51
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
52
|
Pinch M, Bendzus-Mendoza H, Hansen IA. Transcriptomics analysis of ethanol treatment of male Aedes aegypti reveals a small set of putative radioprotective genes. Front Physiol 2023; 14:1120408. [PMID: 36793417 PMCID: PMC9922702 DOI: 10.3389/fphys.2023.1120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
Introduction: Sterile Insect Technique (SIT) is based on releasing sterilized male insects into wild insect populations to compete for mating with wild females. Wild females mated with sterile males will produce inviable eggs, leading to a decline in population of that insect species. Sterilization with ionizing radiation (x-rays) is a commonly used mechanism for sterilization of males. Since irradiation can cause damage to both, somatic and germ cells, and can severely reduce the competitiveness of sterilized males relative to wild males, means to minimize the detrimental effects of radiation are required to produce sterile, competitive males for release. In an earlier study, we identified ethanol as a functional radioprotector in mosquitoes. Methods: Here, we used Illumina RNA-seq to profile changes in gene expression of male Aedes aegypti mosquitoes fed on 5% ethanol for 48 hours prior to receiving a sterilizing x-ray dose, compared to males fed on water prior to sterilization. Results: RNA-seq revealed a robust activation of DNA repair genes in both ethanol-fed and water-fed males after irradiation, but surprisingly few differences in gene expression between ethanol-fed and water-fed males regardless of radiation treatment. Discussion: While differences in gene expression due to ethanol exposure were minimal, we identified a small group of genes that may prime ethanol-fed mosquitoes for improved survivability in response to sterilizing radiation.
Collapse
Affiliation(s)
- Matthew Pinch
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Harley Bendzus-Mendoza
- Department of Computer Science, New Mexico State University, Las Cruces, NM, United States
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
53
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
54
|
Direct and Indirect Effects of Filamin A on Tau Pathology in Neuronal Cells. Mol Neurobiol 2023; 60:1021-1039. [PMID: 36399251 PMCID: PMC9849303 DOI: 10.1007/s12035-022-03121-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
In Alzheimer disease (AD), Tau, an axonal microtubule-associated protein, becomes hyperphosphorylated, detaches from microtubules, accumulates, and self-aggregates in the somatodendritic (SD) compartment. The accumulation of hyperphosphorylated and aggregated Tau is also seen in other neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD-Tau). Previous studies reported a link between filamin A (FLNA), an actin-binding protein found in the SD compartment, and Tau pathology. In the present study, we further explored this link. We confirmed the interaction of Tau with FLNA in neuroblastoma 2a (N2a) cells. This interaction was mediated by a domain located between the 157 and 383 amino acids (a.a.) of Tau. Our results also revealed that the overexpression of FLNA resulted in an intracellular accumulation of wild-type Tau and Tau mutants (P301L, V337M, and R406W) in N2a cells. Tau phosphorylation and cleavage by caspase-3 but not its aggregation were increased upon FLNA overexpression in N2a cells. In the parietal cortex of AD brain, insoluble FLNA was increased compared to control brain, but it did not correlate with Tau pathology. Interestingly, Tau binding to microtubules and F-actin was preserved upon FLNA overexpression in N2a cells. Lastly, our results revealed that FLNA also induced the accumulation of annexin A2, a Tau interacting partner involved in its axonal localization. Collectively, our data indicated that in Tauopathies, FLNA could contribute to Tau pathology by acting on Tau and annexin A2.
Collapse
|
55
|
Beedle AEM, Garcia-Manyes S. The role of single protein elasticity in mechanobiology. NATURE REVIEWS. MATERIALS 2023; 8:10-24. [PMID: 37469679 PMCID: PMC7614781 DOI: 10.1038/s41578-022-00488-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 07/21/2023]
Abstract
In addition to biochemical signals and genetic considerations, mechanical forces are rapidly emerging as a master regulator of human physiology. Yet the molecular mechanisms that regulate force-induced functionalities across a wide range of scales, encompassing the cell, tissue or organ levels, are comparatively not so well understood. With the advent, development and refining of single molecule nanomechanical techniques, enabling to exquisitely probe the conformational dynamics of individual proteins under the effect of a calibrated force, we have begun to acquire a comprehensive knowledge on the rich plethora of physicochemical principles that regulate the elasticity of single proteins. Here we review the major advances underpinning our current understanding of how the elasticity of single proteins regulates mechanosensing and mechanotransduction. We discuss the present limitations and future challenges of such a prolific and burgeoning field.
Collapse
Affiliation(s)
- Amy EM Beedle
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
| |
Collapse
|
56
|
Mao Z, Nakamura F. Interaction of LARP4 to filamin A mechanosensing domain regulates cell migrations. Front Cell Dev Biol 2023; 11:1152109. [PMID: 37169020 PMCID: PMC10164935 DOI: 10.3389/fcell.2023.1152109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023] Open
Abstract
Filamin A (FLNA) is an actin cross-linking protein that mediates mechanotransduction. Force-dependent conformational changes of FLNA molecule expose cryptic binding site of FLNA, allowing interaction with partners such as integrin, smoothelin, and fimbacin. Here, we identified La-related protein 4 (LARP4) as a new FLNA mechanobinding partner. LARP4 specifically interacts with the cleft formed by C and D strands of immunoglobulin-like repeat 21 (R21) which is blocked by A strand of R20 without force. We validated the interaction between LARP4 and FLNA R21 both in vivo and in vitro. We also determined the critical amino acid that is responsible for the interaction and generated the non-FLNA-binding mutant LARP4 (F277A in human: F273A in mouse Larp4) that disrupts the interaction. Fluorescence recovery after photobleaching (FRAP) of GFP-labeled LARP4 in living cells demonstrated that mutant LARP4 diffuses faster than WT LARP4. Proximity ligation assay (PLA) also confirmed their interaction and disruption of actin polymerization diminishes the interaction. Data mining of RNAseq analysis of LARP4 knockdown (KD) HEK293T cells suggested that LARP4 is involved in morphogenesis and cell motility. Consistent with this prediction, we found that KD of LARP4 increases cell migration speed and expression of the F277A mutant LARP4 in LARP4-KD cells also leads to a higher cell migration speed compared to WT LARP4. These results demonstrated that the LARP4 interaction with FLNA regulates cell migration.
Collapse
|
57
|
Evolutionary Relationships and Divergence of Filamin Gene Family Involved in Development and Stress in Cotton ( Gossypium hirsutum L.). Genes (Basel) 2022; 13:genes13122313. [PMID: 36553581 PMCID: PMC9777546 DOI: 10.3390/genes13122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Filamin protein is characterized by an N-terminal actin-binding domain that is followed by 24 Ig (immunoglobulin)-like repeats, which act as hubs for interactions with a variety of proteins. In humans, this family has been found to be involved in cancer cell invasion and metastasis and can be involved in a variety of growth signal transduction processes, but it is less studied in plants. Therefore, in this study, 54 Filamin gene family members from 23 plant species were investigated and divided into two subfamilies: FLMN and GEX2. Subcellular localization showed that most of the Filamin gene family members were located in the cell membrane. A total of 47 Filamin gene pairs were identified, most of which were whole-genome copies. Through the analyses of cis-acting elements, expression patterns and quantitative fluorescence, it was found that GH_ A02G0519 and GH_ D02G0539 are mainly expressed in the reproductive organs of upland cotton, and their interacting proteins are also related to the fertilization process, whereas GH_A02G0216 and GH_D02G0235 were related to stress. Thus, it is speculated that two genes of the GEX2 subfamily (GH_A02G0519 and GH_D02G0539) may be involved in the reproductive development of cotton and may affect the fertilization process of cotton. This study provides a theoretical basis for the further study of the cotton Filamin gene family.
Collapse
|
58
|
Focal cortical dysplasia as a cause of epilepsy: The current evidence of associated genes and future therapeutic treatments. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
59
|
Adam F, Kauskot A, Lamrani L, Solarz J, Soukaseum C, Repérant C, Denis CV, Raslova H, Rosa J, Bryckaert M. A gain-of-function filamin A mutation in mouse platelets induces thrombus instability. J Thromb Haemost 2022; 20:2666-2678. [PMID: 36006037 PMCID: PMC9826440 DOI: 10.1111/jth.15864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Filaminopathies A are rare disorders affecting the brain, intestine, or skeleton, characterized by dominant X-linked filamin A (FLNA) gene mutations. Macrothrombocytopenia with functionally defective platelets is frequent. We have described a filaminopathy A male patient, exhibiting a C-terminal frame-shift FLNa mutation (Berrou et al., Arterioscler Thromb Vasc Biol. 2017;37:1087-1097). Contrasting with female patients, this male patient exhibited gain of platelet functions, including increased platelet aggregation, integrin αIIbβ3 activation, and secretion at low agonist concentration, raising the issue of thrombosis risk. OBJECTIVES Our goal is to assess the thrombotic potential of the patient FLNa mutation in an in vivo model. METHODS We have established a mutant FlnA knock-in mouse model. RESULTS The mutant FlnA mouse platelets phenocopied patient platelets, showing normal platelet count, lower expression level of mutant FlnA, and gain of platelet functions: increased platelet aggregation, secretion, and αIIbβ3 activation, as well as increased spreading and clot retraction. Surprisingly, mutant FlnA mice exhibited a normal bleeding time, but with increased re-bleeding (77%) compared to wild type (WT) FlnA mice (27%), reflecting hemostatic plug instability. Again, in an in vivo thrombosis model, the occlusion time was not altered by the FlnA mutation, but arteriolar embolies were increased (7-fold more frequent in mutant FlnA mice versus WT mice), confirming thrombus instability. CONCLUSIONS This study shows that the FlnA mutation found in the male patient induced gain of platelet functions in vitro, but thrombus instability in vivo. Implications for the role of FLNa in physiology of thrombus formation are discussed.
Collapse
Affiliation(s)
- Frédéric Adam
- INSERM UMR_S 1176, HIThUniversité Paris‐SaclayLe Kremlin BicêtreFrance
| | - Alexandre Kauskot
- INSERM UMR_S 1176, HIThUniversité Paris‐SaclayLe Kremlin BicêtreFrance
| | - Lamia Lamrani
- INSERM UMR_S 1176, HIThUniversité Paris‐SaclayLe Kremlin BicêtreFrance
| | - Jean Solarz
- INSERM UMR_S 1176, HIThUniversité Paris‐SaclayLe Kremlin BicêtreFrance
| | | | | | - Cécile V. Denis
- INSERM UMR_S 1176, HIThUniversité Paris‐SaclayLe Kremlin BicêtreFrance
| | - Hana Raslova
- INSERM UMR 1287, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclay, Gustave Roussy Cancer CampusEquipe Labellisée Ligue Nationale Contre le CancerVillejuifFrance
| | | | - Marijke Bryckaert
- INSERM UMR_S 1176, HIThUniversité Paris‐SaclayLe Kremlin BicêtreFrance
| |
Collapse
|
60
|
Ezcurra Díaz G, Nuñez Marin F, Blanco Guillermo I, Ramo-Tello C. Diagnostic confusion of demyelinating lesions and incidental diagnosis of a new pathogenic mutation of the FLNA gene. Neurologia 2022; 37:818-820. [PMID: 35668010 DOI: 10.1016/j.nrleng.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/31/2023] Open
Affiliation(s)
- G Ezcurra Díaz
- Servicio de Neurología, Departamento de Neurociencias, Hospital Universitario Germans Trias i Pujol, Badalona, Barcelona, Spain.
| | - F Nuñez Marin
- IDI (Institut de Diagnòstic per la Imatge), Badalona, Barcelona, Spain
| | - I Blanco Guillermo
- Servicio de Genética Clínica, Hospital Universitario Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - C Ramo-Tello
- Unidad de EM-Neuroinmunología, Departamento de Neurociencias, Hospital Universitario Germans Trias I Pujol, Badalona, Barcelona, Spain
| |
Collapse
|
61
|
Gualdrón-López M, Díaz-Varela M, Zanghi G, Aparici-Herraiz I, Steel RW, Schäfer C, Cuscó P, Chuenchob V, Kangwangransan N, Billman ZP, Olsen TM, González JR, Roobsoong W, Sattabongkot J, Murphy SC, Mikolajczak SA, Borràs E, Sabidó E, Fernandez-Becerra C, Flannery EL, Kappe SH, del Portillo HA. Mass Spectrometry Identification of Biomarkers in Extracellular Vesicles From Plasmodium vivax Liver Hypnozoite Infections. Mol Cell Proteomics 2022; 21:100406. [PMID: 36030044 PMCID: PMC9520272 DOI: 10.1016/j.mcpro.2022.100406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023] Open
Abstract
Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites. We used P. vivax-infected human liver-chimeric (huHEP) FRG KO mice treated with the schizonticidal experimental drug MMV048 as hypnozoite infection model. Immunofluorescence-based quantification of P. vivax liver forms showed that MMV048 removed schizonts from chimeric mice livers. Proteomic analysis of EVs derived from FRG huHEP mice showed that human EV cargo from infected FRG huHEP mice contain inflammation markers associated with active schizont replication and identified 66 P. vivax proteins. To identify hypnozoite-specific proteins associated with EVs, we mined the proteome data from MMV048-treated mice and performed an analysis involving intragroup and intergroup comparisons across all experimental conditions followed by a peptide compatibility analysis with predicted spectra to warrant robust identification. Only one protein fulfilled this stringent top-down selection, a putative filamin domain-containing protein. This study sets the stage to unveil biological features of human liver infections and identify biomarkers of hypnozoite infection associated with EVs.
Collapse
Affiliation(s)
- Melisa Gualdrón-López
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Miriam Díaz-Varela
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Iris Aparici-Herraiz
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Ryan W.J. Steel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Pol Cuscó
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Vorada Chuenchob
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Niwat Kangwangransan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Zachary P. Billman
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Tayla M. Olsen
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Juan R. González
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Wanlapa Roobsoong
- MVRU, Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Sebastian A. Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Erika L. Flannery
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Stefan H.I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Hernando A. del Portillo
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain,ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain,For correspondence: Hernando A. del Portillo
| |
Collapse
|
62
|
Zada A, Zhao Y, Halim D, Windster J, van der Linde HC, Glodener J, Overkleeft S, de Graaf BM, Verdijk RM, Brooks AS, Shepherd I, Gao Y, Burns AJ, Hofstra RMW, Alves MM. The long Filamin-A isoform is required for intestinal development and motility: implications for chronic intestinal pseudo-obstruction. Hum Mol Genet 2022; 32:151-160. [PMID: 35981053 PMCID: PMC9838097 DOI: 10.1093/hmg/ddac199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023] Open
Abstract
Filamin A (FLNA) is a cytoplasmic actin binding protein, recently shown to be expressed as a long and short isoform. Mutations in FLNA are associated with a wide spectrum of disorders, including an X-linked form of chronic intestinal pseudo-obstruction (CIPO). However, the role of FLNA in intestinal development and function is largely unknown. In this study, we show that FLNA is expressed in the muscle layer of the small intestine from early human fetal stages. Expression of FLNA variants associated with CIPO, blocked expression of the long flna isoform and led to an overall reduction of RNA and protein levels. As a consequence, contractility of human intestinal smooth muscle cells was affected. Lastly, our transgenic zebrafish line showed that the flna long isoform is required for intestinal elongation and peristalsis. Histological analysis revealed structural and architectural changes in the intestinal smooth muscle of homozygous fish, likely triggered by the abnormal expression of intestinal smooth muscle markers. No defect in the localization or numbers of enteric neurons was observed. Taken together, our study demonstrates that the long FLNA isoform contributes to intestinal development and function. Since loss of the long FLNA isoform does not seem to affect the enteric nervous system, it likely results in a myopathic form of CIPO, bringing new insights to disease pathogenesis.
Collapse
Affiliation(s)
| | | | - Danny Halim
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam 3015GD, The Netherlands
| | - Jonathan Windster
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam 3015GD, The Netherlands,Department of Pediatric Surgery, Erasmus University Medical Center Rotterdam, Sophia Children's Hospital, Rotterdam 3015GD, The Netherlands
| | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam 3015GD, The Netherlands
| | - Jackleen Glodener
- Department of Biology, Rollins Research Center, Emory University, Atlanta, GA 30322, USA
| | - Sander Overkleeft
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam 3015GD, The Netherlands
| | - Bianca M de Graaf
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam 3015GD, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Erasmus University Medical Center, Rotterdam 3015GD, The Netherlands
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam 3015GD, The Netherlands
| | - Iain Shepherd
- Department of Biology, Rollins Research Center, Emory University, Atlanta, GA 30322, USA
| | - Ya Gao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | | | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam 3015GD, The Netherlands,Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Maria M Alves
- To whom correspondence should be addressed at: Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, PO Box 2040, 3000CA Rotterdam, The Netherlands. Tel: +3110-7030683;
| |
Collapse
|
63
|
Jain M, Weber A, Maly K, Manjaly G, Deek J, Tsvyetkova O, Stulić M, Toca‐Herrera JL, Jantsch MF. A-to-I RNA editing of Filamin A regulates cellular adhesion, migration and mechanical properties. FEBS J 2022; 289:4580-4601. [PMID: 35124883 PMCID: PMC9546289 DOI: 10.1111/febs.16391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 12/23/2021] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
A-to-I RNA editing by ADARs is an abundant epitranscriptomic RNA-modification in metazoa. In mammals, Flna pre-mRNA harbours a single conserved A-to-I RNA editing site that introduces a Q-to-R amino acid change in Ig repeat 22 of the encoded protein. Previously, we showed that FLNA editing regulates smooth muscle contraction in the cardiovascular system and affects cardiac health. The present study investigates how ADAR2-mediated A-to-I RNA editing of Flna affects actin crosslinking, cell mechanics, cellular adhesion and cell migration. Cellular assays and AFM measurements demonstrate that the edited version of FLNA increases cellular stiffness and adhesion but impairs cell migration in both, mouse fibroblasts and human tumour cells. In vitro, edited FLNA leads to increased actin crosslinking, forming actin gels of higher stress resistance. Our study shows that Flna RNA editing is a novel regulator of cytoskeletal organisation, affecting the mechanical property and mechanotransduction of cells.
Collapse
Affiliation(s)
- Mamta Jain
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Andreas Weber
- Department of NanobiotechnologyInstitute for BiophysicsUniversity of Natural Resources and Life Sciences Vienna (BOKU)Austria
| | - Kathrin Maly
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Greeshma Manjaly
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Joanna Deek
- Department of Physics, Cellular Biophysics E27Technical University of MunichGarchingGermany
| | - Olena Tsvyetkova
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Maja Stulić
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - José L. Toca‐Herrera
- Department of NanobiotechnologyInstitute for BiophysicsUniversity of Natural Resources and Life Sciences Vienna (BOKU)Austria
| | - Michael F. Jantsch
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| |
Collapse
|
64
|
Külshammer E, Kilinc M, Csordás G, Bresser T, Nolte H, Uhlirova M. The mechanosensor Filamin A/Cheerio promotes tumourigenesis via specific interactions with components of the cell cortex. FEBS J 2022; 289:4497-4517. [DOI: 10.1111/febs.16408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/05/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Eva Külshammer
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Merve Kilinc
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Gábor Csordás
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Tina Bresser
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Hendrik Nolte
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Mirka Uhlirova
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| |
Collapse
|
65
|
Cell-Dependent Pathogenic Roles of Filamin B in Different Skeletal Malformations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8956636. [PMID: 35832491 PMCID: PMC9273461 DOI: 10.1155/2022/8956636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Mutations of filamin B (FLNB) gene can lead to a spectrum of autosomal skeletal malformations including spondylocarpotarsal syndrome (SCT), Larsen syndrome (LRS), type I atelosteogenesis (AO1), type III atelosteogenesis (AO3), and boomerang dysplasia (BD). Among them, LRS is milder while BD causes a more severe phenotype. However, the molecular mechanism underlying the differences in clinical phenotypes of different FLNB variants has not been fully determined. Here, we presented two patients suffering from autosomal dominant LRS and autosomal recessive vitamin D-dependent rickets type IA (VDDR-IA). Whole-exome sequencing revealed two novel missense variants in FLNB, c.4846A>G (p.T1616A) and c.7022T>G (p.I2341R), which are located in repeat 15 and 22 of filamin B, respectively. The expression of FLNBI2341R in the muscle tissue from our LRS patient was remarkably increased. And in vitro studies showed that both variants led to a lack of filopodia and accumulation of the mutants in the perinuclear region in HEK293 cells. We also found that c.4846A>G (p.T1616A) and c.7022T>G (p.I2341R) regulated endochondral osteogenesis in different ways. c.4846A>G (p.T1616A) activated AKT pathways through inhibiting SHIP2, suppressed the Smad3 pathway, and impaired the expression of Runx2 in both Saos-2 and ATDC5 cells. c.7022T>G (p.I2341R) activated both AKT and Smad3 pathways and increased the expression of Runx2 in Saos-2 cells, while in ATDC5 cells it activated AKT pathways through inhibiting SHIP2, suppressed the Smad3 pathway, and reduced the expression of Runx2. Our study demonstrated the pathogenic mechanisms of two novel FLNB variants in two different clinical settings and proved that FLNB variants could not only directly cause skeletal malformations but also worsen skeletal symptoms in the setting of other skeletal diseases. Besides, FLNB variants differentially affect skeletal development which contributes to clinical heterogeneity of FLNB-related disorders.
Collapse
|
66
|
LUZP1: A new player in the actin-microtubule cross-talk. Eur J Cell Biol 2022; 101:151250. [PMID: 35738212 DOI: 10.1016/j.ejcb.2022.151250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
LUZP1 (leucine zipper protein 1) was first described as being important for embryonic development. Luzp1 null mice present defective neural tube closure and cardiovascular problems, which cause perinatal death. Since then, LUZP1 has also been implicated in the etiology of diseases like the 1p36 and the Townes-Brocks syndromes, and the molecular mechanisms involving this protein started being uncovered. Proteomics studies placed LUZP1 in the interactomes of the centrosome-cilium interface, centriolar satellites, and midbody. Concordantly, LUZP1 is an actin and microtubule-associated protein, which localizes to the centrosome, the basal body of primary cilia, the midbody, actin filaments and cellular junctions. LUZP1, like its interactor EPLIN, is an actin-stabilizing protein and a negative regulator of primary cilia formation. Moreover, through the regulation of actin, LUZP1 has been implicated in the regulation of cell cycle progression, cell migration and epithelial cell apical constriction. This review discusses the latest findings concerning LUZP1 molecular functions and implications in disease development.
Collapse
|
67
|
In-depth Profiling and Quantification of the Lysine Acetylome in Hepatocellular Carcinoma with a Trapped Ion Mobility Mass Spectrometer. Mol Cell Proteomics 2022; 21:100255. [PMID: 35688384 PMCID: PMC9294201 DOI: 10.1016/j.mcpro.2022.100255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide with limited therapeutic options. Comprehensive investigation of protein posttranslational modifications in HCC is still limited. Lysine acetylation is one of the most common types of posttranslational modification involved in many cellular processes and plays crucial roles in the regulation of cancer. In this study, we analyzed the proteome and K-acetylome in eight pairs of HCC tumors and normal adjacent tissues using a timsTOF Pro instrument. As a result, we identified 9219 K-acetylation sites in 2625 proteins, of which 1003 sites exhibited differential acetylation levels between tumors and normal adjacent tissues. Interestingly, many novel tumor-specific K-acetylation sites were characterized, for example, filamin A (K865), filamin B (K697), and cofilin (K19), suggesting altered activities of these cytoskeleton-modulating molecules, which may contribute to tumor metastasis. In addition, we observed an overall suppression of protein K-acetylation in HCC tumors, especially for enzymes from various metabolic pathways, for example, glycolysis, tricarboxylic acid cycle, and fatty acid metabolism. Moreover, the expression of deacetylase sirtuin 2 (SIRT2) was upregulated in HCC tumors, and its role of deacetylation in HCC cells was further explored by examining the impact of SIRT2 overexpression on the proteome and K-acetylome in Huh7 HCC cells. SIRT2 overexpression reduced K-acetylation of proteins involved in a wide range of cellular processes, including energy metabolism. Furthermore, cellular assays showed that overexpression of SIRT2 in HCC cells inhibited both glycolysis and oxidative phosphorylation. Taken together, our findings provide valuable information to better understand the roles of K-acetylation in HCC and to treat this disease by correcting the aberrant acetylation patterns. K-acetylation was generally reduced in HCC, especially in metabolic enzymes. Deacetylase SIRT2 was upregulated in HCC tumors. SIRT2 overexpression induced broad alteration of protein K-acetylation. SIRT2 overexpression inhibited glycolysis and oxidative phosphorylation.
Collapse
|
68
|
Even Y, Pousse E, Chapperon C, Artigaud S, Hégaret H, Bernay B, Pichereau V, Flye-Sainte-Marie J, Jean F. Physiological and comparative proteomic analyzes reveal immune defense response of the king scallop Pecten maximus in presence of paralytic shellfish toxin (PST) from Alexandrium minutum. HARMFUL ALGAE 2022; 115:102231. [PMID: 35623695 DOI: 10.1016/j.hal.2022.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/10/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
The king scallop, Pecten maximus is a highly valuable seafood in Europe. Over the last few years, its culture has been threatened by toxic microalgae during harmful algal blooms, inducing public health concerns. Indeed, phycotoxins accumulated in bivalves can be harmful for human, especially paralytic shellfish toxins (PST) synthesized by the microalgae Alexandrium minutum. Deleterious effects of these toxic algae on bivalves have also been reported. However, its impact on bivalves such as king scallop is far from being completely understood. This study combined ecophysiological and proteomic analyzes to investigate the early response of juvenile king scallops to a short term exposure to PST producing A. minutum. Our data showed that all along the 2-days exposure to A. minutum, king scallops exhibited transient lower filtration and respiration rates and accumulated PST. Significant inter-individual variability of toxin accumulation potential was observed among individuals. Furthermore, we found that ingestion of toxic algae, correlated to toxin accumulation was driven by two factors: 1/ the time it takes king scallop to recover from filtration inhibition and starts to filtrate again, 2/ the filtration level to which king scallop starts again to filtrate after inhibition. Furthermore, at the end of the 2-day exposure to A. minutum, proteomic analyzes revealed an increase of the killer cell lectin-like receptor B1, involved in adaptative immune response. Proteins involved in detoxification and in metabolism were found in lower amount in A. minutum exposed king scallops. Proteomic data also showed differential accumulation in several structure proteins such as β-actin, paramyosin and filamin A, suggesting a remodeling of the mantle tissue when king scallops are subjected to an A. minutum exposure.
Collapse
Affiliation(s)
- Yasmine Even
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | - Emilien Pousse
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Coraline Chapperon
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Benoit Bernay
- Plateforme Proteogen, Université de Caen Normandie, Esplanade de la paix, 14032 Caen, France
| | - Vianney Pichereau
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jonathan Flye-Sainte-Marie
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Fred Jean
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
69
|
Gerlevik U, Saygı C, Cangül H, Kutlu A, Çaralan EF, Topçu Y, Özören N, Sezerman OU. Computational analysis of missense filamin-A variants, including the novel p.Arg484Gln variant of two brothers with periventricular nodular heterotopia. PLoS One 2022; 17:e0265400. [PMID: 35613087 PMCID: PMC9132340 DOI: 10.1371/journal.pone.0265400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/01/2022] [Indexed: 12/01/2022] Open
Abstract
Background Periventricular nodular heterotopia (PNH) is a cell migration disorder associated with mutations in Filamin-A (FLNA) gene on chromosome X. Majority of the individuals with PNH-associated FLNA mutations are female whereas liveborn males with FLNA mutations are very rare. Fetal viability of the males seems to depend on the severity of the variant. Splicing or severe truncations presumed loss of function of the protein product, lead to male lethality and only partial-loss-of-function variants are reported in surviving males. Those variants mostly manifest milder clinical phenotypes in females and thus avoid detection of the disease in females. Methods We describe a novel p.Arg484Gln variant in the FLNA gene by performing whole exome analysis on the index case, his one affected brother and his healthy non-consanguineous parents. The transmission of PNH from a clinically asymptomatic mother to two sons is reported in a fully penetrant classical X-linked dominant mode. The variant was verified via Sanger sequencing. Additionally, we investigated the impact of missense mutations reported in affected males on the FLNa protein structure, dynamics and interactions by performing molecular dynamics (MD) simulations to examine the disease etiology and possible compensative mechanisms allowing survival of the males. Results We observed that p.Arg484Gln disrupts the FLNa by altering its structural and dynamical properties including the flexibility of certain regions, interactions within the protein, and conformational landscape of FLNa. However, these impacts existed for only a part the MD trajectories and highly similar patterns observed in the other 12 mutations reported in the liveborn males validated this mechanism. Conclusion It is concluded that the variants seen in the liveborn males result in transient pathogenic effects, rather than persistent impairments. By this way, the protein could retain its function occasionally and results in the survival of the males besides causing the disease.
Collapse
Affiliation(s)
- Umut Gerlevik
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Ceren Saygı
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Hakan Cangül
- Center for Genetic Diagnosis, Istanbul Medipol University, Istanbul, Turkey
| | - Aslı Kutlu
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Bioinformatics & Genetics, Faculty of Engineering and Natural Science, İstinye University, İstanbul, Turkey
| | | | - Yasemin Topçu
- Department of Pediatric Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Nesrin Özören
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Osman Uğur Sezerman
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Department of Biostatistics and Medical Informatics, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
70
|
Functional Remodeling of the Contractile Smooth Muscle Cell Cortex, a Provocative Concept, Supported by Direct Visualization of Cortical Remodeling. BIOLOGY 2022; 11:biology11050662. [PMID: 35625390 PMCID: PMC9138025 DOI: 10.3390/biology11050662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary As a key element of the smooth muscle cell contractile apparatus, the actin cytoskeleton participates in the development of force by acting as a molecular track for the myosin cross bridge motor. At the same time, the actin cytoskeleton must transmit the force developed during contraction to the extracellular matrix and, thus, to neighboring cells. This propagation of force to the cell periphery and beyond is initiated in part on specifically localized cellular cortical actin filaments also involved in mechano-chemical transduction. During the contractile process itself and in response to extracellular structural and chemical alterations, the smooth muscle actin cytoskeletal remodels. This indicates that the cytoskeleton is a dynamic cellular organelle that adapts to the changes in cell shape and chemical cues. Current evidence connecting contractile function and mechano-transduction mechanisms to the plasticity of the vascular smooth muscle actin cytoskeleton is reviewed; we then describe new evidence for cytoskeletal remodeling in vascular smooth muscle cells. Here, using immunoelectron microscopy, we visualize the actin binding proteins filamin A, zyxin and talin in these cells and show that they participate in the cortical cell cytoskeletal alteration, thus supporting the premise that smooth muscle cell remodeling occurs during contraction. Abstract Considerable controversy has surrounded the functional anatomy of the cytoskeleton of the contractile vascular smooth muscle cell. Recent studies have suggested a dynamic nature of the cortical cytoskeleton of these cells, but direct proof has been lacking. Here, we review past studies in this area suggesting a plasticity of smooth muscle cells. We also present images testing these suggestions by using the technique of immunoelectron microscopy of metal replicas to directly visualize the cortical actin cytoskeleton of the contractile smooth muscle cell along with interactions by representative cytoskeletal binding proteins. We find the cortical cytoskeletal matrix to be a branched, interconnected network of linear actin bundles. Here, the focal adhesion proteins talin and zyxin were localized with nanometer accuracy. Talin is reported in past studies to span the integrin–cytoplasm distance in fibroblasts and zyxin is known to be an adaptor protein between alpha-actinin and VASP. In response to activation of signal transduction with the alpha-agonist phenylephrine, we found that no movement of talin was detectable but that the zyxin-zyxin spacing was statistically significantly decreased in the smooth muscle cells examined. Contractile smooth muscle is often assumed to have a fixed cytoskeletal structure. Thus, the results included here are important in that they directly support the concept at the electron microscopic level that the focal adhesion of the contractile smooth muscle cell has a dynamic nature and that the protein–protein interfaces showing plasticity are protein-specific.
Collapse
|
71
|
Guenther C. β2-Integrins - Regulatory and Executive Bridges in the Signaling Network Controlling Leukocyte Trafficking and Migration. Front Immunol 2022; 13:809590. [PMID: 35529883 PMCID: PMC9072638 DOI: 10.3389/fimmu.2022.809590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Leukocyte trafficking is an essential process of immunity, occurring as leukocytes travel within the bloodstream and as leukocyte migration within tissues. While it is now established that leukocytes can utilize the mesenchymal migration mode or amoeboid migration mode, differences in the migratory behavior of leukocyte subclasses and how these are realized on a molecular level in each subclass is not fully understood. To outline these differences, first migration modes and their dependence on parameters of the extracellular environments will be explained, as well as the intracellular molecular machinery that powers migration in general. Extracellular parameters are detected by adhesion receptors such as integrins. β2-integrins are surface receptors exclusively expressed on leukocytes and are essential for leukocytes exiting the bloodstream, as well as in mesenchymal migration modes, however, integrins are dispensable for the amoeboid migration mode. Additionally, the balance of different RhoGTPases - which are downstream of surface receptor signaling, including integrins - mediate formation of membrane structures as well as actin dynamics. Individual leukocyte subpopulations have been shown to express distinct RhoGTPase profiles along with their differences in migration behavior, which will be outlined. Emerging aspects of leukocyte migration include signal transduction from integrins via actin to the nucleus that regulates DNA status, gene expression profiles and ultimately leukocyte migratory phenotypes, as well as altered leukocyte migration in tumors, which will be touched upon.
Collapse
Affiliation(s)
- Carla Guenther
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
72
|
Tamura Y, Nakamizo Y, Watanabe Y, Kimura I, Katoh H. Filamin A forms a complex with EphA2 and regulates EphA2 serine 897 phosphorylation and glioblastoma cell proliferation. Biochem Biophys Res Commun 2022; 597:64-70. [PMID: 35124461 DOI: 10.1016/j.bbrc.2022.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
EphA2 is phosphorylated on serine 897 (S897) in response to growth factors such as epidermal growth factor (EGF) and on tyrosine 588 (Y588) in response to its ligand ephrinA1, causing different cellular responses. In this study, we show that the actin-binding protein Filamin A forms a complex with EphA2 and promotes its S897 phosphorylation and glioblastoma cell proliferation. Suppression of Filamin A expression by siRNAs inhibited glioblastoma cell proliferation induced by EGF stimulation or overexpression of EphA2. Knockdown of Filamin A inhibited EGF-induced S897 phosphorylation of EphA2, whereas it had little effect on ephrinA1-induced Y588 phosphorylation of EphA2. Furthermore, Filamin A expression affected the subcellular localization of EphA2. This study suggests that Filamin A selectively promotes EphA2 S897 phosphorylation and plays an important role in glioblastoma cell proliferation.
Collapse
Affiliation(s)
- Yuho Tamura
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yuta Nakamizo
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuzo Watanabe
- Proteomics Facility, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hironori Katoh
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
73
|
Han S, Cui C, Zhao X, Zhang Y, Zhang Y, Zhao J, Shen X, He H, Wang J, Ma M, Li D, Zhu Q, Yin H. Filamin C regulates skeletal muscle atrophy by stabilizing dishevelled-2 to inhibit autophagy and mitophagy. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:147-164. [PMID: 34976434 PMCID: PMC8683659 DOI: 10.1016/j.omtn.2021.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022]
Abstract
FilaminC (Flnc) is a member of the actin binding protein family, which is preferentially expressed in the cardiac and skeletal muscle tissues. Although it is known to interact with proteins associated with myofibrillar myopathy, its unique role in skeletal muscle remains largely unknown. In this study, we identify the biological functions of Flnc in vitro and in vivo using chicken primary myoblast cells and animal models, respectively. From the results, we observe that the growth rate and mass of the skeletal muscle of fast-growing chickens (broilers) were significantly higher than those in slow-growing chickens (layers). Furthermore, we find that the expression of Flnc in the skeletal muscle of broilers was higher than that in the layers. Our results indicated that Flnc was highly expressed in the skeletal muscle, especially in the skeletal muscle of broilers than in layers. This suggests that Flnc plays a positive regulatory role in myoblast development. Flnc knockdown resulted in muscle atrophy, whereas the overexpression of Flnc promotes muscle hypertrophy in vivo in an animal model. We also found that Flnc interacted with dishevelled-2 (Dvl2), activated the wnt/β-catenin signaling pathway, and controlled skeletal muscle development. Flnc also antagonized the LC3-mediated autophagy system by decreasing Dvl2 ubiquitination. Moreover, Flnc knockdown activated and significantly increased mitophagy. In summary, these results indicate that the absence of Flnc induces autophagy or mitophagy and regulates muscle atrophy.
Collapse
Affiliation(s)
- Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiyu Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yun Zhang
- College of Management, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jing Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoxu Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jianping Wang
- Key Laboratory for Animal Disease Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Corresponding author Qing Zhu, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Corresponding author Huadong Yin, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
74
|
Kim N, Yi E, Kwon SJ, Park HJ, Kwon HJ, Kim HS. Filamin A Is Required for NK Cell Cytotoxicity at the Expense of Cytokine Production via Synaptic Filamentous Actin Modulation. Front Immunol 2022; 12:792334. [PMID: 35058930 PMCID: PMC8764188 DOI: 10.3389/fimmu.2021.792334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that efficiently eliminate malignant and virus-infected cells without prior activation via the directed and focused release of lytic granule contents for target cell lysis. This cytolytic process is tightly regulated at discrete checkpoint stages to ensure the selective killing of diseased target cells and is highly dependent on the coordinated regulation of cytoskeletal components. The actin-binding protein filamin crosslinks cortical actin filaments into orthogonal networks and links actin filament webs to cellular membranes to modulate cell migration, adhesion, and signaling. However, its role in the regulation of NK cell functions remains poorly understood. Here, we show that filamin A (FLNa), a filamin isoform with preferential expression in leukocytes, is recruited to the NK cell lytic synapse and is required for NK cell cytotoxicity through the modulation of conjugate formation with target cells, synaptic filamentous actin (F-actin) accumulation, and cytotoxic degranulation, but not granule polarization. Interestingly, we also find that the loss of FLNa augments the target cell-induced expression of IFN-γ and TNF-α by NK cells, correlating with enhanced activation signals such as Ca2+ mobilization, ERK, and NF-κB, and a delayed down-modulation of the NKG2D receptor. Thus, our results identify FLNa as a new regulator of NK cell effector functions during their decision to kill target cells through a balanced regulation of NK cell cytotoxicity vs cytokine production. Moreover, this study implicates the cross-linking/bundling of F-actin mediated by FLNa as a necessary process coordinating optimal NK effector functions.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eunbi Yi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soon Jae Kwon
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo Jin Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyung-Joon Kwon
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hun Sik Kim
- Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
75
|
Gao J, Nakamura F. Actin-Associated Proteins and Small Molecules Targeting the Actin Cytoskeleton. Int J Mol Sci 2022; 23:2118. [PMID: 35216237 PMCID: PMC8880164 DOI: 10.3390/ijms23042118] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Actin-associated proteins (AAPs) act on monomeric globular actin (G-actin) and polymerized filamentous actin (F-actin) to regulate their dynamics and architectures which ultimately control cell movement, shape change, division; organelle localization and trafficking. Actin-binding proteins (ABPs) are a subset of AAPs. Since actin was discovered as a myosin-activating protein (hence named actin) in 1942, the protein has also been found to be expressed in non-muscle cells, and numerous AAPs continue to be discovered. This review article lists all of the AAPs discovered so far while also allowing readers to sort the list based on the names, sizes, functions, related human diseases, and the dates of discovery. The list also contains links to the UniProt and Protein Atlas databases for accessing further, related details such as protein structures, associated proteins, subcellular localization, the expression levels in cells and tissues, mutations, and pathology. Because the actin cytoskeleton is involved in many pathological processes such as tumorigenesis, invasion, and developmental diseases, small molecules that target actin and AAPs which hold potential to treat these diseases are also listed.
Collapse
Affiliation(s)
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
76
|
Lamrani L, Adam F, Soukaseum C, Denis CV, Raslova H, Rosa J, Bryckaert M. New insights into regulation of αIIbβ3 integrin signaling by filamin A. Res Pract Thromb Haemost 2022; 6:e12672. [PMID: 35316942 PMCID: PMC8924993 DOI: 10.1002/rth2.12672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Background Filamin (FLN) regulates many cell functions through its scaffolding activity cross-linking cytoskeleton and integrins. FLN was shown to inhibit integrin activity, but the exact mechanism remains unclear. Objectives The aim of this study was to evaluate the role of filamin A (FLNa) subdomains on the regulation of integrin αIIbβ3 signaling. Methods Three FLNa deletion mutants were overexpressed in the erythro-megakaryocytic leukemic cell line HEL: Del1, which lacks the N-terminal CH1-CH2 domains mediating the FLNa-actin interaction; Del2, lacking the Ig-like repeat 21, which mediates the FLNa-β3 interaction; and Del3, lacking the C-terminal Ig repeat 24, responsible for FLNa dimerization and interaction with the small Rho guanosine triphosphatase involved in actin cytoskeleton reorganisation. Fibrinogen binding to HEL cells in suspension and talin-β3 proximity in cells adherent to immobilized fibrinogen were assessed before and after αIIbβ3 activation by the protein kinase C agonist phorbol 12-myristate 13-acetate. Results Our results show that FLNa-actin and FLNa-β3 interactions negatively regulate αIIbβ3 activation. Moreover, FLNa-actin interaction represses Rac activation, contributing to the negative regulation of αIIbβ3 activation. In contrast, the FLNa dimerization domain, which maintains Rho inactive, was found to negatively regulate αIIbβ3 outside-in signaling. Conclusion We conclude that FLNa negatively controls αIIbβ3 activation by regulating actin polymerization and restraining activation of Rac, as well as outside-in signaling by repressing Rho.
Collapse
Affiliation(s)
- Lamia Lamrani
- HIThUMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Frédéric Adam
- HIThUMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Christelle Soukaseum
- HIThUMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Cécile V. Denis
- HIThUMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Hana Raslova
- UMR_S1170Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SudUniversité Paris‐SaclayGustave Roussy Cancer CampusEquipe Labellisée Ligue Nationale Contre le CancerVillejuifFrance
| | - Jean‐Philippe Rosa
- HIThUMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Marijke Bryckaert
- HIThUMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| |
Collapse
|
77
|
Quiggle A, Charng WL, Antunes L, Nikolov M, Bledsoe X, Hecht JT, Dobbs MB, Gurnett CA. Whole Exome Sequencing in Individuals with Idiopathic Clubfoot Reveals a Recurrent Filamin B (FLNB) Deletion. Clin Orthop Relat Res 2022; 480:421-430. [PMID: 34491919 PMCID: PMC8747482 DOI: 10.1097/corr.0000000000001957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/11/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Clubfoot, a congenital deformity that presents as a rigid, inward turning of the foot, affects approximately 1 in 1000 infants and occurs as an isolated birth defect in 80% of patients. Despite its high level of heritability, few causative genes have been identified, and mutations in known genes are only responsible for a small portion of clubfoot heritability. QUESTIONS/PURPOSES (1) Are any rare gene variants enriched (that is, shared) in unrelated patients with isolated clubfoot? (2) Are there other rare variants in the identified gene (Filamin B) in these patients with clubfoot? METHODS Whole-exome sequence data were generated from a discovery cohort of 183 unrelated probands with clubfoot and 2492 controls. Variants were filtered with minor allele frequency < 0.02 to identify rare variants as well as small insertions and deletions (indels) resulting in missense variants, nonsense or premature truncation, or in-frame deletions. A candidate deletion was then genotyped in another cohort of 974 unrelated patients with clubfoot (a replication cohort). Other rare variants in the candidate gene were also investigated. A segregation analysis was performed in multigenerational families of individuals with clubfoot to see if the genotypes segregate with phenotypes. Single-variant association analysis was performed using the Fisher two-tailed exact test (exact p values are presented to give an indication of the magnitude of the association). RESULTS There were no recurrent variants in the known genes causing clubfoot in this study. A three-base pair in-frame codon deletion of Filamin B (FLNB) (p.E1792del, rs1470699812) was identified in 1.6% (3 of 183) of probands with clubfoot in the discovery cohort compared with 0% of controls (0 of 2492) (odds ratio infinity (inf) [95% CI 5.64 to inf]; p = 3.18 x 10-5) and 0.0016% of gnomAD controls (2 of 125,709) (OR 1.01 x 103 [95% CI 117.42 to 1.64 x 104]; p = 3.13 x 10-8). By screening a replication cohort (n = 974 patients), we found two probands with the identical FLNB deletion. In total, the deletion was identified in 0.43% (5 of 1157) of probands with clubfoot compared with 0% of controls and 0.0016% of gnomAD controls (OR 268.5 [95% CI 43.68 to 2.88 x 103]; p = 1.43 x 10-9). The recurrent FLNB p.E1792del variant segregated with clubfoot, with incomplete penetrance in two families. Affected individuals were more likely to be male and have bilateral clubfoot. Although most patients had isolated clubfoot, features consistent with Larsen syndrome, including upper extremity abnormalities such as elbow and thumb hypermobility and wide, flat thumbs, were noted in affected members of one family. We identified 19 additional rare FLNB missense variants located throughout the gene in patients with clubfoot. One of these missense variants, FLNB p.G2397D, exhibited incomplete penetrance in one family. CONCLUSION A recurrent FLNB E1792 deletion was identified in 0.43% of 1157 isolated patients with clubfoot. Given the absence of any recurrent variants in our discovery phase (n = 183) for any of the known genes causing clubfoot, our findings support that novel and rare missense variants in FLNB in patients with clubfoot, although rare, may be among the most commonly known genetic causes of clubfoot. Patients with FLNB variants often have isolated clubfoot, but they and their family members may be at an increased risk of having additional clinical features consistent with Larsen syndrome. CLINICAL RELEVANCE Identification of FLNB variants may be useful for determining clubfoot recurrence risk and comorbidities.
Collapse
Affiliation(s)
- Ashley Quiggle
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Wu-Lin Charng
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Lilian Antunes
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Momchil Nikolov
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Xavier Bledsoe
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School and School of Dentistry, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | |
Collapse
|
78
|
Confusión diagnóstica de lesiones desmielinizantes y diagnóstico incidental de una nueva mutación patogénica del gen FLNA. Neurologia 2022. [DOI: 10.1016/j.nrl.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
79
|
Zhang C, Zhao H, Song X, Wang J, Zhao S, Deng H, He L, Zhou X, Yin X, Zhang K, Zhang Y, Wu Z, Chen Q, Du J, Yu D, Zhang S, Deng W. Transcription factor GATA4 drives RNA polymerase III-directed transcription and transformed cell proliferation through a filamin A/GATA4/SP1 pathway. J Biol Chem 2022; 298:101581. [PMID: 35038452 PMCID: PMC8857480 DOI: 10.1016/j.jbc.2022.101581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase III (pol III) products play fundamental roles in a variety of cellular processes, including protein synthesis and cancer cell proliferation. In addition, dysregulation of pol III-directed transcription closely correlates with tumorigenesis. It is therefore of interest to identify novel pathways or factors governing pol III-directed transcription. Here, we show that transcription factor (TF) GATA binding protein 4 (GATA4) expression in SaOS2 cells was stimulated by the silencing of filamin A (FLNA), a repressor of pol III-directed transcription, suggesting that GATA4 is potentially associated with the regulation of pol III-directed transcription. Indeed, we show that GATA4 expression positively correlates with pol III-mediated transcription and tumor cell proliferation. Mechanistically, we found that GATA4 depletion inhibits the occupancies of the pol III transcription machinery factors at the loci of pol III target genes by reducing expression of both TFIIIB subunit TFIIB-related factor 1 and TFIIIC subunit general transcription factor 3C subunit 2 (GTF3C2). GATA4 has been shown to activate specificity factor 1 (Sp1) gene transcription by binding to the Sp1 gene promoter, and Sp1 has been confirmed to activate pol III gene transcription by directly binding to both Brf1 and Gtf3c2 gene promoters. Thus, the findings from this study suggest that GATA4 links FLNA and Sp1 signaling to form an FLNA/GATA4/Sp1 axis to modulate pol III-directed transcription and transformed cell proliferation. Taken together, these results provide novel insights into the regulatory mechanism of pol III-directed transcription.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Houliang Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Wang
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Liu He
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiangyu Zhou
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaomei Yin
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kewei Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yue Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhongyu Wu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jiannan Du
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Deen Yu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shihua Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
80
|
Liu J, Zhou J, Zhao S, Xu X, Li CJ, Li L, Shen T, Hunt PW, Zhang R. Differential responses of abomasal transcriptome to Haemonchus contortus infection between Haemonchus-selected and Trichostrongylus-selected merino sheep. Parasitol Int 2022; 87:102539. [PMID: 35007764 DOI: 10.1016/j.parint.2022.102539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Haemonchus contortus is the most prevalent and pathogenic gastrointestinal nematode infecting sheep and goats. The two CSIRO sheep resource flocks, the Haemonchus-selected flock (HSF) and Trichostrongylus-selected flock (TSF) were developed for research on host resistance or susceptibility to gastrointestinal nematode infection. A recent study focused on the gene expression differences between resistant and susceptible sheep within each flock, with lymphatic and gastrointestinal tissues. To identify features in the host transcriptome and understand the molecular differences underlying host resistance to H. contortus between flocks with different selective breeding and genetic backgrounds, we compared the abomasal transcriptomic responses of the resistant or susceptible animals between HSF and TSF flocks. A total of 11 and 903 differentially expressed genes were identified in the innate infection treatment in HSF and TSF flocks between resistant and susceptible sheep respectively, while 52 and 485 genes were identified to be differentially expressed in the acquired infection treatment, respectively. Among them, 294 genes had significantly different gene expression levels between HSF and TSF flock animals within the susceptible sheep by both the innate and acquired infections. Moreover, similar expression patterns of the 294 genes were observed, with 273 genes more highly expressed in HSF and 21 more highly expressed in the TSF within the abomasal transcriptome of the susceptible animals. Gene ontology enrichment of the differentially expressed genes identified in this study predicted the likely differing function between the two flock's susceptible lines in response to H. contortus infection. Nineteen pathways were significantly enriched in both the innate and adaptive immune responses in susceptible animals, which indicated that these pathways likely contribute to the host resistance development to H. contortus infection in susceptible sheep. Biological networks built for the set of genes differentially abundant in susceptible animals identified hub genes of PRKG1, PRKACB, PRKACA, and ITGB1 for the innate immune response, and CALM2, MYL1, COL1A1, ITGB1 and ITGB3 for the adaptive immune response, respectively. Our results offered a quantitative snapshot of host transcriptomic changes induced by H. contortus infection between flocks with different selective breeding and genetic backgrounds and provided novel insights into molecular mechanisms of host resistance.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Jiachang Zhou
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Si Zhao
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China; International Medical School, Hebei Foreign Studies University, Shijiazhuang, Hebei 050096, China
| | - Xiangdong Xu
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Cong-Jun Li
- United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA.
| | - Li Li
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Tingbo Shen
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Peter W Hunt
- CSIRO Agriculture and Food, Armidale, NSW, Australia.
| | - Runfeng Zhang
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China.
| |
Collapse
|
81
|
Kim HJ, Ryu KJ, Kim M, Kim T, Kim SH, Han H, Kim H, Hong KS, Song CY, Choi Y, Hwangbo C, Kim KD, Yoo J. RhoGDI2-Mediated Rac1 Recruitment to Filamin A Enhances Rac1 Activity and Promotes Invasive Abilities of Gastric Cancer Cells. Cancers (Basel) 2022; 14:cancers14010255. [PMID: 35008419 PMCID: PMC8750349 DOI: 10.3390/cancers14010255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Rho GDP dissociation inhibitor 2 (RhoGDI2), a regulator of Rho family GTPase, has been known to promote tumor growth and malignant progression by activating Rac1 in gastric cancer. However, the precise molecular mechanism by which RhoGDI2 activates Rac1 in gastric cancer cells remains unclear. In this study, we found that interaction between RhoGDI2 and Rac1 is a prerequisite for the recruitment of Rac1 to Filamin A. Moreover, we found that Filamin A acts as a scaffold protein that mediates Rac1 activation. Furthermore, we found that Trio, a Rac1-specific GEF, is critical for Rac1 activation in gastric cancer cells. Conclusively, RhoGDI2 increases Rac1 activity by recruiting Rac1 to Filamin A and enhancing the interaction between Rac1 and Trio, which is critical for invasive ability of gastric cancer cells. Our findings suggest that RhoGDI2 might be a potential therapeutic target for reducing gastric cancer cell metastasis. Abstract Rho GDP dissociation inhibitor 2 (RhoGDI2), a regulator of Rho family GTPase, has been known to promote tumor growth and malignant progression in gastric cancer. We previously showed that RhoGDI2 positively regulates Rac1 activity and Rac1 activation is critical for RhoGDI2-induced gastric cancer cell invasion. In this study, to identify the precise molecular mechanism by which RhoGDI2 activates Rac1 activity, we performed two-hybrid screenings using yeast and found that RhoGDI2 plays an important role in the interaction between Rac1, Filamin A and Rac1 activation in gastric cancer cells. Moreover, we found that Filamin A is required for Rac1 activation and the invasive ability of gastric cancer cells. Depletion of Filamin A expression markedly reduced Rac1 activity in RhoGDI2-expressing gastric cancer cells. The migration and invasion ability of RhoGDI2-expressing gastric cancer cells also substantially decreased when Filamin A expression was depleted. Furthermore, we found that Trio, a Rac1-specific guanine nucleotide exchange factor (GEF), is critical for Rac1 activation and the invasive ability of gastric cancer cells. Therefore, we conclude that RhoGDI2 increases Rac1 activity by recruiting Rac1 to Filamin A and enhancing the interaction between Rac1 and Trio, which is critical for the invasive ability of gastric cancer cells.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Ki-Jun Ryu
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Minju Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Taeyoung Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Seon-Hee Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Hyeontak Han
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Hyemin Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Keun-Seok Hong
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Chae Yeong Song
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Yeonga Choi
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Cheol Hwangbo
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jiyun Yoo
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1327
| |
Collapse
|
82
|
Peverelli E, Treppiedi D, Mantovani G. Molecular mechanisms involved in somatostatin receptor regulation in corticotroph tumors: the role of cytoskeleton and USP8 mutations. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R24-R30. [PMID: 37435448 PMCID: PMC10259348 DOI: 10.1530/eo-22-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 07/13/2023]
Abstract
Adrenocorticotropic hormone (ACTH)-secreting pituitary tumors mainly express somatostatin receptor 5 (SSTR5) since SSTR2 is downregulated by the elevated levels of glucocorticoids that characterize patients with Cushing's disease (CD). SSTR5 is the molecular target of pasireotide, the only approved pituitary tumor-targeted drug for the treatment of CD. However, the molecular mechanisms that regulate SSTR5 are still poorly investigated. This review summarizes the experimental evidence supporting the role of the cytoskeleton actin-binding protein filamin A (FLNA) in the regulation of SSTR5 expression and signal transduction in corticotroph tumors. Moreover, the correlations between the presence of somatic USP8 mutations and the expression of SSTR5 will be reviewed. An involvement of glucocorticoid-mediated β-arrestins modulation in regulating SSTRs expression and function in ACTH-secreting tumors will also be discussed.
Collapse
Affiliation(s)
- Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| |
Collapse
|
83
|
Treppiedi D, Catalano R, Mangili F, Mantovani G, Peverelli E. Role of filamin A in the pathogenesis of neuroendocrine tumors and adrenal cancer. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R143-R152. [PMID: 37435454 PMCID: PMC10259351 DOI: 10.1530/eo-22-0055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 07/13/2023]
Abstract
Cell cytoskeleton proteins are involved in tumor pathogenesis, progression and pharmacological resistance. Filamin A (FLNA) is a large actin-binding protein with both structural and scaffold functions implicated in a variety of cellular processes, including migration, cell adhesion, differentiation, proliferation and transcription. The role of FLNA in cancers has been studied in multiple types of tumors. FLNA plays a dual role in tumors, depending on its subcellular localization, post-translational modification (as phosphorylation at Ser2125) and interaction with binding partners. This review summarizes the experimental evidence showing the critical involvement of FLNA in the complex biology of endocrine tumors. Particularly, the role of FLNA in regulating expression and signaling of the main pharmacological targets in pituitary neuroendocrine tumors, pancreatic neuroendocrine tumors, pulmonary neuroendocrine tumors and adrenocortical carcinomas, with implications on responsiveness to currently used drugs in the treatment of these tumors, will be discussed.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
84
|
Treppiedi D, Marra G, Di Muro G, Catalano R, Mangili F, Esposito E, Calebiro D, Arosio M, Peverelli E, Mantovani G. Dimerization of GPCRs: Novel insight into the role of FLNA and SSAs regulating SST 2 and SST 5 homo- and hetero-dimer formation. Front Endocrinol (Lausanne) 2022; 13:892668. [PMID: 35992099 PMCID: PMC9389162 DOI: 10.3389/fendo.2022.892668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The process of GPCR dimerization can have profound effects on GPCR activation, signaling, and intracellular trafficking. Somatostatin receptors (SSTs) are class A GPCRs abundantly expressed in pituitary tumors where they represent the main pharmacological targets of somatostatin analogs (SSAs), thanks to their antisecretory and antiproliferative actions. The cytoskeletal protein filamin A (FLNA) directly interacts with both somatostatin receptor type 2 (SST2) and 5 (SST5) and regulates their expression and signaling in pituitary tumoral cells. So far, the existence and physiological relevance of SSTs homo- and hetero-dimerization in the pituitary have not been explored. Moreover, whether octreotide or pasireotide may play modulatory effects and whether FLNA may participate to this level of receptor organization have remained elusive. Here, we used a proximity ligation assay (PLA)-based approach for the in situ visualization and quantification of SST2/SST5 dimerization in rat GH3 as well as in human melanoma cells either expressing (A7) or lacking (M2) FLNA. First, we observed the formation of endogenous SST5 homo-dimers in GH3, A7, and M2 cells. Using the PLA approach combined with epitope tagging, we detected homo-dimers of human SST2 in GH3, A7, and M2 cells transiently co-expressing HA- and SNAP-tagged SST2. SST2 and SST5 can also form endogenous hetero-dimers in these cells. Interestingly, FLNA absence reduced the basal number of hetero-dimers (-36.8 ± 6.3% reduction of PLA events in M2, P < 0.05 vs. A7), and octreotide but not pasireotide promoted hetero-dimerization in both A7 and M2 (+20.0 ± 11.8% and +44.1 ± 16.3% increase of PLA events in A7 and M2, respectively, P < 0.05 vs. basal). Finally, immunofluorescence data showed that SST2 and SST5 recruitment at the plasma membrane and internalization are similarly induced by octreotide and pasireotide in GH3 and A7 cells. On the contrary, in M2 cells, octreotide failed to internalize both receptors whereas pasireotide promoted robust receptor internalization at shorter times than in A7 cells. In conclusion, we demonstrated that in GH3 cells SST2 and SST5 can form both homo- and hetero-dimers and that FLNA plays a role in the formation of SST2/SST5 hetero-dimers. Moreover, we showed that FLNA regulates SST2 and SST5 intracellular trafficking induced by octreotide and pasireotide.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giusy Marra
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Genesio Di Muro
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- University Sapienza of Rome, Rome, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- *Correspondence: Erika Peverelli,
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
85
|
Wang Y, Wu B, Li J, Shu X. Sinus of Valsalva Aneurysm in Females. Int Heart J 2022; 63:1201-1204. [DOI: 10.1536/ihj.22-156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yongshi Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University
| | - Boting Wu
- Department of Transfusion, Zhongshan Hospital Fudan University
| | - Jun Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University
| | - Xianhong Shu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University
| |
Collapse
|
86
|
Koene LM, Niggl E, Wallaard I, Proietti-Onori M, Rotaru DC, Elgersma Y. Identifying the temporal electrophysiological and molecular changes that contribute to TSC-associated epileptogenesis. JCI Insight 2021; 6:e150120. [PMID: 34877936 PMCID: PMC8675202 DOI: 10.1172/jci.insight.150120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Tuberous sclerosis complex (TSC), caused by heterozygous mutations in TSC1 or TSC2, frequently results in intractable epilepsy. Here, we made use of an inducible Tsc1-knockout mouse model, allowing us to study electrophysiological and molecular changes of Tsc1-induced epileptogenesis over time. We recorded from pyramidal neurons in the hippocampus and somatosensory cortex (L2/L3) and combined this with an analysis of transcriptome changes during epileptogenesis. Deletion of Tsc1 resulted in hippocampus-specific changes in excitability and adaptation, which emerged before seizure onset and progressed over time. All phenotypes were rescued after early treatment with rapamycin, an mTOR inhibitor. Later in epileptogenesis, we observed a hippocampal increase of excitation-to-inhibition ratio. These cellular changes were accompanied by dramatic transcriptional changes, especially after seizure onset. Most of these changes were rescued upon rapamycin treatment. Of the genes encoding ion channels or belonging to the Gene Ontology term action potential, 27 were differentially expressed just before seizure onset, suggesting a potential driving role in epileptogenesis. Our data highlight the complex changes driving epileptogenesis in TSC, including the changed expression of multiple ion channels. Our study emphasizes inhibition of the TSC/mTOR signaling pathway as a promising therapeutic approach to target epilepsy in patients with TSC.
Collapse
|
87
|
Matsumura T, Inoue K, Toyooka K, Inoue M, Iida A, Saito Y, Nishikawa T, Moriuchi K, Beck G, Nishino I, Fujimura H. Clinical trajectory of a patient with filaminopathy who developed arrhythmogenic cardiomyopathy, myofibrillar myopathy, and multiorgan tumors. Neuromuscul Disord 2021; 31:1282-1286. [PMID: 34857437 DOI: 10.1016/j.nmd.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/05/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
We report a case of a patient presenting with arrhythmogenic cardiomyopathy, myofibrillar myopathy, and multiorgan tumors. A 41-year-old woman with a history of hypertrophic cardiomyopathy, diagnosed at 6 years of age, developed scoliosis after puberty. Following spinal surgery to address the scoliosis, she developed recurrent severe arrhythmia and heart failure. She developed hypoventilation at age 29 years. Proximal dominant weakness and mild elevation of serum creatine kinase indicated possible myopathy. Myofibrillar myopathy was diagnosed by muscle biopsy at age 30 year. Acute abdomen was repeatedly reported from age 33 years, eventually leading to a diagnosis of gastric polyp and erosive ulcer. A urinary bladder tumor was found at age 35 years, and breast cancer was diagnosed at age 40 years. Whole exome sequencing detected a heterozygous missense mutation in Filamin C. Recent evidences suggest that filamins are associated with tumors, and this case further highlights the clinical spectrum of filaminopathy.
Collapse
Affiliation(s)
- Tsuyoshi Matsumura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toneyama 5-1-1, Toyonaka, Osaka 560-8552, Japan.
| | - Kimiko Inoue
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toneyama 5-1-1, Toyonaka, Osaka 560-8552, Japan
| | - Keiko Toyooka
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toneyama 5-1-1, Toyonaka, Osaka 560-8552, Japan
| | - Michio Inoue
- Department of Neuromuscular Research, National Center of Neurology, Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo 187-8551, Japan
| | - Aritoshi Iida
- Department of Neuromuscular Research, National Center of Neurology, Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo 187-8551, Japan
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Center of Neurology, Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo 187-8551, Japan
| | - Tatsuya Nishikawa
- Department of Onco-Cardiology, Osaka International Cancer Institute, Otemae 3-1-69, Chuo-ku, Osaka City, Osaka, 541-8567, Japan
| | - Kenji Moriuchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Kishibe-Shinmachi 6-1, Suita, Osaka 564-8565, Japan
| | - Goichi Beck
- Department of Neurology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Center of Neurology, Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo 187-8551, Japan
| | - Harutoshi Fujimura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toneyama 5-1-1, Toyonaka, Osaka 560-8552, Japan
| |
Collapse
|
88
|
Zhiping LL, Ong LT, Chatterjee D, Tan SM, Bhattacharjya S. Binary and ternary complexes of FLNa-Ig21 with cytosolic tails of αMß2 integrin reveal dual role of filamin mediated regulation. Biochim Biophys Acta Gen Subj 2021; 1865:130005. [PMID: 34509570 DOI: 10.1016/j.bbagen.2021.130005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cytoskeletal protein filamin A is critical for the outside-in signaling of integrins. Although molecular mechanisms of filamin-integrin interactions are not fully understood. Mostly, the membrane distal (MD) part of the cytosolic tail (CT) of β subunit of integrin is known to interact with filamin A domain 21 (FLNa-Ig2). However, binary and ternary complexes of full-length CTs of leucocyte specific ß2 integrins with FLNa-Ig21 are yet to be elucidated. METHODS Binding interactions of the CTs of integrin αMß2 with FLNa-Ig21 are extensively investigated by NMR, ITC, cell-based functional assays and computational docking. RESULTS The αM CT demonstrates interactions with FLNa-Ig21 forming a binary complex. Filamin/αM interface is mediated by sidechain-sidechain interactions among non-polar and aromatic residues involving MP helix of αM and the canonical CD face of FLNa-Ig21. Functional assays delineated an interfacial residue Y1137 of αM CT is critical for in-cell binding to FLNa-Ig2. In addition, full-length ß2 CT occupies two distinct binding sites in complex with FLNa-Ig21. A ternary complex of FLNa-Ig21 with CTs has been characterized. In the ternary complex, αM CT moves away to a distal site of FLNa-Ig21 with fewer interactions. CONCLUSION Our findings demonstrate a plausible dual role of filamin in integrin regulation. The molecular interactions of the ternary complex are critical for the resting state of integrins whereas stable FLNa-Ig21/αM CT binary complex perhaps be required for the activated state. GENERAL SIGNIFICANCE Filamin binding to both α and β CTs of other integrins could be essential in regulating bidirectional signaling mechanisms.
Collapse
Affiliation(s)
- Lewis Lu Zhiping
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Li-Teng Ong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Deepak Chatterjee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
89
|
Yang C, Yang P, Liu P, Wang H, Ke E, Li K, Yan H. Targeting Filamin A alleviates ovariectomy-induced bone loss in mice via the WNT/β-catenin signaling pathway. Cell Signal 2021; 90:110191. [PMID: 34774991 DOI: 10.1016/j.cellsig.2021.110191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 11/03/2022]
Abstract
Osteoporosis (OP) is a worldwide prevalent chronic metabolic bone disease, causing by a disruption of the balance between bone resorption and formation. Estrogen deficiency and aging are the main causes for disturbances in bone remodeling activity and bone loss, however, the mechanisms underlying bone remodeling regulation require clarification if novel targets for OP treatment are to be identified. In this investigation, we showed that filamin A (FLNA) accumulated in osteoblasts (OBs) and osteoclasts (OC) in bone from human OP samples, and mice with age-related and postmenopausal OP. FLNA negatively modulated in vitro osteogenic differentiation and positively promoted RANKL-induced osteoclastic differentiation. Mechanistically, FLNA interacted with low-density lipoprotein receptor-related proteins 6 (LRP6) to inhibit β-catenin expression, and enhanced nuclear factor of activated T cell c1 (NFATc1)-dependent osteoclastogenic gene expression to inhibit osteogenesis, and promote osteoclastogenesis. Inhibiting FLNA with calpeptin activated WNT/β-catenin signaling, resulting in prominent protective effects of bone loss in ovariectomy (OVX)-induced postmenopausal OP mice. Our findings revealed that FLNA not only participated in OP pathogenesis, but could be a new target to stimulate bone formation and inhibit bone resorption. Targeting FLNA with calpeptin may be a promising therapeutic approach for postmenopausal OP in the future.
Collapse
Affiliation(s)
- Changsheng Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, Guangdong Province 510000, China
| | - Panpan Yang
- Academy of Orthopedics Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510000, China
| | - Peilin Liu
- Academy of Orthopedics Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510000, China
| | - Hong Wang
- Academy of Orthopedics Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510000, China
| | - Ee Ke
- Guangdong Provincial People's Hospital, Guangdong, Academy of Medical Sciences, Guangzhou 510080, China.
| | - Kai Li
- Academy of Orthopedics Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510000, China.
| | - Huibo Yan
- Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, Guangdong Province 510000, China.
| |
Collapse
|
90
|
Chung S, Le TP, Vishwakarma V, Cheng YL, Andrew DJ. Isoform-specific roles of the Drosophila filamin-type protein Jitterbug (Jbug) during development. Genetics 2021; 219:iyab100. [PMID: 34173831 PMCID: PMC8860385 DOI: 10.1093/genetics/iyab100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/20/2021] [Indexed: 11/14/2022] Open
Abstract
Filamins are highly conserved actin-crosslinking proteins that regulate organization of the actin cytoskeleton. As key components of versatile signaling scaffolds, filamins are implicated in developmental anomalies and cancer. Multiple isoforms of filamins exist, raising the possibility of distinct functions for each isoform during development and in disease. Here, we provide an initial characterization of jitterbug (jbug), which encodes one of the two filamin-type proteins in Drosophila. We generate Jbug antiserum that recognizes all of the spliced forms and reveals differential expression of different Jbug isoforms during development, and a significant maternal contribution of Jbug protein. To reveal the function of Jbug isoforms, we create new genetic tools, including a null allele that deletes all isoforms, hypomorphic alleles that affect only a subset, and UAS lines for Gal4-driven expression of the major isoforms. Using these tools, we demonstrate that Jbug is required for viability and that specific isoforms are required in the formation of actin-rich protrusions including thoracic bristles in adults and ventral denticles in the embryo. We also show that specific isoforms of Jbug show differential localization within epithelia and that maternal and zygotic loss of jbug disrupts Crumbs (Crb) localization in several epithelial cell types.
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thao Phuong Le
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Vishakha Vishwakarma
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yim Ling Cheng
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
91
|
Dermawan JK, Azzato EM, Goldblum JR, Rubin BP, Billings SD, Ko JS. Superficial ALK-rearranged myxoid spindle cell neoplasm: a cutaneous soft tissue tumor with distinctive morphology and immunophenotypic profile. Mod Pathol 2021; 34:1710-1718. [PMID: 34088997 DOI: 10.1038/s41379-021-00830-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Gene rearrangements involving the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase gene have been identified in various neoplasms, including inflammatory myofibroblastic tumor and epithelioid fibrous histiocytoma. We present an ALK-rearranged cutaneous soft tissue tumor with unique morphologic and immunophenotypic features that are not shared by other entities with ALK rearrangements. The six cases involved two females and four males, aged 18-84 (mean 51) years old. Three tumors were on the back and three on the lower extremities (thigh, knee, shin); ranging from 0.5 to 5.6 (mean 2.1) cm. Four were confined to the dermis; two involved the subcutis. All six cases were characterized by the presence of spindled to ovoid cells arranged in concentric whorls and cords against a myxoid to myxohyaline stroma and relatively cellular aggregates of plump ovoid to epithelioid cells. Four cases showed distinct hyalinized blood vessels. Both cases that involved the subcutis showed peripheral lipofibromatosis-like areas. Tumor-infiltrating lymphocytes were absent to moderate. Severe cytologic atypia or conspicuous mitotic activity was not identified. Immunohistochemically, all tumors diffusely expressed ALK (D5F3) and CD34. All but one tumor was diffusely positive for S100 protein. All tumors were negative for EMA, AE1/AE3, SMA, and SOX10. Next-generation sequencing revealed ALK fusions with FLNA (3 cases), MYH10 (2 cases), and HMBOX1 (1 case) as the partner genes. In all six cases, the breakpoints involved exon 20 of ALK, which preserves the receptor tyrosine kinase domains of ALK in the fusion product. Of the four cases with limited follow-up information (2-18 months), none recurred. In conclusion, we report an ALK-rearranged cutaneous soft tissue tumor characterized by the presence of myxoid spindle cell whorls and cords, and co-expression of ALK, CD34, and frequently S100 protein, we term "superficial ALK-rearranged myxoid spindle cell neoplasm".
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Elizabeth M Azzato
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John R Goldblum
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brian P Rubin
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Steven D Billings
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer S Ko
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
92
|
Chen Y, Wei X, Zhang Z, He Y, Huo B, Guo X, Feng X, Fang ZM, Jiang DS, Zhu XH. Downregulation of Filamin a Expression in the Aorta Is Correlated With Aortic Dissection. Front Cardiovasc Med 2021; 8:690846. [PMID: 34485398 PMCID: PMC8414519 DOI: 10.3389/fcvm.2021.690846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Filamins (FLNs) are actin cross-linking proteins, and as scaffolding proteins, FLNs are closely associated with the stabilization of the cytoskeleton. Nevertheless, the biological importance of FLNs in aortic dissection (AD) has not been well-elucidated. In this study, we first reanalyzed datasets downloaded from the Gene Expression Omnibus (GEO) database, and we found that in addition to the extracellular matrix, the actin cytoskeleton is a key structure associated with AD. Given that FLNs are involved in remodeling the cytoskeleton to affect cellular functions, we measured their expression levels in the aortas of patients with Stanford type A AD (TAAD). Our results showed that the mRNA and protein levels of FLNA were consistently decreased in dissected aortas of both humans and mice, while the FLNB protein level was upregulated despite decreased FLNB mRNA levels, and comparable expression levels of FLNC were observed between groups. Furthermore, the immunohistochemistry results demonstrated that FLNA was highly expressed in smooth muscle cells (SMCs) of aorta in non-AD samples, and downregulated in the medial layer of the dissected aortas of humans and mice. Moreover, we revealed that FOS and JUN, forming a dimeric transcription factor called AP-1 (activating protein-1), were positively correlated with the expression of FLNA in aorta. Either overexpression of FOS or JUN alone, or overexpression of FOS and JUN together, facilitated the expression of FLNA in primary cultured human aortic SMCs. In the present study, we not only detected the expression pattern of FLNs in aortas of humans and mice with or without AD, but we also found that the expression of FLNA in the AD samples was significantly reduced and that AP-1 might regulate the expression of FLNA. Our findings will contribute to the elucidation of the pathological mechanisms of AD and provide potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zihao Zhang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
93
|
Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, Hoffmann B, Hoppe T, Huesgen PF, Köhn M, Kolanus W, Merkel R, Niessen CM, Pokrzywa W, Rinschen MM, Wachten D, Warscheid B. Maintaining proteostasis under mechanical stress. EMBO Rep 2021; 22:e52507. [PMID: 34309183 PMCID: PMC8339670 DOI: 10.15252/embr.202152507] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.
Collapse
Affiliation(s)
- Jörg Höhfeld
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
| | - Dieter O Fürst
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
- Department for the Biosciences of SportsInstitute of Sports ScienceUniversity of HildesheimHildesheimGermany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain CenterMedical FacultyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Thorsten Hoppe
- Institute for GeneticsCologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) and CMMCUniversity of CologneCologneGermany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA3Forschungszentrum JülichJülichGermany
- CECADUniversity of CologneCologneGermany
| | - Maja Köhn
- Institute of Biology IIIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Waldemar Kolanus
- LIMES‐InstituteRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Carien M Niessen
- Department of Dermatology and CECADUniversity of CologneCologneGermany
| | | | - Markus M Rinschen
- Department of Biomedicine and Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityUniversity Hospital BonnBonnGermany
| | - Bettina Warscheid
- Institute of Biology IIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
94
|
Alegre-Cebollada J. Protein nanomechanics in biological context. Biophys Rev 2021; 13:435-454. [PMID: 34466164 PMCID: PMC8355295 DOI: 10.1007/s12551-021-00822-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
How proteins respond to pulling forces, or protein nanomechanics, is a key contributor to the form and function of biological systems. Indeed, the conventional view that proteins are able to diffuse in solution does not apply to the many polypeptides that are anchored to rigid supramolecular structures. These tethered proteins typically have important mechanical roles that enable cells to generate, sense, and transduce mechanical forces. To fully comprehend the interplay between mechanical forces and biology, we must understand how protein nanomechanics emerge in living matter. This endeavor is definitely challenging and only recently has it started to appear tractable. Here, I introduce the main in vitro single-molecule biophysics methods that have been instrumental to investigate protein nanomechanics over the last 2 decades. Then, I present the contemporary view on how mechanical force shapes the free energy of tethered proteins, as well as the effect of biological factors such as post-translational modifications and mutations. To illustrate the contribution of protein nanomechanics to biological function, I review current knowledge on the mechanobiology of selected muscle and cell adhesion proteins including titin, talin, and bacterial pilins. Finally, I discuss emerging methods to modulate protein nanomechanics in living matter, for instance by inducing specific mechanical loss-of-function (mLOF). By interrogating biological systems in a causative manner, these new tools can contribute to further place protein nanomechanics in a biological context.
Collapse
|
95
|
Greiten JK, Kliewe F, Schnarre A, Artelt N, Schröder S, Rogge H, Amann K, Daniel C, Lindenmeyer MT, Cohen CD, Endlich K, Endlich N. The role of filamins in mechanically stressed podocytes. FASEB J 2021; 35:e21560. [PMID: 33860543 DOI: 10.1096/fj.202001179rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 11/11/2022]
Abstract
Glomerular hypertension induces mechanical load to podocytes, often resulting in podocyte detachment and the development of glomerulosclerosis. Although it is well known that podocytes are mechanosensitive, the mechanosensors and mechanotransducers are still unknown. Since filamin A, an actin-binding protein, is already described to be a mechanosensor and mechanotransducer, we hypothesized that filamins could be important for the outside-in signaling as well as the actin cytoskeleton of podocytes under mechanical stress. In this study, we demonstrate that filamin A is the main isoform of the filamin family that is expressed in cultured podocytes. Together with filamin B, filamin A was significantly up-regulated during mechanical stretch (3 days, 0.5 Hz, and 5% extension). To study the role of filamin A in cultured podocytes under mechanical stress, filamin A was knocked down (Flna KD) by specific siRNA. Additionally, we established a filamin A knockout podocyte cell line (Flna KO) by CRISPR/Cas9. Knockdown and knockout of filamin A influenced the expression of synaptopodin, a podocyte-specific protein, focal adhesions as well as the morphology of the actin cytoskeleton. Moreover, the cell motility of Flna KO podocytes was significantly increased. Since the knockout of filamin A has had no effect on cell adhesion of podocytes during mechanical stress, we simultaneously knocked down the expression of filamin A and B. Thereby, we observed a significant loss of podocytes during mechanical stress indicating a compensatory mechanism. Analyzing hypertensive mice kidneys as well as biopsies of patients suffering from diabetic nephropathy, we found an up-regulation of filamin A in podocytes in contrast to the control. In summary, filamin A and B mediate matrix-actin cytoskeleton interactions which are essential for the adaptation of cultured podocyte to mechanical stress.
Collapse
Affiliation(s)
- Jonas K Greiten
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Annabel Schnarre
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nadine Artelt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sindy Schröder
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Henrik Rogge
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
96
|
Patarat R, Riku S, Kunadirek P, Chuaypen N, Tangkijvanich P, Mutirangura A, Puttipanyalears C. The expression of FLNA and CLU in PBMCs as a novel screening marker for hepatocellular carcinoma. Sci Rep 2021; 11:14838. [PMID: 34290294 PMCID: PMC8295309 DOI: 10.1038/s41598-021-94330-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Early detection improves survival and increases curative probability in hepatocellular carcinoma (HCC). Peripheral blood mononuclear cells (PBMCs) can provide an inexpensive, less-invasive and highly accurate method. The objective of this study is to find the potential marker for HCC screening, utilizing gene expression of the PBMCs. Data from the NCBI GEO database of gene expression in HCC patients and healthy donor's PBMCs was collected. As a result, GSE 49515 and GSE 58208 were found. Using both, a statistical significance test was conducted in each gene expression of each data set which resulted in 187 genes. We randomized three selected genes (FLNA, CAP1, and CLU) from the significant p-value group (p-values < 0.001). Then, a total of 76 healthy donors, 153 HCC, 20 hepatic fibrosis, 20 non-alcoholic fatty liver were collected. Quantitative RT-PCR (qRT-PCR) was performed in cDNA from all blood samples from the qRT-PCR, The Cycle threshold (Ct) value of FLNA, CLU, CAP1 of HCC group (28.47 ± 4.43, 28.01 ± 3.75, 29.64 ± 3.90) were lower than healthy group (34.23 ± 3.54, 32.90 ± 4.15, 32.18 ± 5.02) (p-values < 0.0001). The accuracy, sensitivity and specificity of these genes as a screening tool were: FLNA (80.8%, 88.0%, 65.8%), CLU (63.4%, 93.3%, 31.3%), CAP1 (67.2%, 83.3%, 39.1%). The tests were performed in two and three gene combinations. Results demonstrated high accuracy of 86.2%, sensitivity of 85% and specificity of 88.4% in the FLNA and CLU combination. Furthermore, after analyzed using hepatic fibrosis and non-alcoholic fatty liver as a control, the FLNA and CLU combination is shown to have accuracy of 76.9%, sensitivity of 77.6% and specificity of 75%. Also, we founded that our gene combination performs better than the current gold standard for HCC screening. We concluded that FLNA and CLU combination have high potential for being HCC novel markers. Combined with current tumor markers, further research of the gene’s expression might help identify more potential markers and improve diagnosis methods.
Collapse
Affiliation(s)
- Rathasapa Patarat
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shoji Riku
- Tokyo Medical and Dental University, Tokyo, Japan
| | - Pattapon Kunadirek
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand.,Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand.,Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Charoenchai Puttipanyalears
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Department of Anatomy, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
97
|
Wade EM, Jenkins ZA, Morgan T, Gimenez G, Gibson H, Peng H, Sanchez Russo R, Skraban CM, Bedoukian E, Robertson SP. Exon skip-inducing variants in FLNA in an attenuated form of frontometaphyseal dysplasia. Am J Med Genet A 2021; 185:3675-3682. [PMID: 34272929 DOI: 10.1002/ajmg.a.62424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022]
Abstract
Pathogenic variation in the X-linked gene FLNA causes a wide range of human developmental phenotypes. Loss-of-function is usually male embryonic-lethal, and most commonly results in a neuronal migration disorder in affected females. Gain-of-function variants cause a spectrum of skeletal dysplasias that present with variable additional, often distinctive, soft-tissue anomalies in males and females. Here we present two, unrelated, male individuals with novel, intronic variants in FLNA that are predicted to be pathogenic. Their phenotypes are reminiscent of the gain-of-function spectrum without the skeletal manifestations. Most strikingly, they manifest urethral anomalies, cardiac malformations, and keloid scarring, all commonly encountered features of frontometaphyseal dysplasia. Both variants prevent inclusion of exon 40 into the FLNA transcript, predicting the in-frame deletion of 42 amino acids, however the abundance of FLNA protein was equivalent to that observed in healthy individuals. Loss of these 42 amino acids removes sites that mediate key FLNA functions, including binding of some ligands and phosphorylation. This phenotype further expands the spectrum of the FLNA filaminopathies.
Collapse
Affiliation(s)
- Emma M Wade
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Zandra A Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tim Morgan
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Hayley Gibson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Hui Peng
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Cara M Skraban
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Emma Bedoukian
- The Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
98
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
99
|
Zhang L, Huang T, Teaw S, Nguyen LH, Hsieh LS, Gong X, Burns LH, Bordey A. Filamin A inhibition reduces seizure activity in a mouse model of focal cortical malformations. Sci Transl Med 2021; 12:12/531/eaay0289. [PMID: 32075941 DOI: 10.1126/scitranslmed.aay0289] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/28/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022]
Abstract
Epilepsy treatments for patients with mechanistic target of rapamycin (mTOR) disorders, such as tuberous sclerosis complex (TSC) or focal cortical dysplasia type II (FCDII), are urgently needed. In these patients, the presence of focal cortical malformations is associated with the occurrence of lifelong epilepsy, leading to severe neurological comorbidities. Here, we show that the expression of the actin cross-linking protein filamin A (FLNA) is increased in resected cortical tissue that is responsible for seizures in patients with FCDII and in mice modeling TSC and FCDII with mutations in phosphoinositide 3-kinase (PI3K)-ras homolog enriched in brain (Rheb) pathway genes. Normalizing FLNA expression in these mice through genetic knockdown limited cell misplacement and neuronal dysmorphogenesis, two hallmarks of focal cortical malformations. In addition, Flna knockdown reduced seizure frequency independently of mTOR signaling. Treating mice with a small molecule targeting FLNA, PTI-125, before the onset of seizures alleviated neuronal abnormalities and reduced seizure frequency compared to vehicle-treated mice. In addition, the treatment was also effective when injected after seizure onset in juvenile and adult mice. These data suggest that targeting FLNA with either short hairpin RNAs or the small molecule PTI-125 might be effective in reducing seizures in patients with TSC and FCDII bearing mutations in PI3K-Rheb pathway genes.
Collapse
Affiliation(s)
- Longbo Zhang
- Departments of Neurosurgery and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8082, USA.,Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, Hunan 410008, China
| | - Tianxiang Huang
- Departments of Neurosurgery and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8082, USA.,Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, Hunan 410008, China
| | - Shannon Teaw
- Departments of Neurosurgery and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8082, USA
| | - Lena H Nguyen
- Departments of Neurosurgery and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8082, USA
| | - Lawrence S Hsieh
- Departments of Neurosurgery and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8082, USA
| | - Xuan Gong
- Departments of Neurosurgery and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8082, USA.,Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, Hunan 410008, China
| | | | - Angélique Bordey
- Departments of Neurosurgery and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8082, USA.
| |
Collapse
|
100
|
Suay-Corredera C, Pricolo MR, Velázquez-Carreras D, Pathak D, Nandwani N, Pimenta-Lopes C, Sánchez-Ortiz D, Urrutia-Irazabal I, Vilches S, Dominguez F, Frisso G, Monserrat L, García-Pavía P, de Sancho D, Spudich JA, Ruppel KM, Herrero-Galán E, Alegre-Cebollada J. Nanomechanical Phenotypes in Cardiac Myosin-Binding Protein C Mutants That Cause Hypertrophic Cardiomyopathy. ACS NANO 2021; 15:10203-10216. [PMID: 34060810 PMCID: PMC8514129 DOI: 10.1021/acsnano.1c02242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a disease of the myocardium caused by mutations in sarcomeric proteins with mechanical roles, such as the molecular motor myosin. Around half of the HCM-causing genetic variants target contraction modulator cardiac myosin-binding protein C (cMyBP-C), although the underlying pathogenic mechanisms remain unclear since many of these mutations cause no alterations in protein structure and stability. As an alternative pathomechanism, here we have examined whether pathogenic mutations perturb the nanomechanics of cMyBP-C, which would compromise its modulatory mechanical tethers across sliding actomyosin filaments. Using single-molecule atomic force spectroscopy, we have quantified mechanical folding and unfolding transitions in cMyBP-C domains targeted by HCM mutations that do not induce RNA splicing alterations or protein thermodynamic destabilization. Our results show that domains containing mutation R495W are mechanically weaker than wild-type at forces below 40 pN and that R502Q mutant domains fold faster than wild-type. None of these alterations are found in control, nonpathogenic variants, suggesting that nanomechanical phenotypes induced by pathogenic cMyBP-C mutations contribute to HCM development. We propose that mutation-induced nanomechanical alterations may be common in mechanical proteins involved in human pathologies.
Collapse
Affiliation(s)
| | - Maria Rosaria Pricolo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Naples, Italy
| | | | - Divya Pathak
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - David Sánchez-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | | | - Silvia Vilches
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
| | - Fernando Dominguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate, scarl, 80145, Naples, Italy
| | | | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
- Universidad Francisco de Vitoria (UFV), 28223, Pozuelo de Alarcón, Madrid, Spain
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, 20018, Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Elías Herrero-Galán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | | |
Collapse
|