51
|
Cauchy P, Koch F, Andrau JC. Two possible modes of pioneering associated with combinations of H2A.Z and p300/CBP at nucleosome-occupied enhancers. Transcription 2017; 8:179-184. [PMID: 28301306 DOI: 10.1080/21541264.2017.1291395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pioneer transcription factors are defined by their ability to bind nucleosome-occupied regions. Here, we discuss the properties of nucleosomes bound by pioneers at enhancer regions. We describe how select pioneers bind nucleosome-occupied or -depleted enhancer sites. Importantly, by revisiting and expanding existing data sets, we show differential H2A.Z and p300/CBP association at bound enhancers, highlighting two possible pioneering modes.
Collapse
Affiliation(s)
- Pierre Cauchy
- a Max Planck Institute of Immunobiology and Epigenetics , Department of Cellular and Molecular Immunology , Freiburg im Breisgau , Germany
| | - Frederic Koch
- b Max Planck Institute for Molecular Genetics , Department of Developmental Genetics , Berlin , Germany
| | | |
Collapse
|
52
|
de Castro IJ, Budzak J, Di Giacinto ML, Ligammari L, Gokhan E, Spanos C, Moralli D, Richardson C, de las Heras JI, Salatino S, Schirmer EC, Ullman KS, Bickmore WA, Green C, Rappsilber J, Lamble S, Goldberg MW, Vinciotti V, Vagnarelli P. Repo-Man/PP1 regulates heterochromatin formation in interphase. Nat Commun 2017; 8:14048. [PMID: 28091603 PMCID: PMC5241828 DOI: 10.1038/ncomms14048] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022] Open
Abstract
Repo-Man is a protein phosphatase 1 (PP1) targeting subunit that regulates mitotic progression and chromatin remodelling. After mitosis, Repo-Man/PP1 remains associated with chromatin but its function in interphase is not known. Here we show that Repo-Man, via Nup153, is enriched on condensed chromatin at the nuclear periphery and at the edge of the nucleopore basket. Repo-Man/PP1 regulates the formation of heterochromatin, dephosphorylates H3S28 and it is necessary and sufficient for heterochromatin protein 1 binding and H3K27me3 recruitment. Using a novel proteogenomic approach, we show that Repo-Man is enriched at subtelomeric regions together with H2AZ and H3.3 and that depletion of Repo-Man alters the peripheral localization of a subset of these regions and alleviates repression of some polycomb telomeric genes. This study shows a role for a mitotic phosphatase in the regulation of the epigenetic landscape and gene expression in interphase.
Collapse
Affiliation(s)
- Inês J. de Castro
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - James Budzak
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Maria L. Di Giacinto
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Lorena Ligammari
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Ezgi Gokhan
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Edinburgh EH9 3BF, UK
| | - Daniela Moralli
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | - Silvia Salatino
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | - Katharine S. Ullman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Catherine Green
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Edinburgh EH9 3BF, UK
- Technische Universitat Berlin, 13355 Berlin, Germany
| | - Sarah Lamble
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Martin W. Goldberg
- School of Biological and Medical Science, Durham University, Durham DH1 3LE, UK
| | - Veronica Vinciotti
- College of Engineering, Design and Technology, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Paola Vagnarelli
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| |
Collapse
|
53
|
Zhang J, Vlasevska S, Wells VA, Nataraj S, Holmes AB, Duval R, Meyer SN, Mo T, Basso K, Brindle PK, Hussein S, Dalla-Favera R, Pasqualucci L. The CREBBP Acetyltransferase Is a Haploinsufficient Tumor Suppressor in B-cell Lymphoma. Cancer Discov 2017; 7:322-337. [PMID: 28069569 DOI: 10.1158/2159-8290.cd-16-1417] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 01/12/2023]
Abstract
Inactivating mutations of the CREBBP acetyltransferase are highly frequent in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL), the two most common germinal center (GC)-derived cancers. However, the role of CREBBP inactivation in lymphomagenesis remains unclear. Here, we show that CREBBP regulates enhancer/super-enhancer networks with central roles in GC/post-GC cell fate decisions, including genes involved in signal transduction by the B-cell receptor and CD40 receptor, transcriptional control of GC and plasma cell development, and antigen presentation. Consistently, Crebbp-deficient B cells exhibit enhanced response to mitogenic stimuli and perturbed plasma cell differentiation. Although GC-specific loss of Crebbp was insufficient to initiate malignant transformation, compound Crebbp-haploinsufficient/BCL2-transgenic mice, mimicking the genetics of FL and DLBCL, develop clonal lymphomas recapitulating the features of the human diseases. These findings establish CREBBP as a haploinsufficient tumor-suppressor gene in GC B cells and provide insights into the mechanisms by which its loss contributes to lymphomagenesis.Significance: Loss-of-function mutations of CREBBP are common and early lesions in FL and DLBCL, suggesting a prominent role in lymphoma initiation. Our studies identify the cellular program by which reduced CREBBP dosage facilitates malignant transformation, and have direct implications for targeted lymphoma therapy based on drugs affecting CREBBP-mediated chromatin acetylation. Cancer Discov; 7(3); 322-37. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 235.
Collapse
Affiliation(s)
- Jiyuan Zhang
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Sofija Vlasevska
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Victoria A Wells
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Sarah Nataraj
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Romain Duval
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Stefanie N Meyer
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Tongwei Mo
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, New York.,Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Paul K Brindle
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shafinaz Hussein
- Department of Pathology and Laboratory Medicine, NorthWell Health, Staten Island University Hospital, Staten Island, New York
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, New York.,Department of Pathology and Cell Biology, Columbia University, New York, New York.,Department of Genetics and Development, Columbia University, New York, New York.,Department of Microbiology and Immunology, Columbia University, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, New York. .,Department of Pathology and Cell Biology, Columbia University, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| |
Collapse
|
54
|
Dehne N, Brüne B. Hypoxic inhibition of JMJD3 reduces H3K27me3 demethylation and induction of the STAT6 target gene CCL18. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1490-1501. [PMID: 27737800 DOI: 10.1016/j.bbagrm.2016.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/23/2016] [Accepted: 10/07/2016] [Indexed: 01/12/2023]
Abstract
Hypoxia, by activating transcription factors induces transcription of some genes but it also reduces mRNA synthesis by mechanisms that are poorly defined. Activation of human macrophages with interleukin (IL)-4 showed that up-regulation of some IL-4 target genes was reduced when macrophages were incubated at 1% oxygen. Hypoxia impaired induction of chemokine (C-C motif) ligand 18 (CCL18), although IL-4-induced DNA binding of the transcription factor STAT6 remained intact. In contrast, induction of serine peptidase inhibitor, Kunitz type (SPINT)2, another IL-4/STAT6 target gene, was not affected by hypoxia. The repressive histone mark histone 3 lysine 27 trimethylation (H3K27me3), known to prevent chromatin remodelling and transcription, was removed from the SPINT2 but not the CCL18 gene locus under hypoxia or dimethyloxalylglycine-treatment. The H3K27me3 demethylase JMJD3 was required for CCL18 gene induction but dispensable for induction of SPINT2. Our data indicate that hypoxic inhibition of JMJD3 activity reduces demethylation of H3K27me3, nucleosome removal, and hence induction of the STAT6 target gene CCL18, while induction of other STAT6-inducible genes such as SPINT2 remained unaffected by JMJD3. In contrast to mouse MΦ in human cells JMJD3 is not recruited by transcription factors like IRF4, KL4, or PPARγ to convey specificity in gene induction.
Collapse
Affiliation(s)
- Nathalie Dehne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
55
|
Okada M, Lee L, Maekawa R, Sato S, Kajimura T, Shinagawa M, Tamura I, Taketani T, Asada H, Tamura H, Sugino N. Epigenetic Changes of the Cyp11a1 Promoter Region in Granulosa Cells Undergoing Luteinization During Ovulation in Female Rats. Endocrinology 2016; 157:3344-54. [PMID: 27428926 DOI: 10.1210/en.2016-1264] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ovulatory LH surge induces rapid up-regulation of Cyp11a1 in granulosa cells (GCs) undergoing luteinization during ovulation. This study investigated in vivo whether epigenetic controls including histone modifications and DNA methylation in the promoter region are associated with the rapid increase of Cyp11a1 gene expression after LH surge. GCs were obtained from rats treated with equine chorionic gonadotropin (CG) before (0 h) and 4 h and 12 h after human (h)CG injection. Cyp11a1 mRNA levels rapidly increased after hCG injection, reached a peak at 4 hours, and then remained elevated until 12 hours. DNA methylation status in the Cyp11a1 proximal promoter region was hypomethylated and did not change at any of the observed times after hCG injection. Chromatin immunoprecipitation assays revealed that the levels of trimethylation of lysine 4 on histone H3 (H3K4me3), an active mark for transcription, increased, whereas the levels of H3K9me3 and H3K27me3, which are marks associated with repression of transcription, decreased in the Cyp11a1 proximal promoter after hCG injection. Chromatin condensation, which was analyzed using deoxyribonuclease I, decreased in the Cyp11a1 proximal promoter after hCG injection. Chromatin immunoprecipitation assays also showed that the binding activity of CAATT/enhancer-binding protein-β to the Cyp11a1 proximal promoter increased after hCG injection. Luciferase assays revealed that the CAATT/enhancer-binding protein-β-binding site had transcriptional activity and contributed to basal and cAMP-induced Cyp11a1 expression. These results suggest that changes in histone modification and chromatin structure in the Cyp11a1 proximal promoter are involved in the rapid increase of Cyp11a1 gene expression in GCs undergoing luteinization during ovulation.
Collapse
Affiliation(s)
- Maki Okada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Lifa Lee
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Takuya Kajimura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hiromi Asada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| |
Collapse
|
56
|
Lussi YC, Mariani L, Friis C, Peltonen J, Myers TR, Krag C, Wong G, Salcini AE. Impaired removal of H3K4 methylation affects cell fate determination and gene transcription. Development 2016; 143:3751-3762. [PMID: 27578789 DOI: 10.1242/dev.139139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/20/2016] [Indexed: 01/30/2023]
Abstract
Methylation of histone 3 lysine 4 (H3K4) is largely associated with promoters and enhancers of actively transcribed genes and is finely regulated during development by the action of histone methyltransferases and demethylases. H3K4me3 demethylases of the KDM5 family have been previously implicated in development, but how the regulation of H3K4me3 level controls developmental processes is not fully established. Here, we show that the H3K4 demethylase RBR-2, the unique member of the KDM5 family in C. elegans, acts cell-autonomously and in a catalytic-dependent manner to control vulva precursor cells fate acquisition, by promoting the LIN-12/Notch pathway. Using genome-wide approaches, we show that RBR-2 reduces the H3K4me3 level at transcription start sites (TSSs) and in regions upstream of the TSSs, and acts both as a transcription repressor and activator. Analysis of the lin-11 genetic locus, a direct RBR-2 target gene required for vulva precursor cell fate acquisition, shows that RBR-2 controls the epigenetic signature of the lin-11 vulva-specific enhancer and lin-11 expression, providing in vivo evidence that RBR-2 can positively regulate transcription and cell fate acquisition by controlling enhancer activity.
Collapse
Affiliation(s)
- Yvonne C Lussi
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Luca Mariani
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Carsten Friis
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Juhani Peltonen
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio 70211, Finland
| | - Toshia R Myers
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Claudia Krag
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Garry Wong
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio 70211, Finland
| | - Anna Elisabetta Salcini
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark .,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
57
|
Kahn TG, Dorafshan E, Schultheis D, Zare A, Stenberg P, Reim I, Pirrotta V, Schwartz YB. Interdependence of PRC1 and PRC2 for recruitment to Polycomb Response Elements. Nucleic Acids Res 2016; 44:10132-10149. [PMID: 27557709 PMCID: PMC5137424 DOI: 10.1093/nar/gkw701] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022] Open
Abstract
Polycomb Group (PcG) proteins are epigenetic repressors essential for control of development and cell differentiation. They form multiple complexes of which PRC1 and PRC2 are evolutionary conserved and obligatory for repression. The targeting of PRC1 and PRC2 is poorly understood and was proposed to be hierarchical and involve tri-methylation of histone H3 (H3K27me3) and/or monoubiquitylation of histone H2A (H2AK118ub). Here, we present a strict test of this hypothesis using the Drosophila model. We discover that neither H3K27me3 nor H2AK118ub is required for targeting PRC complexes to Polycomb Response Elements (PREs). We find that PRC1 can bind PREs in the absence of PRC2 but at many PREs PRC2 requires PRC1 to be targeted. We show that one role of H3K27me3 is to allow PcG complexes anchored at PREs to interact with surrounding chromatin. In contrast, the bulk of H2AK118ub is unrelated to PcG repression. These findings radically change our view of how PcG repression is targeted and suggest that PRC1 and PRC2 can communicate independently of histone modifications.
Collapse
Affiliation(s)
- Tatyana G Kahn
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Eshagh Dorafshan
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Dorothea Schultheis
- Friedrich-Alexander University of Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, D-91058, Germany
| | - Aman Zare
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden.,Division of CBRN Defense and Security, Swedish Defense Research Agency, FOI, Umeå, 906 21, Sweden
| | - Ingolf Reim
- Friedrich-Alexander University of Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, D-91058, Germany
| | - Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
58
|
García-González E, Escamilla-Del-Arenal M, Arzate-Mejía R, Recillas-Targa F. Chromatin remodeling effects on enhancer activity. Cell Mol Life Sci 2016; 73:2897-910. [PMID: 27026300 PMCID: PMC11108574 DOI: 10.1007/s00018-016-2184-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 01/02/2023]
Abstract
During organism development, a diversity of cell types emerges with disparate, yet stable profiles of gene expression with distinctive cellular functions. In addition to gene promoters, the genome contains enhancer regulatory sequences, which are implicated in cellular specialization by facilitating cell-type and tissue-specific gene expression. Enhancers are DNA binding elements characterized by highly sophisticated and various mechanisms of action allowing for the specific interaction of general and tissue-specific transcription factors (TFs). However, eukaryotic organisms package their genetic material into chromatin, generating a physical barrier for TFs to interact with their cognate sequences. The ability of TFs to bind DNA regulatory elements is also modulated by changes in the chromatin structure, including histone modifications, histone variants, ATP-dependent chromatin remodeling, and the methylation status of DNA. Furthermore, it has recently been revealed that enhancer sequences are also transcribed into a set of enhancer RNAs with regulatory potential. These interdependent processes act in the context of a complex network of chromatin interactions, which together contributes to a renewed vision of how gene activation is coordinated in a cell-type-dependent manner. In this review, we describe the interplay between genetic and epigenetic aspects associated with enhancers and discuss their possible roles on enhancer function.
Collapse
Affiliation(s)
- Estela García-González
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Mexico City, México
| | - Martín Escamilla-Del-Arenal
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York City, NY, 10027, USA
| | - Rodrigo Arzate-Mejía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Mexico City, México
| | - Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Mexico City, México.
| |
Collapse
|
59
|
Vernimmen D, Bickmore WA. The Hierarchy of Transcriptional Activation: From Enhancer to Promoter. Trends Genet 2016; 31:696-708. [PMID: 26599498 DOI: 10.1016/j.tig.2015.10.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/18/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022]
Abstract
Regulatory elements (enhancers) that are remote from promoters play a critical role in the spatial, temporal, and physiological control of gene expression. Studies on specific loci, together with genome-wide approaches, suggest that there may be many common mechanisms involved in enhancer-promoter communication. Here, we discuss the multiprotein complexes that are recruited to enhancers and the hierarchy of events taking place between regulatory elements and promoters.
Collapse
Affiliation(s)
- Douglas Vernimmen
- The Roslin Institute, Developmental Biology Division, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
60
|
Hao YJ, Zhang YJ, Si FL, Fu DY, He ZB, Chen B. Insight into the possible mechanism of the summer diapause of Delia antiqua (Diptera: Anthomyiidae) through digital gene expression analysis. INSECT SCIENCE 2016; 23:438-51. [PMID: 26826557 DOI: 10.1111/1744-7917.12323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/12/2016] [Accepted: 01/24/2016] [Indexed: 05/20/2023]
Abstract
The onion fly, Delia antiqua, is a major underground agricultural pest that can enter pupal diapause in the summer and winter seasons. However, little is known about its molecular regulation due to the lack of genomic resources. To gain insight into the possible mechanism of summer diapause (SD), high-throughput RNA-Seq data were generated from non-diapause (ND) and SD (initial, maintenance and quiescence phase) pupae. Three pair-wise comparisons were performed and identified, 1380, 1471 and 435, and were significantly regulated transcripts. Further analysis revealed that the enrichment of several functional terms related to juvenile hormone regulation, cell cycle, carbon hydrate and lipid metabolism, innate immune and stress responses, various signalling transductions, ubiquitin-dependent proteosome, and variation in cuticular and cytoskeleton components were found between ND and SD and between different phases of SD. Global characterization of transcriptome profiling between SD and ND contributes to the in-depth elucidation of the molecular mechanism of SD. Our results also offer insights into the evolution of insect diapause and support the importance of using the onion fly as a model to compare the molecular regulation events of summer and winter diapauses.
Collapse
Affiliation(s)
| | | | - Feng-Ling Si
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Dan-Ying Fu
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zheng-Bo He
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
61
|
SMARCAD1 is an ATP-dependent stimulator of nucleosomal H2A acetylation via CBP, resulting in transcriptional regulation. Sci Rep 2016; 6:20179. [PMID: 26888216 PMCID: PMC4757861 DOI: 10.1038/srep20179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022] Open
Abstract
Histone acetylation plays a pivotal role in transcriptional regulation, and ATP-dependent nucleosome remodeling activity is required for optimal transcription from chromatin. While these two activities have been well characterized, how they are coordinated remains to be determined. We discovered ATP-dependent histone H2A acetylation activity in Drosophila nuclear extracts. This activity was column purified and demonstrated to be composed of the enzymatic activities of CREB-binding protein (CBP) and SMARCAD1, which belongs to the Etl1 subfamily of the Snf2 family of helicase-related proteins. SMARCAD1 enhanced acetylation by CBP of H2A K5 and K8 in nucleosomes in an ATP-dependent fashion. Expression array analysis of S2 cells having ectopically expressed SMARCAD1 revealed up-regulated genes. Using native genome templates of these up-regulated genes, we found that SMARCAD1 activates their transcription in vitro. Knockdown analysis of SMARCAD1 and CBP indicated overlapping gene control, and ChIP-seq analysis of these commonly controlled genes showed that CBP is recruited to the promoter prior to SMARCAD1. Moreover, Drosophila genetic experiments demonstrated interaction between SMARCAD1/Etl1 and CBP/nej during development. The interplay between the remodeling activity of SMARCAD1 and histone acetylation by CBP sheds light on the function of chromatin and the genome-integrity network.
Collapse
|
62
|
Abstract
During mammalian embryonic development, the trophectoderm and primitive endoderm give rise to extraembryonic tissues, while the epiblast differentiates into all somatic lineages and the germline. Remarkably, only a few classes of signaling pathways induce the differentiation of these progenitor cells into diverse lineages. Accordingly, the functional outcome of a particular signal depends on the developmental competence of the target cells. Thus, developmental competence can be defined as the ability of a cell to integrate intrinsic and extrinsic cues to execute a specific developmental program toward a specific cell fate. Downstream of signaling, there is the combinatorial activity of transcription factors and their cofactors, which is modulated by the chromatin state of the target cells. Here, we discuss the concept of developmental competence, and the factors that regulate this state with reference to the specification of mammalian primordial germ cells.
Collapse
Affiliation(s)
- Ufuk Günesdogan
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
63
|
Polycomb inhibits histone acetylation by CBP by binding directly to its catalytic domain. Proc Natl Acad Sci U S A 2016; 113:E744-53. [PMID: 26802126 DOI: 10.1073/pnas.1515465113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila Polycomb (PC), a subunit of Polycomb repressive complex 1 (PRC1), is well known for its role in maintaining repression of the homeotic genes and many others and for its binding to trimethylated histone H3 on Lys 27 (H3K27me3) via its chromodomain. Here, we identify a novel activity of PC: inhibition of the histone acetylation activity of CREB-binding protein (CBP). We show that PC and its mammalian CBX orthologs interact directly with the histone acetyltransferase (HAT) domain of CBP, binding to the previously identified autoregulatory loop, whose autoacetylation greatly enhances HAT activity. We identify a conserved PC motif adjacent to the chromodomain required for CBP binding and show that PC binding inhibits acetylation of histone H3. CBP autoacetylation impairs PC binding in vitro, and PC is preferentially associated with unacetylated CBP in vivo. PC knockdown elevates the acetylated H3K27 (H3K27ac) level globally and at promoter regions of some genes that are bound by both PC and CBP. Conversely, PC overexpression decreases the H3K27ac level in vivo and also suppresses CBP-dependent Polycomb phenotypes caused by overexpression of Trithorax, an antagonist of Polycomb silencing. We find that PC is physically associated with the initiating form of RNA polymerase II (Pol II) and that many promoters co-occupied by PC and CBP are associated with paused Pol II, suggesting that PC may play a role in Pol II pausing. These results suggest that PC/PRC1 inhibition of CBP HAT activity plays a role in regulating transcription of both repressed and active PC-regulated genes.
Collapse
|
64
|
Ogiwara H, Sasaki M, Mitachi T, Oike T, Higuchi S, Tominaga Y, Kohno T. Targeting p300 Addiction in CBP-Deficient Cancers Causes Synthetic Lethality by Apoptotic Cell Death due to Abrogation of MYC Expression. Cancer Discov 2015; 6:430-45. [DOI: 10.1158/2159-8290.cd-15-0754] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/20/2015] [Indexed: 11/16/2022]
|
65
|
Philip P, Boija A, Vaid R, Churcher AM, Meyers DJ, Cole PA, Mannervik M, Stenberg P. CBP binding outside of promoters and enhancers in Drosophila melanogaster. Epigenetics Chromatin 2015; 8:48. [PMID: 26604986 PMCID: PMC4657240 DOI: 10.1186/s13072-015-0042-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/09/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND CREB-binding protein (CBP, also known as nejire) is a transcriptional co-activator that is conserved in metazoans. CBP plays an important role in embryonic development and cell differentiation and mutations in CBP can lead to various diseases in humans. In addition, CBP and the related p300 protein have successfully been used to predict enhancers in both humans and flies when they occur with monomethylation of histone H3 on lysine 4 (H3K4me1). RESULTS Here, we compare CBP chromatin immunoprecipitation sequencing data from Drosophila S2 cells with modENCODE data and show that CBP is bound at genomic sites with a wide range of functions. As expected, we find that CBP is bound at active promoters and enhancers. In addition, we find that the strongest CBP sites in the genome are found at Polycomb response elements embedded in histone H3 lysine 27 trimethylated (H3K27me3) chromatin, where they correlate with binding of the Pho repressive complex. Interestingly, we find that CBP also binds to most insulators in the genome. At a subset of these, CBP may regulate insulating activity, measured as the ability to prevent repressive H3K27 methylation from spreading into adjacent chromatin. CONCLUSIONS We conclude that CBP could be involved in a much wider range of functions than has previously been appreciated, including Polycomb repression and insulator activity. In addition, we discuss the possibility that a common role for CBP at all functional elements may be to regulate interactions between distant chromosomal regions and speculate that CBP is controlling higher order chromatin organization.
Collapse
Affiliation(s)
- Philge Philip
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden ; Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden ; Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana 500007 India
| | - Ann Boija
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Roshan Vaid
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | | | - David J Meyers
- Department Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 USA
| | - Philip A Cole
- Department Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 USA
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden ; Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden ; Division of CBRN Security and Defence, FOI-Swedish Defence Research Agency, Umeå, Sweden
| |
Collapse
|
66
|
Chen X, Du Z, Li X, Wang L, Wang F, Shi W, Hao A. Protein Palmitoylation Regulates Neural Stem Cell Differentiation by Modulation of EID1 Activity. Mol Neurobiol 2015; 53:5722-36. [PMID: 26497028 DOI: 10.1007/s12035-015-9481-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/08/2015] [Indexed: 01/13/2023]
Abstract
The functional significance of palmitoylation in the switch between self-renewal and differentiation of neural stem cells (NSCs) is not well defined, and the underlying mechanisms of protein palmitoylation are not well understood. Here, mouse NSCs were used as a model system and cell behavior was monitored in the presence of the protein palmitoylation inhibitor 2-bromopalmitate (2BRO). Our data show that 2BRO impaired the differentiation of NSCs into both neurons and glia and impaired NSC cell cycle exit. Moreover, the results show that palmitoylation modified E1A-like inhibitor of differentiation one (EID1) and this modification regulated EID1 degradation and CREB-binding protein (CBP)/p300 histone acetyltransferase activity at the switch between self-renewal and differentiation of NSCs. Our results extended the cellular role of palmitoylation, suggesting that it acts as a regulator in the acetylation-dependent gene expression network, and established the epigenetic regulatory function of palmitoylation in the switch between maintenance of multipotency and differentiation in NSCs.
Collapse
Affiliation(s)
- Xueran Chen
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.,Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, People's Republic of China
| | - Zhaoxia Du
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xian Li
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Liyan Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Fuwu Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Wei Shi
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, No. 44, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
67
|
Dittmer J. The role of the transcription factor Ets1 in carcinoma. Semin Cancer Biol 2015; 35:20-38. [PMID: 26392377 DOI: 10.1016/j.semcancer.2015.09.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/12/2022]
Abstract
Ets1 belongs to the large family of the ETS domain family of transcription factors and is involved in cancer progression. In most carcinomas, Ets1 expression is linked to poor survival. In breast cancer, Ets1 is primarily expressed in the triple-negative subtype, which is associated with unfavorable prognosis. Ets1 contributes to the acquisition of cancer cell invasiveness, to EMT (epithelial-to-mesenchymal transition), to the development of drug resistance and neo-angiogenesis. The aim of this review is to summarize the current knowledge on the functions of Ets1 in carcinoma progression and on the mechanisms that regulate Ets1 activity in cancer.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
68
|
Shimomura A, Patel D, Wilson SM, Koehler KR, Khanna R, Hashino E. Tlx3 promotes glutamatergic neuronal subtype specification through direct interactions with the chromatin modifier CBP. PLoS One 2015; 10:e0135060. [PMID: 26258652 PMCID: PMC4530954 DOI: 10.1371/journal.pone.0135060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 07/17/2015] [Indexed: 12/31/2022] Open
Abstract
Nervous system development relies on the generation of precise numbers of excitatory and inhibitory neurons. The homeodomain transcription factor, T-cell leukemia 3 (Tlx3), functions as the master neuronal fate regulator by instructively promoting the specification of glutamatergic excitatory neurons and suppressing the specification of gamma-aminobutyric acid (GABAergic) neurons. However, how Tlx3 promotes glutamatergic neuronal subtype specification is poorly understood. In this study, we found that Tlx3 directly interacts with the epigenetic co-activator cyclic adenosine monophosphate (cAMP)-response element-binding protein (CREB)-binding protein (CBP) and that the Tlx3 homeodomain is essential for this interaction. The interaction between Tlx3 and CBP was enhanced by the three amino acid loop extension (TALE)-class homeodomain transcription factor, pre-B-cell leukemia transcription factor 3 (Pbx3). Using mouse embryonic stem (ES) cells stably expressing Tlx3, we found that the interaction between Tlx3 and CBP became detectable only after these Tlx3-expressing ES cells were committed to a neural lineage, which coincided with increased Pbx3 expression during neural differentiation from ES cells. Forced expression of mutated Tlx3 lacking the homeodomain in ES cells undergoing neural differentiation resulted in significantly reduced expression of glutamatergic neuronal subtype markers, but had little effect on the expression on pan neural markers. Collectively, our results strongly suggest that functional interplay between Tlx3 and CBP plays a critical role in neuronal subtype specification, providing novel insights into the epigenetic regulatory mechanism that modulates the transcriptional efficacy of a selective set of neuronal subtype-specific genes during differentiation.
Collapse
Affiliation(s)
- Atsushi Shimomura
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; School of Psychological Science, Health Sciences University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Dharmeshkumar Patel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarah M Wilson
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Karl R Koehler
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Rajesh Khanna
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology, University of Arizona School of Medicine, Tucson, Arizona, United States of America
| | - Eri Hashino
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
69
|
Maksimenko O, Gasanov NB, Georgiev P. Regulatory Elements in Vectors for Efficient Generation of Cell Lines Producing Target Proteins. Acta Naturae 2015; 7:15-26. [PMID: 26483956 PMCID: PMC4610161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date, there has been an increasing number of drugs produced in mammalian cell cultures. In order to enhance the expression level and stability of target recombinant proteins in cell cultures, various regulatory elements with poorly studied mechanisms of action are used. In this review, we summarize and discuss the potential mechanisms of action of such regulatory elements.
Collapse
Affiliation(s)
- O. Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, 119334, Moscow, Russia
| | - N. B. Gasanov
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, 119334, Moscow, Russia
| | - P. Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, 119334, Moscow, Russia
| |
Collapse
|
70
|
Erokhin M, Vassetzky Y, Georgiev P, Chetverina D. Eukaryotic enhancers: common features, regulation, and participation in diseases. Cell Mol Life Sci 2015; 72:2361-75. [PMID: 25715743 PMCID: PMC11114076 DOI: 10.1007/s00018-015-1871-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/07/2015] [Accepted: 02/20/2015] [Indexed: 01/01/2023]
Abstract
Enhancers are positive DNA regulatory sequences controlling temporal and tissue-specific gene expression. These elements act independently of their orientation and distance relative to the promoters of target genes. Enhancers act through a variety of transcription factors that ensure their correct match with target promoters and consequent gene activation. There is a growing body of evidence on association of enhancers with transcription factors, co-activators, histone chromatin marks, and lncRNAs. Alterations in enhancers lead to misregulation of gene expression, causing a number of human diseases. In this review, we focus on the common characteristics of enhancers required for transcription stimulation.
Collapse
Affiliation(s)
- Maksim Erokhin
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
| | - Yegor Vassetzky
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
| | - Darya Chetverina
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
| |
Collapse
|
71
|
Laursen KB, Kashyap V, Scandura J, Gudas LJ. An alternative retinoic acid-responsive Stra6 promoter regulated in response to retinol deficiency. J Biol Chem 2015; 290:4356-66. [PMID: 25544292 PMCID: PMC4326842 DOI: 10.1074/jbc.m114.613968] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/25/2014] [Indexed: 01/27/2023] Open
Abstract
Cellular uptake of vitamin A (retinol) is essential for many biological functions. The Stra6 protein binds the serum retinol-binding protein, RBP4, and acts in conjunction with the enzyme lecithin:retinol acyltransferase to facilitate retinol uptake in some cell types. We show that in embryonic stem (ES) cells and in some tissues, the Stra6 gene encodes two distinct mRNAs transcribed from two different promoters. Whereas both are all-trans-retinoic acid (RA)-responsive in ES cells, the downstream promoter contains a half-site RA response element (RARE) and drives an ∼ 13-fold, RA-associated increase in luciferase reporter activity. We employed CRISPR-Cas9 genome editing to show that the endogenous RARE is required for RA-induced transcription of both Stra6 isoforms. We further demonstrate that in ES cells, 1) both RARγ and RXRα are present at the Stra6 RARE; 2) RA increases co-activator p300 (KAT3B) binding and histone H3 Lys-27 acetylation at both promoters; 3) RA decreases Suz12 levels and histone H3 Lys-27 trimethylation epigenetic marks at both promoters; and 4) these epigenetic changes are diminished in the absence of RARγ. In the brains of WT mice, both the longer and the shorter Stra6 transcript (Stra6L and Stra6S, respectively) are highly expressed, whereas these transcripts are found only at low levels in RARγ(-/-) mice. In the brains of vitamin A-deficient mice, both Stra6L and Stra6S levels are decreased. In contrast, in the vitamin A-deficient kidneys, the Stra6L levels are greatly increased, whereas Stra6S levels are decreased. Our data show that kidneys respond to retinol deficiency by differential Stra6 promoter usage, which may play a role in the retention of retinol when vitamin A is low.
Collapse
Affiliation(s)
| | | | - Joseph Scandura
- the Department of Medicine, Weill Cornell Medical College of Cornell University, New York, New York 10065
| | - Lorraine J Gudas
- From the Pharmacology Department and the Department of Medicine, Weill Cornell Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
72
|
Englert NA, Luo G, Goldstein JA, Surapureddi S. Epigenetic modification of histone 3 lysine 27: mediator subunit MED25 is required for the dissociation of polycomb repressive complex 2 from the promoter of cytochrome P450 2C9. J Biol Chem 2014; 290:2264-78. [PMID: 25391650 DOI: 10.1074/jbc.m114.579474] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Mediator complex is vital for the transcriptional regulation of eukaryotic genes. Mediator binds to nuclear receptors at target response elements and recruits chromatin-modifying enzymes and RNA polymerase II. Here, we examine the involvement of Mediator subunit MED25 in the epigenetic regulation of human cytochrome P450 2C9 (CYP2C9). MED25 is recruited to the CYP2C9 promoter through association with liver-enriched HNF4α, and we show that MED25 influences the H3K27 status of the HNF4α binding region. This region was enriched for the activating marker H3K27ac and histone acetyltransferase CREBBP after MED25 overexpression but was trimethylated when MED25 expression was silenced. The epigenetic regulator Polycomb repressive complex (PRC2), which represses expression by methylating H3K27, plays an important role in target gene regulation. Silencing MED25 correlated with increased association of PRC2 not only with the promoter region chromatin but with HNF4α itself. We confirmed the involvement of MED25 for fully functional preinitiation complex recruitment and transcriptional output in vitro. Formaldehyde-assisted isolation of regulatory elements (FAIRE) revealed chromatin conformation changes that were reliant on MED25, indicating that MED25 induced a permissive chromatin state that reflected increases in CYP2C9 mRNA. For the first time, we showed evidence that a functionally relevant human gene is transcriptionally regulated by HNF4α via MED25 and PRC2. CYP2C9 is important for the metabolism of many exogenous chemicals including pharmaceutical drugs as well as endogenous substrates. Thus, MED25 is important for regulating the epigenetic landscape resulting in transcriptional activation of a highly inducible gene, CYP2C9.
Collapse
Affiliation(s)
- Neal A Englert
- From the Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - George Luo
- From the Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Joyce A Goldstein
- From the Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Sailesh Surapureddi
- From the Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
73
|
Kasper LH, Qu C, Obenauer JC, McGoldrick DJ, Brindle PK. Genome-wide and single-cell analyses reveal a context dependent relationship between CBP recruitment and gene expression. Nucleic Acids Res 2014; 42:11363-82. [PMID: 25249627 PMCID: PMC4191404 DOI: 10.1093/nar/gku827] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 12/31/2022] Open
Abstract
Genome-wide distribution of histone H3K18 and H3K27 acetyltransferases, CBP (CREBBP) and p300 (EP300), is used to map enhancers and promoters, but whether these elements functionally require CBP/p300 remains largely uncertain. Here we compared global CBP recruitment with gene expression in wild-type and CBP/p300 double-knockout (dKO) fibroblasts. ChIP-seq using CBP-null cells as a control revealed nearby CBP recruitment for 20% of constitutively-expressed genes, but surprisingly, three-quarters of these genes were unaffected or slightly activated in dKO cells. Computationally defined enhancer-promoter-units (EPUs) having a CBP peak near the enhancer-like element were more predictive, with CBP/p300 deletion attenuating expression of 40% of such constitutively-expressed genes. Examining signal-responsive (Hypoxia Inducible Factor) genes showed that 97% were within 50 kilobases of an inducible CBP peak, and 70% of these required CBP/p300 for full induction. Unexpectedly, most inducible CBP peaks occurred near signal-nonresponsive genes. Finally, single-cell expression analysis revealed additional context dependence where some signal-responsive genes were not uniformly dependent on CBP/p300 in individual cells. While CBP/p300 was needed for full induction of some genes in single-cells, for other genes CBP/p300 increased the probability of maximal expression. Thus, target gene context influences the transcriptional requirement for CBP/p300, possibly by multiple mechanisms.
Collapse
Affiliation(s)
- Lawryn H Kasper
- Department of Biochemistry, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Chunxu Qu
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John C Obenauer
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Daniel J McGoldrick
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Paul K Brindle
- Department of Biochemistry, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
74
|
Madeo F, Pietrocola F, Eisenberg T, Kroemer G. Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discov 2014; 13:727-40. [PMID: 25212602 DOI: 10.1038/nrd4391] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caloric restriction, be it constant or intermittent, is reputed to have health-promoting and lifespan-extending effects. Caloric restriction mimetics (CRMs) are compounds that mimic the biochemical and functional effects of caloric restriction. In this Opinion article, we propose a unifying definition of CRMs as compounds that stimulate autophagy by favouring the deacetylation of cellular proteins. This deacetylation process can be achieved by three classes of compounds that deplete acetyl coenzyme A (AcCoA; the sole donor of acetyl groups), that inhibit acetyl transferases (a group of enzymes that acetylate lysine residues in an array of proteins) or that stimulate the activity of deacetylases and hence reverse the action of acetyl transferases. A unifying definition of CRMs will be important for the continued development of this class of therapeutic agents.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Federico Pietrocola
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, F-75006 Paris, France and the Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, F-75006 Paris, France; the Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France; the Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Labex Immuno-Oncology, F-75015 Paris, France; and the Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, F-94805 Villejuif, France
| |
Collapse
|
75
|
Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching. Epigenetics Chromatin 2014; 7:14. [PMID: 25097667 PMCID: PMC4115480 DOI: 10.1186/1756-8935-7-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/23/2014] [Indexed: 12/19/2022] Open
Abstract
Background Acetylation of lysine residues in histone tails plays an important role in the regulation of gene transcription. Bromdomains are the readers of acetylated histone marks, and, consequently, bromodomain-containing proteins have a variety of chromatin-related functions. Moreover, they are increasingly being recognised as important mediators of a wide range of diseases. The first potent and selective bromodomain inhibitors are beginning to be described, but the diverse or unknown functions of bromodomain-containing proteins present challenges to systematically demonstrating cellular efficacy and selectivity for these inhibitors. Here we assess the viability of fluorescence recovery after photobleaching (FRAP) assays as a target agnostic method for the direct visualisation of an on-target effect of bromodomain inhibitors in living cells. Results Mutation of a conserved asparagine crucial for binding to acetylated lysines in the bromodomains of BRD3, BRD4 and TRIM24 all resulted in reduction of FRAP recovery times, indicating loss of or significantly reduced binding to acetylated chromatin, as did the addition of known inhibitors. Significant differences between wild type and bromodomain mutants for ATAD2, BAZ2A, BRD1, BRD7, GCN5L2, SMARCA2 and ZMYND11 required the addition of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) to amplify the binding contribution of the bromodomain. Under these conditions, known inhibitors decreased FRAP recovery times back to mutant control levels. Mutation of the bromodomain did not alter FRAP recovery times for full-length CREBBP, even in the presence of SAHA, indicating that other domains are primarily responsible for anchoring CREBBP to chromatin. However, FRAP assays with multimerised CREBBP bromodomains resulted in a good assay to assess the efficacy of bromodomain inhibitors to this target. The bromodomain and extraterminal protein inhibitor PFI-1 was inactive against other bromodomain targets, demonstrating the specificity of the method. Conclusions Viable FRAP assays were established for 11 representative bromodomain-containing proteins that broadly cover the bromodomain phylogenetic tree. Addition of SAHA can overcome weak binding to chromatin, and the use of tandem bromodomain constructs can eliminate masking effects of other chromatin binding domains. Together, these results demonstrate that FRAP assays offer a potentially pan-bromodomain method for generating cell-based assays, allowing the testing of compounds with respect to cell permeability, on-target efficacy and selectivity.
Collapse
|
76
|
Zhang YL, Xia Y, Yu C, Richards JS, Liu J, Fan HY. CBP-CITED4 is required for luteinizing hormone-triggered target gene expression during ovulation. Mol Hum Reprod 2014; 20:850-60. [PMID: 24878634 DOI: 10.1093/molehr/gau040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pituitary-secreted luteinizing hormone (LH) induces ovulation by activating an extracellular regulated kinase 1/2 (ERK1/2) cascade. However, little is known regarding the ERK1/2 downstream effectors that are involved in regulating rapid, transient expression of LH-target gene in ovulatory follicles. By comparing the gene expression profiles of LH-stimulated wild type with ERK1/2-deleted ovarian granulosa cells (GCs), we identified Cited4 as a previously unknown LH target gene during ovulation. LH induced Cited4 expression in pre-ovulatory follicles in an ERK1/2-dependent manner. CITED4 formed an endogenous protein complex and docked on the promoters of LH and ERK1/2 target genes. Both CITED4 expression and CBP acetyltransferase activity leading to histone acetylation were indispensable for LH-induced ovulation-related events. LH induced dynamic histone acetylation changes in pre-ovulatory GCs, including the acetylation of histone H2B (Lys5) and H3 (Lys9). This was essential for the rapid responses and dramatic increases of LH target gene expressions by the ordered activation of ERK1/2 and CITED4-CBP. In addition, histone deacetylases (HDACs) antagonized CITED4-CBP to turn off expression of these genes after exposure to LH. Thus, we determined that CITED4 was a novel LH and ERK1/2 target for triggering ovulation. These results support the proposition that LH induces rapid, significant gene expression in pre-ovulatory follicles by modulating histone acetylation status.
Collapse
Affiliation(s)
- Yin-Li Zhang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Yan Xia
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Chao Yu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - JoAnne S Richards
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, China
| | - Heng-Yu Fan
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
77
|
Wong MC, Kennedy WP, Schwarzbauer JE. Transcriptionally regulated cell adhesion network dictates distal tip cell directionality. Dev Dyn 2014; 243:999-1010. [PMID: 24811939 DOI: 10.1002/dvdy.24146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The mechanisms that govern directional changes in cell migration are poorly understood. The migratory paths of two distal tip cells (DTC) determine the U-shape of the C. elegans hermaphroditic gonad. The morphogenesis of this organ provides a model system to identify genes necessary for the DTCs to execute two stereotyped turns. RESULTS Using candidate genes for RNAi knockdown in a DTC-specific strain, we identified two transcriptional regulators required for DTC turning: cbp-1, the CBP/p300 transcriptional coactivator homologue, and let-607, a CREBH transcription factor homologue. Further screening of potential target genes uncovered a network of integrin adhesion-related genes that have roles in turning and are dependent on cbp-1 and let-607 for expression. These genes include src-1/Src kinase, tln-1/talin, pat-2/α integrin and nmy-2, a nonmuscle myosin heavy chain. CONCLUSIONS Transcriptional regulation by means of cbp-1 and let-607 is crucial for determining directional changes during DTC migration. These regulators coordinate a gene network that is necessary for integrin-mediated adhesion. Overall, these results suggest that directional changes in cell migration rely on the precise gene regulation of adhesion.
Collapse
Affiliation(s)
- Ming-Ching Wong
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | | | | |
Collapse
|
78
|
Court F, Camprubi C, Garcia CV, Guillaumet-Adkins A, Sparago A, Seruggia D, Sandoval J, Esteller M, Martin-Trujillo A, Riccio A, Montoliu L, Monk D. The PEG13-DMR and brain-specific enhancers dictate imprinted expression within the 8q24 intellectual disability risk locus. Epigenetics Chromatin 2014; 7:5. [PMID: 24667089 PMCID: PMC3986935 DOI: 10.1186/1756-8935-7-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/05/2014] [Indexed: 12/16/2022] Open
Abstract
Background Genomic imprinting is the epigenetic marking of genes that results in parent-of-origin monoallelic expression. Most imprinted domains are associated with differentially DNA methylated regions (DMRs) that originate in the gametes, and are maintained in somatic tissues after fertilization. This allelic methylation profile is associated with a plethora of histone tail modifications that orchestrates higher order chromatin interactions. The mouse chromosome 15 imprinted cluster contains multiple brain-specific maternally expressed transcripts including Ago2, Chrac1, Trappc9 and Kcnk9 and a paternally expressed gene, Peg13. The promoter of Peg13 is methylated on the maternal allele and is the sole DMR within the locus. To determine the extent of imprinting within the human orthologous region on chromosome 8q24, a region associated with autosomal recessive intellectual disability, Birk-Barel mental retardation and dysmorphism syndrome, we have undertaken a systematic analysis of allelic expression and DNA methylation of genes mapping within an approximately 2 Mb region around TRAPPC9. Results Utilizing allele-specific RT-PCR, bisulphite sequencing, chromatin immunoprecipitation and chromosome conformation capture (3C) we show the reciprocal expression of the novel, paternally expressed, PEG13 non-coding RNA and maternally expressed KCNK9 genes in brain, and the biallelic expression of flanking transcripts in a range of tissues. We identify a tandem-repeat region overlapping the PEG13 transcript that is methylated on the maternal allele, which binds CTCF-cohesin in chromatin immunoprecipitation experiments and possesses enhancer-blocker activity. Using 3C, we identify mutually exclusive approximately 58 and 500 kb chromatin loops in adult frontal cortex between a novel brain-specific enhancer, marked by H3K4me1 and H3K27ac, with the KCNK9 and PEG13 promoters which we propose regulates brain-specific expression. Conclusions We have characterised the molecular mechanism responsible for reciprocal allelic expression of the PEG13 and KCNK9 transcripts. Therefore, our observations may have important implications for identifying the cause of intellectual disabilities associated with the 8q24 locus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08907, Spain.
| |
Collapse
|
79
|
Kolmus K, Van Troys M, Van Wesemael K, Ampe C, Haegeman G, Tavernier J, Gerlo S. β-agonists selectively modulate proinflammatory gene expression in skeletal muscle cells via non-canonical nuclear crosstalk mechanisms. PLoS One 2014; 9:e90649. [PMID: 24603712 PMCID: PMC3946252 DOI: 10.1371/journal.pone.0090649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/04/2014] [Indexed: 02/04/2023] Open
Abstract
The proinflammatory cytokine Tumour Necrosis Factor (TNF)-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes express functional TNF receptor 1 (TNF-R1) and β2-adrenoreceptors (β2-ARs). TNF-α activated the canonical Nuclear Factor-κB (NF-κB) pathway and Mitogen-Activated Protein Kinases (MAPKs), culminating in potent induction of NF-κB-dependent proinflammatory genes. Cotreatment with the β-agonist isoproterenol potentiated the expression of inflammatory mediators, including Interleukin-6 (IL-6) and several chemokines. The enhanced production of chemotactic factors upon TNF-α/isoproterenol cotreatment was also suggested by the results from migrational analysis. Whereas we could not explain our observations by cytoplasmic crosstalk, we found that TNF-R1-and β2-AR-induced signalling cascades cooperate in the nucleus. Using the IL-6 promoter as a model, we demonstrated that TNF-α/isoproterenol cotreatment provoked phosphorylation of histone H3 at serine 10, concomitant with enhanced promoter accessibility and recruitment of the NF-κB p65 subunit, cAMP-response element-binding protein (CREB), CREB-binding protein (CBP) and RNA polymerase II. In summary, we show that β-agonists potentiate TNF-α action, via nuclear crosstalk, that promotes chromatin relaxation at selected gene promoters. Our data warrant further study into the mode of action of β-agonists and urge for caution in their use as therapeutic agents for muscular disorders.
Collapse
Affiliation(s)
- Krzysztof Kolmus
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Marleen Van Troys
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | | | - Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Guy Haegeman
- Department of Physiology, Faculty of Sciences, Ghent University, Gent, Belgium
| | - Jan Tavernier
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Sarah Gerlo
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
- * E-mail:
| |
Collapse
|
80
|
Gallenkamp D, Gelato KA, Haendler B, Weinmann H. Bromodomains and their pharmacological inhibitors. ChemMedChem 2014; 9:438-64. [PMID: 24497428 DOI: 10.1002/cmdc.201300434] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/23/2013] [Indexed: 12/15/2022]
Abstract
Over 60 bromodomains belonging to proteins with very different functions have been identified in humans. Several of them interact with acetylated lysine residues, leading to the recruitment and stabilization of protein complexes. The bromodomain and extra-terminal domain (BET) proteins contain tandem bromodomains which bind to acetylated histones and are thereby implicated in a number of DNA-centered processes, including the regulation of gene expression. The recent identification of inhibitors of BET and non-BET bromodomains is one of the few examples in which effective blockade of a protein-protein interaction can be achieved with a small molecule. This has led to major strides in the understanding of the function of bromodomain-containing proteins and their involvement in diseases such as cancer and inflammation. Indeed, BET bromodomain inhibitors are now being clinically evaluated for the treatment of hematological tumors and have also been tested in clinical trials for the relatively rare BRD-NUT midline carcinoma. This review gives an overview of the newest developments in the field, with a focus on the biology of selected bromodomain proteins on the one hand, and on reported pharmacological inhibitors on the other, including recent examples from the patent literature.
Collapse
|
81
|
Mannervik M. Control of Drosophila embryo patterning by transcriptional co-regulators. Exp Cell Res 2013; 321:47-57. [PMID: 24157250 DOI: 10.1016/j.yexcr.2013.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 12/29/2022]
Abstract
A combination of broadly expressed transcriptional activators and spatially restricted repressors are used to pattern embryos into cells of different fate. Transcriptional co-regulators are essential mediators of transcription factor function, and contribute to selective transcriptional responses in embryo development. A two step mechanism of transcriptional regulation is discussed, where remodeling of chromatin is initially required, followed by stimulation of recruitment or release of RNA polymerase from the promoter. Transcriptional co-regulators are essential for both of these steps. In particular, most co-activators are associated with histone acetylation and co-repressors with histone deacetylation. In the early Drosophila embryo, genome-wide studies have shown that the CBP co-activator has a preference for associating with some transcription factors and regulatory regions. The Groucho, CtBP, Ebi, Atrophin and Brakeless co-repressors are selectively used to limit zygotic gene expression. New findings are summarized which show that different co-repressors are often utilized by a single repressor, that the context in which a co-repressor is recruited to DNA can affect its activity, and that co-regulators may switch from co-repressors to co-activators and vice versa. The possibility that co-regulator activity is regulated and plays an instructive role in development is discussed as well. This review highlights how findings in Drosophila embryos have contributed to the understanding of transcriptional regulation in eukaryotes as well as to mechanisms of animal embryo patterning.
Collapse
Affiliation(s)
- Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Arrheniuslaboratories E3, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
82
|
Wolf L, Harrison W, Huang J, Xie Q, Xiao N, Sun J, Kong L, Lachke SA, Kuracha MR, Govindarajan V, Brindle PK, Ashery-Padan R, Beebe DC, Overbeek PA, Cvekl A. Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300. Nucleic Acids Res 2013; 41:10199-214. [PMID: 24038357 PMCID: PMC3905850 DOI: 10.1093/nar/gkt824] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lens induction is a classical embryologic model to study cell fate determination. It has been proposed earlier that specific changes in core histone modifications accompany the process of cell fate specification and determination. The lysine acetyltransferases CBP and p300 function as principal enzymes that modify core histones to facilitate specific gene expression. Herein, we performed conditional inactivation of both CBP and p300 in the ectodermal cells that give rise to the lens placode. Inactivation of both CBP and p300 resulted in the dramatic discontinuation of all aspects of lens specification and organogenesis, resulting in aphakia. The CBP/p300−/− ectodermal cells are viable and not prone to apoptosis. These cells showed reduced expression of Six3 and Sox2, while expression of Pax6 was not upregulated, indicating discontinuation of lens induction. Consequently, expression of αB- and αA-crystallins was not initiated. Mutant ectoderm exhibited markedly reduced levels of histone H3 K18 and K27 acetylation, subtly increased H3 K27me3 and unaltered overall levels of H3 K9ac and H3 K4me3. Our data demonstrate that CBP and p300 are required to establish lens cell-type identity during lens induction, and suggest that posttranslational histone modifications are integral to normal cell fate determination in the mammalian lens.
Collapse
Affiliation(s)
- Louise Wolf
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Mukherjee SP, Behar M, Birnbaum HA, Hoffmann A, Wright PE, Ghosh G. Analysis of the RelA:CBP/p300 interaction reveals its involvement in NF-κB-driven transcription. PLoS Biol 2013; 11:e1001647. [PMID: 24019758 PMCID: PMC3760798 DOI: 10.1371/journal.pbio.1001647] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
NF-κB plays a vital role in cellular immune and inflammatory response, survival, and proliferation by regulating the transcription of various genes involved in these processes. To activate transcription, RelA (a prominent NF-κB family member) interacts with transcriptional co-activators like CREB-binding protein (CBP) and its paralog p300 in addition to its cognate κB sites on the promoter/enhancer regions of DNA. The RelA:CBP/p300 complex is comprised of two components--first, DNA binding domain of RelA interacts with the KIX domain of CBP/p300, and second, the transcriptional activation domain (TAD) of RelA binds to the TAZ1 domain of CBP/p300. A phosphorylation event of a well-conserved RelA(Ser276) is prerequisite for the former interaction to occur and is considered a decisive factor for the overall RelA:CBP/p300 interaction. The role of the latter interaction in the transcription of RelA-activated genes remains unclear. Here we provide the solution structure of the latter component of the RelA:CBP complex by NMR spectroscopy. The structure reveals the folding of RelA-TA2 (a section of TAD) upon binding to TAZ1 through its well-conserved hydrophobic sites in a series of grooves on the TAZ1 surface. The structural analysis coupled with the mechanistic studies by mutational and isothermal calorimetric analyses allowed the design of RelA-mutants that selectively abrogated the two distinct components of the RelA:CBP/p300 interaction. Detailed studies of these RelA mutants using cell-based techniques, mathematical modeling, and genome-wide gene expression analysis showed that a major set of the RelA-activated genes, larger than previously believed, is affected by this interaction. We further show how the RelA:CBP/p300 interaction controls the nuclear response of NF-κB through the negative feedback loop of NF-κB pathway. Additionally, chromatin analyses of RelA target gene promoters showed constitutive recruitment of CBP/p300, thus indicating a possible role of CBP/p300 in recruitment of RelA to its target promoter sites.
Collapse
Affiliation(s)
- Sulakshana P. Mukherjee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marcelo Behar
- Signaling Systems Laboratory, University of California, San Diego, La Jolla, California, United States of America
| | - Harry A. Birnbaum
- Signaling Systems Laboratory, University of California, San Diego, La Jolla, California, United States of America
| | - Alexander Hoffmann
- Signaling Systems Laboratory, University of California, San Diego, La Jolla, California, United States of America
| | - Peter E. Wright
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (GG); (PEW)
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (GG); (PEW)
| |
Collapse
|