precipitation. Doxorubicin and paclitaxel were loaded into the SPIO NP core. HP–SPIO NPs had sustained release of DOX (87%) and PTX (75%) at pH 6.0. Drug loaded HP–SPIO NPs caused 95 and 84%, and 85 and 77% apoptosis in A2780 and OVCAR-3 cells, respectively. DOX–HP–SPIO NPs and PTX–HP–SPIO NPs caused a sharp decrease in bcl-2 and survivin proteins.
Collapse
Affiliation(s)
- Amaneh Javid
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran, Iran
- Center of Excellence of Nano-Biomedicine
- Nano-Science and Nano-Technology Research Center
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran, Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center of Infertility
- Shahid Sadoughi University Medical Sciences
- Yazd, Iran
| | | |
Collapse
|
99
|
Videira M, Arranja A, Rafael D, Gaspar R. Preclinical development of siRNA therapeutics: towards the match between fundamental science and engineered systems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:689-702. [PMID: 24333589 DOI: 10.1016/j.nano.2013.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/21/2013] [Accepted: 11/24/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED The evolution of synthetic RNAi faces the paradox of interfering with the human biological environment. Due to the fact that all cell physiological processes can be target candidates, silencing a precise biological pathway could be challenging if target selectivity is not properly addressed. Molecular biology has provided scientific tools to suppress some of the most critical issues in gene therapy, while setting the standards for siRNA clinical application. However, the protein down-regulation through the mRNA silencing is intimately related to the sequence-specific siRNA ability to interact accurately with the potential target. Moreover, its in vivo biological fate is highly dependent on the successful design of a vehicle able to overcome both extracellular and intracellular barriers. Anticipating a great deal of innovation, crucial to meet the challenges involved in the RNAi therapeutics, the present review intends to build up a synopsis on the delivery strategies currently developed. FROM THE CLINICAL EDITOR This review discusses recent progress and pertinent limiting factors related to the use of siRNA-s as efficient protein-specific "silencing" agents, focusing on targeted delivery not only to cells of interest, but to the proper intracellular destination.
Collapse
Affiliation(s)
- M Videira
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | - A Arranja
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - D Rafael
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - R Gaspar
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
100
|
Kushwaha SKS, Ghoshal S, Rai AK, Singh S. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. BRAZ J PHARM SCI 2013. [DOI: 10.1590/s1984-82502013000400002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbon nanotubes (CNTs) were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field.
Collapse
|