51
|
Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27297. [PMID: 24701370 PMCID: PMC3961485 DOI: 10.4161/onci.27297] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 12/16/2022] Open
Abstract
Immunostimulatory monoclonal antibodies (mAbs) exert antineoplastic effects by eliciting a novel or reinstating a pre-existing antitumor immune response. Most often, immunostimulatory mAbs activate T lymphocytes or natural killer (NK) cells by inhibiting immunosuppressive receptors, such as cytotoxic T lymphocyte-associated protein 4 (CTLA4) or programmed cell death 1 (PDCD1, best known as PD-1), or by engaging co-stimulatory receptors, like CD40, tumor necrosis factor receptor superfamily, member 4 (TNFRSF4, best known as OX40) or TNFRSF18 (best known as GITR). The CTLA4-targeting mAb ipilimumab has been approved by the US Food and Drug Administration for use in patients with unresectable or metastatic melanoma in 2011. The therapeutic profile of ipilimumab other CTLA4-blocking mAbs, such as tremelimumab, is currently being assessed in subjects affected by a large panel of solid neoplasms. In the last few years, promising clinical results have also been obtained with nivolumab, a PD-1-targeting mAb formerly known as BMS-936558. Accordingly, the safety and efficacy of nivolumab and other PD-1-blocking molecules are being actively investigated. Finally, various clinical trials are underway to test the therapeutic potential of OX40- and GITR-activating mAbs. Here, we summarize recent findings on the therapeutic profile of immunostimulatory mAbs and discuss clinical trials that have been launched in the last 14 months to assess the therapeutic profile of these immunotherapeutic agents.
Collapse
Affiliation(s)
- Fernando Aranda
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | - Erika Vacchelli
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jerome Galon
- Université Paris Descartes/Paris V ; Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 15, Centre de Recherche des Cordeliers; Paris, France
| | - Wolf Hervé Fridman
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V ; Sorbonne Paris Cité; Paris, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Université Paris Descartes/Paris V ; Sorbonne Paris Cité; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|
52
|
Abstract
Antibody-based immunotherapies are important therapy options in human oncology. Although human humoral specific immunity is constituted of five different immunoglobulin classes, currently only IgG-based immunotherapies have proceeded to clinical application. This review, however, discusses the benefits and difficulties of IgE-based immunotherapy of cancer, with special emphasis on how to translate promising preclinical results into clinical studies. Pursuing the “Comparative Oncology” approach, novel drug candidates are investigated in clinical trials with veterinary cancer patients, most often dogs. By this strategy drug development could be speeded up, animal experiments could be reduced and novel therapy options could be introduced benefitting humans as well as man’s best friend.
Collapse
Affiliation(s)
- Josef Singer
- Comparative Medicine, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, and University Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Comparative Medicine, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, and University Vienna, Vienna, Austria ; Comparative Immunology and Oncology, Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
53
|
Aranda F, Vacchelli E, Eggermont A, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Peptide vaccines in cancer therapy. Oncoimmunology 2013; 2:e26621. [PMID: 24498550 PMCID: PMC3902120 DOI: 10.4161/onci.26621] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 02/08/2023] Open
Abstract
Throughout the past 3 decades, along with the recognition that the immune system not only influences oncogenesis and tumor progression, but also determines how established neoplastic lesions respond therapy, renovated enthusiasm has gathered around the possibility of using vaccines as anticancer agents. Such an enthusiasm quickly tempered when it became clear that anticancer vaccines would have to be devised as therapeutic, rather than prophylactic, measures, and that malignant cells often fail to elicit (or actively suppress) innate and adaptive immune responses. Nonetheless, accumulating evidence indicates that a variety of anticancer vaccines, including cell-based, DNA-based, and purified component-based preparations, are capable of circumventing the poorly immunogenic and highly immunosuppressive nature of most tumors and elicit (at least under some circumstances) therapeutically relevant immune responses. Great efforts are currently being devoted to the identification of strategies that may provide anticancer vaccines with the capacity of breaking immunological tolerance and eliciting tumor-associated antigen-specific immunity in a majority of patients. In this sense, promising results have been obtained by combining anticancer vaccines with a relatively varied panels of adjuvants, including multiple immunostimulatory cytokines, Toll-like receptor agonists as well as inhibitors of immune checkpoints. One year ago, in the December issue of OncoImmunology, we discussed the biological mechanisms that underlie the antineoplastic effects of peptide-based vaccines and presented an abundant literature demonstrating the prominent clinical potential of such an approach. Here, we review the latest developments in this exciting area of research, focusing on high-profile studies that have been published during the last 13 mo and clinical trials launched in the same period to evaluate purified peptides or full-length proteins as therapeutic anticancer agents.
Collapse
Affiliation(s)
- Fernando Aranda
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; Equipe 11 labellisée par la Lique Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | - Erika Vacchelli
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; Equipe 11 labellisée par la Lique Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | | | - Jerome Galon
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 15, Centre de Recherche des Cordeliers; Paris, France
| | - Catherine Sautès-Fridman
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Eric Tartour
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France ; INSERM, U970; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Lique Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Lique Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
54
|
Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Anticancer radioimmunotherapy. Oncoimmunology 2013; 2:e25595. [PMID: 24319634 PMCID: PMC3850274 DOI: 10.4161/onci.25595] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy has extensively been employed as a curative or palliative intervention against cancer throughout the last century, with a varying degree of success. For a long time, the antineoplastic activity of X- and γ-rays was entirely ascribed to their capacity of damaging macromolecules, in particular DNA, and hence triggering the (apoptotic) demise of malignant cells. However, accumulating evidence indicates that (at least part of) the clinical potential of radiotherapy stems from cancer cell-extrinsic mechanisms, including the normalization of tumor vasculature as well as short- and long-range bystander effects. Local bystander effects involve either the direct transmission of lethal signals between cells connected by gap junctions or the production of diffusible cytotoxic mediators, including reactive oxygen species, nitric oxide and cytokines. Conversely, long-range bystander effects, also known as out-of-field or abscopal effects, presumably reflect the elicitation of tumor-specific adaptive immune responses. Ionizing rays have indeed been shown to promote the immunogenic demise of malignant cells, a process that relies on the spatiotemporally defined emanation of specific damage-associated molecular patterns (DAMPs). Thus, irradiation reportedly improves the clinical efficacy of other treatment modalities such as surgery (both in neo-adjuvant and adjuvant settings) or chemotherapy. Moreover, at least under some circumstances, radiotherapy may potentiate anticancer immune responses as elicited by various immunotherapeutic agents, including (but presumably not limited to) immunomodulatory monoclonal antibodies, cancer-specific vaccines, dendritic cell-based interventions and Toll-like receptor agonists. Here, we review the rationale of using radiotherapy, alone or combined with immunomodulatory agents, as a means to elicit or boost anticancer immune responses, and present recent clinical trials investigating the therapeutic potential of this approach in cancer patients.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U848; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- National Institute of Health; Rome, Italy
| | - Eric Tartour
- INSERM, U970; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
| | | | - Catherine Sautès-Fridman
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 15, Centre de Recherche des Cordeliers; Paris, France
- INSERM, U872; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Laurence Zitvogel
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U1015; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
- Metabolomics and Cell Biology Platforms; Institut Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|
55
|
Poggi A, Boero S, Musso A, Zocchi MR. Selective role of mevalonate pathway in regulating perforin but not FasL and TNFalpha release in human Natural Killer cells. PLoS One 2013; 8:e62932. [PMID: 23667543 PMCID: PMC3646988 DOI: 10.1371/journal.pone.0062932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/27/2013] [Indexed: 11/26/2022] Open
Abstract
We have analyzed the effects of fluvastatin, an inhibitor of the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase involved in mevalonate synthesis, on human NK cell-mediated anti-tumor cytolysis. Fluvastatin inhibited the activation of the small guanosin triphosphate binding protein (GTP) RhoA and the consequent actin redistribution induced by ligation of LFA1 involved in NK-tumor target cell adhesion. Also, fluvastatin reduced ganglioside M1 rafts formation triggered through the engagement of NK cell activating receptors as FcγRIIIA (CD16), NKG2D and DNAM1. Cytolysis of tumor targets was inhibited up to 90% when NK cells were cultured with fluvastatin by affecting i) receptor-mediated increase of the intracellular free calcium concentration, ii) activation of akt1/PKB and iii) perforin and granzyme release. Fluvastatin displayed a stronger inhibiting effect on NKG2D, DNAM1, 2B4, NKp30, NKp44 and NKp46 than on CD16-mediated NK cell triggering. This was in line with the impairment of surface expression of all these receptors but not of CD16. Remarkably, fluvastatin did not affect the expression of the inhibiting receptors CD94, KIR2D and LAIR1. FasL release elicited by either NK-tumor cell interaction or CD16 or NKG2D engagement, as well as FasL-mediated killing, were not sensitive to fluvastatin. Moreover, TNFα secretion triggered in NK cells upon incubation with tumor target cells or engagement of NKG2D receptor was not impaired in fluvastatin-treated NK cells. Likewise, antibody dependent cellular cytotoxicity (ADCC) triggered through FcγRIIIA engagement with the humanized monoclonal antibody rituximab or trastuzumab was only marginally affected in fluvastatin-treated NK cells. Altogether these findings suggest that interference with mevalonate synthesis impairs activation and assembly of cytoskeleton, degranulation and cytotoxic effect of perforins and granzyme but not FasL- and TNFα-mediated cytotoxicity.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino - IST National Institute for Cancer Research, Genoa, Italy.
| | | | | | | |
Collapse
|