51
|
Arumugam K, Macnicol MC, Macnicol AM. Autoregulation of Musashi1 mRNA translation during Xenopus oocyte maturation. Mol Reprod Dev 2012; 79:553-63. [PMID: 22730340 DOI: 10.1002/mrd.22060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/04/2012] [Indexed: 11/06/2022]
Abstract
The mRNA translational control protein, Musashi, plays a critical role in cell fate determination through sequence-specific interactions with select target mRNAs. In proliferating stem cells, Musashi exerts repression of target mRNAs to promote cell cycle progression. During stem cell differentiation, Musashi target mRNAs are de-repressed and translated. Recently, we have reported an obligatory requirement for Musashi to direct translational activation of target mRNAs during Xenopus oocyte meiotic cell cycle progression. Despite the importance of Musashi in cell cycle regulation, only a few target mRNAs have been fully characterized. In this study, we report the identification and characterization of a new Musashi target mRNA in Xenopus oocytes. We demonstrate that progesterone-stimulated translational activation of the Xenopus Musashi1 mRNA is regulated through a functional Musashi binding element (MBE) in the Musashi1 mRNA 3' untranslated region (3' UTR). Mutational disruption of the MBE prevented translational activation of Musashi1 mRNA and its interaction with Musashi protein. Further, elimination of Musashi function through microinjection of inhibitory antisense oligonucleotides prevented progesterone-induced polyadenylation and translation of the endogenous Musashi1 mRNA. Thus, Xenopus Musashi proteins regulate translation of the Musashi1 mRNA during oocyte maturation. Our results indicate that the hierarchy of sequential and dependent mRNA translational control programs involved in directing progression through meiosis are reinforced by an intricate series of nested, positive feedback loops, including Musashi mRNA translational autoregulation. These autoregulatory positive feedback loops serve to amplify a weak initiating signal into a robust commitment for the oocyte to progress through the cell cycle and become competent for fertilization.
Collapse
Affiliation(s)
- Karthik Arumugam
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301W Markham, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
52
|
Muto J, Imai T, Ogawa D, Nishimoto Y, Okada Y, Mabuchi Y, Kawase T, Iwanami A, Mischel PS, Saya H, Yoshida K, Matsuzaki Y, Okano H. RNA-binding protein Musashi1 modulates glioma cell growth through the post-transcriptional regulation of Notch and PI3 kinase/Akt signaling pathways. PLoS One 2012; 7:e33431. [PMID: 22428049 PMCID: PMC3299785 DOI: 10.1371/journal.pone.0033431] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/08/2012] [Indexed: 12/11/2022] Open
Abstract
Musashi1 (MSI1) is an RNA-binding protein that plays critical roles in nervous-system development and stem-cell self-renewal. Here, we examined its role in the progression of glioma. Short hairpin RNA (shRNA)-based MSI1-knock down (KD) in glioblastoma and medulloblastoma cells resulted in a significantly lower number of self renewing colony on day 30 (a 65% reduction), compared with non-silencing shRNA-treated control cells, indicative of an inhibitory effect of MSI1-KD on tumor cell growth and survival. Immunocytochemical staining of the MSI1-KD glioblastoma cells indicated that they ectopically expressed metaphase markers. In addition, a 2.2-fold increase in the number of MSI1-KD cells in the G2/M phase was observed. Thus, MSI1-KD caused the prolongation of mitosis and reduced the cell survival, although the expression of activated Caspase-3 was unaltered. We further showed that MSI1-KD glioblastoma cells xenografted into the brains of NOD/SCID mice formed tumors that were 96.6% smaller, as measured by a bioluminescence imaging system (BLI), than non-KD cells, and the host survival was longer (49.3±6.1 days vs. 33.6±3.6 days; P<0.01). These findings and other cell biological analyses suggested that the reduction of MSI1 in glioma cells prolonged the cell cycle by inducing the accumulation of Cyclin B1. Furthermore, MSI1-KD reduced the activities of the Notch and PI3 kinase-Akt signaling pathways, through the up-regulation of Numb and PTEN, respectively. Exposure of glioma cells to chemical inhibitors of these pathways reduced the number of spheres and living cells, as did MSI1-KD. These results suggest that MSI1 increases the growth and/or survival of certain types of glioma cells by promoting the activation of both Notch and PI3 kinase/Akt signaling.
Collapse
Affiliation(s)
- Jun Muto
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
- Division of Neurosurgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Takao Imai
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Daisuke Ogawa
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yoshinori Nishimoto
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yohei Okada
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yo Mabuchi
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Takeshi Kawase
- Division of Neurosurgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Akio Iwanami
- Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, California, United States of America
| | - Paul S. Mischel
- Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, California, United States of America
| | - Hideyuki Saya
- Division of Gene regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kazunari Yoshida
- Division of Neurosurgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
53
|
Okamoto K, Nakatsukasa M, Alié A, Masuda Y, Agata K, Funayama N. The active stem cell specific expression of sponge Musashi homolog EflMsiA suggests its involvement in maintaining the stem cell state. Mech Dev 2012; 129:24-37. [DOI: 10.1016/j.mod.2012.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/07/2012] [Accepted: 03/17/2012] [Indexed: 12/29/2022]
|
54
|
Arumugam K, MacNicol MC, Wang Y, Cragle CE, Tackett AJ, Hardy LL, MacNicol AM. Ringo/cyclin-dependent kinase and mitogen-activated protein kinase signaling pathways regulate the activity of the cell fate determinant Musashi to promote cell cycle re-entry in Xenopus oocytes. J Biol Chem 2012; 287:10639-10649. [PMID: 22215682 DOI: 10.1074/jbc.m111.300681] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell cycle re-entry during vertebrate oocyte maturation is mediated through translational activation of select target mRNAs, culminating in the activation of mitogen-activated protein kinase and cyclin B/cyclin-dependent kinase (CDK) signaling. The temporal order of targeted mRNA translation is crucial for cell cycle progression and is determined by the timing of activation of distinct mRNA-binding proteins. We have previously shown in oocytes from Xenopus laevis that the mRNA-binding protein Musashi targets translational activation of early class mRNAs including the mRNA encoding the Mos proto-oncogene. However, the molecular mechanism by which Musashi function is activated is unknown. We report here that activation of Musashi1 is mediated by Ringo/CDK signaling, revealing a novel role for early Ringo/CDK function. Interestingly, Musashi1 activation is subsequently sustained through mitogen-activated protein kinase signaling, the downstream effector of Mos mRNA translation, thus establishing a positive feedback loop to amplify Musashi function. The identified regulatory sites are present in mammalian Musashi proteins, and our data suggest that phosphorylation may represent an evolutionarily conserved mechanism to control Musashi-dependent target mRNA translation.
Collapse
Affiliation(s)
- Karthik Arumugam
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205; Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| | - Yiying Wang
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| | - Chad E Cragle
- Interdisciplinary BioSciences Graduate Program, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| | - Linda L Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| | - Angus M MacNicol
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205; Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205.
| |
Collapse
|
55
|
Alvarez-Palazuelos LE, Robles-Cervantes MS, Castillo-Velazquez G, Rivas-Souza M, Guzman-Muniz J, Moy-Lopez N, Gonzalez-Castaneda RE, Luquin S, Gonzalez-Perez O. Regulation of neural stem cell in the human SVZ by trophic and morphogenic factors. CURRENT SIGNAL TRANSDUCTION THERAPY 2011; 6:320-326. [PMID: 22053150 PMCID: PMC3204663 DOI: 10.2174/157436211797483958] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The subventricular zone (SVZ), lining the lateral ventricular system, is the largest germinal region in mammals. In there, neural stem cells express markers related to astoglial lineage that give rise to new neurons and oligodendrocytes in vivo. In the adult human brain, in vitro evidence has also shown that astrocytic cells isolated from the SVZ can generate new neurons and oligodendrocytes. These proliferative cells are strongly controlled by a number of signals and molecules that modulate, activate or repress the cell division, renewal, proliferation and fate of neural stem cells. In this review, we summarize the cellular composition of the adult human SVZ (hSVZ) and discuss the increasing evidence showing that some trophic modulators strongly control the function of neural stem cells in the SVZ.
Collapse
Affiliation(s)
| | | | - Gabriel Castillo-Velazquez
- Department of Neurosurgery. Instituto Nacional de Neurología y Neurocirugia "Manuel Velasco Suárez" México, DF
| | - Mario Rivas-Souza
- Forensic medicine. Instituto Jalisciense de Ciencias Forenses, Guadalajara, Jalisco
| | - Jorge Guzman-Muniz
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
| | - Norma Moy-Lopez
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
| | | | - Sonia Luquin
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
| | - Oscar Gonzalez-Perez
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara ; Laboratory of Neuroscience, Facultad de Psicología, Universidad de Colima, Colima, Col, México
| |
Collapse
|
56
|
MicroRNAs as regulators of neural stem cell-related pathways in glioblastoma multiforme. Mol Neurobiol 2011; 44:235-49. [PMID: 21728042 DOI: 10.1007/s12035-011-8196-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/21/2011] [Indexed: 12/27/2022]
Abstract
MicroRNAs are endogenous non-coding small RNAs that have been described as highly conserved regulators of gene expression. They are involved in cancer and in the regulation of neural development and stem cell function. Recent studies suggest that a small subpopulation of cancer stem cells (CSCs) has the capacity to repopulate solid tumours such as glioblastoma (GBM), drive malignant progression and mediate radio- and chemoresistance. GBM-derived CSCs share the fundamental stem cell properties of self-renewal and multipotency with neural stem cells (NSCs) and may be regulated by miRNAs. In this review, we will summarize the current knowledge regarding the role of miRNAs in GBM development with a focus on the regulation of GBM-CSCs. We propose a list of miRNAs that could serve as molecular classifiers for GBMs and/or as promising therapeutic targets for such brain tumours.
Collapse
|