51
|
Mayer MJ, Klotz LH, Venkateswaran V. Metformin and prostate cancer stem cells: a novel therapeutic target. Prostate Cancer Prostatic Dis 2015. [PMID: 26215782 DOI: 10.1038/pcan.2015.35] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prostate cancer is the second most frequently diagnosed cancer in the world. Localized disease can be effectively treated with radiation therapy or radical prostatectomy. However, advanced prostate cancer is more difficult to treat and if metastatic, is incurable. There is a need for more effective therapy for advanced prostate cancer. One potential target is the cancer stem cell (CSC). CSCs have been described in several solid tumors, including prostate cancer, and contribute to therapeutic resistance and tumor recurrence. Metformin, a common oral biguanide used to treat type 2 diabetes, has been demonstrated to have anti-neoplastic effects. Specifically, metformin targets CSCs in breast cancer, pancreatic cancer, glioblastoma and colon cancer. Metformin acts directly on the mitochondria to inhibit oxidative phosphorylation and reduce mitochondrial ATP production. This forces tumor cells to compensate by increasing the rate of glycolysis. CSCs rely heavily on mitochondrial oxidative phosphorylation for energy production. The glycolytic switch results in an energy crisis in these cells. Metformin could be used to exploit this metabolic weakness in CSCs. This would increase CSC sensitivity to conventional cancer therapies, circumventing treatment resistance and enhancing treatment efficacy. This review will explore the characteristics of prostate CSCs, their role in tumor propagation and therapeutic resistance and the role of metformin as a potential prostate CSC sensitizer to current anticancer therapies.
Collapse
Affiliation(s)
- M J Mayer
- Division of Urology, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - L H Klotz
- Division of Urology, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - V Venkateswaran
- Division of Urology, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
52
|
Portillo-Lara R, Alvarez MM. Enrichment of the Cancer Stem Phenotype in Sphere Cultures of Prostate Cancer Cell Lines Occurs through Activation of Developmental Pathways Mediated by the Transcriptional Regulator ΔNp63α. PLoS One 2015; 10:e0130118. [PMID: 26110651 PMCID: PMC4481544 DOI: 10.1371/journal.pone.0130118] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/18/2015] [Indexed: 11/17/2022] Open
Abstract
Background Cancer stem cells (CSC) drive prostate cancer tumor survival and metastasis. Nevertheless, the development of specific therapies against CSCs is hindered by the scarcity of these cells in prostate tissues. Suspension culture systems have been reported to enrich CSCs in primary cultures and cell lines. However, the molecular mechanisms underlying this phenomenon have not been fully explored. Methodology/Principal Findings We describe a prostasphere assay for the enrichment of CD133+ CSCs in four commercial PCa cell lines: 22Rv1, DU145, LNCaP, and PC3. Overexpression of CD133, as determined by flow cytometric analysis, correlated with an increased clonogenic, chemoresistant, and invasive potential in vitro. This phenotype is concordant to that of CSCs in vivo. Gene expression profiling was then carried out using the Cancer Reference panel and the nCounter system from NanoString Technologies. This analysis revealed several upregulated transcripts that can be further explored as potential diagnostic markers or therapeutic targets. Furthermore, functional annotation analysis suggests that ΔNp63α modulates the activation of developmental pathways responsible for the increased stem identity of cells growing in suspension cultures. Conclusions/Significance We conclude that profiling the genetic mechanisms involved in CSC enrichment will help us to better understand the molecular pathways that underlie CSC pathophysiology. This platform can be readily adapted to enrich and assay actual patient samples, in order to design patient-specific therapies that are aimed particularly against CSCs.
Collapse
Affiliation(s)
- Roberto Portillo-Lara
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, México; Harvard-MIT Health Sciences and Technology, Brigham and Women's Hospital, Cambridge, Massachusetts, United States of America
| |
Collapse
|
53
|
Kobayashi NCC, Noronha SMRD. Cancer stem cells: a new approach to tumor development. Rev Assoc Med Bras (1992) 2015; 61:86-93. [DOI: 10.1590/1806-9282.61.01.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 12/13/2022] Open
Abstract
Many theories have been proposed to explain the origins of cancer. Currently, evidences show that not every tumor cell is capable of initiating a tumor. Only a small part of the cancer cells, called cancer stem cells (CSCs), can generate a tumor identical to the original one, when removed from human tumors and transplanted into immunosuppressed mice. The name given to these cells comes from the resemblance to normal stem cells, except for the fact that their ability to divide is infinite. These cells are also affected by their microenvironment. Many of the signaling pathways, such as Wnt, Notch and Hedgehog, are altered in this tumoral subpopulation, which also contributes to abnormal proliferation. Researchers have found several markers for CSCs; however, much remains to be studied, or perhaps a universal marker does not even exist, since they vary among tumor types and even from patient to patient. It was also found that cancer stem cells are resistant to radiotherapy and chemotherapy. This may explain the re-emergence of the disease, since they are not completely eliminated and minimal amounts of CSCs can repopulate a tumor. Once the diagnosis in the early stages greatly increases the chances of curing cancer, identifying CSCs in tumors is a goal for the development of more effective treatments. The objective of this article is to discuss the origin of cancer according to the theory of stem cell cancer, as well as its markers and therapies used for treatment.
Collapse
|
54
|
Abstract
Androgens and androgen receptor (AR) signaling are necessary for prostate development and homeostasis. AR signaling also drives the growth of nearly all prostate cancer cells. The role of androgens and AR signaling has been well characterized in metastatic prostate cancer, where it has been shown that prostate cancer cells are exquisitely adept at maintaining functional AR signaling to drive cancer growth. As androgens and AR signaling are so intimately involved in prostate development and the proliferation of advanced prostate cancer, it stands to reason that androgens and AR are also involved in prostate cancer initiation and the early stages of cancer growth, yet little is known of this process. In this review, we summarize the current state of knowledge concerning the role of androgens and AR signaling in prostate tissue, from development to metastatic, castration-resistant prostate cancer, and use that information to suggest potential roles for androgens and AR in prostate cancer initiation.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Molecular PharmacologyBeckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Road, Beckman 2310, Duarte, California 91010, USADepartment of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Eric C Bolton
- Department of Molecular PharmacologyBeckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Road, Beckman 2310, Duarte, California 91010, USADepartment of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jeremy O Jones
- Department of Molecular PharmacologyBeckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Road, Beckman 2310, Duarte, California 91010, USADepartment of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
55
|
Kwon OJ, Xin L. Prostate epithelial stem and progenitor cells. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:209-218. [PMID: 25374923 PMCID: PMC4219311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/30/2014] [Indexed: 06/04/2023]
Abstract
The classic androgen ablation and replacement experiment demonstrates that prostate epithelia possess extensive regenerative capacities and implies the existence of the prostate stem/progenitor cells. These cells may serve as the cells of origin for prostate cancer and their intrinsic property may dictate the clinical behaviors of the resulting diseases. Therefore, detailed characterization of these cells will potentially benefit disease prevention, diagnosis and prognosis. In this review, we describe several major in vitro and in vivo approaches that have been employed in the studies of the prostate stem cell activities, summarize the major progress that has been made during the last two decades regarding the identity of prostate stem/progenitor cells and their niches, and discuss some remaining outstanding questions in the field.
Collapse
Affiliation(s)
- Oh-Joon Kwon
- Department of Molecular and Cellular Biology, Baylor College of MedicineUSA
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of MedicineUSA
- Department of Pathology and Immunology, Baylor College of MedicineUSA
- Dan L. Duncan Cancer Center, Baylor College of MedicineUSA
- Baylor College of MedicineOne Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
56
|
Dubrovska A. Report on the International Workshop 'Cancer stem cells: the mechanisms of radioresistance and biomarker discovery'. Int J Radiat Biol 2014; 90:607-14. [PMID: 24844377 DOI: 10.3109/09553002.2014.920968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of the Workshop "Cancer stem cells: The mechanisms of radioresistance and biomarker discovery", which was held on 23-24 September 2013 at OncoRay - National Center for Radiation Research in Oncology in Dresden, Germany, was to bring together the most recent viewpoints and insights about: (i) the molecular characterization and regulation of CSC, (ii) the mechanisms of CSC radioresistance, and (iii) the discovery of new CSC targeting therapeutics and biomarkers. In this report some research aspects presented in these three topics are highlighted.
Collapse
Affiliation(s)
- Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden , German Cancer Consortium (DKTK) Dresden, and German Cancer Research Center (DKFZ) Heidelberg , Germany
| |
Collapse
|
57
|
Castillo V, Valenzuela R, Huidobro C, Contreras HR, Castellon EA. Functional characteristics of cancer stem cells and their role in drug resistance of prostate cancer. Int J Oncol 2014; 45:985-94. [PMID: 24990514 PMCID: PMC4121425 DOI: 10.3892/ijo.2014.2529] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/17/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer stem cells (CSCs) have the ability to self-renew and differentiate to give rise to heterogeneous phenotype of the tumor cells. It is believed that these cells are involved in metastasis, recurrence and therapy resistance in various cancers. CSCs have been identified in prostate cancer (PCa), one of the most diagnosed malignancies in men over the world, for which chemotherapy resistance is a major problem in the treatment of castration-resistant advanced stages. Molecular signatures, gene expression and functional features have been reported for PCa CSCs. Most data come from cell lines which may not represent the actual tumor. In the present work, a CSCs enriched population obtained from PCa explants was functionally characterized and analyzed for drug resistance. Tumorsphere cultures positive for ABCG2 transporter, CD133, CD44, cytokeratins 5 and 18 (CK5 and CK18) and negatives for androgen receptor (AR) and prostate-specific antigen (PSA) showed higher clonogenic capacity, holoclone-forming ability, colony-forming capacity in soft agar and lower proliferative and apoptotic rate than control adherent cell cultures. Furthermore, exposing tumorsphere cultures to ABCG2 substrate drugs resulted in a high survival rate compared with control PCa cells. This high drug resistance was decreased using a selective inhibitor of ABCG2. According to these results, tumorspheres from PCa explants showed a functional stem phenotype and a marked drug resistance, probably mediated by high expression of the ABCG2 transporter, which might be considered as a suitable therapeutic target for CSCs.
Collapse
Affiliation(s)
- Viviana Castillo
- Laboratory of Molecular and Cellular Andrology, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Rodrigo Valenzuela
- Laboratory of Molecular and Cellular Andrology, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Christian Huidobro
- Urology Service, Clinical Hospital, University of Chile, Santiago 8380453, Chile
| | - Hector R Contreras
- Laboratory of Molecular and Cellular Andrology, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Enrique A Castellon
- Laboratory of Molecular and Cellular Andrology, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
58
|
Bristow RG, Berlin A, Dal Pra A. An arranged marriage for precision medicine: hypoxia and genomic assays in localized prostate cancer radiotherapy. Br J Radiol 2014; 87:20130753. [PMID: 24588670 DOI: 10.1259/bjr.20130753] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer (CaP) is the most commonly diagnosed malignancy in males in the Western world with one in six males diagnosed in their lifetime. Current clinical prognostication groupings use pathologic Gleason score, pre-treatment prostatic-specific antigen and Union for International Cancer Control-TNM staging to place patients with localized CaP into low-, intermediate- and high-risk categories. These categories represent an increasing risk of biochemical failure and CaP-specific mortality rates, they also reflect the need for increasing treatment intensity and justification for increased side effects. In this article, we point out that 30-50% of patients will still fail image-guided radiotherapy or surgery despite the judicious use of clinical risk categories owing to interpatient heterogeneity in treatment response. To improve treatment individualization, better predictors of prognosis and radiotherapy treatment response are needed to triage patients to bespoke and intensified CaP treatment protocols. These should include the use of pre-treatment genomic tests based on DNA or RNA indices and/or assays that reflect cancer metabolism, such as hypoxia assays, to define patient-specific CaP progression and aggression. More importantly, it is argued that these novel prognostic assays could be even more useful if combined together to drive forward precision cancer medicine for localized CaP.
Collapse
Affiliation(s)
- R G Bristow
- Princess Margaret Cancer Center (University Health Network), Toronto, ON, Canada
| | | | | |
Collapse
|
59
|
Rafiei S, Komarova SV. Molecular signaling pathways mediating osteoclastogenesis induced by prostate cancer cells. BMC Cancer 2013; 13:605. [PMID: 24370273 PMCID: PMC3881018 DOI: 10.1186/1471-2407-13-605] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/16/2013] [Indexed: 11/10/2022] Open
Abstract
Background Advanced prostate cancer commonly metastasizes to bone leading to osteoblastic and osteolytic lesions. Although an osteolytic component governed by activation of bone resorbing osteoclasts is prominent in prostate cancer metastasis, the molecular mechanisms of prostate cancer-induced osteoclastogenesis are not well-understood. Methods We studied the effect of soluble mediators released from human prostate carcinoma cells on osteoclast formation from mouse bone marrow and RAW 264.7 monocytes. Results Soluble factors released from human prostate carcinoma cells significantly increased viability of naïve bone marrow monocytes, as well as osteoclastogenesis from precursors primed with receptor activator of nuclear factor κ-B ligand (RANKL). The prostate cancer-induced osteoclastogenesis was not mediated by RANKL as it was not inhibited by osteoprotegerin (OPG). However inhibition of TGFβ receptor I (TβRI), or macrophage-colony stimulating factor (MCSF) resulted in attenuation of prostate cancer-induced osteoclastogenesis. We characterized the signaling pathways induced in osteoclast precursors by soluble mediators released from human prostate carcinoma cells. Prostate cancer factors increased basal calcium levels and calcium fluctuations, induced nuclear localization of nuclear factor of activated t-cells (NFAT)c1, and activated prolonged phosphorylation of ERK1/2 in RANKL-primed osteoclast precursors. Inhibition of calcium signaling, NFATc1 activation, and ERK1/2 phosphorylation significantly reduced the ability of prostate cancer mediators to stimulate osteoclastogenesis. Conclusions This study reveals the molecular mechanisms underlying the direct osteoclastogenic effect of prostate cancer derived factors, which may be beneficial in developing novel osteoclast-targeting therapeutic approaches.
Collapse
Affiliation(s)
| | - Svetlana V Komarova
- Department of Anatomy and Cell Biology, Faculty of Medicine, 3640 University Street, Montreal, Quebec H3A 2B2, Canada.
| |
Collapse
|