51
|
Abstract
The discovery of the first microRNA (miRNA) over 20 years ago has ushered in a new era in molecular biology. There are now over 2000 miRNAs that have been discovered in humans and it is believed that they collectively regulate one third of the genes in the genome. miRNAs have been linked to many human diseases and are being pursued as clinical diagnostics and as therapeutic targets. This review presents an overview of the miRNA pathway, including biogenesis routes, biological roles, and clinical approaches.
Collapse
Affiliation(s)
- Scott M Hammond
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
52
|
Butterworth MB. MicroRNAs and the regulation of aldosterone signaling in the kidney. Am J Physiol Cell Physiol 2015; 308:C521-7. [PMID: 25673770 DOI: 10.1152/ajpcell.00026.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 01/22/2023]
Abstract
The role of small noncoding RNAs, termed microRNAs (miRs), in development and disease has been recognized for many years. The number of miRs and regulated targets that reinforce a role for miRs in human disease and disease progression is ever-increasing. However, less is known about the involvement of miRs in steady-state, nondisease homeostatic pathways. In the kidney, much of the regulated ion transport is under the control of hormonal signaling. Evidence is emerging that miRs are involved in the hormonal regulation of kidney function and, particularly, in ion transport. In this short review, the production and intra- and extracellular signaling of miRs and the involvement of miRs in kidney disease are discussed. The discussion also focuses on the role of these small biological molecules in the homeostatic control of ion transport in the kidney. MiR regulation of and by corticosteroid hormones, in particular the mineralocorticoid hormone aldosterone, is considered. While information about the role of aldosterone-regulated miRs in the kidney is limited, an increase in the research in this area will undoubtedly highlight the involvement of miRs as central mediators of hormonal signaling in normal physiology.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
53
|
Evolutional and functional analysis of four microRNAs derived from transposable elements. Genes Genomics 2015. [DOI: 10.1007/s13258-014-0255-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
54
|
Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122--a key factor and therapeutic target in liver disease. J Hepatol 2015; 62:448-57. [PMID: 25308172 DOI: 10.1016/j.jhep.2014.10.004] [Citation(s) in RCA: 483] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 02/06/2023]
Abstract
Being the largest internal organ of the human body with the unique ability of self-regeneration, the liver is involved in a wide variety of vital functions that require highly orchestrated and controlled biochemical processes. Increasing evidence suggests that microRNAs (miRNAs) are essential for the regulation of liver development, regeneration and metabolic functions. Hence, alterations in intrahepatic miRNA networks have been associated with liver disease including hepatitis, steatosis, cirrhosis and hepatocellular carcinoma (HCC). miR-122 is the most frequent miRNA in the adult liver, and a central player in liver biology and disease. Furthermore, miR-122 has been shown to be an essential host factor for hepatitis C virus (HCV) infection and an antiviral target, complementary to the standard of care using direct-acting antivirals or interferon-based treatment. This review summarizes our current understanding of the key role of miR-122 in liver physiology and disease, highlighting its role in HCC and viral hepatitis. We also discuss the perspectives of miRNA-based therapeutic approaches for viral hepatitis and liver disease.
Collapse
Affiliation(s)
- Simonetta Bandiera
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Sébastien Pfeffer
- Université de Strasbourg, Strasbourg, France; Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Mirjam B Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
55
|
Five children with deletions of 1p34.3 encompassing AGO1 and AGO3. Eur J Hum Genet 2014; 23:761-5. [PMID: 25271087 DOI: 10.1038/ejhg.2014.202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/14/2014] [Accepted: 08/20/2014] [Indexed: 01/06/2023] Open
Abstract
Small RNAs (miRNA, siRNA, and piRNA) regulate gene expression through targeted destruction or translational repression of specific messenger RNA in a fundamental biological process called RNA interference (RNAi). The Argonaute proteins, which derive from a highly conserved family of genes found in almost all eukaryotes, are critical mediators of this process. Four AGO genes are present in humans, three of which (AGO 1, 3, and 4) reside in a cluster on chromosome 1p35p34. The effects of germline AGO variants or dosage alterations in humans are not known, however, prior studies have implicated dysregulation of the RNAi mechanism in the pathogenesis of several neurodevelopmental disorders. We describe five patients with hypotonia, poor feeding, and developmental delay who were found to have microdeletions of chromosomal region 1p34.3 encompassing the AGO1 and AGO3 genes. We postulate that haploinsufficiency of AGO1 and AGO3 leading to impaired RNAi may be responsible for the neurocognitive deficits present in these patients. However, additional studies with rigorous phenotypic characterization of larger cohorts of affected individuals and systematic investigation of the underlying molecular defects will be necessary to confirm this.
Collapse
|
56
|
Abstract
MicroRNAs are 20-24-nucleotide-long noncoding RNAs that bind to the 3' UTR (untranslated region) of target mRNAs. Since their discovery, microRNAs have been gaining attention for their ability to contribute to gene expression regulation under various physiological conditions. Consequently, deregulated expression of microRNAs has been linked to different disease states. Here, a brief overview of the canonical and alternative microRNA biogenesis pathways and microRNA functions in biological systems is given based on recent developments. In addition, newly emerging regulatory mechanisms, such as alternative polyadenylation, in connection with microRNA-dependent gene expression regulation are discussed.
Collapse
|
57
|
Sun Z, Evans J, Bhagwate A, Middha S, Bockol M, Yan H, Kocher JP. CAP-miRSeq: a comprehensive analysis pipeline for microRNA sequencing data. BMC Genomics 2014; 15:423. [PMID: 24894665 PMCID: PMC4070549 DOI: 10.1186/1471-2164-15-423] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/27/2014] [Indexed: 01/21/2023] Open
Abstract
Background miRNAs play a key role in normal physiology and various diseases. miRNA profiling through next generation sequencing (miRNA-seq) has become the main platform for biological research and biomarker discovery. However, analyzing miRNA sequencing data is challenging as it needs significant amount of computational resources and bioinformatics expertise. Several web based analytical tools have been developed but they are limited to processing one or a pair of samples at time and are not suitable for a large scale study. Lack of flexibility and reliability of these web applications are also common issues. Results We developed a Comprehensive Analysis Pipeline for microRNA Sequencing data (CAP-miRSeq) that integrates read pre-processing, alignment, mature/precursor/novel miRNA detection and quantification, data visualization, variant detection in miRNA coding region, and more flexible differential expression analysis between experimental conditions. According to computational infrastructure, users can install the package locally or deploy it in Amazon Cloud to run samples sequentially or in parallel for a large number of samples for speedy analyses. In either case, summary and expression reports for all samples are generated for easier quality assessment and downstream analyses. Using well characterized data, we demonstrated the pipeline’s superior performances, flexibility, and practical use in research and biomarker discovery. Conclusions CAP-miRSeq is a powerful and flexible tool for users to process and analyze miRNA-seq data scalable from a few to hundreds of samples. The results are presented in the convenient way for investigators or analysts to conduct further investigation and discovery. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-423) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhifu Sun
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Jee D, Lai EC. Alteration of miRNA activity via context-specific modifications of Argonaute proteins. Trends Cell Biol 2014; 24:546-53. [PMID: 24865524 DOI: 10.1016/j.tcb.2014.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
miRNAs are enclosed within Argonaute (Ago) proteins, the downstream effectors of small RNA-mediated gene silencing. Because miRNAs mediate extensive networks of post-transcriptional control, cells have evolved multiple strategies to control their activity with precision. A growing theme of recent years is how post-translational modifications of Ago proteins, such as prolyl hydroxylation, phosphorylation, ubiquitination, and poly-ADP-ribosylation, alter miRNA activity at global or specific levels. In this review, we discuss recent advances in Ago modifications in mammalian cells and emphasize how such alterations modulate small RNA function to coordinate appropriate downstream cellular responses. These findings provide a framework to understand how Ago protein modifications are linked to reorganization of post-transcriptional regulatory networks, enabling dynamic responses to diverse external stimuli and changing environmental conditions.
Collapse
Affiliation(s)
- David Jee
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA; Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA.
| |
Collapse
|
59
|
Berkhout B, Liu YP. Towards improved shRNA and miRNA reagents as inhibitors of HIV1 replication. Future Microbiol 2014; 9:561-71. [DOI: 10.2217/fmb.14.5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT: miRNAs are the key players of the RNAi mechanism, which regulates the expression of a large number of mRNAs in human cells. shRNAs are man-made synthetic miRNA mimics that exploit similar intracellular RNA processing routes. Massive amounts of data derived from next-generation sequencing have revealed miRNA species that are derived from alternative biosynthesis pathways. Here, we review recent progress in our understanding of these noncanonical routes of miRNA and shRNA biosynthesis. We focus on ways to use these novel insights for the design of more potent and specific RNAi reagents for therapeutic applications, including the AgoshRNA design, which is processed differently than regular shRNAs. We will also discuss the development of a durable gene therapy against HIV1.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
- Current address: uniQure biopharma BV, Department of Research & Development, The Netherlands
| |
Collapse
|
60
|
Deep Sequencing Insights in Therapeutic shRNA Processing and siRNA Target Cleavage Precision. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e145. [PMID: 24496437 PMCID: PMC3951910 DOI: 10.1038/mtna.2013.73] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/29/2013] [Indexed: 01/17/2023]
Abstract
TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034–encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5′ RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).
Collapse
|
61
|
Yang JS, Smibert P, Westholm JO, Jee D, Maurin T, Lai EC. Intertwined pathways for Argonaute-mediated microRNA biogenesis in Drosophila. Nucleic Acids Res 2014; 42:1987-2002. [PMID: 24220090 PMCID: PMC3919586 DOI: 10.1093/nar/gkt1038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/02/2023] Open
Abstract
Although Dicer is essential for general microRNA (miRNA) biogenesis, vertebrate mir-451 is Dicer independent. Instead, its short pre-miRNA hairpin is 'sliced' by Ago2, then 3'-resected into mature miRNAs. Here, we show that Drosophila cells and animals generate functional small RNAs from mir-451-type precursors. However, their bulk maturation arrests as Ago-cleaved pre-miRNAs, which mostly associate with the RNAi effector AGO2. Routing of pre-mir-451 hairpins to the miRNA effector AGO1 was inhibited by Dicer-1 and its partner Loqs. Loss of these miRNA factors promoted association of pre-mir-451 with AGO1, which sliced them and permitted maturation into ∼ 23-26 nt products. The difference was due to the 3' modification of single-stranded species in AGO2 by Hen1 methyltransferase, whose depletion permitted 3' trimming of Ago-cleaved pre-miRNAs in AGO2. Surprisingly, Nibbler, a 3'-5' exoribonuclease that trims 'long' mature miRNAs in AGO1, antagonized miR-451 processing. We used an in vitro reconstitution assay to identify a soluble, EDTA-sensitive activity that resects sliced pre-miRNAs in AGO1 complexes. Finally, we use deep sequencing to show that depletion of dicer-1 increases the diversity of small RNAs in AGO1, including some candidate mir-451-like loci. Altogether, we document unexpected aspects of miRNA biogenesis and Ago sorting, and provide insights into maturation of Argonaute-cleaved miRNA substrates.
Collapse
Affiliation(s)
- Jr-Shiuan Yang
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA and Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA and Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Jakub O. Westholm
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA and Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - David Jee
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA and Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Thomas Maurin
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA and Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA and Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| |
Collapse
|
62
|
Affiliation(s)
- Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University
| | - Antonio Curcio
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University
- URT-CNR, Magna Graecia University
| |
Collapse
|
63
|
Burroughs AM, Ando Y, Aravind L. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:141-81. [PMID: 24311560 DOI: 10.1002/wrna.1210] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022]
Abstract
Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently known small RNA classes and place them in context of the reconstructed evolutionary history of the RNA interference (RNAi) protein machinery. This synthesis indicates that the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: (1) sense-antisense transcriptional products, (2) genome-encoded, imperfectly complementary hairpin sequences, and (3) larger noncoding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNAi. They were recruited alongside RNaseIII domains and RNA-dependent RNA polymerase (RdRP) domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleocytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs.
Collapse
Affiliation(s)
- Alexander Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
64
|
Zeng M, Kuzirian MS, Harper L, Paradis S, Nakayama T, Lau NC. Organic small hairpin RNAs (OshR): a do-it-yourself platform for transgene-based gene silencing. Methods 2013; 63:101-9. [PMID: 23707624 PMCID: PMC3966114 DOI: 10.1016/j.ymeth.2013.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 12/14/2022] Open
Abstract
The RNA interference (RNAi) pathway in animal cells can be harnessed to silence gene expression with artificial small interfering RNAs (siRNAs) or transgenes that express small hairpin RNAs (shRNAs). The transgene-expressing shRNA approach has been adapted into large-scale resources for genome-wide loss-of-function screens, whereas focused studies on a narrow set of genes can be achieved by using individual shRNA constructs from these resources. Although current shRNA repositories generally work, they might fail in certain situations and therefore necessitate other alternatives. We detail here a new highly-accessible and rational design of custom shRNAs that utilizes a refined backbone configuration termed the 'organic' shRNA (OshR) platform. The OshR platform is 'organic' because it conforms more naturally to the endogenous vertebrate miRNAs by maintaining specific bulges and incorporating strategic mismatches to insure the desired guide strand is produced while reducing the accumulation of passenger strands that might contribute to off-target effects. We also demonstrate that the reliability of the OshR platform for gene silencing is increased when sequences target the 3' UnTranslated Region (3'UTR) of a gene. We further compare the OshR platform with the current and emerging shRNA designs, and propose that the OshR platform is a novel approach that can allow investigators to generate custom and effective shRNAs for individual gene functional studies.
Collapse
Affiliation(s)
- Mei Zeng
- Department of Biology, Brandeis University
- Rosenstiel Basic Medical Science Research Center
| | - Marissa S. Kuzirian
- Department of Biology, Brandeis University
- National Center for Behavioral Genomic and Volen Center for Complex Systems
| | - Lamia Harper
- Department of Biology, Brandeis University
- National Center for Behavioral Genomic and Volen Center for Complex Systems
| | - Suzanne Paradis
- Department of Biology, Brandeis University
- National Center for Behavioral Genomic and Volen Center for Complex Systems
| | - Takuya Nakayama
- Department of Biology, University of Virginia, Charlottesville
| | - Nelson C. Lau
- Department of Biology, Brandeis University
- Rosenstiel Basic Medical Science Research Center
| |
Collapse
|
65
|
García-López J, Brieño-Enríquez MA, del Mazo J. MicroRNA biogenesis and variability. Biomol Concepts 2013; 4:367-80. [DOI: 10.1515/bmc-2013-0015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/20/2013] [Indexed: 12/21/2022] Open
Abstract
AbstractMicroRNAs (miRNAs) are cell-endogenous small noncoding RNAs that, through RNA interference, are involved in the posttranscriptional regulation of mRNAs. The biogenesis and function of miRNAs entail multiple elements with different alternative pathways. These confer a high versatility of regulation and a high variability to generate different miRNAs and hence possess a broad potential to regulate gene expression. Here we review the different mechanisms, both canonical and noncanonical, that generate miRNAs in animals. The ‘miRNome’ panorama enhances our knowledge regarding the fine regulation of gene expression and provides new insights concerning normal, as opposed to pathological, cell differentiation and development.
Collapse
Affiliation(s)
- Jesús García-López
- 1Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Miguel A. Brieño-Enríquez
- 1Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Jesús del Mazo
- 1Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| |
Collapse
|
66
|
Smibert P, Yang JS, Azzam G, Liu JL, Lai EC. Homeostatic control of Argonaute stability by microRNA availability. Nat Struct Mol Biol 2013; 20:789-95. [PMID: 23708604 PMCID: PMC3702675 DOI: 10.1038/nsmb.2606] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/10/2013] [Indexed: 12/18/2022]
Abstract
Homeostatic mechanisms regulate the abundance of several components in small-RNA pathways. We used Drosophila and mammalian systems to demonstrate a conserved homeostatic system in which the status of miRNA biogenesis controls Argonaute protein stability. Clonal analyses of multiple mutants of core Drosophila miRNA factors revealed that stability of the miRNA effector AGO1 is dependent on miRNA biogenesis. Reciprocally, ectopic transcription of miRNAs within in vivo clones induced accumulation of AGO1, as did genetic interference with the ubiquitin-proteasome system. In mouse cells, we found that the stability of Ago2 declined in Dicer-knockout cells and was rescued by proteasome blockade or introduction of either Dicer plasmid or Dicer-independent miRNA constructs. Notably, Dicer-dependent miRNA constructs generated pre-miRNAs that bound Ago2 but did not rescue Ago2 stability. We conclude that Argonaute levels are finely tuned by cellular availability of mature miRNAs and the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York, USA
| | | | | | | | | |
Collapse
|
67
|
Pan X, Wang R, Wang ZX. The potential role of miR-451 in cancer diagnosis, prognosis, and therapy. Mol Cancer Ther 2013; 12:1153-62. [PMID: 23814177 DOI: 10.1158/1535-7163.mct-12-0802] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miRNA) are small noncoding RNAs that converge to maintain an intrinsic balance of various processes, including cell proliferation, differentiation, and apoptosis. Recent research efforts have been devoted to translating these basic discoveries into applications that could improve the early diagnosis and therapeutic outcome of patients with cancer. Early studies have shown that miRNA-451 (miR-451) is widely dysregulated in human cancers and plays a critical role in tumorigenesis and tumor progression. In this review, we summarize the potential use of miR-451 for cancer diagnosis, prognosis, and treatment. In addition, we discuss the possible mechanisms of miR-451 dysregulation and future challenges in development of miR-451 as a noninvasive biomarker and a potential therapeutic target in human cancers.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital of Jiangsu Province, Cancer Institution of Jiangsu Province, Nanjing 210009, Jiangsu, PR China.
| | | | | |
Collapse
|
68
|
Burroughs AM, Iyer LM, Aravind L. Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes. Biol Direct 2013; 8:13. [PMID: 23758928 PMCID: PMC3702460 DOI: 10.1186/1745-6150-8-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/05/2013] [Indexed: 01/12/2023] Open
Abstract
Background The PIWI module, found in the PIWI/AGO superfamily of proteins, is a critical component of several cellular pathways including germline maintenance, chromatin organization, regulation of splicing, RNA interference, and virus suppression. It binds a guide strand which helps it target complementary nucleic strands. Results Here we report the discovery of two divergent, novel families of PIWI modules, the first such to be described since the initial discovery of the PIWI/AGO superfamily over a decade ago. Both families display conservation patterns consistent with the binding of oligonucleotide guide strands. The first family is bacterial in distribution and is typically encoded by a distinctive three-gene operon alongside genes for a restriction endonuclease fold enzyme and a helicase of the DinG family. The second family is found only in eukaryotes. It is the core conserved module of the Med13 protein, a subunit of the CDK8 subcomplex of the transcription regulatory Mediator complex. Conclusions Based on the presence of the DinG family helicase, which specifically acts on R-loops, we infer that the first family of PIWI modules is part of a novel RNA-dependent restriction system which could target invasive DNA from phages, plasmids or conjugative transposons. It is predicted to facilitate restriction of actively transcribed invading DNA by utilizing RNA guides. The PIWI family found in the eukaryotic Med13 proteins throws new light on the regulatory switch through which the CDK8 subcomplex modulates transcription at Mediator-bound promoters of highly transcribed genes. We propose that this involves recognition of small RNAs by the PIWI module in Med13 resulting in a conformational switch that propagates through the Mediator complex. Reviewers This article was reviewed by Sandor Pongor, Frank Eisenhaber and Balaji Santhanam.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
69
|
Ladewig E, Okamura K, Flynt AS, Westholm JO, Lai EC. Discovery of hundreds of mirtrons in mouse and human small RNA data. Genome Res 2013; 22:1634-45. [PMID: 22955976 PMCID: PMC3431481 DOI: 10.1101/gr.133553.111] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atypical miRNA substrates do not fit criteria often used to annotate canonical miRNAs, and can escape the notice of miRNA genefinders. Recent analyses expanded the catalogs of invertebrate splicing-derived miRNAs (“mirtrons”), but only a few tens of mammalian mirtrons have been recognized to date. We performed meta-analysis of 737 mouse and human small RNA data sets comprising 2.83 billion raw reads. Using strict and conservative criteria, we provide confident annotation for 237 mouse and 240 human splicing-derived miRNAs, the vast majority of which are novel genes. These comprise three classes of splicing-derived miRNAs in mammals: conventional mirtrons, 5′-tailed mirtrons, and 3′-tailed mirtrons. In addition, we segregated several hundred additional human and mouse loci with candidate (and often compelling) evidence. Most of these loci arose relatively recently in their respective lineages. Nevertheless, some members in each of the three mirtron classes are conserved, indicating their incorporation into beneficial regulatory networks. We also provide the first Northern validation for mammalian mirtrons, and demonstrate Dicer-dependent association of mature miRNAs from all three classes of mirtrons with Ago2. The recognition of hundreds of mammalian mirtrons provides a new foundation for understanding the scope and evolutionary dynamics of Dicer substrates in mammals.
Collapse
Affiliation(s)
- Erik Ladewig
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
70
|
Fonsato V, Collino F, Herrera MB, Cavallari C, Deregibus MC, Cisterna B, Bruno S, Romagnoli R, Salizzoni M, Tetta C, Camussi G. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells 2013; 30:1985-98. [PMID: 22736596 PMCID: PMC3468738 DOI: 10.1002/stem.1161] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microvesicles (MVs) play a pivotal role in cell-to-cell communication. Recent studies demonstrated that MVs may transfer genetic information between cells. Here, we show that MVs derived from human adult liver stem cells (HLSC) may reprogram in vitro HepG2 hepatoma and primary hepatocellular carcinoma cells by inhibiting their growth and survival. In vivo intratumor administration of MVs induced regression of ectopic tumors developed in SCID mice. We suggest that the mechanism of action is related to the delivery of microRNAs (miRNAs) from HLSC-derived MVs (MV-HLSC) to tumor cells on the basis of the following evidence: (a) the rapid, CD29-mediated internalization of MV-HLSC in HepG2 and the inhibition of tumor cell growth after MV uptake; (b) the transfer by MV-HLSC of miRNAs with potential antitumor activity that was downregulated in HepG2 cells with respect to normal hepatocytes; (c) the abrogation of the MV-HLSC antitumor effect after MV pretreatment with RNase or generation of MVs depleted of miRNAs; (d) the relevance of selected miRNAs was proven by transfecting HepG2 with miRNA mimics. The antitumor effect of MV-HLSC was also observed in tumors other than liver such as lymphoblastoma and glioblastoma. These results suggest that the delivery of selected miRNAs by MVs derived from stem cells may inhibit tumor growth and stimulate apoptosis. Stem Cells2012;30:1985–1998
Collapse
Affiliation(s)
- Valentina Fonsato
- Department of Internal Medicine, Research Center for Experimental Medicine (CeRMS) and Center of Molecular Biotechnology, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Luo GZ, Hafner M, Shi Z, Brown M, Feng GH, Tuschl T, Wang XJ, Li X. Genome-wide annotation and analysis of zebra finch microRNA repertoire reveal sex-biased expression. BMC Genomics 2012; 13:727. [PMID: 23268654 PMCID: PMC3585881 DOI: 10.1186/1471-2164-13-727] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally in a wide range of biological processes. The zebra finch (Taeniopygia guttata), an oscine songbird with characteristic learned vocal behavior, provides biologists a unique model system for studying vocal behavior, sexually dimorphic brain development and functions, and comparative genomics. RESULTS We deep sequenced small RNA libraries made from the brain, heart, liver, and muscle tissues of adult male and female zebra finches. By mapping the sequence reads to the zebra finch genome and to known miRNAs in miRBase, we annotated a total of 193 miRNAs. Among them, 29 (15%) are avian specific, including three novel zebra finch specific miRNAs. Many of the miRNAs exhibit sequence heterogeneity including length variations, untemplated terminal nucleotide additions, and internal substitution events occurring at the uridine nucleotide within a GGU motif. We also identified seven Z chromosome-encoded miRNAs. Among them, miR-2954, an avian specific miRNA, is expressed at significantly higher levels in males than in females in all tissues examined. Target prediction analysis reveals that miR-2954, but not other Z-linked miRNAs, preferentially targets Z chromosome-encoded genes, including several genes known to be expressed in a sexually dimorphic manner in the zebra finch brain. CONCLUSIONS Our genome-wide systematic analysis of mature sequences, genomic locations, evolutionary sequence conservation, and tissue expression profiles of the zebra finch miRNA repertoire provides a valuable resource to the research community. Our analysis also reveals a miRNA-mediated mechanism that potentially regulates sex-biased gene expression in avian species.
Collapse
Affiliation(s)
- Guan-Zheng Luo
- State Kay Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Dysregulation of gene expression can cause complex disease phenotypes. MicroRNAs (miRNAs) are well known to fine-tune cellular gene expression to control immune cell development and regulate adaptive and innate immune responses. Discoveries over the past decade have indicated that aberrant expression of miRNAs is associated with the pathogenesis of multiple immunological diseases, including systemic lupus erythematosus (SLE). Indeed, profiling miRNA expression in blood cells, body fluid and target tissues taken from patients with SLE has revealed unique miRNA signatures when compared with healthy individuals or those with other diseases. Moreover, dysregulation of these miRNAs has also been found to be associated with disease activity and major organ involvement. In our opinion, therefore, miRNAs have the potential to act as biomarkers for the diagnosis and assessment of patients with SLE. This Review provides an overview of the novel cellular and molecular mechanisms that seem to underlie the roles of miRNAs in SLE disease processes, as well as the future therapeutic potential of targeting miRNAs in the management of patients with SLE.
Collapse
|
73
|
Ahn K, Gim JA, Ha HS, Han K, Kim HS. The novel MER transposon-derived miRNAs in human genome. Gene 2012; 512:422-8. [PMID: 22926102 DOI: 10.1016/j.gene.2012.08.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small RNA molecules (~20-30 nucleotides) that generally act in gene silencing and translational repression through the RNA interference pathway. They generally originate from intergenic genomic regions, but some are found in genomic regions that have been characterized such as introns, exons, and transposable elements (TE). To identify the miRNAs that are derived from palindromic MERs, we analyzed MER paralogs in human genome. The structures of the palindromic MERs were similar to the hairpin structure of miRNA in humans. Three miRNAs derived from MER96 located on chromosome 3, and MER91C paralogs located on chromosome 8 and chromosome 17 were identified in HeLa, HCT116, and HEK293 cell lines. The interactions between these MER-derived miRNAs and AGO1, AGO2, and AGO3 proteins were validated by immunoprecipitation assays. The data suggest that miRNAs derived from transposable elements could widely affect various target genes in the human genome.
Collapse
Affiliation(s)
- Kung Ahn
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | |
Collapse
|
74
|
Abstract
MicroRNAs (miRNAs) belong to an abundant class of highly conserved small (22nt) non-coding RNAs. MiRNA profiling studies indicate that their expression is highly cell type-dependent. DICER1 is an essential RNase III endoribonuclease for miRNA processing. Hematopoietic cell type- and developmental stage-specific Dicer1 deletion models show that miRNAs are essential regulators of cellular survival, differentiation and function. For instance, miRNA deficiency in hematopoietic stem cells and progenitors of different origins results in decreased cell survival, dramatic developmental aberrations or dysfunctions in mice. We recently found that homozygous Dicer1 deletion in myeloid-committed progenitors results in an aberrant expression of stem cell genes and induces a regained self-renewal capacity. Moreover, Dicer1 deletion causes a block in macrophage development and myeloid dysplasia, a cellular condition that may be considered as a preleukemic state. However, Dicer1-null cells do not develop leukemia in mice, indicating that depletion of miRNAs is not enough for tumorigenesis. Surprisingly, we found that heterozygous Dicer1 deletion in myeloid-committed progenitors, but not Dicer1 knockout, collaborates with p53 deletion in leukemic progression and results in various types of leukemia. Our data indicate that Dicer1 is a haploinsufficient tumorsuppressor in hematopoietic neoplasms, which is consistent with the observed downregulation of miRNA expression in human leukemia samples. Here, we review the various hematopoietic specific Dicer1 deletion mouse models and the phenotypes observed within the different hematopoietic lineages and cell developmental stages. Finally, we discuss the role for DICER1 in mouse and human malignant hematopoiesis.
Collapse
Affiliation(s)
- Mir Farshid Alemdehy
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
75
|
Guduric-Fuchs J, O'Connor A, Camp B, O'Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 2012; 13:357. [PMID: 22849433 PMCID: PMC3532190 DOI: 10.1186/1471-2164-13-357] [Citation(s) in RCA: 434] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/16/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of small RNA molecules that regulate expression of specific mRNA targets. They can be released from cells, often encapsulated within extracellular vesicles (EVs), and therefore have the potential to mediate intercellular communication. It has been suggested that certain miRNAs may be selectively exported, although the mechanism has yet to be identified. Manipulation of the miRNA content of EVs will be important for future therapeutic applications. We therefore wished to assess which endogenous miRNAs are enriched in EVs and how effectively an overexpressed miRNA would be exported. RESULTS Small RNA libraries from HEK293T cells and vesicles before or after transfection with a vector for miR-146a overexpression were analysed by deep sequencing. A subset of miRNAs was found to be enriched in EVs; pathway analysis of their predicted target genes suggests a potential role in regulation of endocytosis. RT-qPCR in additional cell types and analysis of publicly available data revealed that many of these miRNAs tend to be widely preferentially exported. Whilst overexpressed miR-146a was highly enriched both in transfected cells and their EVs, the cellular:EV ratios of endogenous miRNAs were not grossly altered. MiR-451 was consistently the most highly exported miRNA in many different cell types. Intriguingly, Argonaute2 (Ago2) is required for miR-451 maturation and knock out of Ago2 has been shown to decrease expression of other preferentially exported miRNAs (eg miR-150 and miR-142-3p). CONCLUSION The global expression data provided by deep sequencing confirms that specific miRNAs are enriched in EVs released by HEK293T cells. Observation of similar patterns in a range of cell types suggests that a common mechanism for selective miRNA export may exist.
Collapse
Affiliation(s)
- Jasenka Guduric-Fuchs
- Centre for Vision and Vascular Science, Queen's University Belfast, Northern Ireland, UK
| | | | | | | | | | | |
Collapse
|
76
|
The physiological impact of microRNA gene regulation in the retina. Cell Mol Life Sci 2012; 69:2739-50. [PMID: 22460583 DOI: 10.1007/s00018-012-0976-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/22/2012] [Accepted: 03/15/2012] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are small, stable RNA molecules that post-transcriptionally regulate gene expression in plants and animals by base pairing to partially complementary sequences on target mRNAs to inhibit protein synthesis. More than 250 miRNAs are reportedly expressed in the retina, and miRNA gene regulation has been shown to affect retinal development, function, and disease. Here we highlight recent advances in understanding the functional roles of vertebrate retinal miRNAs. Details are emerging about the physiological impact of specific miRNAs in the developing and mature retina, and we discuss a group of emerging technologies for studying miRNAs, which can be employed to yield a deeper understanding of retinal miRNA gene regulation.
Collapse
|
77
|
Tan GS, Chiu CH, Garchow BG, Metzler D, Diamond SL, Kiriakidou M. Small molecule inhibition of RISC loading. ACS Chem Biol 2012; 7:403-10. [PMID: 22026461 PMCID: PMC3282558 DOI: 10.1021/cb200253h] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Argonaute proteins are the core components of the microRNP/RISC.
The biogenesis and function of microRNAs and endo- and exo- siRNAs
are regulated by Ago2, an Argonaute protein with RNA binding and nuclease
activities. Currently, there are no in vitro assays
suitable for large-scale screening of microRNP/RISC loading modulators.
We describe a novel in vitro assay that is based
on fluorescence polarization of TAMRA-labeled RNAs loaded to human
Ago2. Using this assay, we identified potent small-molecule inhibitors
of RISC loading, including aurintricarboxylic acid (IC50 = 0.47 μM), suramin (IC50 = 0.69 μM), and
oxidopamine HCL (IC50 = 1.61 μM). Small molecules
identified by this biochemical screening assay also inhibited siRNA
loading to endogenous Ago2 in cultured cells.
Collapse
Affiliation(s)
- Grace S. Tan
- Department
of Medicine and ‡Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| | - Chun-Hao Chiu
- Department
of Medicine and ‡Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| | - Barry G. Garchow
- Department
of Medicine and ‡Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| | - David Metzler
- Department
of Medicine and ‡Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| | - Scott L. Diamond
- Department
of Medicine and ‡Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| | - Marianthi Kiriakidou
- Department
of Medicine and ‡Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| |
Collapse
|
78
|
Havens MA, Reich AA, Duelli DM, Hastings ML. Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res 2012; 40:4626-40. [PMID: 22270084 PMCID: PMC3378869 DOI: 10.1093/nar/gks026] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Canonical microRNA biogenesis requires the Microprocessor components, Drosha and DGCR8, to generate precursor-miRNA, and Dicer to form mature miRNA. The Microprocessor is not required for processing of some miRNAs, including mirtrons, in which spliceosome-excised introns are direct Dicer substrates. In this study, we examine the processing of putative human mirtrons and demonstrate that although some are splicing-dependent, as expected, the predicted mirtrons, miR-1225 and miR-1228, are produced in the absence of splicing. Remarkably, knockout cell lines and knockdown experiments demonstrated that biogenesis of these splicing-independent mirtron-like miRNAs, termed 'simtrons', does not require the canonical miRNA biogenesis components, DGCR8, Dicer, Exportin-5 or Argonaute 2. However, simtron biogenesis was reduced by expression of a dominant negative form of Drosha. Simtrons are bound by Drosha and processed in vitro in a Drosha-dependent manner. Both simtrons and mirtrons function in silencing of target transcripts and are found in the RISC complex as demonstrated by their interaction with Argonaute proteins. These findings reveal a non-canonical miRNA biogenesis pathway that can produce functional regulatory RNAs.
Collapse
Affiliation(s)
- Mallory A Havens
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | | | | | |
Collapse
|
79
|
Wu D, Raafat A, Pak E, Clemens S, Murashov AK. Dicer-microRNA pathway is critical for peripheral nerve regeneration and functional recovery in vivo and regenerative axonogenesis in vitro. Exp Neurol 2011; 233:555-65. [PMID: 22178326 DOI: 10.1016/j.expneurol.2011.11.041] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/18/2011] [Accepted: 11/25/2011] [Indexed: 01/29/2023]
Abstract
Both central and peripheral axons contain pivotal microRNA (miRNA) proteins. While recent observations demonstrated that miRNA biosynthetic machinery responds to peripheral nerve lesion in an injury-regulated pattern, the physiological significance of this phenomenon remains to be elucidated. In the current paper we hypothesized that deletion of Dicer would disrupt production of Dicer-dependent miRNAs and would negatively impact regenerative axon growth. Taking advantage of tamoxifen-inducible CAG-CreERt:Dicer(fl/fl) knockout (Dicer KO), we investigated the results of Dicer deletion on sciatic nerve regeneration in vivo and regenerative axon growth in vitro. Here we show that the sciatic functional index, an indicator of functional recovery, was significantly lower in Dicer KO mice in comparison to wild-type animals. Restoration of mechanical sensitivity recorded in the von Frey test was also markedly impaired in Dicer mutants. Further, Dicer deletion impeded the recovery of nerve conduction velocity and amplitude of evoked compound action potentials in vitro. Histologically, both total number of regenerating nerve fibers and mean axonal area were notably smaller in the Dicer KO mice. In addition, Dicer-deficient neurons failed to regenerate axons in dissociated dorsal root ganglia (DRG) cultures. Taken together, our results demonstrate that knockout of Dicer clearly impedes regenerative axon growth as well as anatomical, physiological and functional recovery. Our data suggest that the intact Dicer-dependent miRNA pathway is critical for the successful peripheral nerve regeneration after injury.
Collapse
Affiliation(s)
- Di Wu
- Department of Physiology, East Carolina University, Greenville, NC 27834, USA
| | | | | | | | | |
Collapse
|
80
|
Nunes CC, Sailsbery JK, Dean RA. Characterization and application of small RNAs and RNA silencing mechanisms in fungi. FUNGAL BIOL REV 2011. [DOI: 10.1016/j.fbr.2011.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
81
|
Okamura K. Diversity of animal small RNA pathways and their biological utility. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:351-68. [PMID: 22086843 DOI: 10.1002/wrna.113] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Higher eukaryotes employ extensive post-transcriptional gene regulation to accomplish fine control of gene expression. The microRNA (miRNA) family plays important roles in the post-transcriptional gene regulation of broad networks of target mRNA expression. Most miRNAs are generated by a conserved mechanism involving two RNase III enzymes Drosha and Dicer. However, work from the past few years has uncovered diverse noncanonical miRNA pathways, which exploit a variety of other RNA processing enzymes. In addition, the discovery of another abundant small RNA family, endogenous short interfering RNAs (endo-siRNAs), has also broadened the catalogs of short regulatory RNAs. This review highlights recent studies that revealed novel small RNA biogenesis pathways, and discusses their relevance to gene regulatory networks.
Collapse
Affiliation(s)
- Katsutomo Okamura
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY, USA.
| |
Collapse
|
82
|
Ni MJ, Hu ZH, Liu Q, Liu MF, Lu MH, Zhang JS, Zhang L, Zhang YL. Identification and characterization of a novel non-coding RNA involved in sperm maturation. PLoS One 2011; 6:e26053. [PMID: 22022505 PMCID: PMC3192136 DOI: 10.1371/journal.pone.0026053] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 09/16/2011] [Indexed: 01/06/2023] Open
Abstract
A long and ever-expanding roster of small (∼20–30 nucleotides) RNAs has emerged during the last decade, and most can be subsumed under the three main headings of microRNAs(miRNAs), Piwi-interacting RNAs(piRNAs), and short interferingRNAs(siRNAs). Among the three categories, miRNAs is the most quickly expanded group. The most recent number of identified miRNAs is 16,772 (Sanger miRbase, April 2011). However, there are insufficient publications on their primary forms, and no tissue-specific small RNAs precursors have been reported in the epididymis. Here, we report the identification in rats of an epididymis-specific, chimeric, noncoding RNA that is spliced from two different chromosomes (chromosomes 5 and 19), which we named HongrES2. HongrES2 is a 1.6 kb mRNA-like precursor that gives rise to a new microRNA-like small RNA (mil-HongrES2) in rat epididymis. The generation of mil-HongrES2 is stimulated during epididymitis. An epididymis-specific carboxylesterase named CES7 had 100% cDNA sequence homology at the 3′end with HongrES2 and its protein product could be downregulated by HongrES2 via mil-HongrES2. This was confirmed in vivo by initiating mil-HongrES2 over-expression in rats and observing an effect on sperm capacitation.
Collapse
Affiliation(s)
- Min-Jie Ni
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Shanghai, China
| | - Zhi-Hong Hu
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Shanghai, China
| | - Qiang Liu
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Shanghai, China
| | - Mo-Fang Liu
- Core Facility for Non-Coding RNA, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Min-hua Lu
- Core Facility for Non-Coding RNA, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Jin-Song Zhang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Shanghai, China
| | - Li Zhang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Shanghai, China
| | - Yong-Lian Zhang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Shanghai, China
- Shanghai Institute of Planned Parenthood Research, Shanghai, China
- * E-mail:
| |
Collapse
|
83
|
RNA interference in protozoan parasites: achievements and challenges. EUKARYOTIC CELL 2011; 10:1156-63. [PMID: 21764910 DOI: 10.1128/ec.05114-11] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protozoan parasites that profoundly affect mankind represent an exceptionally diverse group of organisms, including Plasmodium, Toxoplasma, Entamoeba, Giardia, trypanosomes, and Leishmania. Despite the overwhelming impact of these parasites, there remain many aspects to be discovered about mechanisms of pathogenesis and how these organisms survive in the host. Combined with the ever-increasing availability of sequenced genomes, RNA interference (RNAi), discovered a mere 13 years ago, has enormously facilitated the analysis of gene function, especially in organisms that are not amenable to classical genetic approaches. Here we review the current status of RNAi in studies of parasitic protozoa, with special emphasis on its use as a postgenomic tool.
Collapse
|
84
|
Abstract
RNAi has revolutionized reverse genetics; however, RNAi is not necessarily ubiquitous or constitutive. Lund and colleagues (pp. 1121-1131) show that microRNA (miRNA) effector Argonautes (Agos) are limiting and easily saturated during early Xenopus embryogenesis. Moreover, this stage is devoid of slicing capacity. Supplementation of Ago proteins rescued endogenous miRNA activity in the presence of exogenous siRNAs, and, excitingly, ectopic Ago2 could now support RNAi in Xenopus. These observations may potentially facilitate RNAi in other recalcitrant model organisms.
Collapse
Affiliation(s)
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
85
|
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of numerous biological processes by modulating gene expression at the post-transcriptional level. It has become increasingly clear that almost all aspects of skeletal muscle development involve regulation by miRNAs. Many of these miRNAs have distinct expression profiles in skeletal muscles, under the regulation by the myogenic program. In the last few years the field has seen a rapid expansion of our knowledge of myogenic miRNAs that target a wide range of muscle genes to coordinately control the myogenic process. In this review we provide an up-to-date list of reported myogenic miRNAs and survey their expression patterns, regulation of biogenesis, and gene targets in skeletal muscles. Emerging themes of miRNA regulation in the context of skeletal myogenesis will also be discussed.
Collapse
Affiliation(s)
- Yejing Ge
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | |
Collapse
|
86
|
|
87
|
When Cellular Networks Run Out of Control. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 102:165-242. [DOI: 10.1016/b978-0-12-415795-8.00006-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
88
|
Berezikov E, Robine N, Samsonova A, Westholm JO, Naqvi A, Hung JH, Okamura K, Dai Q, Bortolamiol-Becet D, Martin R, Zhao Y, Zamore PD, Hannon GJ, Marra MA, Weng Z, Perrimon N, Lai EC. Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res 2010; 21:203-15. [PMID: 21177969 DOI: 10.1101/gr.116657.110] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since the initial annotation of miRNAs from cloned short RNAs by the Ambros, Tuschl, and Bartel groups in 2001, more than a hundred studies have sought to identify additional miRNAs in various species. We report here a meta-analysis of short RNA data from Drosophila melanogaster, aggregating published libraries with 76 data sets that we generated for the modENCODE project. In total, we began with more than 1 billion raw reads from 187 libraries comprising diverse developmental stages, specific tissue- and cell-types, mutant conditions, and/or Argonaute immunoprecipitations. We elucidated several features of known miRNA loci, including multiple phased byproducts of cropping and dicing, abundant alternative 5' termini of certain miRNAs, frequent 3' untemplated additions, and potential editing events. We also identified 49 novel genomic locations of miRNA production, and 61 additional candidate loci with limited evidence for miRNA biogenesis. Although these loci broaden the Drosophila miRNA catalog, this work supports the notion that a restricted set of cellular transcripts is competent to be specifically processed by the Drosha/Dicer-1 pathway. Unexpectedly, we detected miRNA production from coding and untranslated regions of mRNAs and found the phenomenon of miRNA production from the antisense strand of known loci to be common. Altogether, this study lays a comprehensive foundation for the study of miRNA diversity and evolution in a complex animal model.
Collapse
Affiliation(s)
- Eugene Berezikov
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|