51
|
Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC, Park SR, Yoon YJ. A Review of the Microbial Production of Bioactive Natural Products and Biologics. Front Microbiol 2019; 10:1404. [PMID: 31281299 PMCID: PMC6596283 DOI: 10.3389/fmicb.2019.01404] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
A variety of organisms, such as bacteria, fungi, and plants, produce secondary metabolites, also known as natural products. Natural products have been a prolific source and an inspiration for numerous medical agents with widely divergent chemical structures and biological activities, including antimicrobial, immunosuppressive, anticancer, and anti-inflammatory activities, many of which have been developed as treatments and have potential therapeutic applications for human diseases. Aside from natural products, the recent development of recombinant DNA technology has sparked the development of a wide array of biopharmaceutical products, such as recombinant proteins, offering significant advances in treating a broad spectrum of medical illnesses and conditions. Herein, we will introduce the structures and diverse biological activities of natural products and recombinant proteins that have been exploited as valuable molecules in medicine, agriculture and insect control. In addition, we will explore past and ongoing efforts along with achievements in the development of robust and promising microorganisms as cell factories to produce biologically active molecules. Furthermore, we will review multi-disciplinary and comprehensive engineering approaches directed at improving yields of microbial production of natural products and proteins and generating novel molecules. Throughout this article, we will suggest ways in which microbial-derived biologically active molecular entities and their analogs could continue to inspire the development of new therapeutic agents in academia and industry.
Collapse
Affiliation(s)
- Janette V. Pham
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Mariamawit A. Yilma
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Adriana Feliz
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Murtadha T. Majid
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Nicholas Maffetone
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Jorge R. Walker
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Eunji Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Hyo Je Cho
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Jared M. Reynolds
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Myoung Chong Song
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Sung Ryeol Park
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
- Natural Products Discovery Institute, Doylestown, PA, United States
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
52
|
Bekele B, Hansen EB, Eshetu M, Ipsen R, Hailu Y. Effect of starter cultures on properties of soft white cheese made from camel (Camelus dromedarius) milk. J Dairy Sci 2018; 102:1108-1115. [PMID: 30591338 DOI: 10.3168/jds.2018-15084] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022]
Abstract
This experiment was conducted to investigate the effect of starter cultures on the physicochemical properties, texture, and consumer preferences of soft white cheese (SWC) made from camel (Camelus dromedarius) milk. The experiment was laid out in a completely randomized design with 5 treatments [starter cultures; i.e., 1 thermophilic (STI-12), 2 blended (RST-743 and XPL-2), and 2 mesophilic (R-707 and CHN-22) cultures]. Starter cultures STI-12 and RST-743 were inoculated at 37°C, whereas XPL-2, R-707, and CHN-22 were inoculated at 30°C. Camel milk inoculated using STI-12 and RST-743 cultures resulted in faster acidification than XPL-2, R-707, and CHN-22 cultures. Camel milk SWC made using STI-12 and CHN-22 cultures gave lower pH (4.54) and titratable acidity (0.59), respectively, whereas R-707 culture resulted in high cheese yield (13.44 g/100 g). In addition, high fat (20.91 g/100 g), protein (17.49 g/100 g), total solids (43.44 g/100 g), and ash (2.40 g/100 g) contents were recorded for SWC made from camel milk made using RST-743 culture. Instrumental analysis of cheese texture revealed differences in resistance to deformation in which camel milk SWC made using RST-743 culture gave higher firmness (3.20 N) and brittleness (3.12 N). However, no significant difference was observed among camel milk SWC adhesiveness made using different starter cultures. Consumer preference for appearance, aroma, taste, and overall acceptances of SWC were affected by inoculation of starter cultures. Considering curd firmness, cheese yield, compositional quality, and textures using STI-12, RST-743, and R-707, these cultures were found to be better for the manufacture of camel milk SWC.
Collapse
Affiliation(s)
- Birhanu Bekele
- Yabello Pastoral and Dryland Agriculture Research Center, Oromia Agricultural Research Institute, PO Box 85, Yabello, Ethiopia.
| | - Egon B Hansen
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Mitiku Eshetu
- School of Animal and Range Sciences, Haramaya University, PO Box 138, Dire Dawa, Ethiopia
| | - Richard Ipsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | - Yonas Hailu
- School of Animal and Range Sciences, Haramaya University, PO Box 138, Dire Dawa, Ethiopia
| |
Collapse
|
53
|
Zommiti M, Bouffartigues E, Maillot O, Barreau M, Szunerits S, Sebei K, Feuilloley M, Connil N, Ferchichi M. In vitro Assessment of the Probiotic Properties and Bacteriocinogenic Potential of Pediococcus pentosaceus MZF16 Isolated From Artisanal Tunisian Meat "Dried Ossban". Front Microbiol 2018; 9:2607. [PMID: 30473681 PMCID: PMC6238632 DOI: 10.3389/fmicb.2018.02607] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Pediococcus pentosaceus MZF16 has been isolated from artisanal Tunisian meat so called "Dried Ossban," an original ecological niche, and identified by MALDI-TOF mass spectrometry and 16S rDNA sequencing. This bacterium showed a high tolerance to gastric stress conditions, and toward bile salts. P. pentosaceus MZF16 also demonstrated a hydrophobic surface profile (high adhesion to xylene), autoaggregation, and adhesive abilities to the human intestinal Caco-2/TC7 cell line. These properties may help the bacterium colonizing the gut. Furthermore, MZF16 was found to be resistant to gentamycin and chloramphenicol but did not harbor any transferable resistance determinants and/or virulence genes. The data also demonstrated absence of cytotoxicity of this strain. Conversely, P. pentosaceus MZF16 can slightly stimulate the immune system and enhance the intestinal epithelial barrier function. Moreover, this bacterium has been shown to be highly active against Listeria spp. due to bacteriocin production. Characterization of the bacteriocin by PCR amplification, sequencing and bioinformatic analyses revealed that MZF16 produces a bacteriocin 100% identical to coagulin, a pediocin-like inhibitory substance produced by Bacillus coagulans. To our knowledge, this is the first report that highlights the production of a pediocin 100% identical to coagulin in a Pediococcus strain. As coagulin, pediocin MZF16 has the consensus sequence YYGNGVXCXXXXCXVXXXXA (X denotes any amino acid), which confirms its belonging to class IIa bacteriocins, and its suitability to preserve foods from Listeria monocytogenes development. According to these results, P. pentosaceus MZF16 can be proposed as a probiotic and bioprotective agent for fermented foods, including Tunisian dry meat and sausages. Further investigations will aim to study the behavior of this strain in meat products as a component of functional food.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, Tunis, Tunisia
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Magalie Barreau
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, Lille, France
| | - Khaled Sebei
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, Tunis, Tunisia
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, Tunis, Tunisia
- College of Applied Medical Sciences, Clinical Laboratory Department, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
54
|
Raveschot C, Cudennec B, Coutte F, Flahaut C, Fremont M, Drider D, Dhulster P. Production of Bioactive Peptides by Lactobacillus Species: From Gene to Application. Front Microbiol 2018; 9:2354. [PMID: 30386307 PMCID: PMC6199461 DOI: 10.3389/fmicb.2018.02354] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/13/2018] [Indexed: 11/19/2022] Open
Abstract
To compensate for their amino acid auxotrophy, lactobacilli have developed the ability to hydrolyze proteins present in their environment. This proteolytic activity not only generates the free amino acids needed by the bacteria, but also a large variety of peptides, some of which are endowed with biological activities. These so-called “bioactive peptides” (BAPs) are interesting from a nutrition and healthcare perspective. The use of lactic acid bacteria (LAB) such as lactobacilli is an effective strategy for production and valorization of new BAPs. The proteolytic activity of lactobacilli is exerted in a strain- and species-dependent manner: each species exhibits different proteinase content, leading to a large variety of proteolytic activities. This underlines the high potential of Lactobacillus strains to produce novel hydrolysates and BAPs of major interest. This review aims at discussing the potential of different Lactobacillus species to release BAPs from fermentation media and processes. Strategies used for peptide production are presented. Additionally, we propose a methodology to select the most promising Lactobacillus strains as sources of BAPs. This methodology combines conventional approaches and in silico analyses.
Collapse
Affiliation(s)
- Cyril Raveschot
- INRA, ISA, EA 7394-ICV Institut Charles Viollette, Université Lille, Université d'Artois, Université Littoral Côte d'Opale, Lille, France.,VF Bioscience, Parc Eurasanté, Loos-lez-Lille, France
| | - Benoit Cudennec
- INRA, ISA, EA 7394-ICV Institut Charles Viollette, Université Lille, Université d'Artois, Université Littoral Côte d'Opale, Lille, France
| | - François Coutte
- INRA, ISA, EA 7394-ICV Institut Charles Viollette, Université Lille, Université d'Artois, Université Littoral Côte d'Opale, Lille, France
| | - Christophe Flahaut
- INRA, ISA, EA 7394-ICV Institut Charles Viollette, Université Lille, Université d'Artois, Université Littoral Côte d'Opale, Lille, France
| | - Marc Fremont
- VF Bioscience, Parc Eurasanté, Loos-lez-Lille, France
| | - Djamel Drider
- INRA, ISA, EA 7394-ICV Institut Charles Viollette, Université Lille, Université d'Artois, Université Littoral Côte d'Opale, Lille, France
| | - Pascal Dhulster
- INRA, ISA, EA 7394-ICV Institut Charles Viollette, Université Lille, Université d'Artois, Université Littoral Côte d'Opale, Lille, France
| |
Collapse
|
55
|
Zhu Z, Ji X, Wu Z, Zhang J, Du G. Improved acid-stress tolerance of Lactococcus lactis NZ9000 and Escherichia coli BL21 by overexpression of the anti-acid component recT. J Ind Microbiol Biotechnol 2018; 45:1091-1101. [PMID: 30232653 DOI: 10.1007/s10295-018-2075-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 12/01/2022]
Abstract
Acid accumulation caused by carbon metabolism severely affects the fermentation performance of microbial cells. Here, different sources of the recT gene involved in homologous recombination were functionally overexpressed in Lactococcus lactis NZ9000 and Escherichia coli BL21, and their acid-stress tolerances were investigated. Our results showed that L. lactis NZ9000 (ERecT and LRecT) strains showed 1.4- and 10.4-fold higher survival rates against lactic acid (pH 4.0), respectively, and that E. coli BL21 (ERecT) showed 16.7- and 9.4-fold higher survival rates than the control strain against lactic acid (pH 3.8) for 40 and 60 min, respectively. Additionally, we found that recT overexpression in L. lactis NZ9000 improved their growth under acid-stress conditions, as well as increased salt- and ethanol-stress tolerance and intracellular ATP concentrations in L. lactis NZ9000. These findings demonstrated the efficacy of recT overexpression for enhancing acid-stress tolerance and provided a promising strategy for insertion of anti-acid components in different hosts.
Collapse
Affiliation(s)
- Zhengming Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xiaomei Ji
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
56
|
Microbial conversion of xylose into useful bioproducts. Appl Microbiol Biotechnol 2018; 102:9015-9036. [PMID: 30141085 DOI: 10.1007/s00253-018-9294-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Microorganisms can produce a number of different bioproducts from the sugars in plant biomass. One challenge is devising processes that utilize all of the sugars in lignocellulosic hydrolysates. D-xylose is the second most abundant sugar in these hydrolysates. The microbial conversion of D-xylose to ethanol has been studied extensively; only recently, however, has conversion to bioproducts other than ethanol been explored. Moreover, in the case of yeast, D-xylose may provide a better feedstock for the production of bioproducts other than ethanol, because the relevant pathways are not subject to glucose-dependent repression. In this review, we discuss how different microorganisms are being used to produce novel bioproducts from D-xylose. We also discuss how D-xylose could be potentially used instead of glucose for the production of value-added bioproducts.
Collapse
|
57
|
Padmanabhan A, Tong Y, Wu Q, Zhang J, Shah NP. Transcriptomic Insights Into the Growth Phase- and Sugar-Associated Changes in the Exopolysaccharide Production of a High EPS-Producing Streptococcus thermophilus ASCC 1275. Front Microbiol 2018; 9:1919. [PMID: 30177921 PMCID: PMC6109772 DOI: 10.3389/fmicb.2018.01919] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
In a previous study, incorporation of high exopolysaccharide (EPS) producing dairy starter bacterium Streptococcus thermophilus ASCC 1275 was found to improve functionality of low fat mozzarella cheese and yogurt. This bacterium in its eps gene cluster has a unique pair of chain length determining genes, epsC- epsD, when compared to other sequenced S. thermophilus strains. Hence, the aim of this study was to understand the regulatory mechanism of EPS production in this bacterium using transcriptomic analysis to provide opportunities to improve the yield of EPS. As sugars are considered as one of the major determinants of EPS production, after preliminary screening, we selected three sugars, glucose, sucrose and lactose to identify the EPS producing mechanism of this bacterium in M17 medium. Complete RNA-seq analysis was performed using Illumina HiSeq 2000 sequencing system on S. thermophilus 1275 grown in three different sugars at two-time points, 5 h (log phase) and 10 h (stationary phase) to recognize the genes involved in sugar uptake, UDP-sugar formation, EPS assembly and export of EPS outside the bacterial cell. S. thermophilus 1275 was found to produce high amount of EPS (∼430 mg/L) in sucrose (1%) supplemented M17 medium when compared to other two sugars. Differential gene expression analysis revealed the involvement of phosphoenolpyruvate phosphotransferase system (PEP-PTS) for glucose and sucrose uptake, and lacS gene for lactose uptake. The pathways for the formation of UDP-glucose and UDP-galactose were highly upregulated in all the three sugars. In the presence of sucrose, eps1C1D2C2D were found to be highly expressed which refers to high EPS production. Protein homology study suggested the presence of Wzx/Wzy-dependent EPS synthesis and transport pathway in this bacterium. KEGG pathway and COG functional enrichment analysis were also performed to support the result. This is the first report providing the transcriptomic insights into the EPS production mechanism of a common dairy bacterium, S. thermophilus.
Collapse
Affiliation(s)
- Aparna Padmanabhan
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ying Tong
- Cancer Genetics, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Qinglong Wu
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jiangwen Zhang
- Cancer Genetics, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
58
|
Boumaiza M, Colarusso A, Parrilli E, Garcia-Fruitós E, Casillo A, Arís A, Corsaro MM, Picone D, Leone S, Tutino ML. Getting value from the waste: recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey. Microb Cell Fact 2018; 17:126. [PMID: 30111331 PMCID: PMC6094915 DOI: 10.1186/s12934-018-0974-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Background Recent biotechnological advancements have allowed for the adoption of Lactococcus lactis, a typical component of starter cultures used in food industry, as the host for the production of food-grade recombinant targets. Among several advantages, L. lactis has the important feature of growing on lactose, the main carbohydrate in milk and a majoritarian component of dairy wastes, such as cheese whey. Results We have used recombinant L. lactis NZ9000 carrying the nisin inducible pNZ8148 vector to produce MNEI, a small sweet protein derived from monellin, with potential for food industry applications as a high intensity sweetener. We have been able to sustain this production using a medium based on the cheese whey from the production of ricotta cheese, with minimal pre-treatment of the waste. As a proof of concept, we have also tested these conditions for the production of MMP-9, a protein that had been previously successfully obtained from L. lactis cultures in standard growth conditions. Conclusions Other than presenting a new system for the recombinant production of MNEI, more compliant with its potential applications in food industry, our results introduce a strategy to valorize dairy effluents through the synthesis of high added value recombinant proteins. Interestingly, the possibility of using this whey-derived medium relied greatly on the choice of the appropriate codon usage for the target gene. In fact, when a gene optimized for L. lactis was used, the production of MNEI proceeded with good yields. On the other hand, when an E. coli optimized gene was employed, protein synthesis was greatly reduced, to the point of being completely abated in the cheese whey-based medium. The production of MMP-9 was comparable to what observed in the reference conditions. Electronic supplementary material The online version of this article (10.1186/s12934-018-0974-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Andrea Colarusso
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Anna Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Serena Leone
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy.
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy.
| |
Collapse
|
59
|
Afiuni-Zadeh S, Boylan KLM, Jagtap PD, Griffin TJ, Rudney JD, Peterson ML, Skubitz APN. Evaluating the potential of residual Pap test fluid as a resource for the metaproteomic analysis of the cervical-vaginal microbiome. Sci Rep 2018; 8:10868. [PMID: 30022083 PMCID: PMC6052116 DOI: 10.1038/s41598-018-29092-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/04/2018] [Indexed: 01/30/2023] Open
Abstract
The human cervical-vaginal area contains proteins derived from microorganisms that may prevent or predispose women to gynecological conditions. The liquid Pap test fixative is an unexplored resource for analysis of microbial communities and the microbe-host interaction. Previously, we showed that the residual cell-free fixative from discarded Pap tests of healthy women could be used for mass spectrometry (MS) based proteomic identification of cervical-vaginal proteins. In this study, we reprocessed these MS raw data files for metaproteomic analysis to characterize the microbial community composition and function of microbial proteins in the cervical-vaginal region. This was accomplished by developing a customized protein sequence database encompassing microbes likely present in the vagina. High-mass accuracy data were searched against the protein FASTA database using a two-step search method within the Galaxy for proteomics platform. Data was analyzed by MEGAN6 (MetaGenomeAnalyzer) for phylogenetic and functional characterization. We identified over 300 unique peptides from a variety of bacterial phyla and Candida. Peptides corresponding to proteins involved in carbohydrate metabolism, oxidation-reduction, and transport were identified. By identifying microbial peptides in Pap test supernatants it may be possible to acquire a functional signature of these microbes, as well as detect specific proteins associated with cervical health and disease.
Collapse
Affiliation(s)
- Somaieh Afiuni-Zadeh
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kristin L M Boylan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Center for Mass Spectrometry and Proteomics, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Center for Mass Spectrometry and Proteomics, University of Minnesota, Minneapolis, MN, USA
| | - Joel D Rudney
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | | | - Amy P N Skubitz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
60
|
'Ropy' phenotype, exopolysaccharides and metabolism: Study on food isolated potential probiotics LAB. Microbiol Res 2018; 214:137-145. [PMID: 30031476 DOI: 10.1016/j.micres.2018.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/03/2018] [Accepted: 07/08/2018] [Indexed: 12/20/2022]
Abstract
Lactic acid bacteria are fully recognized for their industrial applications among which the production and release of exopolysaccharides. In the present investigation, we screened fifteen Lactobacilli in order to find ropy strains, quantify exopolysaccharides and detect proteins specifically associated with the ropy-exopolysaccharide production. The highest ropy-exopolysaccharide producer (L. helveticus 6E8), was grown in stimulating and basal condition (10% and 2% lactose) and subjected to comparative proteomic analysis. The levels of 4 proteins were found significantly increased in the membrane fraction under stimulating conditions: a specific exopolysaccharide biosynthetic protein, a stress-induced protein, a protein involved in secretion and an ATP-synthase subunit. Conversely, several enzymes involved in anabolism and protein synthesis were decreased. These results suggest a general shift from growth to exopolysaccharide-mediated protection from the hyperosmotic environment. Due to the great interest in exopolysaccharides with novel features, the identification of these proteins could have implications for future improvements of industrial strains.
Collapse
|
61
|
Park SY, Reimonn TM, Agarabi CD, Brorson KA, Yoon S. Metabolic responses and pathway changes of mammalian cells under different culture conditions with media supplementations. Biotechnol Prog 2018; 34:793-805. [DOI: 10.1002/btpr.2623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/08/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Seo-Young Park
- Dept. of Chemical Engineering; University of Massachusetts; Lowell MA, United States
| | - Thomas M. Reimonn
- Program in Bioinformatics and Integrative Biology; University of Massachusetts Medical School; Worcester MA, United States
| | - Cyrus D. Agarabi
- Division II; Office of Biotechnology Products, Office of Pharmaceutical Quality, CDER, FDA; Silver Spring MD, United States
| | - Kurt A. Brorson
- Division II; Office of Biotechnology Products, Office of Pharmaceutical Quality, CDER, FDA; Silver Spring MD, United States
| | - Seongkyu Yoon
- Dept. of Chemical Engineering; University of Massachusetts; Lowell MA, United States
| |
Collapse
|
62
|
The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production. Trends Biotechnol 2017; 35:756-769. [DOI: 10.1016/j.tibtech.2017.05.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022]
|
63
|
Tao Y, Wang X, Li X, Wei N, Jin H, Xu Z, Tang Q, Zhu X. The functional potential and active populations of the pit mud microbiome for the production of Chinese strong-flavour liquor. Microb Biotechnol 2017; 10:1603-1615. [PMID: 28703874 PMCID: PMC5658580 DOI: 10.1111/1751-7915.12729] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/16/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022] Open
Abstract
The popular distilled Chinese strong‐flavour liquor (CSFL) is produced by solid fermentation in the ground pit. Microbes inhabiting in the pit mud (PM) on the walls of the fermentation pit are responsible for the production of caproic acid (CA) that determines the quality of CSFL to a large degree. However, little is known about the active microbial populations and metabolic potential of the PM microbiome. Here, we investigated the overall metabolic features of the PM microbiome and its active microbial components by combining metagenomics and MiSeq‐sequencing analyses of the 16S rRNA genes from DNA and RNA (cDNA). Results showed that prokaryotes were predominant populations in the PM microbiome, accounting for 95.3% of total metagenomic reads, while eukaryotic abundance was only 1.8%. The dominant prokaryotic phyla were Firmicutes, Euryarchaeota, Bacteroidetes, Actinobacteria and Proteobacteria, accounting for 48.0%, 19.0%, 13.5%, 2.5% and 2.1% of total metagenomic reads respectively. Most genes encoding putative metabolic pathways responsible for the putative CA production via chain elongation pathway were detected. This indicated that the PM microbiome owned functional potential for synthesizing CA from ethanol or lactate. Some key genes encoding enzymes involved in hydrogenotrophic and acetoclastic methanogenesis pathways were detected in the PM metagenome, suggesting the possible occurrence of interspecies hydrogen transfer between CA‐producing bacteria and methanogens. The 16S rDNA and 16S rRNA profiles showed that the Clostridial cluster IV, Lactobacillus, Caloramator, Clostridium, Sedimentibacter, Bacteroides and Porphyromonas were active populations in situ, in which Clostridial cluster IV and Clostridium were likely involved in the CA production. This study improved our understandings on the active populations and metabolic pathways of the PM microbiome involved in the CA synthesis in the CSFL fermentation.
Collapse
Affiliation(s)
- Yong Tao
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, 610041, China
| | - Xiang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, 610041, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, 610041, China
| | - Na Wei
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, 610041, China
| | - Hong Jin
- Chengdu Medical College, Chengdu, 610083, China
| | - Zhancheng Xu
- The National-recognized Enterprise Technology Center, Sichuan Jiannanchun Group Co. Ltd., Mianzhu, Sichuan, 618200, China
| | - Qinglan Tang
- The National-recognized Enterprise Technology Center, Sichuan Jiannanchun Group Co. Ltd., Mianzhu, Sichuan, 618200, China
| | - Xiaoyu Zhu
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, 610041, China
| |
Collapse
|
64
|
GC-MS based metabolomics analysis reveals the effects of different agitation speeds on the level of proteinogenic amino acids in Lactococcus lactis subsp. cremoris MG1363. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
65
|
Pediococcus spp.: An important genus of lactic acid bacteria and pediocin producers. Biotechnol Adv 2017; 35:361-374. [DOI: 10.1016/j.biotechadv.2017.03.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/19/2017] [Accepted: 03/04/2017] [Indexed: 02/07/2023]
|
66
|
Bosma EF, Forster J, Nielsen AT. Lactobacilli and pediococci as versatile cell factories - Evaluation of strain properties and genetic tools. Biotechnol Adv 2017; 35:419-442. [PMID: 28396124 DOI: 10.1016/j.biotechadv.2017.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
This review discusses opportunities and bottlenecks for cell factory development of Lactic Acid Bacteria (LAB), with an emphasis on lactobacilli and pediococci, their metabolism and genetic tools. In order to enable economically feasible bio-based production of chemicals and fuels in a biorefinery, the choice of product, substrate and production organism is important. Currently, the most frequently used production hosts include Escherichia coli and Saccharomyces cerevisiae, but promising examples are available of alternative hosts such as LAB. Particularly lactobacilli and pediococci can offer benefits such as thermotolerance, an extended substrate range and increased tolerance to stresses such as low pH or high alcohol concentrations. This review will evaluate the properties and metabolism of these organisms, and provide an overview of their current biotechnological applications and metabolic engineering. We substantiate the review by including experimental results from screening various lactobacilli and pediococci for transformability, growth temperature range and ability to grow under biotechnologically relevant stress conditions. Since availability of efficient genetic engineering tools is a crucial prerequisite for industrial strain development, genetic tool development is extensively discussed. A range of genetic tools exist for Lactococcus lactis, but for other species of LAB like lactobacilli and pediococci such tools are less well developed. Whereas lactobacilli and pediococci have a long history of use in food and beverage fermentation, their use as platform organisms for production purposes is rather new. By harnessing their properties such as thermotolerance and stress resistance, and by using emerging high-throughput genetic tools, these organisms are very promising as versatile cell factories for biorefinery applications.
Collapse
Affiliation(s)
- Elleke F Bosma
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
67
|
Song AAL, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb Cell Fact 2017; 16:55. [PMID: 28376880 PMCID: PMC5379754 DOI: 10.1186/s12934-017-0669-x] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/28/2017] [Indexed: 02/08/2023] Open
Abstract
Lactococcus lactis has progressed a long way since its discovery and initial use in dairy product fermentation, to its present biotechnological applications in genetic engineering for the production of various recombinant proteins and metabolites that transcends the heterologous species barrier. Key desirable features of this gram-positive lactic acid non-colonizing gut bacteria include its generally recognized as safe (GRAS) status, probiotic properties, the absence of inclusion bodies and endotoxins, surface display and extracellular secretion technology, and a diverse selection of cloning and inducible expression vectors. This have made L. lactis a desirable and promising host on par with other well established model bacterial or yeast systems such as Escherichia coli, Saccharomyces [corrected] cerevisiae and Bacillus subtilis. In this article, we review recent technological advancements, challenges, future prospects and current diversified examples on the use of L. lactis as a microbial cell factory. Additionally, we will also highlight latest medical-based applications involving whole-cell L. lactis as a live delivery vector for the administration of therapeutics against both communicable and non-communicable diseases.
Collapse
Affiliation(s)
- Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Lionel L A In
- Functional Food Research Group, Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Swee Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland, Perdana University, Block B and D, MAEPS Building, MARDI Complex, Jalan MAEPS Perdana, 43400, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell & Molecular Biology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
68
|
New advances in exopolysaccharides production of Streptococcus thermophilus. Arch Microbiol 2017; 199:799-809. [PMID: 28357474 DOI: 10.1007/s00203-017-1366-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Streptococcus thermophilus is the most important thermophilic dairy starter, and is widely used in the dairy industry. Streptococcus thermophilus exopolysaccharides received wide attention over recent decades, because they can improve the properties of the dairy product and confer beneficial health effects. The understanding of the regulatory and biosynthetic mechanisms of EPS will improve the EPS biosynthesis, increase the productivity of EPSs, and develop EPSs with desirable properties. The structure of EPSs is the focus of this study. Revealing the structure-function relationship can lead to increase the knowledge base and from there to increased research of EPS. The EPS yield is a key limiting factor in the research and utilization of EPS. In the present review, biosynthetic pathways and genetics of S. thermophilus EPSs were described and reviewed. At the same time, functional properties and applications of EPS, and strategies for enhancement of EPS production are discussed.
Collapse
|
69
|
de Carvalho CCCR. Whole cell biocatalysts: essential workers from Nature to the industry. Microb Biotechnol 2017; 10:250-263. [PMID: 27145540 PMCID: PMC5328830 DOI: 10.1111/1751-7915.12363] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022] Open
Abstract
Microorganisms have been exposed to a myriad of substrates and environmental conditions throughout evolution resulting in countless metabolites and enzymatic activities. Although mankind have been using these properties for centuries, we have only recently learned to control their production, to develop new biocatalysts with high stability and productivity and to improve their yields under new operational conditions. However, microbial cells still provide the best known environment for enzymes, preventing conformational changes in the protein structure in non-conventional medium and under harsh reaction conditions, while being able to efficiently regenerate necessary cofactors and to carry out cascades of reactions. Besides, a still unknown microbe is probably already producing a compound that will cure cancer, Alzeihmer's disease or kill the most resistant pathogen. In this review, the latest developments in screening desirable activities and improving production yields are discussed.
Collapse
Affiliation(s)
- Carla C. C. R. de Carvalho
- iBB‐Institute for Bioengineering and BiosciencesDepartment of BioengineeringInstituto Superior TécnicoUniversidade de LisboaAv. Rovisco PaisLisbon1049‐001Portugal
| |
Collapse
|
70
|
Stefanovic E, Fitzgerald G, McAuliffe O. Advances in the genomics and metabolomics of dairy lactobacilli: A review. Food Microbiol 2017; 61:33-49. [DOI: 10.1016/j.fm.2016.08.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 01/21/2023]
|
71
|
Gsy, a novel glucansucrase from Leuconostoc mesenteroides, mediates the formation of cell aggregates in response to oxidative stress. Sci Rep 2016; 6:38122. [PMID: 27924943 PMCID: PMC5141493 DOI: 10.1038/srep38122] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Leuconostoc mesenteroides is a member of lactic acid bacteria (LAB) with wide applications in the food and medical industries. Species in the genus Leuconostoc are catalase-negative and generally regarded as facultative anaerobic or aerotolerant organisms. Despite their extensive use in industry, certain issues concerning the aerobic life of L. mesenteroides, e.g., the mechanism involved in the tolerance to oxygen, remain to be addressed. In this manuscript, a survival strategy employed by L. mesenteroides BD3749 in response to oxidative stress was elucidated. BD3749 cells cultivated in medium with sucrose available synthesized large amounts of exopolysaccharides, mostly consisting of insoluble EPS. When BD3749 cells were challenged with oxidative stress, the amount of insoluble EPS was greatly enhanced. The synthesized EPSs reduced the accumulation of reactive oxygen species (ROS) in bacterial cells and improved their survival during chronic oxidative stress. Another study showed that Gsy, a novel glucansucrase in the GH70 family that is induced by sucrose and up-regulated following exposure to oxygen, was responsible for the synthesis of insoluble EPS. Gsy was subsequently demonstrated to play pivotal roles in the formation of aggregates to alleviate the detrimental effects on BD3749 cells exerted by oxygen.
Collapse
|
72
|
Ruiz-Rodríguez L, Bleckwedel J, Eugenia Ortiz M, Pescuma M, Mozzi F. Lactic Acid Bacteria. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Luciana Ruiz-Rodríguez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Juliana Bleckwedel
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Maria Eugenia Ortiz
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Micaela Pescuma
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Fernanda Mozzi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| |
Collapse
|
73
|
Kavitha S, Jeevaratnam K. Molecular Characterization of Lactobacilli Isolated fromPiper betleL. var. Pachaikodi and Comparative Analysis of the Antimicrobial Effects of IsolateLactobacillus plantarumKJB23 and Betel Leaves Extract. FOOD BIOTECHNOL 2016. [DOI: 10.1080/08905436.2016.1166440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
74
|
Characterization and upregulation of bifunctional phosphoglucomutase/phosphomannomutase enzyme in an exobiopolymer overproducing strain of Acinetobacter haemolyticus. Microbiol Res 2015; 181:8-14. [PMID: 26640047 DOI: 10.1016/j.micres.2015.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/13/2015] [Accepted: 08/04/2015] [Indexed: 11/24/2022]
Abstract
Several members of the Acinetobacter spp. produce exobiopolymer (EBP) of considerable biotechnological interest. In a previous study, we reported phosphate removal capacity of EBP produced by Acinetobacter haemolyticus. Insertional mutagenesis was attempted to develop EBP-overproducing strains of A. haemolyticus and mutant MG606 was isolated. In order to understand the underlying mechanism of overproduction, the EBP overproducing mutant MG606 was analyzed and compared with the wild type counterpart for its key EBP synthetic enzymes. The EBP produced by MG606 mutant was 650 mg/L compared to 220 mg/L in its wild type counterpart. Significantly high (p<0.05) levels of phosphoglucomutase/phosphomannomutase (PGM/PMM) in MG606 mutant was noted, whereas activities of other enzymes responsible for EBP synthesis showed no significant change (p>0.05). The up-regulation of PGM/PMM expression in mutant was further confirmed by real time reverse transcriptase (RT)-PCR of PGM/PMM transcripts. The optimal conditions for PGM/PMM activity were found to be 35 °C and pH 7.5; PGM/PMM activity was inhibited by ions such as lithium, zinc, nickel. Further, incubation of cells with a PGM inhibitor (lithium) resulted in a concentration-dependent decrease in EBP production further confirming the role of PGM/PMM overexpression in enhanced EBP production by the mutant. Overall the results of our study indicate a key role of PGM/PMM in enhanced EBP production, as evident from enhanced enzyme activity, increased PGM/PMM transcripts and reduction in EBP synthesis by a PGM inhibitor. We envisage a potential exploitation of the insights so obtained to effectively engineer strains of Acinetobacter for overproducing phosphate binding EBP.
Collapse
|
75
|
Tanaka T, Kondo A. Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnol Adv 2015; 33:1403-11. [PMID: 26070720 DOI: 10.1016/j.biotechadv.2015.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 11/19/2022]
Abstract
In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed.
Collapse
Affiliation(s)
- Tsutomu Tanaka
- Department of Chemical Science and Technology, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501 Japan
| | - Akihiko Kondo
- Department of Chemical Science and Technology, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501 Japan.
| |
Collapse
|
76
|
Implications of new research and technologies for malolactic fermentation in wine. Appl Microbiol Biotechnol 2014; 98:8111-32. [PMID: 25142694 DOI: 10.1007/s00253-014-5976-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 01/11/2023]
Abstract
The initial conversion of grape must to wine is an alcoholic fermentation (AF) largely carried out by one or more strains of yeast, typically Saccharomyces cerevisiae. After the AF, a secondary or malolactic fermentation (MLF) which is carried out by lactic acid bacteria (LAB) is often undertaken. The MLF involves the bioconversion of malic acid to lactic acid and carbon dioxide. The ability to metabolise L-malic acid is strain specific, and both individual Oenococcus oeni strains and other LAB strains vary in their ability to efficiently carry out MLF. Aside from impacts on acidity, LAB can also metabolise other precursors present in wine during fermentation and, therefore, alter the chemical composition of the wine resulting in an increased complexity of wine aroma and flavour. Recent research has focused on three main areas: enzymatic changes during MLF, safety of the final product and mechanisms of stress resistance. This review summarises the latest research and technological advances in the rapidly evolving study of MLF and investigates the directions that future research may take.
Collapse
|
77
|
Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E. Towards lactic acid bacteria-based biorefineries. Biotechnol Adv 2014; 32:1216-1236. [PMID: 25087936 DOI: 10.1016/j.biotechadv.2014.07.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Francesca Bosco
- Department of Applied Science and Technology (DISAT), Politecnico of Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
| | - Itzhak Mizrahi
- Institute of Animal Science, ARO, Volcani Research Center, P.O. Box 6Â, Bet Dagan 50-250, Israel.
| | - Edward A Bayer
- Department of Biological Chemistry, the Weizmann Institute of Science, Rehovot 76100 Israel.
| | - Enrica Pessione
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|