51
|
Manasova D, Stankovski T. Neural Cross-Frequency Coupling Functions in Sleep. Neuroscience 2023:S0306-4522(23)00227-0. [PMID: 37225051 DOI: 10.1016/j.neuroscience.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
The human brain presents a heavily connected complex system. From a relatively fixed anatomy, it can enable a vast repertoire of functions. One important brain function is the process of natural sleep, which alters consciousness and voluntary muscle activity. On neural level, these alterations are accompanied by changes of the brain connectivity. In order to reveal the changes of connectivity associated with sleep, we present a methodological framework for reconstruction and assessment of functional interaction mechanisms. By analyzing EEG (electroencephalogram) recordings from human whole night sleep, first, we applied a time-frequency wavelet transform to study the existence and strength of brainwave oscillations. Then we applied a dynamical Bayesian inference on the phase dynamics in the presence of noise. With this method we reconstructed the cross-frequency coupling functions, which revealed the mechanism of how the interactions occur and manifest. We focus our analysis on the delta-alpha coupling function and observe how this cross-frequency coupling changes during the different sleep stages. The results demonstrated that the delta-alpha coupling function was increasing gradually from Awake to NREM3 (non-rapid eye movement), but only during NREM2 and NREM3 deep sleep it was significant in respect of surrogate data testing. The analysis on the spatially distributed connections showed that this significance is strong only for within the single electrode region and in the front-to-back direction. The presented methodological framework is for the whole-night sleep recordings, but it also carries general implications for other global neural states.
Collapse
Affiliation(s)
- Dragana Manasova
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France; Université Paris Cité, Paris, France
| | - Tomislav Stankovski
- Faculty of Medicine, Ss Cyril and Methodius University, Skopje 1000, North Macedonia; Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| |
Collapse
|
52
|
Golkashani HA, Ghorbani S, Leong RLF, Ong JL, Chee MWL. Advantage conferred by overnight sleep on schema-related memory may last only a day. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad019. [PMID: 37193282 PMCID: PMC10155747 DOI: 10.1093/sleepadvances/zpad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/07/2023] [Indexed: 05/18/2023]
Abstract
Study Objectives Sleep contributes to declarative memory consolidation. Independently, schemas benefit memory. Here we investigated how sleep compared with active wake benefits schema consolidation 12 and 24 hours after initial learning. Methods Fifty-three adolescents (age: 15-19 years) randomly assigned into sleep and active wake groups participated in a schema-learning protocol based on transitive inference (i.e. If B > C and C > D then B > D). Participants were tested immediately after learning and following 12-, and 24-hour intervals of wake or sleep for both the adjacent (e.g. B-C, C-D; relational memory) and inference pairs: (e.g.: B-D, B-E, and C-E). Memory performance following the respective 12- and 24-hour intervals were analyzed using a mixed ANOVA with schema (schema, no-schema) as the within-participant factor, and condition (sleep, wake) as the between-participant factor. Results Twelve hours after learning, there were significant main effects of condition (sleep, wake) and schema, as well as a significant interaction, whereby schema-related memory was significantly better in the sleep condition compared to wake. Higher sleep spindle density was most consistently associated with greater overnight schema-related memory benefit. After 24 hours, the memory advantage of initial sleep was diminished. Conclusions Overnight sleep preferentially benefits schema-related memory consolidation following initial learning compared with active wake, but this advantage may be eroded after a subsequent night of sleep. This is possibly due to delayed consolidation that might occur during subsequent sleep opportunities in the wake group. Clinical Trial Information Name: Investigating Preferred Nap Schedules for Adolescents (NFS5) URL: https://clinicaltrials.gov/ct2/show/NCT04044885. Registration: NCT04044885.
Collapse
Affiliation(s)
- Hosein Aghayan Golkashani
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shohreh Ghorbani
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
53
|
Memon AA, Catiul C, Irwin Z, Pilkington J, Memon RA, Joop A, Wood KH, Cutter G, Miocinovic S, Amara AW. Quantitative Sleep Electroencephalogram in Parkinson's Disease: A Case-Control Study. JOURNAL OF PARKINSON'S DISEASE 2023; 13:351-365. [PMID: 37066921 DOI: 10.3233/jpd-223565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Sleep disorders are common in Parkinson's disease (PD) and include alterations in sleep-related EEG oscillations. OBJECTIVE This case-control study tested the hypothesis that patients with PD would have a lower density of Scalp-Slow Wave (SW) oscillations and higher slow-to-fast frequencies ratio in rapid eye movement (REM) sleep than non-PD controls. Other sleep-related quantitative EEG (qEEG) features were also examined, including SW morphology, sleep spindles, and Scalp-SW spindle phase-amplitude coupling. METHODS Polysomnography (PSG)-derived sleep EEG was compared between PD participants (n = 56) and non-PD controls (n = 30). Following artifact rejection, sleep qEEG analysis was performed in frontal and central leads. Measures included SW density and morphological features of SW and sleep spindles, SW-spindle phase-amplitude coupling, and spectral power analysis in Non-REM (NREM) and REM. Differences in qEEG features between PD and non-PD controls were compared using two-tailed Welch's t-tests, and correction for multiple comparisons was performed per the Benjamini-Hochberg method. RESULTS SW density was lower in PD than in non-PD controls (F = 13.5, p' = 0.003). The PD group also exhibited higher ratio of slow REM EEG frequencies (F = 4.23, p' = 0.013), higher slow spindle peak frequency (F = 24.7, p' < 0.002), and greater SW-spindle coupling angle distribution non-uniformity (strength) (F = 7.30, p' = 0.034). CONCLUSION This study comprehensively evaluates sleep qEEG including SW-spindle phase amplitude coupling in PD compared to non-PD controls. These findings provide novel insights into how neurodegenerative disease disrupts electrophysiological sleep rhythms. Considering the role of sleep oscillatory activity on neural plasticity, future studies should investigate the influence of these qEEG markers on cognition in PD.
Collapse
Affiliation(s)
- Adeel A Memon
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- Neuroengineering Ph.D. program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Corina Catiul
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zachary Irwin
- Neuroengineering Ph.D. program, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer Pilkington
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Raima A Memon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Allen Joop
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kimberly H Wood
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychology, Samford University, Birmingham, AL, USA
| | - Gary Cutter
- Department of Biostatistics, University of Alabamaat Birmingham, Birmingham, AL, USA
| | | | - Amy W Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurology, University of Colorado, Anschutz Medical Center, Aurora, CO, USA
| |
Collapse
|
54
|
Brodt S, Inostroza M, Niethard N, Born J. Sleep-A brain-state serving systems memory consolidation. Neuron 2023; 111:1050-1075. [PMID: 37023710 DOI: 10.1016/j.neuron.2023.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Although long-term memory consolidation is supported by sleep, it is unclear how it differs from that during wakefulness. Our review, focusing on recent advances in the field, identifies the repeated replay of neuronal firing patterns as a basic mechanism triggering consolidation during sleep and wakefulness. During sleep, memory replay occurs during slow-wave sleep (SWS) in hippocampal assemblies together with ripples, thalamic spindles, neocortical slow oscillations, and noradrenergic activity. Here, hippocampal replay likely favors the transformation of hippocampus-dependent episodic memory into schema-like neocortical memory. REM sleep following SWS might balance local synaptic rescaling accompanying memory transformation with a sleep-dependent homeostatic process of global synaptic renormalization. Sleep-dependent memory transformation is intensified during early development despite the immaturity of the hippocampus. Overall, beyond its greater efficacy, sleep consolidation differs from wake consolidation mainly in that it is supported, rather than impaired, by spontaneous hippocampal replay activity possibly gating memory formation in neocortex.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
55
|
Jaramillo V, Schoch SF, Markovic A, Kohler M, Huber R, Lustenberger C, Kurth S. An infant sleep electroencephalographic marker of thalamocortical connectivity predicts behavioral outcome in late infancy. Neuroimage 2023; 269:119924. [PMID: 36739104 DOI: 10.1016/j.neuroimage.2023.119924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Infancy represents a critical period during which thalamocortical brain connections develop and mature. Deviations in the maturation of thalamocortical connectivity are linked to neurodevelopmental disorders. There is a lack of early biomarkers to detect and localize neuromaturational deviations, which can be overcome with mapping through high-density electroencephalography (hdEEG) assessed in sleep. Specifically, slow waves and spindles in non-rapid eye movement (NREM) sleep are generated by the thalamocortical system, and their characteristics, slow wave slope and spindle density, are closely related to neuroplasticity and learning. Spindles are often subdivided into slow (11.0-13.0 Hz) and fast (13.5-16.0 Hz) frequencies, for which not only different functions have been proposed, but for which also distinctive developmental trajectories have been reported across the first years of life. Recent studies further suggest that information processing during sleep underlying sleep-dependent learning is promoted by the temporal coupling of slow waves and spindles, yet slow wave-spindle coupling remains unexplored in infancy. Thus, we evaluated three potential biomarkers: 1) slow wave slope, 2) spindle density, and 3) the temporal coupling of slow waves with spindles. We use hdEEG to first examine the occurrence and spatial distribution of these three EEG features in healthy infants and second to evaluate a predictive relationship with later behavioral outcomes. We report four key findings: First, infants' EEG features appear locally: slow wave slope is maximal in occipital and frontal areas, whereas slow and fast spindle density is most pronounced frontocentrally. Second, slow waves and spindles are temporally coupled in infancy, with maximal coupling strength in the occipital areas of the brain. Third, slow wave slope, fast spindle density, and slow wave-spindle coupling are not associated with concurrent behavioral status (6 months). Fourth, fast spindle density in central and frontocentral regions at age 6 months predicts overall developmental status at age 12 months, and motor skills at age 12 and 24 months. Neither slow wave slope nor slow wave-spindle coupling predict later behavioral development. We further identified spindle frequency as a determinant of slow and fast spindle density, which accordingly, also predicts motor skills at 24 months. Our results propose fast spindle density, or alternatively spindle frequency, as early EEG biomarker for identifying thalamocortical maturation, which can potentially be used for early diagnosis of neurodevelopmental disorders in infants. These findings are in support of a role of sleep spindles in sensorimotor microcircuitry development. A crucial next step will be to evaluate whether early therapeutic interventions may be effective to reverse deviations in identified individuals at risk.
Collapse
Affiliation(s)
- Valeria Jaramillo
- Department of Pulmonology, University Hospital Zurich, Zurich, CH; Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom; Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Sarah F Schoch
- Department of Pulmonology, University Hospital Zurich, Zurich, CH; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, CH; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, NL
| | - Andjela Markovic
- Department of Pulmonology, University Hospital Zurich, Zurich, CH; Department of Psychology, University of Fribourg, Fribourg, CH
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Zurich, CH; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, CH
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Zurich, CH; Children's Research Center, University Children's Hospital Zurich, University of Zurich (UZH), Zürich, Switzerland; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, CH; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, CH
| | - Caroline Lustenberger
- Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, CH; Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Salome Kurth
- Department of Pulmonology, University Hospital Zurich, Zurich, CH; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, CH; Department of Psychology, University of Fribourg, Fribourg, CH.
| |
Collapse
|
56
|
Natraj N, Richards A. Sleep spindles, stress and PTSD: The state of the science and future directions. Neurobiol Stress 2023; 23:100516. [PMID: 36861030 PMCID: PMC9969071 DOI: 10.1016/j.ynstr.2023.100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Sleep spindles are a signature feature of non-REM (NREM) sleep, with demonstrated relationships to sleep maintenance and learning and memory. Because PTSD is characterized by disturbances in sleep maintenance and in stress learning and memory, there is now a growing interest in examining the role of sleep spindles in the neurobiology of PTSD. This review provides an overview of methods for measuring and detecting sleep spindles as they pertain to human PTSD and stress research, presents a critical review of early findings examining sleep spindles in PTSD and stress neurobiology, and proposes several directions for future research. In doing so, this review underscores the extensive heterogeneity in sleep spindle measurement and detection methods, the wide range of spindle features that may be and have been examined, the many persisting unknowns about the clinical and functional relevance of those features, and the problems considering PTSD as a homogeneous group in between-group comparisons. This review also highlights the progress that has been made in this field and underscores the strong rationale for ongoing work in this area.
Collapse
Affiliation(s)
- Nikhilesh Natraj
- Department of Neurology, University of California, San Francisco, USA
- San Francisco VA Health Care System, San Francisco, USA
| | - Anne Richards
- San Francisco VA Health Care System, San Francisco, USA
- Department of Psychiatry and Behavioral Sciences and UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| |
Collapse
|
57
|
Is word learning capacity restored after a daytime nap? Cortex 2023; 159:142-166. [PMID: 36628812 DOI: 10.1016/j.cortex.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022]
Abstract
Sleep is thought to be involved in the consolidation of new memories encoded during the day, as proposed by complementary learning systems accounts of memory. Other theories suggest that sleep's role in memory is not restricted to consolidation. The synaptic homeostasis hypothesis proposes that new learning is implemented in the brain through strengthening synaptic connections, a biologically costly process that gradually saturates encoding capacity during wake. During slow-wave sleep, synaptic strength is renormalized, thus restoring memory encoding ability. While the role of sleep in memory consolidation has been extensively documented, few human studies have explored the impact of sleep in restoring encoding ability, and none have looked at learning beyond episodic memory. In this registered report we test the predictions made by the complementary learning systems accounts and the synaptic homeostasis hypothesis regarding adult participants' ability to learn new words, and to integrate these words with existing knowledge. Participants took a polysomnographically-monitored daytime nap or remained awake prior to learning a set of new spoken words. Shortly after learning, and again on the following day, we measured participants' episodic memory for new words. We also assessed the degree to which newly learned words engage in competition with existing words. We predicted that sleep before encoding would result in better episodic memory for the words, and facilitate the overnight integration of new words with existing words. Based on existing literature and theory we further predicted that this restorative function is associated with slow-wave and sleep spindle activity. Our pre-registered analyses did not find a significant benefit of napping prior to encoding on word learning or integration. Exploratory analyses using a more sensitive measure of recall accuracy demonstrated significantly better performance in the nap condition compared to the no-nap condition in the immediate test. At the delayed test there was no longer a significant benefit of the nap. Of note, we found no significant effect of slow-wave activity prior to encoding on episodic memory or integration of newly learned words into the mental lexicon. However, we found that greater levels of Stage 2 sleep spindles were significantly associated with greater improvements in lexical competition from the immediate to the delayed test. Therefore, our results demonstrate some support for theories that implicate sleep spindles in restoring encoding capacity.
Collapse
|
58
|
Kroeger D, Vetrivelan R. To sleep or not to sleep - Effects on memory in normal aging and disease. AGING BRAIN 2023; 3:100068. [PMID: 36911260 PMCID: PMC9997183 DOI: 10.1016/j.nbas.2023.100068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Sleep behavior undergoes significant changes across the lifespan, and aging is associated with marked alterations in sleep amounts and quality. The primary sleep changes in healthy older adults include a shift in sleep timing, reduced slow-wave sleep, and impaired sleep maintenance. However, neurodegenerative and psychiatric disorders are more common among the elderly, which further worsen their sleep health. Irrespective of the cause, insufficient sleep adversely affects various bodily functions including energy metabolism, mood, and cognition. In this review, we will focus on the cognitive changes associated with inadequate sleep during normal aging and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Daniel Kroeger
- Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| |
Collapse
|
59
|
Baena D, Fang Z, Gibbings A, Smith D, Ray LB, Doyon J, Owen AM, Fogel SM. Functional differences in cerebral activation between slow wave-coupled and uncoupled sleep spindles. Front Neurosci 2023; 16:1090045. [PMID: 36741053 PMCID: PMC9889560 DOI: 10.3389/fnins.2022.1090045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Spindles are often temporally coupled to slow waves (SW). These SW-spindle complexes have been implicated in memory consolidation that involves transfer of information from the hippocampus to the neocortex. However, spindles and SW, which are characteristic of NREM sleep, can occur as part of this complex, or in isolation. It is not clear whether dissociable parts of the brain are recruited when coupled to SW vs. when spindles or SW occur in isolation. Here, we tested differences in cerebral activation time-locked to uncoupled spindles, uncoupled SW and coupled SW-spindle complexes using simultaneous EEG-fMRI. Consistent with the "active system model," we hypothesized that brain activations time-locked to coupled SW-spindles would preferentially occur in brain areas known to be critical for sleep-dependent memory consolidation. Our results show that coupled spindles and uncoupled spindles recruit distinct parts of the brain. Specifically, we found that hippocampal activation during sleep is not uniquely related to spindles. Rather, this process is primarily driven by SWs and SW-spindle coupling. In addition, we show that SW-spindle coupling is critical in the activation of the putamen. Importantly, SW-spindle coupling specifically recruited frontal areas in comparison to uncoupled spindles, which may be critical for the hippocampal-neocortical dialogue that preferentially occurs during sleep.
Collapse
Affiliation(s)
- Daniel Baena
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
| | - Zhuo Fang
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Aaron Gibbings
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
| | - Dylan Smith
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
| | - Laura B. Ray
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Julien Doyon
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Adrian M. Owen
- The Brain and Mind Institute, Western University, London, ON, Canada,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Stuart M. Fogel
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada,School of Psychology, University of Ottawa, Ottawa, ON, Canada,The Brain and Mind Institute, Western University, London, ON, Canada,Department of Physiology and Pharmacology, Western University, London, ON, Canada,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada,*Correspondence: Stuart M. Fogel,
| |
Collapse
|
60
|
Abstract
The restorative function of sleep is shaped by its duration, timing, continuity, subjective quality, and efficiency. Current sleep recommendations specify only nocturnal duration and have been largely derived from sleep self-reports that can be imprecise and miss relevant details. Sleep duration, preferred timing, and ability to withstand sleep deprivation are heritable traits whose expression may change with age and affect the optimal sleep prescription for an individual. Prevailing societal norms and circumstances related to work and relationships interact to influence sleep opportunity and quality. The value of allocating time for sleep is revealed by the impact of its restriction on behavior, functional brain imaging, sleep macrostructure, and late-life cognition. Augmentation of sleep slow oscillations and spindles have been proposed for enhancing sleep quality, but they inconsistently achieve their goal. Crafting bespoke sleep recommendations could benefit from large-scale, longitudinal collection of objective sleep data integrated with behavioral and self-reported data.
Collapse
Affiliation(s)
- Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
61
|
van Rijn E, Gouws A, Walker SA, Knowland VCP, Cairney SA, Gaskell MG, Henderson LM. Do naps benefit novel word learning? Developmental differences and white matter correlates. Cortex 2023; 158:37-60. [PMID: 36434978 DOI: 10.1016/j.cortex.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/04/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Memory representations of newly learned words undergo changes during nocturnal sleep, as evidenced by improvements in explicit recall and lexical integration (i.e., after sleep, novel words compete with existing words during online word recognition). Some studies have revealed larger sleep-benefits in children relative to adults. However, whether daytime naps play a similar facilitatory role is unclear. We investigated the effect of a daytime nap (relative to wake) on explicit memory (recall/recognition) and lexical integration (lexical competition) of newly learned novel words in young adults and children aged 10-12 years, also exploring white matter correlates of the pre- and post-nap effects of word learning in the child group with diffusion weighted MRI. In both age groups, a nap maintained explicit memory of novel words and wake led to forgetting. However, there was an age group interaction when comparing change in recall over the nap: children showed a slight improvement whereas adults showed a slight decline. There was no evidence of lexical integration at any point. Although children spent proportionally more time in slow-wave sleep (SWS) than adults, neither SWS nor spindle parameters correlated with over-nap changes in word learning. For children, increased fractional anisotropy (FA) in the uncinate fasciculus and arcuate fasciculus were associated with the recognition of novel words immediately after learning, and FA in the right arcuate fasciculus was further associated with changes in recall of novel words over a nap, supporting the importance of these tracts in the word learning and consolidation process. These findings point to a protective role of naps in word learning (at least under the present conditions), and emphasize the need to better understand both the active and passive roles that sleep plays in supporting vocabulary consolidation over development.
Collapse
Affiliation(s)
- E van Rijn
- Department of Psychology, University of York, York, United Kingdom.
| | - A Gouws
- Department of Psychology, University of York, York, United Kingdom.
| | - S A Walker
- Department of Psychology, University of York, York, United Kingdom.
| | - V C P Knowland
- Department of Psychology, University of York, York, United Kingdom.
| | - S A Cairney
- Department of Psychology, University of York, York, United Kingdom.
| | - M G Gaskell
- Department of Psychology, University of York, York, United Kingdom.
| | - L M Henderson
- Department of Psychology, University of York, York, United Kingdom.
| |
Collapse
|
62
|
Jackson A, Xu W. Role of cerebellum in sleep-dependent memory processes. Front Syst Neurosci 2023; 17:1154489. [PMID: 37143709 PMCID: PMC10151545 DOI: 10.3389/fnsys.2023.1154489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
The activities and role of the cerebellum in sleep have, until recently, been largely ignored by both the sleep and cerebellum fields. Human sleep studies often neglect the cerebellum because it is at a position in the skull that is inaccessible to EEG electrodes. Animal neurophysiology sleep studies have focussed mainly on the neocortex, thalamus and the hippocampus. However, recent neurophysiological studies have shown that not only does the cerebellum participate in the sleep cycle, but it may also be implicated in off-line memory consolidation. Here we review the literature on cerebellar activity during sleep and the role it plays in off-line motor learning, and introduce a hypothesis whereby the cerebellum continues to compute internal models during sleep that train the neocortex.
Collapse
Affiliation(s)
- Andrew Jackson
- Institute of Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wei Xu
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Wei Xu,
| |
Collapse
|
63
|
The effects of sleep disordered breathing on sleep spindle activity in children and the relationship with sleep, behavior and neurocognition. Sleep Med 2023; 101:468-477. [PMID: 36521367 DOI: 10.1016/j.sleep.2022.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
STUDY OBJECTIVES Obstructive sleep disordered breathing (SDB), has adverse neurocognitive and behavioral sequelae in children, despite conventional measures of sleep disruption being unaffected. There is growing evidence that sleep spindles may serve as a more sensitive marker of sleep quality. We investigated the relationship between sleep spindles and sleep fragmentation and neurocognition across the spectrum of SDB severity in children. METHODS Children 3-12 years old referred for clinical assessment of SDB and age matched control children from the community were recruited and underwent polysomnography. Sleep spindles were identified manually during N2 and N3 sleep. Spindle activity was characterised as spindle number, density (number of spindles/h) and intensity (spindle density x average spindle duration). Children completed a battery of tests assessing global intellectual ability, language, attention, visuospatial ability, sensorimotor skills, adaptive behaviors and skills and problem behaviors and emotional difficulties. RESULTS Children were grouped into control, Primary Snoring, Mild OSA and Moderate/severe OSA, N = 10/group. All measures of spindle activity were lower in the SDB groups compared to the Control children and this reached statistical significance for Mild OSA (p < 0.05 for all). Higher spindle indices were associated with better performance on executive function and visual ability assessments but poorer performance on auditory attention and communication skills. Higher spindle indices were associated with better behavior. CONCLUSION The reduced spindle activity observed in the children with SDB, particularly Mild OSA, indicates that sleep micro-architecture is disrupted and that this disruption may underpin the negative effects of SDB on attention, learning and memory.
Collapse
|
64
|
Uji M, Tamaki M. Sleep, learning, and memory in human research using noninvasive neuroimaging techniques. Neurosci Res 2022; 189:66-74. [PMID: 36572251 DOI: 10.1016/j.neures.2022.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 11/25/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
An accumulating body of evidence indicates that sleep is beneficial for learning and memory. Task performance improves significantly after a period that includes sleep, whereas a lack of sleep nullifies or impairs such improvements. Our current knowledge about sleep's role in learning and memory has been obtained based on studies that were conducted in both animal models and human subjects. Nevertheless, how sleep promotes learning and memory in humans is not fully understood. In this review, we overview our current understating of how sleep may contribute to learning and memory, covering different roles of non-rapid eye movement and rapid eye movement sleep. We then discuss cutting-edge advanced techniques that are currently available, including simultaneous functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) and simultaneous functional magnetic resonance spectroscopy (fMRS) and EEG measurements, and evaluate how these may contribute to advance the understanding of the role of sleep in human cognition. We also highlight the current limitations and challenges using these methods and discuss ways that may allow us to overcome these limitations.
Collapse
Affiliation(s)
- Makoto Uji
- RIKEN Center for Brain Science, Saitama 3510198, Japan
| | - Masako Tamaki
- RIKEN Center for Brain Science, Saitama 3510198, Japan; RIKEN Cluster for Pioneering Research, Saitama 3510198, Japan.
| |
Collapse
|
65
|
Mushtaq M, Marshall L, Bazhenov M, Mölle M, Martinetz T. Differential thalamocortical interactions in slow and fast spindle generation: A computational model. PLoS One 2022; 17:e0277772. [PMID: 36508417 PMCID: PMC9744318 DOI: 10.1371/journal.pone.0277772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022] Open
Abstract
Cortical slow oscillations (SOs) and thalamocortical sleep spindles are two prominent EEG rhythms of slow wave sleep. These EEG rhythms play an essential role in memory consolidation. In humans, sleep spindles are categorized into slow spindles (8-12 Hz) and fast spindles (12-16 Hz), with different properties. Slow spindles that couple with the up-to-down phase of the SO require more experimental and computational investigation to disclose their origin, functional relevance and most importantly their relation with SOs regarding memory consolidation. To examine slow spindles, we propose a biophysical thalamocortical model with two independent thalamic networks (one for slow and the other for fast spindles). Our modeling results show that fast spindles lead to faster cortical cell firing, and subsequently increase the amplitude of the cortical local field potential (LFP) during the SO down-to-up phase. Slow spindles also facilitate cortical cell firing, but the response is slower, thereby increasing the cortical LFP amplitude later, at the SO up-to-down phase of the SO cycle. Neither the SO rhythm nor the duration of the SO down state is affected by slow spindle activity. Furthermore, at a more hyperpolarized membrane potential level of fast thalamic subnetwork cells, the activity of fast spindles decreases, while the slow spindles activity increases. Together, our model results suggest that slow spindles may facilitate the initiation of the following SO cycle, without however affecting expression of the SO Up and Down states.
Collapse
Affiliation(s)
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, Lübeck, Germany
- University Clinic Hospital Schleswig Holstein, Lübeck, Germany
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Matthias Mölle
- Center for Brain, Behavior and Metabolism, Lübeck, Germany
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, Lübeck, Germany
- * E-mail:
| |
Collapse
|
66
|
Season is related to the slow wave and sigma activity of infants and toddlers. Sleep Med 2022; 100:364-377. [PMID: 36201888 DOI: 10.1016/j.sleep.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE/BACKGROUND Slow wave activity (SWA) and sigma frequency activity (SFA) are hallmarks of NREM sleep EEG and important indicators of neural plasticity, development of the central nervous system, and cognition. However, little is known about the factors that modulate these sleep EEG activities, especially in small children. PATIENTS/METHODS We analyzed the power spectral densities of SWA (1-4 Hz) and SFA range (10-15 Hz) from six EEG derivations of 56 infants (8 months) and 60 toddlers (24 months) during their all-night sleep and during the first and the last half of night sleep. The spectral values were compared between the four seasons. RESULTS In the spring group of infants, compared with the darker seasons, SFA was lower in the centro-occipital EEG derivations during both halves of the night. The SWA findings of the infants were restricted to the last half of the night (SWA2) and frontally, where SWA2 was higher during winter than spring. The toddlers presented less frontal SWA2 during winter compared with autumn. Both age groups showed a reduction in both SWA and SFA towards the last half of the night. CONCLUSIONS The sleep EEG spectral power densities are more often associated with seasons in infants' SFA range. The results might stem from seasonally changing light exposure, but the exact mechanism warrants further study. Moreover, contrary to the adult-like increment of SFA, the SFA at both ages was lower at the last part of the night sleep. This suggests different regulation of spindle activity in infants and toddlers.
Collapse
|
67
|
Baena D, Fang Z, Ray LB, Owen AM, Fogel SM. Brain activations time locked to slow wave-coupled sleep spindles correlates with intellectual abilities. Cereb Cortex 2022; 33:5409-5419. [PMID: 36336346 DOI: 10.1093/cercor/bhac428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Sleep spindles (SP) are one of the few known electrophysiological neuronal biomarkers of interindividual differences in cognitive abilities and aptitudes. Recent simultaneous electroencephalography with functional magnetic resonance imaging (EEG-fMRI) studies suggest that the magnitude of the activation of brain regions recruited during spontaneous spindle events is specifically related to Reasoning abilities. However, it is not known if the relationship with cognitive abilities differs between uncoupled spindles, uncoupled slow waves (SW), and coupled SW–SP complexes, nor have the functional-neuroanatomical substrates that support this relationship been identified. Here, we investigated the functional significance of activation of brain areas recruited during SW-coupled spindles, uncoupled spindles, and uncoupled slow waves. We hypothesize that brain activations time locked to SW-coupled spindle complexes will be primarily associated to Reasoning abilities, especially in subcortical areas. Our results provide direct evidence that the relationship between Reasoning abilities and sleep spindles depends on spindle coupling status. Specifically, we found that the putamen and thalamus, recruited during coupled SW–SP events were positively correlated with Reasoning abilities. In addition, we found a negative association between Reasoning abilities and hippocampal activation time-locked to uncoupled SWs that might reflect a refractory mechanism in the absence of new, intensive hippocampal-dependent memory processing.
Collapse
Affiliation(s)
- Daniel Baena
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal , Ontario K1Z 7K4, Ottawa, Canada
| | - Zhuo Fang
- School of Psychology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Laura B Ray
- School of Psychology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Adrian M Owen
- The Brain & Mind Institute, Western University , London, Ontario N6A 5B7, Canada
- Department of Physiology and Pharmacology and Department of Psychology, Western University , London, Ontario N6A 5C1, Canada
| | - Stuart M Fogel
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal , Ontario K1Z 7K4, Ottawa, Canada
- School of Psychology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
- University of Ottawa, Brain & Mind Research Institute , Ontario K1N 6N5, Ottawa, Canada
- The Brain & Mind Institute, Western University , London, Ontario N6A 5B7, Canada
| |
Collapse
|
68
|
Electrophysiological markers of memory consolidation in the human brain when memories are reactivated during sleep. Proc Natl Acad Sci U S A 2022; 119:e2123430119. [PMID: 36279460 PMCID: PMC9636913 DOI: 10.1073/pnas.2123430119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sleep contributes to memory consolidation, we presume, because memories are replayed during sleep. Understanding this aspect of consolidation can help with optimizing normal learning in many contexts and with treating memory disorders and other diseases. Here, we systematically manipulated sleep-based processing using targeted memory reactivation; brief sounds coupled with presleep learning were quietly presented again during sleep, producing 1) recall improvements for specific spatial memories associated with those sounds and 2) physiological responses in the sleep electroencephalogram. Neural activity in the hippocampus and adjacent medial temporal cortex was thus found in association with memory consolidation during sleep. These findings advance understanding of consolidation by linking beneficial memory changes during sleep to both memory reactivation and specific patterns of brain activity. Human accomplishments depend on learning, and effective learning depends on consolidation. Consolidation is the process whereby new memories are gradually stored in an enduring way in the brain so that they can be available when needed. For factual or event knowledge, consolidation is thought to progress during sleep as well as during waking states and to be mediated by interactions between hippocampal and neocortical networks. However, consolidation is difficult to observe directly but rather is inferred through behavioral observations. Here, we investigated overnight memory change by measuring electrical activity in and near the hippocampus. Electroencephalographic (EEG) recordings were made in five patients from electrodes implanted to determine whether a surgical treatment could relieve their seizure disorders. One night, while each patient slept in a hospital monitoring room, we recorded electrophysiological responses to 10 to 20 specific sounds that were presented very quietly, to avoid arousal. Half of the sounds had been associated with objects and their precise spatial locations that patients learned before sleep. After sleep, we found systematic improvements in spatial recall, replicating prior results. We assume that when the sounds were presented during sleep, they reactivated and strengthened corresponding spatial memories. Notably, the sounds also elicited oscillatory intracranial EEG activity, including increases in theta, sigma, and gamma EEG bands. Gamma responses, in particular, were consistently associated with the degree of improvement in spatial memory exhibited after sleep. We thus conclude that this electrophysiological activity in the hippocampus and adjacent medial temporal cortex reflects sleep-based enhancement of memory storage.
Collapse
|
69
|
Ngo HVV, Staresina BP. Shaping overnight consolidation via slow-oscillation closed-loop targeted memory reactivation. Proc Natl Acad Sci U S A 2022; 119:e2123428119. [PMID: 36279449 PMCID: PMC9636934 DOI: 10.1073/pnas.2123428119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Sleep constitutes a privileged state for new memories to reactivate and consolidate. Previous work has demonstrated that consolidation can be bolstered experimentally either via delivery of reminder cues (targeted memory reactivation [TMR]) or via noninvasive brain stimulation geared toward enhancing endogenous sleep rhythms. Here, we combined both approaches, controlling the timing of TMR cues with respect to ongoing slow-oscillation (SO) phases. Prior to sleep, participants learned associations between unique words and a set of repeating images (e.g., car) while hearing a prototypical image sound (e.g., engine starting). Memory performance on an immediate test vs. a test the next morning quantified overnight memory consolidation. Importantly, two image sounds were designated as TMR cues, with one cue delivered at SO UP states and the other delivered at SO DOWN states. A novel sound was used as a TMR control condition. Behavioral results revealed a significant reduction of overnight forgetting for words associated with UP-state TMR compared with words associated with DOWN-state TMR. Electrophysiological results showed that UP-state cueing led to enhancement of the ongoing UP state and was followed by greater spindle power than DOWN-state cueing. Moreover, UP-state (and not DOWN-state) cueing led to reinstatement of target image representations. Together, these results unveil the behavioral and mechanistic effects of delivering reminder cues at specific phases of endogenous sleep rhythms and mark an important step for the endeavor to experimentally modulate memories during sleep.
Collapse
Affiliation(s)
- Hong-Viet V. Ngo
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Centre for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Bernhard P. Staresina
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 9DU, United Kingdom
- School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
70
|
Bernhard H, Schaper FLWVJ, Janssen MLF, Gommer ED, Jansma BM, Van Kranen-Mastenbroek V, Rouhl RPW, de Weerd P, Reithler J, Roberts MJ. Spatiotemporal patterns of sleep spindle activity in human anterior thalamus and cortex. Neuroimage 2022; 263:119625. [PMID: 36103955 DOI: 10.1016/j.neuroimage.2022.119625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022] Open
Abstract
Sleep spindles (8 - 16 Hz) are transient electrophysiological events during non-rapid eye movement sleep. While sleep spindles are routinely observed in the cortex using scalp electroencephalography (EEG), recordings of their thalamic counterparts have not been widely studied in humans. Based on a few existing studies, it has been hypothesized that spindles occur as largely local phenomena. We investigated intra-thalamic and thalamocortical spindle co-occurrence, which may underlie thalamocortical communication. We obtained scalp EEG and thalamic recordings from 7 patients that received bilateral deep brain stimulation (DBS) electrodes to the anterior thalamus for the treatment of drug resistant focal epilepsy. Spindles were categorized into subtypes based on their main frequency (i.e., slow (10±2 Hz) or fast (14±2 Hz)) and their level of thalamic involvement (spanning one channel, or spreading uni- or bilaterally within the thalamus). For the first time, we contrasted observed spindle patterns with permuted data to estimate random spindle co-occurrence. We found that multichannel spindle patterns were systematically coordinated at the thalamic and thalamocortical level. Importantly, distinct topographical patterns of thalamocortical spindle overlap were associated with slow and fast subtypes of spindles. These observations provide further evidence for coordinated spindle activity in thalamocortical networks.
Collapse
Affiliation(s)
- Hannah Bernhard
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Centre for Integrative Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Frederic L W V J Schaper
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's hospital, Harvard Medical School, Boston, United States
| | - Marcus L F Janssen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Erik D Gommer
- Academic Center for Epileptology Kempenhaeghe/MUMC+ Maastricht and Heeze, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Bernadette M Jansma
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands
| | - Vivianne Van Kranen-Mastenbroek
- Academic Center for Epileptology Kempenhaeghe/MUMC+ Maastricht and Heeze, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands; Academic Center for Epileptology Kempenhaeghe/MUMC+ Maastricht and Heeze, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Peter de Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands
| | - Joel Reithler
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
71
|
Ilhan-Bayrakcı M, Cabral-Calderin Y, Bergmann TO, Tüscher O, Stroh A. Individual slow wave events give rise to macroscopic fMRI signatures and drive the strength of the BOLD signal in human resting-state EEG-fMRI recordings. Cereb Cortex 2022; 32:4782-4796. [PMID: 35094045 PMCID: PMC9627041 DOI: 10.1093/cercor/bhab516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 08/19/2024] Open
Abstract
The slow wave state is a general state of quiescence interrupted by sudden bursts of activity or so-called slow wave events (SWEs). Recently, the relationship between SWEs and blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals was assessed in rodent models which revealed cortex-wide BOLD activation. However, it remains unclear which macroscopic signature corresponds to these specific neurophysiological events in the human brain. Therefore, we analyzed simultaneous electroencephalographic (EEG)-fMRI data during human non-REM sleep. SWEs individually detected in the EEG data were used as predictors in event-related fMRI analyses to examine the relationship between SWEs and fMRI signals. For all 10 subjects we identified significant changes in BOLD activity associated with SWEs covering substantial parts of the gray matter. As demonstrated in rodents, we observed a direct relation of a neurophysiological event to specific BOLD activation patterns. We found a correlation between the number of SWEs and the spatial extent of these BOLD activation patterns and discovered that the amplitude of the BOLD response strongly depends on the SWE amplitude. As altered SWE propagation has recently been found in neuropsychiatric diseases, it is critical to reveal the brain's physiological slow wave state networks to potentially establish early imaging biomarkers for various diseases long before disease onset.
Collapse
Affiliation(s)
- Merve Ilhan-Bayrakcı
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Yuranny Cabral-Calderin
- Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, 60322 Frankfurt, Germany
| | - Til Ole Bergmann
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Oliver Tüscher
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Albrecht Stroh
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
72
|
Roebber JK, Lewis PA, Crunelli V, Navarrete M, Hamandi K. Effects of Anti-Seizure Medication on Sleep Spindles and Slow Waves in Drug-Resistant Epilepsy. Brain Sci 2022; 12:1288. [PMID: 36291222 PMCID: PMC9599317 DOI: 10.3390/brainsci12101288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 09/23/2023] Open
Abstract
There is a close bidirectional relationship between sleep and epilepsy. Anti-seizure medications (ASM) act to reduce seizure frequency but can also impact sleep; this remains a relatively unexplored field given the importance of sleep on seizure occurrence, memory consolidation, and quality of life. We compared the effect of poly-ASM treatment on a night of sleep compared to an unmedicated night in patients with drug-resistant epilepsy, where ASMs were withdrawn and later restored as part of their pre-surgical evaluation. Within-subject analysis between medicated and unmedicated nights showed ASMs increased spindle (11-16 Hz) power and decreased slow wave (0.1-2 Hz) amplitude. Spindles became less strongly coupled to slow waves in the ASM night compared to no-ASM night, with effects to both the phase and strength of coupling and correlated with slow wave reduction. These effects were not seen in age-matched controls from the same unit where ASMs were not changed between two nights. Overall, we found that ASM polytherapy not only changed specific sleep waveforms, but also the fine interplay of spindle/slow wave coupling. Since these sleep oscillations impact both seizure occurrence and memory consolidation, our findings provide evidence towards a decoupling impact of ASMs on sleep that should be considered in future studies of sleep and memory disruption in people with epilepsy.
Collapse
Affiliation(s)
- Jennifer K. Roebber
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| | - Penelope A. Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
73
|
Alizadeh Z, Azimi A, Ghorbani M. Enhancement of Hippocampal-Thalamocortical Temporal Coordination during Slow-Frequency Long-Duration Anterior Thalamic Spindles. J Neurosci 2022; 42:7222-7243. [PMID: 35970563 PMCID: PMC9512580 DOI: 10.1523/jneurosci.2515-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Temporal nesting of cortical slow oscillations, thalamic spindles, and hippocampal ripples indicates multiregional neuronal interactions required for memory consolidation. However, how the thalamic activity during spindles organizes hippocampal dynamics remains largely undetermined. We analyzed simultaneous recordings of anterodorsal thalamus and CA1 in male mice to determine the contribution of thalamic spindles in cross-regional synchronization. Our results indicated that temporal hippocampo-thalamocortical coupling was more enhanced during slower and longer thalamic spindles. Additionally, spindles occurring closer to slow oscillation trough were more strongly coupled to ripples. We found that the temporal association between CA1 spiking/ripples and thalamic spindles was stronger following spatial exploration compared with baseline sleep. We further developed a hippocampal-thalamocortical model to explain the mechanism underlying the duration and frequency-dependent coupling of thalamic spindles to hippocampal activity. Our findings shed light on our understanding of the functional role of thalamic activity during spindles on multiregional information transfer.SIGNIFICANCE STATEMENT The contribution of thalamic spindles with differential properties to cross-regional synchronization and information transfer still remains poorly understood. Using simultaneous anterodorsal thalamic and hippocampal recordings from naturally sleeping mice before and after exploration, we found strong coupling of CA1 units to anterodorsal thalamic spindles and increase of this coupling following spatial experience. We further showed that the temporal coupling of CA1 units and hippocampal ripples with thalamic spindles and the spindle-associated modulation of CA1 units with ripples were stronger for spindles with slower frequency of oscillations. Our experimental as well as computational findings using a hippocampal-thalamocortical model provide the first demonstration that spindle frequency and duration can provide valuable information about the underlying multiregional interactions essential for memory consolidation computations.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran
| | - Amin Azimi
- Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan, 45137-66731, Iran
| | - Maryam Ghorbani
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran
- Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran
| |
Collapse
|
74
|
Mizrahi-Kliger AD, Kaplan A, Israel Z, Bergman H. Entrainment to sleep spindles reflects dissociable patterns of connectivity between cortex and basal ganglia. Cell Rep 2022; 40:111367. [PMID: 36130495 DOI: 10.1016/j.celrep.2022.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/20/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Sleep spindles are crucial for learning in the cortex and basal ganglia (BG) because they facilitate the reactivation of previously active neuronal ensembles. Studying field potentials (FPs) and spiking in the cortex and BG during sleep in non-human primates following pre-sleep learning, we show that FP sleep spindles are widespread in the BG and are similar to cortical spindles in morphology, spectral content, and response to the pre-sleep task. Further, BG spindles are concordant with electroencephalogram (EEG) spindles and associated with increased cortico-BG correlation. However, spindles across the BG differ markedly in their entrainment of local spiking. The spiking activity of striatal projection neurons exhibits consistent phase locking to striatal and EEG spindles, producing phase windows of peaked cross-region spindling. In contrast, firing in other BG nuclei is not entrained to either local or EEG sleep spindles. These results suggest corticostriatal synapses as the main hub for offline cortico-BG communication.
Collapse
Affiliation(s)
- Aviv D Mizrahi-Kliger
- Department of Neurobiology, Institute of Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel.
| | - Alexander Kaplan
- Department of Neurobiology, Institute of Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, 9190401 Jerusalem, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University Hospital, 9112001 Jerusalem, Israel
| | - Hagai Bergman
- Department of Neurobiology, Institute of Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, 9190401 Jerusalem, Israel; Department of Neurosurgery, Hadassah University Hospital, 9112001 Jerusalem, Israel
| |
Collapse
|
75
|
Koo-Poeggel P, Neuwerk S, Petersen E, Grasshoff J, Mölle M, Martinetz T, Marshall L. Closed-loop acoustic stimulation during an afternoon nap to modulate subsequent encoding. J Sleep Res 2022; 31:e13734. [PMID: 36123957 DOI: 10.1111/jsr.13734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022]
Abstract
Sleep is able to contribute not only to memory consolidation, but also to post-sleep learning. The notion exists that either synaptic downscaling or another process during sleep increase post-sleep learning capacity. A correlation between augmentation of the sleep slow oscillation and hippocampal activation at encoding support the contribution of sleep to encoding of declarative memories. In the present study, the effect of closed-loop acoustic stimulation during an afternoon nap on post-sleep encoding of two verbal (word pairs, verbal learning and memory test) and non-verbal (figural pairs) tasks and on electroencephalogram during sleep and learning were investigated in young healthy adults (N = 16). Closed-loop acoustic stimulation enhanced slow oscillatory and spindle activity, but did not affect encoding at the group level. Subgroup analyses and comparisons with similar studies lead us to the tentative conclusion that further parameters such as time of day and subjects' cognitive ability influenced responses to closed-loop acoustic stimulation.
Collapse
Affiliation(s)
- Ping Koo-Poeggel
- Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
| | - Soé Neuwerk
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
| | - Eike Petersen
- Institute for Electrical and Engineering in Medicine, University of Luebeck, Luebeck, Germany.,DTU Compute, Technical University of Denmark, Denmark
| | - Jan Grasshoff
- Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany
| | - Matthias Mölle
- Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, University of Luebeck, Luebeck, Germany
| | - Lisa Marshall
- Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
| |
Collapse
|
76
|
Sákovics A, Csukly G, Borbély C, Virág M, Kelemen A, Bódizs R, Erőss L, Fabó D. Prolongation of cortical sleep spindles during hippocampal interictal epileptiform discharges in epilepsy patients. Epilepsia 2022; 63:2256-2268. [PMID: 35723195 PMCID: PMC9796153 DOI: 10.1111/epi.17337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Memory deficits are frequent among patients with epilepsies affecting the temporal lobe. Hippocampal interictal epileptic discharges (hIEDs), the presumed epileptic exaggeration of sharp wave-ripples (SWRs), are known to contribute to memory dysfunction, but the potential underlying mechanism is unknown. The precise temporal coordination between hippocampal SWRs and corticothalamic spindles during sleep is critical for memory consolidation. Moreover, previous investigation indicated that hIEDs induce neocortical spindlelike oscillation. In the present study, we aimed to assess the influence of hIEDs on neocortical spindles. METHODS We analyzed the spindle characteristics (duration, amplitude, frequency) of 21 epilepsy patients implanted with foramen ovale (FO) electrodes during a whole night sleep. Scalp sleep spindles were categorized based on their temporal relationship to hIEDs detected on the FO electrodes. Three groups were created: (1) spindles coinciding with hIEDs, (2) spindles "induced" by hIEDs, and (3) spindles without hIED co-occurrence. RESULTS We found that spindles co-occurring with hIEDs had altered characteristics in all measured properties, lasted longer by 126 ± 48 ms (mean ± SD), and had higher amplitude by 3.4 ± 3.2 μV, and their frequency range shifted toward the higher frequencies within the 13-15-Hz range. Also, hIED-induced spindles had identical oscillatory properties to spindles without any temporal relationships with hIEDs. In more than half of our subjects, clear temporal coherence was revealed between hIEDs and spindles, but the direction of the coupling was patient-specific. SIGNIFICANCE We investigated the effect of hippocampal IEDs on neocortical spindle activity and found spindle alterations in cases of spindle-hIED co-occurrence, but not in cases of hIED-initiated spindles. We propose that this is a marker of a pathologic process, where IEDs may have direct effect on spindle generation. It could mark a potential mechanism whereby IEDs disrupt memory processes, and also provide a potential therapeutic target to treat memory disturbances in epilepsy.
Collapse
Affiliation(s)
- Anna Sákovics
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary,School of PhDSemmelweis UniversityBudapestHungary
| | - Gábor Csukly
- Department of Psychiatry and PsychotherapySemmelweis UniversityBudapestHungary
| | - Csaba Borbély
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| | - Márta Virág
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| | - Anna Kelemen
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary,András Pető FacultySemmelweis UniversityBudapestHungary
| | - Róbert Bódizs
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary,Institute of Behavioral SciencesSemmelweis UniversityBudapestHungary
| | - Loránd Erőss
- Department of Functional NeurosurgeryNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| | - Dániel Fabó
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| |
Collapse
|
77
|
Donnelly NA, Bartsch U, Moulding HA, Eaton C, Marston H, Hall JH, Hall J, Owen MJ, van den Bree MBM, Jones MW. Sleep EEG in young people with 22q11.2 deletion syndrome: A cross-sectional study of slow-waves, spindles and correlations with memory and neurodevelopmental symptoms. eLife 2022; 11:e75482. [PMID: 36039635 PMCID: PMC9477499 DOI: 10.7554/elife.75482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background Young people living with 22q11.2 Deletion Syndrome (22q11.2DS) are at increased risk of schizophrenia, intellectual disability, attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). In common with these conditions, 22q11.2DS is also associated with sleep problems. We investigated whether abnormal sleep or sleep-dependent network activity in 22q11.2DS reflects convergent, early signatures of neural circuit disruption also evident in associated neurodevelopmental conditions. Methods In a cross-sectional design, we recorded high-density sleep EEG in young people (6-20 years) with 22q11.2DS (n=28) and their unaffected siblings (n=17), quantifying associations between sleep architecture, EEG oscillations (spindles and slow waves) and psychiatric symptoms. We also measured performance on a memory task before and after sleep. Results 22q11.2DS was associated with significant alterations in sleep architecture, including a greater proportion of N3 sleep and lower proportions of N1 and REM sleep than in siblings. During sleep, deletion carriers showed broadband increases in EEG power with increased slow-wave and spindle amplitudes, increased spindle frequency and density, and stronger coupling between spindles and slow-waves. Spindle and slow-wave amplitudes correlated positively with overnight memory in controls, but negatively in 22q11.2DS. Mediation analyses indicated that genotype effects on anxiety, ADHD and ASD were partially mediated by sleep EEG measures. Conclusions This study provides a detailed description of sleep neurophysiology in 22q11.2DS, highlighting alterations in EEG signatures of sleep which have been previously linked to neurodevelopment, some of which were associated with psychiatric symptoms. Sleep EEG features may therefore reflect delayed or compromised neurodevelopmental processes in 22q11.2DS, which could inform our understanding of the neurobiology of this condition and be biomarkers for neuropsychiatric disorders. Funding This research was funded by a Lilly Innovation Fellowship Award (UB), the National Institute of Mental Health (NIMH 5UO1MH101724; MvdB), a Wellcome Trust Institutional Strategic Support Fund (ISSF) award (MvdB), the Waterloo Foundation (918-1234; MvdB), the Baily Thomas Charitable Fund (2315/1; MvdB), MRC grant Intellectual Disability and Mental Health: Assessing Genomic Impact on Neurodevelopment (IMAGINE) (MR/L011166/1; JH, MvdB and MO), MRC grant Intellectual Disability and Mental Health: Assessing Genomic Impact on Neurodevelopment 2 (IMAGINE-2) (MR/T033045/1; MvdB, JH and MO); Wellcome Trust Strategic Award 'Defining Endophenotypes From Integrated Neurosciences' Wellcome Trust (100202/Z/12/Z MO, JH). NAD was supported by a National Institute for Health Research Academic Clinical Fellowship in Mental Health and MWJ by a Wellcome Trust Senior Research Fellowship in Basic Biomedical Science (202810/Z/16/Z). CE and HAM were supported by Medical Research Council Doctoral Training Grants (C.B.E. 1644194, H.A.M MR/K501347/1). HMM and UB were employed by Eli Lilly & Co during the study; HMM is currently an employee of Boehringer Ingelheim Pharma GmbH & Co KG. The views and opinions expressed are those of the author(s), and not necessarily those of the NHS, the NIHR or the Department of Health funders.
Collapse
Affiliation(s)
- Nicholas A Donnelly
- Centre for Academic Mental Health, University of Bristol, Bristol, United Kingdom
- Avon and Wiltshire Partnership NHS Mental Health Trust, Avon, United Kingdom
| | - Ullrich Bartsch
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Translational Neuroscience, Eli Lilly, Windlesham, United States
| | - Hayley A Moulding
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Christopher Eaton
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Hugh Marston
- Translational Neuroscience, Eli Lilly, Windlesham, United States
| | - Jessica H Hall
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Marianne B M van den Bree
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
78
|
Bukhtiyarova O, Chauvette S, Seigneur J, Timofeev I. Brain states in freely behaving marmosets. Sleep 2022; 45:6586531. [PMID: 35576961 PMCID: PMC9366652 DOI: 10.1093/sleep/zsac106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Study Objectives We evaluated common marmosets as a perspective animal model to study human sleep and wake states. Methods Using wireless neurologger recordings, we performed longitudinal multichannel local field potential (LFP) cortical, hippocampal, neck muscle, and video recordings in three freely behaving marmosets. The brain states were formally identified using self-organizing maps. Results Marmosets were generally awake during the day with occasional 1–2 naps, and they slept during the night. Major electrographic patterns fall in five clearly distinguished categories: wakefulness, drowsiness, light and deep NREM sleep, and REM. Marmosets typically had 14–16 sleep cycles per night, with either gradually increasing or relatively low, but stable delta power within the cycle. Overall, the delta power decreased throughout the night sleep. Marmosets demonstrated prominent high amplitude somatosensory mu-rhythm (10–15 Hz), accompanied with neocortical ripples, and alternated with occipital alpha rhythm (10–15 Hz). NREM sleep was characterized with the presence of high amplitude slow waves, sleep spindles and ripples in neocortex, and sharp-wave-ripple complexes in CA1. Light and deep stages differed in levels of delta and sigma power and muscle tone. REM sleep was defined with low muscle tone and activated LFP with predominant beta-activity and rare spindle-like or mu-like events. Conclusions Multiple features of sleep–wake state distribution and electrographic patterns associated with behavioral states in marmosets closely match human states, although marmoset have shorter sleep cycles. This demonstrates that marmosets represent an excellent model to study origin of human electrographical rhythms and brain states.
Collapse
Affiliation(s)
- Olga Bukhtiyarova
- Department of Psychiatry and Neuroscience, School of Medicine, Université Laval , Québec (Québec) , Canada
- CERVO Brain Research Centre , Québec (Québec) , Canada
| | | | | | - Igor Timofeev
- Department of Psychiatry and Neuroscience, School of Medicine, Université Laval , Québec (Québec) , Canada
- CERVO Brain Research Centre , Québec (Québec) , Canada
| |
Collapse
|
79
|
Malerba P, Whitehurst L, Mednick SC. The space-time profiles of sleep spindles and their coordination with slow oscillations on the electrode manifold. Sleep 2022; 45:6603295. [PMID: 35666552 PMCID: PMC9366646 DOI: 10.1093/sleep/zsac132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep spindles are important for sleep quality and cognitive functions, with their coordination with slow oscillations (SOs) potentially organizing cross-region reactivation of memory traces. Here, we describe the organization of spindles on the electrode manifold and their relation to SOs. We analyzed the sleep night EEG of 34 subjects and detected spindles and SOs separately at each electrode. We compared spindle properties (frequency, duration, and amplitude) in slow wave sleep (SWS) and Stage 2 sleep (S2); and in spindles that coordinate with SOs or are uncoupled. We identified different topographical spindle types using clustering analysis that grouped together spindles co-detected across electrodes within a short delay (±300 ms). We then analyzed the properties of spindles of each type, and coordination to SOs. We found that SWS spindles are shorter than S2 spindles, and spindles at frontal electrodes have higher frequencies in S2 compared to SWS. Furthermore, S2 spindles closely following an SO (about 10% of all spindles) show faster frequency, shorter duration, and larger amplitude than uncoupled ones. Clustering identified Global, Local, Posterior, Frontal-Right and Left spindle types. At centro-parietal locations, Posterior spindles show faster frequencies compared to other types. Furthermore, the infrequent SO-spindle complexes are preferentially recruiting Global SO waves coupled with fast Posterior spindles. Our results suggest a non-uniform participation of spindles to complexes, especially evident in S2. This suggests the possibility that different mechanisms could initiate an SO-spindle complex compared to SOs and spindles separately. This has implications for understanding the role of SOs-spindle complexes in memory reactivation.
Collapse
Affiliation(s)
- Paola Malerba
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children’s Hospital , Columbus, OH , USA
- School of Medicine, The Ohio State University , Columbus, OH , USA
| | - Lauren Whitehurst
- Department of Psychology, University of Kentucky , Lexington, KY , USA
| | - Sara C Mednick
- Department of Cognitive Science, University of California Irvine , Irvine, CA , USA
| |
Collapse
|
80
|
Rubega M, Ciringione L, Bertuccelli M, Paramento M, Sparacino G, Vianello A, Masiero S, Vallesi A, Formaggio E, Del Felice A. High-density EEG sleep correlates of cognitive and affective impairment at 12-month follow-up after COVID-19. Clin Neurophysiol 2022; 140:126-135. [PMID: 35763985 PMCID: PMC9292469 DOI: 10.1016/j.clinph.2022.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Objective To disentangle the pathophysiology of cognitive/affective impairment in Coronavirus Disease-2019 (COVID-19), we studied long-term cognitive and affective sequelae and sleep high-density electroencephalography (EEG) at 12-month follow-up in people with a previous hospital admission for acute COVID-19. Methods People discharged from an intensive care unit (ICU) and a sub-intensive ward (nonICU) between March and May 2020 were contacted between March and June 2021. Participants underwent cognitive, psychological, and sleep assessment. High-density EEG recording was acquired during a nap. Slow and fast spindles density/amplitude/frequency and source reconstruction in brain gray matter were extracted. The relationship between psychological and cognitive findings was explored with Pearson correlation. Results We enrolled 33 participants ( 17 nonICU) and 12 controls. We observed a lower Physical Quality of Life index, higher post-traumatic stress disorder (PTSD) score, and a worse executive function performance in nonICU participants. Higher PTSD and Beck Depression Inventory scores correlated with lower executive performance. The same group showed a reorganization of spindle cortical generators. Conclusions Our results show executive and psycho-affective deficits and spindle alterations in COVID-19 survivors – especially in nonICU participants – after 12 months from discharge. Significance These findings may be suggestive of a crucial contribution of stress experienced during hospital admission on long-term cognitive functioning.
Collapse
Affiliation(s)
- Maria Rubega
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani, 3, Padova 35128, Italy.
| | - Luciana Ciringione
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani, 3, Padova 35128, Italy.
| | - Margherita Bertuccelli
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani, 3, Padova 35128, Italy; Padova Neuroscience Center, University of Padova, via Orus 2/B, Padova 35129, Italy.
| | - Matilde Paramento
- Department of Information Engineering, University of Padova, via Gradenigo 6/B, Padova 35131, Italy.
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, via Gradenigo 6/B, Padova 35131, Italy.
| | - Andrea Vianello
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, via Giustiniani, 2, Padova 35128, Italy.
| | - Stefano Masiero
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani, 3, Padova 35128, Italy; Padova Neuroscience Center, University of Padova, via Orus 2/B, Padova 35129, Italy.
| | - Antonino Vallesi
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani, 3, Padova 35128, Italy; Padova Neuroscience Center, University of Padova, via Orus 2/B, Padova 35129, Italy.
| | - Emanuela Formaggio
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani, 3, Padova 35128, Italy; Padova Neuroscience Center, University of Padova, via Orus 2/B, Padova 35129, Italy.
| | - Alessandra Del Felice
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani, 3, Padova 35128, Italy; Padova Neuroscience Center, University of Padova, via Orus 2/B, Padova 35129, Italy.
| |
Collapse
|
81
|
Lokhandwala S, Spencer RMC. Relations between sleep patterns early in life and brain development: A review. Dev Cogn Neurosci 2022; 56:101130. [PMID: 35779333 PMCID: PMC9254005 DOI: 10.1016/j.dcn.2022.101130] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/02/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Sleep supports healthy cognitive functioning in adults. Over the past decade, research has emerged advancing our understanding of sleep's role in cognition during development. Infancy and early childhood are marked by unique changes in sleep physiology and sleep patterns as children transition from biphasic to monophasic sleep. Growing evidence suggests that, during development, there are parallel changes in sleep and the brain and that sleep may modulate brain structure and activity and vice versa. In this review, we survey studies of sleep and brain development across childhood. By summarizing these findings, we provide a unique understanding of the importance of healthy sleep for healthy brain and cognitive development. Moreover, we discuss gaps in our understanding, which will inform future research.
Collapse
Affiliation(s)
- Sanna Lokhandwala
- Department of Psychological & Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States; Developmental Sciences Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Rebecca M C Spencer
- Department of Psychological & Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States; Developmental Sciences Program, University of Massachusetts Amherst, Amherst, MA, United States; Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States; Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
82
|
Katsuki F, Gerashchenko D, Brown RE. Alterations of sleep oscillations in Alzheimer's disease: A potential role for GABAergic neurons in the cortex, hippocampus, and thalamus. Brain Res Bull 2022; 187:181-198. [PMID: 35850189 DOI: 10.1016/j.brainresbull.2022.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Sleep abnormalities are widely reported in patients with Alzheimer's disease (AD) and are linked to cognitive impairments. Sleep abnormalities could be potential biomarkers to detect AD since they are often observed at the preclinical stage. Moreover, sleep could be a target for early intervention to prevent or slow AD progression. Thus, here we review changes in brain oscillations observed during sleep, their connection to AD pathophysiology and the role of specific brain circuits. Slow oscillations (0.1-1 Hz), sleep spindles (8-15 Hz) and their coupling during non-REM sleep are consistently reduced in studies of patients and in AD mouse models although the timing and magnitude of these alterations depends on the pathophysiological changes and the animal model studied. Changes in delta (1-4 Hz) activity are more variable. Animal studies suggest that hippocampal sharp-wave ripples (100-250 Hz) are also affected. Reductions in REM sleep amount and slower oscillations during REM are seen in patients but less consistently in animal models. Thus, changes in a variety of sleep oscillations could impact sleep-dependent memory consolidation or restorative functions of sleep. Recent mechanistic studies suggest that alterations in the activity of GABAergic neurons in the cortex, hippocampus and thalamic reticular nucleus mediate sleep oscillatory changes in AD and represent a potential target for intervention. Longitudinal studies of the timing of AD-related sleep abnormalities with respect to pathology and dysfunction of specific neural networks are needed to identify translationally relevant biomarkers and guide early intervention strategies to prevent or delay AD progression.
Collapse
Affiliation(s)
- Fumi Katsuki
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA.
| | - Dmitry Gerashchenko
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA
| | - Ritchie E Brown
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA
| |
Collapse
|
83
|
Abstract
Sleep spindles are the hallmark of N2 sleep and are attributed a key role in cognition. Little is known about the impact of epilepsy on sleep oscillations underlying sleep-related functions. This study assessed changes in the global spindle rate in patients with epilepsy, analysed the distribution of spindles in relation to the epileptic focus, and performed correlations with neurocognitive function. Twenty-one patients with drug-resistant focal epilepsy (12 females; mean age 32.6 ± 10.7 years [mean ± SD]) and 12 healthy controls (3 females; 24.5 ± 3.3 years) underwent combined whole-night high-density electroencephalography and polysomnography. Global spindle rates during N2 were lower in epilepsy patients compared to controls (mean = 5.78/min ± 0.72 vs. 6.49/min ± 0.71, p = 0.02, d = − 0.70). Within epilepsy patients, spindle rates were lower in the region of the epileptic focus compared to the contralateral region (median = 4.77/min [range 2.53–6.18] vs. 5.26/min [2.53–6.56], p = 0.02, rank biserial correlation RC = − 0.57). This decrease was driven by fast spindles (12–16 Hz) (1.50/min [0.62–4.08] vs. 1.65/min [0.51–4.28], p = 0.002, RC = − 0.76). The focal reduction in spindles was negatively correlated with two scales of attention (r = − 0.54, p = 0.01; r = − 0.51, p = 0.025). Patients with focal epilepsy show a reduction in global and local spindle rates dependent on the region of the epileptic focus. This may play a role in impaired cognitive functioning. Future work will show if the local reduction in spindles can be used as potential marker of the epileptic focus.
Collapse
|
84
|
Niknazar H, Malerba P, Mednick SC. Slow oscillations promote long-range effective communication: The key for memory consolidation in a broken-down network. Proc Natl Acad Sci U S A 2022; 119:e2122515119. [PMID: 35733258 PMCID: PMC9245646 DOI: 10.1073/pnas.2122515119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/28/2022] [Indexed: 12/05/2022] Open
Abstract
A prominent and robust finding in cognitive neuroscience is the strengthening of memories during nonrapid eye movement (NREM) sleep, with slow oscillations (SOs;<1Hz) playing a critical role in systems-level consolidation. However, NREM generally shows a breakdown in connectivity and reduction of synaptic plasticity with increasing depth: a brain state seemingly unfavorable to memory consolidation. Here, we present an approach to address this apparent paradox that leverages an event-related causality measure to estimate directional information flow during NREM in epochs with and without SOs. Our results confirm that NREM is generally a state of dampened neural communication but reveals that SOs provide two windows of enhanced large-scale communication before and after the SO trough. These peaks in communication are significantly higher when SOs are coupled with sleep spindles compared with uncoupled SOs. To probe the functional relevance of these SO-selective peaks of information flow, we tested the temporal and topographic conditions that predict overnight episodic memory improvement. Our results show that global, long-range communication during SOs promotes sleep-dependent systems consolidation of episodic memories. A significant correlation between peaks of information flow and memory improvement lends predictive validity to our measurements of effective connectivity. In other words, we were able to predict memory improvement based on independent electrophysiological observations during sleep. This work introduces a noninvasive approach to understanding information processing during sleep and provides a mechanism for how systems-level brain communication can occur during an otherwise low connectivity sleep state. In short, SOs are a gating mechanism for large-scale neural communication, a necessary substrate for systems consolidation and long-term memory formation.
Collapse
Affiliation(s)
- Hamid Niknazar
- Department of Cognitive Sciences, University of California, Irvine, CA 92697
| | - Paola Malerba
- The Ohio State University School of Medicine, Columbus, OH 43215
- Center for Biobehavioral Health, Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Sara C. Mednick
- Department of Cognitive Sciences, University of California, Irvine, CA 92697
| |
Collapse
|
85
|
Jones MR, Brandner AJ, Vendruscolo LF, Vendruscolo JCM, Koob GF, Schmeichel BE. Effects of Alcohol Withdrawal on Sleep Macroarchitecture and Microarchitecture in Female and Male Rats. Front Neurosci 2022; 16:838486. [PMID: 35757544 PMCID: PMC9226367 DOI: 10.3389/fnins.2022.838486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
The prevalence of sleep disruptions is higher among people with alcohol use disorder (AUD), particularly during alcohol withdrawal, compared to non-AUD individuals. Although women generally have a higher risk of developing sleep disorders, few studies have investigated sex differences in sleep disruptions following chronic alcohol exposure. The present study examined sleep macroarchitecture (time spent asleep or awake and sleep onset latency) and microarchitecture (bout rate and duration and sleep spindle characterization) prior to alcohol vapor exposure (baseline), during acute withdrawal, and through protracted abstinence in female and male rats. Females and males showed reduced time in rapid eye movement (REM) sleep during acute withdrawal, which returned to baseline levels during protracted abstinence. REM sleep onset latency was decreased during protracted abstinence in females only. Furthermore, there was a sex difference observed in overall REM sleep bout rate. Although there were no changes in non-REM sleep time, or to non-REM sleep bout rate or duration, there was an increase in non-REM sleep intra-spindle frequency during acute withdrawal in both females and males. Finally, there was increased wakefulness time and bout duration during acute withdrawal in both females and males. The results demonstrate both macroarchitectural and microarchitectural changes in sleep following chronic alcohol exposure, particularly during acute withdrawal, suggesting the need for therapeutic interventions for sleep disturbances during withdrawal in individuals with AUD. Furthermore, sex differences were observed in REM sleep, highlighting the importance of including both sexes in future alcohol-related sleep studies.
Collapse
Affiliation(s)
- Marissa R Jones
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Adam J Brandner
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Brooke E Schmeichel
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| |
Collapse
|
86
|
McConnell BV, Kronberg E, Medenblik LM, Kheyfets VO, Ramos AR, Sillau SH, Pulver RL, Bettcher BM. The Rise and Fall of Slow Wave Tides: Vacillations in Coupled Slow Wave/Spindle Pairing Shift the Composition of Slow Wave Activity in Accordance With Depth of Sleep. Front Neurosci 2022; 16:915934. [PMID: 35812239 PMCID: PMC9260314 DOI: 10.3389/fnins.2022.915934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022] Open
Abstract
Slow wave activity (SWA) during sleep is associated with synaptic regulation and memory processing functions. Each cycle of non-rapid-eye-movement (NREM) sleep demonstrates a waxing and waning amount of SWA during the transitions between stages N2 and N3 sleep, and the deeper N3 sleep is associated with an increased density of SWA. Further, SWA is an amalgam of different types of slow waves, each identifiable by their temporal coupling to spindle subtypes with distinct physiological features. The objectives of this study were to better understand the neurobiological properties that distinguish different slow wave and spindle subtypes, and to examine the composition of SWA across cycles of NREM sleep. We further sought to explore changes in the composition of NREM cycles that occur among aging adults. To address these goals, we analyzed subsets of data from two well-characterized cohorts of healthy adults: (1) The DREAMS Subjects Database (n = 20), and (2) The Cleveland Family Study (n = 60). Our analyses indicate that slow wave/spindle coupled events can be characterized as frontal vs. central in their relative distribution between electroencephalography (EEG) channels. The frontal predominant slow waves are identifiable by their coupling to late-fast spindles and occur more frequently during stage N3 sleep. Conversely, the central-associated slow waves are identified by coupling to early-fast spindles and favor occurrence during stage N2 sleep. Together, both types of slow wave/spindle coupled events form the composite of SWA, and their relative contribution to the SWA rises and falls across cycles of NREM sleep in accordance with depth of sleep. Exploratory analyses indicated that older adults produce a different composition of SWA, with a shift toward the N3, frontal subtype, which becomes increasingly predominant during cycles of NREM sleep. Overall, these data demonstrate that subtypes of slow wave/spindle events have distinct cortical propagation patterns and differ in their distribution across lighter vs. deeper NREM sleep. Future efforts to understand how slow wave sleep and slow wave/spindle coupling impact memory performance and neurological disease may benefit from examining the composition of SWA to avoid potential confounds that may occur when comparing dissimilar neurophysiological events.
Collapse
Affiliation(s)
- Brice V. McConnell
- Department of Neurology, University of Colorado, Denver, Denver, CO, United States
- *Correspondence: Brice V. McConnell,
| | - Eugene Kronberg
- Department of Neurology, University of Colorado, Denver, Denver, CO, United States
| | - Lindsey M. Medenblik
- Department of Neurology, University of Colorado, Denver, Denver, CO, United States
| | - Vitaly O. Kheyfets
- Pediatric Critical Care Medicine, University of Colorado, Denver, Denver, CO, United States
| | - Alberto R. Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stefan H. Sillau
- Department of Neurology, University of Colorado, Denver, Denver, CO, United States
| | - Rachelle L. Pulver
- Department of Neurology, University of Colorado, Denver, Denver, CO, United States
| | - Brianne M. Bettcher
- Department of Neurology, University of Colorado, Denver, Denver, CO, United States
| |
Collapse
|
87
|
García-Pérez MA, Irani M, Tiznado V, Bustamante T, Inostroza M, Maldonado PE, Valdés JL. Cortico-Hippocampal Oscillations Are Associated With the Developmental Onset of Hippocampal-Dependent Memory. Front Neurosci 2022; 16:891523. [PMID: 35812209 PMCID: PMC9260104 DOI: 10.3389/fnins.2022.891523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hippocampal-dependent memories emerge late during postnatal development, aligning with hippocampal maturation. During sleep, the two-stage memory formation model states that through hippocampal-neocortical interactions, cortical slow-oscillations (SO), thalamocortical Spindles, and hippocampal sharp-wave ripples (SWR) are synchronized, allowing for the consolidation of hippocampal-dependent memories. However, evidence supporting this hypothesis during development is still lacking. Therefore, we performed successive object-in-place tests during a window of memory emergence and recorded in vivo the occurrence of SO, Spindles, and SWR during sleep, immediately after the memory encoding stage of the task. We found that hippocampal-dependent memory emerges at the end of the 4th postnatal week independently of task overtraining. Furthermore, we observed that those animals with better performance in the memory task had increased Spindle density and duration and lower density of SWR. Moreover, we observed changes in the SO-Spindle and Spindle-SWR temporal-coupling during this developmental period. Our results provide new evidence for the onset of hippocampal-dependent memory and its relationship to the oscillatory phenomenon occurring during sleep that helps us understand how memory consolidation models fit into the early stages of postnatal development.
Collapse
Affiliation(s)
- María A. García-Pérez
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias UC, Pontificia Universidad Católica de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Martin Irani
- Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vicente Tiznado
- Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tamara Bustamante
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Pedro E. Maldonado
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- National Center for Artificial Intelligence, CENIA, Santiago, Chile
| | - José L. Valdés
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
88
|
[Sleep spindles-Function, detection and use as biomarker for diagnostics in psychiatry]. DER NERVENARZT 2022; 93:882-891. [PMID: 35676333 DOI: 10.1007/s00115-022-01340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The sleep spindle is a graphoelement of an electroencephalogram (EEG), which can be observed in light and deep sleep. Alterations in spindle activity have been described for a range of psychiatric disorders. Due to their relatively constant properties, sleep spindles may therefore be potential biomarkers in psychiatric diagnostics. METHOD This article presents an overview of the state of the science on the characteristics and functions of the sleep spindle as well as known alterations of spindle activity in psychiatric disorders. Various methodological approaches and developments of spindle detection are explained with respect to their potential for application in psychiatric diagnostics. RESULTS AND CONCLUSION Although alterations in spindle activity in psychiatric disorders are known and have been described in detail, their exact potential for psychiatric diagnostics has yet to be fully determined. In this respect, the acquisition of knowledge in research is currently constrained by manual and automated methods for spindle detection, which require high levels of resources and are error prone. Newer approaches to spindle detection based on deep-learning procedures could overcome the difficulties of previous detection methods, and thus open up new possibilities for the practical application of sleep spindles as biomarkers in the psychiatric practice.
Collapse
|
89
|
Gonzalez C, Jiang X, Gonzalez-Martinez J, Halgren E. Human Spindle Variability. J Neurosci 2022; 42:4517-4537. [PMID: 35477906 PMCID: PMC9172080 DOI: 10.1523/jneurosci.1786-21.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
In humans, sleep spindles are 10- to 16-Hz oscillations lasting approximately 0.5-2 s. Spindles, along with cortical slow oscillations, may facilitate memory consolidation by enabling synaptic plasticity. Early recordings of spindles at the scalp found anterior channels had overall slower frequency than central-posterior channels. This robust, topographical finding led to dichotomizing spindles as "slow" versus "fast," modeled as two distinct spindle generators in frontal versus posterior cortex. Using a large dataset of intracranial stereoelectroencephalographic (sEEG) recordings from 20 patients (13 female, 7 male) and 365 bipolar recordings, we show that the difference in spindle frequency between frontal and parietal channels is comparable to the variability in spindle frequency within the course of individual spindles, across different spindles recorded by a given site, and across sites within a given region. Thus, fast and slow spindles only capture average differences that obscure a much larger underlying overlap in frequency. Furthermore, differences in mean frequency are only one of several ways that spindles differ. For example, compared with parietal, frontal spindles are smaller, tend to occur after parietal when both are engaged, and show a larger decrease in frequency within-spindles. However, frontal and parietal spindles are similar in being longer, less variable, and more widespread than occipital, temporal, and Rolandic spindles. These characteristics are accentuated in spindles which are highly phase-locked to posterior hippocampal spindles. We propose that rather than a strict parietal-fast/frontal-slow dichotomy, spindles differ continuously and quasi-independently in multiple dimensions, with variability due about equally to within-spindle, within-region, and between-region factors.SIGNIFICANCE STATEMENT Sleep spindles are 10- to 16-Hz neural oscillations generated by cortico-thalamic circuits that promote memory consolidation. Spindles are often dichotomized into slow-anterior and fast-posterior categories for cognitive and clinical studies. Here, we show that the anterior-posterior difference in spindle frequency is comparable to that observed between different cycles of individual spindles, between spindles from a given site, or from different sites within a region. Further, we show that spindles vary on other dimensions such as duration, amplitude, spread, primacy and consistency, and that these multiple dimensions vary continuously and largely independently across cortical regions. These findings suggest that multiple continuous variables rather than a strict frequency dichotomy may be more useful biomarkers for memory consolidation or psychiatric disorders.
Collapse
Affiliation(s)
- Christopher Gonzalez
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs San Diego Healthcare System/University of California San Diego, San Diego, California 92161
| | - Xi Jiang
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Jorge Gonzalez-Martinez
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio 44106
- Epilepsy and Movement Disorders Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Eric Halgren
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
- Department of Radiology, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
90
|
Chylinski D, Van Egroo M, Narbutas J, Muto V, Bahri MA, Berthomier C, Salmon E, Bastin C, Phillips C, Collette F, Maquet P, Carrier J, Lina JM, Vandewalle G. Timely coupling of sleep spindles and slow waves is linked to early amyloid-β burden and predicts memory decline. eLife 2022; 11:78191. [PMID: 35638265 PMCID: PMC9177143 DOI: 10.7554/elife.78191] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Sleep alteration is a hallmark of ageing and emerges as a risk factor for Alzheimer’s disease (AD). While the fine-tuned coalescence of sleep microstructure elements may influence age-related cognitive trajectories, its association with AD processes is not fully established. Here, we investigated whether the coupling of spindles and slow waves (SW) is associated with early amyloid-β (Aβ) brain burden, a hallmark of AD neuropathology, and cognitive change over 2 years in 100 healthy individuals in late-midlife (50–70 years; 68 women). We found that, in contrast to other sleep metrics, earlier occurrence of spindles on slow-depolarisation SW is associated with higher medial prefrontal cortex Aβ burden (p=0.014, r²β*=0.06) and is predictive of greater longitudinal memory decline in a large subsample (p=0.032, r²β*=0.07, N=66). These findings unravel early links between sleep, AD-related processes, and cognition and suggest that altered coupling of sleep microstructure elements, key to its mnesic function, contributes to poorer brain and cognitive trajectories in ageing.
Collapse
Affiliation(s)
- Daphne Chylinski
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Maxime Van Egroo
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Justinas Narbutas
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Vincenzo Muto
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | | | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Julie Carrier
- Centre for Advanced Research in Sleep Medicine, Université de Montréal, Montreal, Canada
| | - Jean-Marc Lina
- Centre for Advanced Research in Sleep Medicine, Université de Montréal, Montreal, Canada
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
91
|
Kozhemiako N, Wang J, Jiang C, Wang LA, Gai G, Zou K, Wang Z, Yu X, Zhou L, Li S, Guo Z, Law R, Coleman J, Mylonas D, Shen L, Wang G, Tan S, Qin S, Huang H, Murphy M, Stickgold R, Manoach D, Zhou Z, Zhu W, Hal MH, Purcell SM, Pan JQ. Non-rapid eye movement sleep and wake neurophysiology in schizophrenia. eLife 2022; 11:76211. [PMID: 35578829 PMCID: PMC9113745 DOI: 10.7554/elife.76211] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/11/2022] [Indexed: 12/29/2022] Open
Abstract
Motivated by the potential of objective neurophysiological markers to index thalamocortical function in patients with severe psychiatric illnesses, we comprehensively characterized key non-rapid eye movement (NREM) sleep parameters across multiple domains, their interdependencies, and their relationship to waking event-related potentials and symptom severity. In 72 schizophrenia (SCZ) patients and 58 controls, we confirmed a marked reduction in sleep spindle density in SCZ and extended these findings to show that fast and slow spindle properties were largely uncorrelated. We also describe a novel measure of slow oscillation and spindle interaction that was attenuated in SCZ. The main sleep findings were replicated in a demographically distinct sample, and a joint model, based on multiple NREM components, statistically predicted disease status in the replication cohort. Although also altered in patients, auditory event-related potentials elicited during wake were unrelated to NREM metrics. Consistent with a growing literature implicating thalamocortical dysfunction in SCZ, our characterization identifies independent NREM and wake EEG biomarkers that may index distinct aspects of SCZ pathophysiology and point to multiple neural mechanisms underlying disease heterogeneity. This study lays the groundwork for evaluating these neurophysiological markers, individually or in combination, to guide efforts at treatment and prevention as well as identifying individuals most likely to benefit from specific interventions.
Collapse
Affiliation(s)
- Nataliia Kozhemiako
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Jun Wang
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Chenguang Jiang
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Lei A Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Guanchen Gai
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Kai Zou
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Zhe Wang
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Xiaoman Yu
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Lin Zhou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Shen Li
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, United States
| | - Zhenglin Guo
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Robert Law
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - James Coleman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Lu Shen
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqiang Wang
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Shuping Tan
- Huilong Guan Hospital, Beijing University, Beijing, China
| | - Shengying Qin
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Michael Murphy
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, United States
| | - Robert Stickgold
- Beth Israel Deaconess Medical Center, Boston, United States.,Department of Psychiatry, Harvard Medical School, Boston, United States
| | - Dara Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Zhenhe Zhou
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Wei Zhu
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Mei-Hua Hal
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, United States
| | - Shaun M Purcell
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, United States.,Department of Psychiatry, Harvard Medical School, Boston, United States
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
92
|
Jajcay N, Cakan C, Obermayer K. Cross-Frequency Slow Oscillation–Spindle Coupling in a Biophysically Realistic Thalamocortical Neural Mass Model. Front Comput Neurosci 2022; 16:769860. [PMID: 35603132 PMCID: PMC9120371 DOI: 10.3389/fncom.2022.769860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep manifests itself by the spontaneous emergence of characteristic oscillatory rhythms, which often time-lock and are implicated in memory formation. Here, we analyze a neural mass model of the thalamocortical loop in which the cortical node can generate slow oscillations (approximately 1 Hz) while its thalamic component can generate fast sleep spindles of σ-band activity (12–15 Hz). We study the dynamics for different coupling strengths between the thalamic and cortical nodes, for different conductance values of the thalamic node's potassium leak and hyperpolarization-activated cation-nonselective currents, and for different parameter regimes of the cortical node. The latter are listed as follows: (1) a low activity (DOWN) state with noise-induced, transient excursions into a high activity (UP) state, (2) an adaptation induced slow oscillation limit cycle with alternating UP and DOWN states, and (3) a high activity (UP) state with noise-induced, transient excursions into the low activity (DOWN) state. During UP states, thalamic spindling is abolished or reduced. During DOWN states, the thalamic node generates sleep spindles, which in turn can cause DOWN to UP transitions in the cortical node. Consequently, this leads to spindle-induced UP state transitions in parameter regime (1), thalamic spindles induced in some but not all DOWN states in regime (2), and thalamic spindles following UP to DOWN transitions in regime (3). The spindle-induced σ-band activity in the cortical node, however, is typically the strongest during the UP state, which follows a DOWN state “window of opportunity” for spindling. When the cortical node is parametrized in regime (3), the model well explains the interactions between slow oscillations and sleep spindles observed experimentally during Non-Rapid Eye Movement sleep. The model is computationally efficient and can be integrated into large-scale modeling frameworks to study spatial aspects like sleep wave propagation.
Collapse
Affiliation(s)
- Nikola Jajcay
- Neural Information Processing Group, Department of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague, Czechia
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- *Correspondence: Nikola Jajcay
| | - Caglar Cakan
- Neural Information Processing Group, Department of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Klaus Obermayer
- Neural Information Processing Group, Department of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
93
|
Bastian L, Samanta A, Ribeiro de Paula D, Weber FD, Schoenfeld R, Dresler M, Genzel L. Spindle-slow oscillation coupling correlates with memory performance and connectivity changes in a hippocampal network after sleep. Hum Brain Mapp 2022; 43:3923-3943. [PMID: 35488512 PMCID: PMC9374888 DOI: 10.1002/hbm.25893] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
After experiences are encoded, post‐encoding reactivations during sleep have been proposed to mediate long‐term memory consolidation. Spindle–slow oscillation coupling during NREM sleep is a candidate mechanism through which a hippocampal‐cortical dialogue may strengthen a newly formed memory engram. Here, we investigated the role of fast spindle‐ and slow spindle–slow oscillation coupling in the consolidation of spatial memory in humans with a virtual watermaze task involving allocentric and egocentric learning strategies. Furthermore, we analyzed how resting‐state functional connectivity evolved across learning, consolidation, and retrieval of this task using a data‐driven approach. Our results show task‐related connectivity changes in the executive control network, the default mode network, and the hippocampal network at post‐task rest. The hippocampal network could further be divided into two subnetworks of which only one showed modulation by sleep. Decreased functional connectivity in this subnetwork was associated with higher spindle–slow oscillation coupling power, which was also related to better memory performance at test. Overall, this study contributes to a more holistic understanding of the functional resting‐state networks and the mechanisms during sleep associated to spatial memory consolidation.
Collapse
Affiliation(s)
- Lisa Bastian
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Anumita Samanta
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Demetrius Ribeiro de Paula
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frederik D Weber
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Martin Dresler
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Lisa Genzel
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
94
|
Zhang H, Chen Y, Xie Y, Chai Y. Closed-loop controller based on reference signal tracking for absence seizures. Sci Rep 2022; 12:6730. [PMID: 35468988 PMCID: PMC9038751 DOI: 10.1038/s41598-022-10803-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Absent epilepsy is a kind of refractory epilepsy, which is characterized by 2–4 Hz spike and wave discharges (SWDs) in electroencephalogram. Open-loop deep brain stimulation (DBS) targeting the thalamic reticular nucleus (TRN) is an effective method to treat absent epilepsy by eliminating SWDs in the brain. Compared with open-loop DBS, closed-loop DBS has been recognized by researchers for its advantages of significantly inhibiting seizures and having fewer side effects. Since traditional trial-and-error methods for adjusting closed-loop controller parameters are too dependent on the experience of doctors, in this paper we designed two proportional integral (PI) controllers based on the basal ganglia-cortical-thalamic model, whose PI parameters are calculated from the stability of the system. The two PI controllers can automatically adjust the frequency and amplitude of DBS respectively according to the change of the firing rate detected by substantia nigra pars reticulata (SNr). The parameters of the PI controller are calculated based on the Routh-Hurwitz stability criterion of a linear system which transformed by the original system using controlled auto-regressive (CAR) model and recursive least squares (RLS) method. Numerical simulation results show that both PI controllers significantly destroy the SWDs of the cerebral cortex and restore it to the other two normal discharge modes according to the different target firing rate, which supplies a promising brain stimulation strategy.
Collapse
Affiliation(s)
- Hudong Zhang
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yuting Chen
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yan Xie
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yuan Chai
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China.
| |
Collapse
|
95
|
B. Szabo A, Cretin B, Gérard F, Curot J, J. Barbeau E, Pariente J, Dahan L, Valton L. Sleep: The Tip of the Iceberg in the Bidirectional Link Between Alzheimer's Disease and Epilepsy. Front Neurol 2022; 13:836292. [PMID: 35481265 PMCID: PMC9035794 DOI: 10.3389/fneur.2022.836292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The observation that a pathophysiological link might exist between Alzheimer's disease (AD) and epilepsy dates back to the identification of the first cases of the pathology itself and is now strongly supported by an ever-increasing mountain of literature. An overwhelming majority of data suggests not only a higher prevalence of epilepsy in Alzheimer's disease compared to healthy aging, but also that AD patients with a comorbid epileptic syndrome, even subclinical, have a steeper cognitive decline. Moreover, clinical and preclinical investigations have revealed a marked sleep-related increase in the frequency of epileptic activities. This characteristic might provide clues to the pathophysiological pathways underlying this comorbidity. Furthermore, the preferential sleep-related occurrence of epileptic events opens up the possibility that they might hasten cognitive decline by interfering with the delicately orchestrated synchrony of oscillatory activities implicated in sleep-related memory consolidation. Therefore, we scrutinized the literature for mechanisms that might promote sleep-related epileptic activity in AD and, possibly dementia onset in epilepsy, and we also aimed to determine to what degree and through which processes such events might alter the progression of AD. Finally, we discuss the implications for patient care and try to identify a common basis for methodological considerations for future research and clinical practice.
Collapse
Affiliation(s)
- Anna B. Szabo
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- *Correspondence: Anna B. Szabo
| | - Benjamin Cretin
- Clinical Neuropsychology Unit, Neurology Department, CM2R (Memory Resource and Research Centre), University Hospital of Strasbourg, Strasbourg, France
- CNRS, ICube Laboratory, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg, Strasbourg, France
- CMRR d'Alsace, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Pôle Tête et Cou, Strasbourg, France
| | - Fleur Gérard
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jonathan Curot
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Emmanuel J. Barbeau
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
| | - Jérémie Pariente
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Toulouse NeuroImaging Center (ToNIC), INSERM-University of Toulouse Paul Sabatier, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Luc Valton
| |
Collapse
|
96
|
Aghayan Golkashani H, Leong RLF, Ghorbani S, Ong JL, Fernández G, Chee MWL. A sleep schedule incorporating naps benefits the transformation of hierarchical knowledge. Sleep 2022; 45:6516991. [PMID: 35090173 PMCID: PMC8996033 DOI: 10.1093/sleep/zsac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Study Objectives
The learning brain establishes schemas (knowledge structures) that benefit subsequent learning. We investigated how sleep and having a schema might benefit initial learning followed by rearranged and expanded memoranda. We concurrently examined the contributions of sleep spindles and slow-wave sleep to learning outcomes.
Methods
Fifty-three adolescents were randomly assigned to an 8 h Nap schedule (6.5 h nocturnal sleep with a 90-minute daytime nap) or an 8 h No-Nap, nocturnal-only sleep schedule. The study spanned 14 nights, simulating successive school weeks. We utilized a transitive inference task involving hierarchically ordered faces. Initial learning to set up the schema was followed by rearrangement of the hierarchy (accommodation) and hierarchy expansion (assimilation). The expanded sequence was restudied. Recall of hierarchical knowledge was tested after initial learning and at multiple points for all subsequent phases. As a control, both groups underwent a No-schema condition where the hierarchy was introduced and modified without opportunity to set up a schema. Electroencephalography accompanied the multiple sleep opportunities.
Results
There were main effects of Nap schedule and Schema condition evidenced by superior recall of initial learning, reordered and expanded memoranda. Improved recall was consistently associated with higher fast spindle density but not slow-wave measures. This was true for both nocturnal sleep and daytime naps.
Conclusion
A sleep schedule incorporating regular nap opportunities compared to one that only had nocturnal sleep benefited building of robust and flexible schemas, facilitating recall of the subsequently rearranged and expanded structured knowledge. These benefits appear to be strongly associated with fast spindles.
Clinical Trial registration
NCT04044885 (https://clinicaltrials.gov/ct2/show/NCT04044885).
Collapse
Affiliation(s)
- Hosein Aghayan Golkashani
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shohreh Ghorbani
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
97
|
Adra N, Sun H, Ganglberger W, Ye EM, Dümmer LW, Tesh RA, Westmeijer M, Cardoso MDS, Kitchener E, Ouyang A, Salinas J, Rosand J, Cash SS, Thomas RJ, Westover MB. Optimal spindle detection parameters for predicting cognitive performance. Sleep 2022; 45:zsac001. [PMID: 34984446 PMCID: PMC8996023 DOI: 10.1093/sleep/zsac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/07/2021] [Indexed: 01/07/2023] Open
Abstract
STUDY OBJECTIVES Alterations in sleep spindles have been linked to cognitive impairment. This finding has contributed to a growing interest in identifying sleep-based biomarkers of cognition and neurodegeneration, including sleep spindles. However, flexibility surrounding spindle definitions and algorithm parameter settings present a methodological challenge. The aim of this study was to characterize how spindle detection parameter settings influence the association between spindle features and cognition and to identify parameters with the strongest association with cognition. METHODS Adult patients (n = 167, 49 ± 18 years) completed the NIH Toolbox Cognition Battery after undergoing overnight diagnostic polysomnography recordings for suspected sleep disorders. We explored 1000 combinations across seven parameters in Luna, an open-source spindle detector, and used four features of detected spindles (amplitude, density, duration, and peak frequency) to fit linear multiple regression models to predict cognitive scores. RESULTS Spindle features (amplitude, density, duration, and mean frequency) were associated with the ability to predict raw fluid cognition scores (r = 0.503) and age-adjusted fluid cognition scores (r = 0.315) with the best spindle parameters. Fast spindle features generally showed better performance relative to slow spindle features. Spindle features weakly predicted total cognition and poorly predicted crystallized cognition regardless of parameter settings. CONCLUSIONS Our exploration of spindle detection parameters identified optimal parameters for studies of fluid cognition and revealed the role of parameter interactions for both slow and fast spindles. Our findings support sleep spindles as a sleep-based biomarker of fluid cognition.
Collapse
Affiliation(s)
- Noor Adra
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
- Henry and Allison McCance Center for Brain Health at Mass General, Boston, MA, USA
| | - Haoqi Sun
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
- Henry and Allison McCance Center for Brain Health at Mass General, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Wolfgang Ganglberger
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
- Henry and Allison McCance Center for Brain Health at Mass General, Boston, MA, USA
| | - Elissa M Ye
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
- Henry and Allison McCance Center for Brain Health at Mass General, Boston, MA, USA
| | - Lisa W Dümmer
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
- Henry and Allison McCance Center for Brain Health at Mass General, Boston, MA, USA
- University of Groningen, Groningen, The Netherlands
| | - Ryan A Tesh
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
- Henry and Allison McCance Center for Brain Health at Mass General, Boston, MA, USA
| | - Mike Westmeijer
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
| | - Madalena Da Silva Cardoso
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
- Henry and Allison McCance Center for Brain Health at Mass General, Boston, MA, USA
| | - Erin Kitchener
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
- Henry and Allison McCance Center for Brain Health at Mass General, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - An Ouyang
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
- Henry and Allison McCance Center for Brain Health at Mass General, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joel Salinas
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jonathan Rosand
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
- Henry and Allison McCance Center for Brain Health at Mass General, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert J Thomas
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
- Henry and Allison McCance Center for Brain Health at Mass General, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
98
|
Hoedlmoser K, Peigneux P, Rauchs G. Recent advances in memory consolidation and information processing during sleep. J Sleep Res 2022; 31:e13607. [DOI: 10.1111/jsr.13607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Kerstin Hoedlmoser
- Department of Psychology, Centre for Cognitive Neuroscience (CCNS), Laboratory for “Sleep, Cognition and Consciousness Research” University of Salzburg Salzburg Austria
| | - Philippe Peigneux
- UR2NF – Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN – Centre for Research in Cognition and Neurosciences and UNI – ULB Neuroscience Institute Bruxelles Belgium
| | - Géraldine Rauchs
- UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen‐Normandie Normandie Univ Caen France
| |
Collapse
|
99
|
Sibarani CR, Walter LM, Davey MJ, Nixon GM, Horne RSC. Sleep-disordered breathing and sleep macro- and micro-architecture in children with Down syndrome. Pediatr Res 2022; 91:1248-1256. [PMID: 34230620 DOI: 10.1038/s41390-021-01642-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Children with Down syndrome (DS) are at increased risk of sleep-disordered breathing (SDB), which is associated with intermittent hypoxia and sleep disruption affecting daytime functioning. We aimed to compare the impact of SDB on sleep quality in children with DS compared to typically developing (TD) children with and without SDB. METHODS Children with DS and SDB (n = 44) were age- and sex-matched with TD children without SDB (TD-) and also for SDB severity with TD children with SDB (TD+). Children underwent overnight polysomnography with sleep macro- and micro-architecture assessed using electroencephalogram (EEG) spectral analysis, including slow-wave activity (SWA, an indicator of sleep propensity). RESULTS Children with DS had greater hypoxic exposure, more respiratory events during REM sleep, higher total, delta, sigma, and beta EEG power in REM than TD+ children, despite the same overall frequency of obstructive events. Compared to TD- children, they also had more wake after sleep-onset and lower sigma power in N2 and N3. The DS group had reduced SWA, indicating reduced sleep drive, compared to both TD groups. CONCLUSIONS Our findings suggest that SDB has a greater impact on sleep quality in children with DS compared to TD children. IMPACT SDB in children with DS exacerbates disruption of sleep quality, compared to TD children. The prevalence of SDB is very high in children with DS; however, studies on the effects of SDB on sleep quality are limited in this population. Our findings suggest that SDB has a greater impact on sleep quality in children with DS compared to TD children, and should be screened for and treated as soon as possible.
Collapse
Affiliation(s)
- Christy R Sibarani
- Department of Paediatrics and The Ritchie Centre, Monash University, Melbourne, VIC, Australia
| | - Lisa M Walter
- Department of Paediatrics and The Ritchie Centre, Monash University, Melbourne, VIC, Australia
| | - Margot J Davey
- Department of Paediatrics and The Ritchie Centre, Monash University, Melbourne, VIC, Australia.,Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Gillian M Nixon
- Department of Paediatrics and The Ritchie Centre, Monash University, Melbourne, VIC, Australia.,Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Rosemary S C Horne
- Department of Paediatrics and The Ritchie Centre, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
100
|
Leong CWY, Leow JWS, Grunstein RR, Naismith SL, Teh JZ, D'Rozario AL, Saini B. A systematic scoping review of the effects of central nervous system active drugs on sleep spindles and sleep-dependent memory consolidation. Sleep Med Rev 2022; 62:101605. [PMID: 35313262 DOI: 10.1016/j.smrv.2022.101605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Abstract
Sleep spindles are key electroencephalogram (EEG) oscillatory events that occur during non-rapid eye movement (NREM) sleep. Deficits in sleep spindles are present in populations with sleep and neurological disorders, and in severe mental illness. Pharmacological manipulation of these waveforms is of growing interest with therapeutic potential in targeting spindle deficits relating to memory impairment. This review integrates studies that provide insight into the feasibility of manipulating sleep spindles by using psychoactive drug classes, with consequent effects on sleep-dependent memory. Most studies showed that benzodiazepines and Z-drugs consistently enhanced sleep spindle activity unlike other psychoactive drug classes reviewed. However, how these spindle enhancements translate into improved sleep-dependent memory remains to be fully elucidated. From the few studies that examined both spindles and memory, preliminary evidence suggests that zolpidem may have some therapeutic potential to enhance declarative memory through boosting sleep spindle activity. There is a greater need to standardise methodological approaches for identifying and quantifying spindle activity as well as more exploratory studies to elucidate the role of spindle enhancement for other types of memory.
Collapse
Affiliation(s)
- Celeste W Y Leong
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Josiah W S Leow
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ronald R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, and Sydney Health Partners, NSW; Sydney Medical School, The University of Sydney, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Jun Z Teh
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Angela L D'Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, NSW, Australia; School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia.
| | - Bandana Saini
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|