51
|
Tomita S, Ishihara S, Kurita R. A polymer-based chemical tongue for the non-invasive monitoring of osteogenic stem-cell differentiation by pattern recognition of serum-supplemented spent media. J Mater Chem B 2022; 10:7581-7590. [DOI: 10.1039/d2tb00606e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of non-invasive techniques to characterize cultured cells is invaluable not only to ensure the reproducibility of cell research, but also for quality assurance of industrial cell products for...
Collapse
|
52
|
Advancing Tumor Microenvironment Research by Combining Organs-on-Chips and Biosensors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:171-203. [DOI: 10.1007/978-3-031-04039-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
53
|
Adult Neural Stem Cell Migration Is Impaired in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2021; 59:1168-1182. [PMID: 34894324 PMCID: PMC8857127 DOI: 10.1007/s12035-021-02620-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022]
Abstract
Neurogenesis in the adult brain takes place in two neurogenic niches: the ventricular-subventricular zone (V-SVZ) and the subgranular zone. After differentiation, neural precursor cells (neuroblasts) have to move to an adequate position, a process known as neuronal migration. Some studies show that in Alzheimer’s disease, the adult neurogenesis is impaired. Our main aim was to investigate some proteins involved both in the physiopathology of Alzheimer’s disease and in the neuronal migration process using the APP/PS1 Alzheimer’s mouse model. Progenitor migrating cells are accumulated in the V-SVZ of the APP/PS1 mice. Furthermore, we find an increase of Cdh1 levels and a decrease of Cdk5/p35 and cyclin B1, indicating that these cells have an alteration of the cell cycle, which triggers a senescence state. We find less cells in the rostral migratory stream and less mature neurons in the olfactory bulbs from APP/PS1 mice, leading to an impaired odour discriminatory ability compared with WT mice. Alzheimer’s disease mice present a deficit in cell migration from V-SVZ due to a senescent phenotype. Therefore, these results can contribute to a new approach of Alzheimer’s based on senolytic compounds or pro-neurogenic factors.
Collapse
|
54
|
Nuutila K, Eriksson E. Moist Wound Healing with Commonly Available Dressings. Adv Wound Care (New Rochelle) 2021; 10:685-698. [PMID: 32870777 DOI: 10.1089/wound.2020.1232] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Significance: A moist wound environment has several benefits that result in faster and better quality of healing. It facilitates autolytic debridement, reduces pain, reduces scarring, activates collagen synthesis, facilitates and promotes keratinocyte migration over the wound surface, and supports the presence and function of nutrients, growth factors, and other soluble mediators in the wound microenvironment. Recent Advances: Wound dressings can be utilized to create, maintain, and control a moist environment for healing. Moist wound dressings can be divided into films, foams, hydrocolloids, hydrogels, and alginates. We are also including negative pressure wound therapy systems in the moist dressings. Critical Issues: An optimal wound dressing should provide a moist environment and have an optimal water vapor transmission rate (WVTR) and absorptive capacity. It should also protect the wound against trauma and contamination and be easy to apply, painless to remove, and esthetically acceptable or even pleasing. Future Directions: Interventions, particularly dressing changes, by medical caregivers are labor intensive and expensive and there should be a continuous effort to reduce their number per week. Smart dressings with integrated microsensors and delivery capabilities that would allow wireless real-time monitoring and treatment of the wound would be very advantageous. This way the state of the wound as well as the wear time of the dressing could be assessed without dressing removal or visit to the wound care center. In addition, an ability to adjust the WVTRs to the exudate level of the wound (or having a large absorptive capacity without changing the WVTR) would be useful. This feature would guarantee an optimal level of hydration of the wound surface throughout the treatment.
Collapse
Affiliation(s)
- Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elof Eriksson
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
55
|
Venkatachalapathy S, Jokhun DS, Andhari M, Shivashankar GV. Single cell imaging-based chromatin biomarkers for tumor progression. Sci Rep 2021; 11:23041. [PMID: 34845273 PMCID: PMC8630115 DOI: 10.1038/s41598-021-02441-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Tumour progression within the tissue microenvironment is accompanied by complex biomechanical alterations of the extracellular environment. While histopathology images provide robust biochemical markers for tumor progression in clinical settings, a quantitative single cell score using nuclear morphology and chromatin organization integrated with the long range mechanical coupling within the tumor microenvironment is missing. We propose that the spatial chromatin organization in individual nuclei characterises the cell state and their alterations during tumor progression. In this paper, we first built an image analysis pipeline and implemented it to classify nuclei from patient derived breast tissue biopsies of various cancer stages based on their nuclear and chromatin features. Replacing H&E with DNA binding dyes such as Hoescht stained tissue biopsies, we improved the classification accuracy. Using the nuclear morphology and chromatin organization features, we constructed a pseudo-time model to identify the chromatin state changes that occur during tumour progression. This enabled us to build a single-cell mechano-genomic score that characterises the cell state during tumor progression from a normal to a metastatic state. To gain further insights into the alterations in the local tissue microenvironments, we also used the nuclear orientations to identify spatial neighbourhoods that have been posited to drive tumor progression. Collectively, we demonstrate that image-based single cell chromatin and nuclear features are important single cell biomarkers for phenotypic mapping of tumor progression.
Collapse
Affiliation(s)
- Saradha Venkatachalapathy
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, 117411, Singapore.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Doorgesh S Jokhun
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, 117411, Singapore
| | - Madhavi Andhari
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, 117411, Singapore.,Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - G V Shivashankar
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, 117411, Singapore. .,FIRC Institute for Molecular Oncology, 20139, Milan, Italy. .,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland. .,Paul Scherrer Institut, 5232, Villigen, Switzerland.
| |
Collapse
|
56
|
NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021. [DOI: 10.3390/ijms222212333
expr 804735418 + 979474750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
|
57
|
Crescenzi E, Leonardi A, Pacifico F. NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021; 22:12333. [PMID: 34830212 PMCID: PMC8623964 DOI: 10.3390/ijms222212333&set/a 915137580+984946846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini, 5-80131 Naples, Italy;
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, “Federico II” University of Naples, Via S. Pansini, 5-80131 Naples, Italy;
| | - Francesco Pacifico
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini, 5-80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
58
|
NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms222212333. [PMID: 34830212 PMCID: PMC8623964 DOI: 10.3390/ijms222212333] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
|
59
|
Coletta S, Lonardi S, Sensi F, D’Angelo E, Fassan M, Pucciarelli S, Valzelli A, Biccari A, Vermi W, Della Bella C, Barizza A, D’Elios MM, de Bernard M, Agostini M, Codolo G. Tumor Cells and the Extracellular Matrix Dictate the Pro-Tumoral Profile of Macrophages in CRC. Cancers (Basel) 2021; 13:cancers13205199. [PMID: 34680345 PMCID: PMC8533926 DOI: 10.3390/cancers13205199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are major components of the tumor microenvironment. In colorectal cancer (CRC), a strong infiltration of TAMs is accompanied by a decrease in effector T cells and an increase in the metastatic potential of CRC. We investigated the functional profile of TAMs infiltrating CRC tissue by immunohistochemistry, flow cytometry, ELISA, and qRT-PCR and their involvement in impairing the activation of effector T cells. In CRC biopsies, we evidenced a high percentage of macrophages with low expression of the antigen-presenting complex MHC-II and high expression of CD206. Monocytes co-cultured with tumor cells or a decellularized tumor matrix differentiated toward a pro-tumoral macrophage phenotype characterized by decreased expression of MHC-II and CD86 and increased expression of CD206 and an abundant release of pro-tumoral cytokines and chemokines. We demonstrated that the hampered expression of MHC-II in macrophages is due to the downregulation of the MHC-II transactivator CIITA and that this effect relies on increased expression of miRNAs targeting CIITA. As a result, macrophages become unable to present antigens to CD4 T lymphocytes. Our data suggest that the tumor microenvironment contributes to defining a pro-tumoral profile of macrophages infiltrating CRC tissue with impaired capacity to activate T cell effector functions.
Collapse
Affiliation(s)
- Sara Coletta
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
| | - Silvia Lonardi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (A.V.); (W.V.)
| | - Francesca Sensi
- Department of Molecular Sciences and Nanosystems, Cà Foscari University of Venice, 30172 Venice, Italy;
- Pediatric Research Institute, 35127 Padova, Italy
| | - Edoardo D’Angelo
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology Unit, University of Padova, 35124 Padova, Italy;
- Veneto Institute of Oncology, IOV-IRCCS, 35100 Padova, Italy
| | - Salvatore Pucciarelli
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
| | - Arianna Valzelli
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (A.V.); (W.V.)
| | - Andrea Biccari
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padova, Italy
| | - William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (A.V.); (W.V.)
| | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Firenze, 50121 Firenze, Italy; (C.D.B.); (M.M.D.)
| | - Annica Barizza
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
| | - Mario Milco D’Elios
- Department of Experimental and Clinical Medicine, University of Firenze, 50121 Firenze, Italy; (C.D.B.); (M.M.D.)
| | - Marina de Bernard
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
| | - Marco Agostini
- Pediatric Research Institute, 35127 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padova, Italy
- Correspondence: (M.A.); (G.C.); Tel.: +39-049-964-0160 (M.A.); +39-049-827-6182 (G.C.)
| | - Gaia Codolo
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
- Correspondence: (M.A.); (G.C.); Tel.: +39-049-964-0160 (M.A.); +39-049-827-6182 (G.C.)
| |
Collapse
|
60
|
Bhat SM, Badiger VA, Vasishta S, Chakraborty J, Prasad S, Ghosh S, Joshi MB. 3D tumor angiogenesis models: recent advances and challenges. J Cancer Res Clin Oncol 2021; 147:3477-3494. [PMID: 34613483 PMCID: PMC8557138 DOI: 10.1007/s00432-021-03814-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 01/02/2023]
Abstract
The development of blood vessels, referred to as angiogenesis, is an intricate process regulated spatially and temporally through a delicate balance between the qualitative and quantitative expression of pro and anti-angiogenic molecules. As angiogenesis is a prerequisite for solid tumors to grow and metastasize, a variety of tumor angiogenesis models have been formulated to better understand the underlying mechanisms and associated clinical applications. Studies have demonstrated independent mechanisms inducing angiogenesis in tumors such as (a) HIF-1/VEGF mediated paracrine interactions between a cancer cell and endothelial cells, (b) recruitment of progenitor endothelial cells, and (c) vasculogenic mimicry. Moreover, single-cell sequencing technologies have indicated endothelial cell heterogeneity among organ systems including tumor tissues. However, existing angiogenesis models often rely upon normal endothelial cells which significantly differ from tumor endothelial cells exhibiting distinct (epi)genetic and metabolic signatures. Besides, the existence of intra-individual variations necessitates the development of improved tumor vascular model systems for personalized medicine. In the present review, we summarize recent advancements of 3D tumor vascular model systems which include (a) tissue engineering-based tumor models; (b) vascular organoid models, and (c) organ-on-chips and their importance in replicating the tumor angiogenesis along with the associated challenges to design improved models.
Collapse
Affiliation(s)
- Sharath M Bhat
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaishnavi A Badiger
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Juhi Chakraborty
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Seetharam Prasad
- Department of Surgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
61
|
Attaran S, Skoko JJ, Hopkins BL, Wright MK, Wood LE, Asan A, Woo HA, Feinberg A, Neumann CA. Peroxiredoxin-1 Tyr194 phosphorylation regulates LOX-dependent extracellular matrix remodelling in breast cancer. Br J Cancer 2021; 125:1146-1157. [PMID: 34389806 PMCID: PMC8505437 DOI: 10.1038/s41416-021-01510-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Peroxiredoxin 1 (PRDX1) belongs to an abundant family of peroxidases whose role in cancer is still unresolved. While mouse knockout studies demonstrate a tumour suppressive role for PRDX1, in cancer cell xenografts, results denote PRDX1 as a drug target. Probably, this phenotypic discrepancy stems from distinct roles of PRDX1 in certain cell types or stages of tumour progression. METHODS We demonstrate an important cell-autonomous function for PRDX1 utilising a syngeneic mouse model (BALB/c) and mammary fibroblasts (MFs) obtained from it. RESULTS Loss of PRDX1 in vivo promotes collagen remodelling known to promote breast cancer progression. PRDX1 inactivation in MFs occurs via SRC-induced phosphorylation of PRDX1 TYR194 and not through the expected direct oxidation of CYS52 in PRDX1 by ROS. TYR194-phosphorylated PRDX1 fails to bind to lysyl oxidases (LOX) and leads to the accumulation of extracellular LOX proteins which supports enhanced collagen remodelling associated with breast cancer progression. CONCLUSIONS This study reveals a cell type-specific tumour suppressive role for PRDX1 that is supported by survival analyses, depending on PRDX1 protein levels in breast cancer cohorts.
Collapse
Affiliation(s)
- Shireen Attaran
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - John J Skoko
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Barbara L Hopkins
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan K Wright
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Laurel E Wood
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alparslan Asan
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Adam Feinberg
- Department of Materials Science and Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Carola A Neumann
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
62
|
Fibroblasts Influence Metastatic Melanoma Cell Sensitivity to Combined BRAF and MEK Inhibition. Cancers (Basel) 2021; 13:cancers13194761. [PMID: 34638245 PMCID: PMC8507536 DOI: 10.3390/cancers13194761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Preclinical 3D in vitro coculture models are known to be more complex systems than monolayer cell culture and mimic the physiological environment more closely. Three-dimensional dermal equivalents provide a relevant environment for cutaneous metastatic melanoma cells and are capable of modulating a cancer cell’s response to drugs. We showed that a combined targeted therapy (vemurafenib and cobimetinib) efficiently inhibits cell proliferation and induces apoptosis, especially in the 3D coculture model. A cancer-associated fibroblast population isolated from a cutaneous melanoma was also sensitive to the treatment but with no detectable induction of apoptosis. To better understand the complex crosstalk between melanoma cells and their microenvironment, we compared the influence of conditioned media obtained from healthy or cancer-associated fibroblasts on the response of metastatic melanomas to the drugs. Our data indicate that normal fibroblast supernatants potentialize the therapy’s efficiency, whereas cancer-associated fibroblast secretomes favor melanoma cell survival. Abstract The sensitivity of melanoma cells to targeted therapy compounds depends on the tumor microenvironment. Three-dimensional (3D) in vitro coculture systems better reflect the native structural architecture of tissues and are ideal for investigating cellular interactions modulating cell sensitivity to drugs. Metastatic melanoma (MM) cells (SK-MEL-28 BRAF V600E mutant and SK-MEL-2 BRAF wt) were cultured as a monolayer (2D) or cocultured on 3D dermal equivalents (with fibroblasts) and treated with a BRAFi (vemurafenib) combined with a MEK inhibitor (MEKi, cobimetinib). The drug combination efficiently inhibited 2D and 3D MM cell proliferation and survival regardless of their BRAF status. Two-dimensional and three-dimensional cancer-associated fibroblasts (CAFs), isolated from a cutaneous MM biopsy, were also sensitive to the targeted therapy. Conditioned media obtained from healthy dermal fibroblasts or CAFs modulated the MM cell’s response differently to the treatment: while supernatants from healthy fibroblasts potentialized the efficiency of drugs on MM, those from CAFs tended to increase cell survival. Our data indicate that the secretory profiles of fibroblasts influence MM sensitivity to the combined vemurafenib and cobimetinib treatment and highlight the need for 3D in vitro cocultures representing the complex crosstalk between melanoma and CAFs during preclinical studies of drugs.
Collapse
|
63
|
Neagu AN, Whitham D, Buonanno E, Jenkins A, Alexa-Stratulat T, Tamba BI, Darie CC. Proteomics and its applications in breast cancer. Am J Cancer Res 2021; 11:4006-4049. [PMID: 34659875 PMCID: PMC8493401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is an individually unique, multi-faceted and chameleonic disease, an eternal challenge for the new era of high-integrated precision diagnostic and personalized oncomedicine. Besides traditional single-omics fields (such as genomics, epigenomics, transcriptomics and metabolomics) and multi-omics contributions (proteogenomics, proteotranscriptomics or reproductomics), several new "-omics" approaches and exciting proteomics subfields are contributing to basic and advanced understanding of these "multiple diseases termed breast cancer": phenomics/cellomics, connectomics and interactomics, secretomics, matrisomics, exosomics, angiomics, chaperomics and epichaperomics, phosphoproteomics, ubiquitinomics, metalloproteomics, terminomics, degradomics and metadegradomics, adhesomics, stressomics, microbiomics, immunomics, salivaomics, materiomics and other biomics. Throughout the extremely complex neoplastic process, a Breast Cancer Cell Continuum Concept (BCCCC) has been modeled in this review as a spatio-temporal and holistic approach, as long as the breast cancer represents a complex cascade comprising successively integrated populations of heterogeneous tumor and cancer-associated cells, that reflect the carcinoma's progression from a "driving mutation" and formation of the breast primary tumor, toward the distant secondary tumors in different tissues and organs, via circulating tumor cell populations. This BCCCC is widely sustained by a Breast Cancer Proteomic Continuum Concept (BCPCC), where each phenotype of neoplastic and tumor-associated cells is characterized by a changing and adaptive proteomic profile detected in solid and liquid minimal invasive biopsies by complex proteomics approaches. Such a profile is created, beginning with the proteomic landscape of different neoplastic cell populations and cancer-associated cells, followed by subsequent analysis of protein biomarkers involved in epithelial-mesenchymal transition and intravasation, circulating tumor cell proteomics, and, finally, by protein biomarkers that highlight the extravasation and distant metastatic invasion. Proteomics technologies are producing important data in breast cancer diagnostic, prognostic, and predictive biomarkers discovery and validation, are detecting genetic aberrations at the proteome level, describing functional and regulatory pathways and emphasizing specific protein and peptide profiles in human tissues, biological fluids, cell lines and animal models. Also, proteomics can identify different breast cancer subtypes and specific protein and proteoform expression, can assess the efficacy of cancer therapies at cellular and tissular level and can even identify new therapeutic target proteins in clinical studies.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IașiCarol I bvd. No. 22, Iași 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Emma Buonanno
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Avalon Jenkins
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Teodora Alexa-Stratulat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and PharmacyIndependenței bvd. No. 16-18, Iași 700021, Romania
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and PharmacyMihail Kogălniceanu Street No. 9-13, Iași 700454, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
64
|
Etxebeste-Mitxeltorena M, Del Rincón-Loza I, Martín-Antonio B. Tumor Secretome to Adoptive Cellular Immunotherapy: Reduce Me Before I Make You My Partner. Front Immunol 2021; 12:717850. [PMID: 34447383 PMCID: PMC8382692 DOI: 10.3389/fimmu.2021.717850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Adoptive cellular immunotherapy using chimeric antigen receptor (CAR)-modified T cells and Natural Killer (NK) cells are common immune cell sources administered to treat cancer patients. In detail, whereas CAR-T cells induce outstanding responses in a subset of hematological malignancies, responses are much more deficient in solid tumors. Moreover, NK cells have not shown remarkable results up to date. In general, immune cells present high plasticity to change their activity and phenotype depending on the stimuli they receive from molecules secreted in the tumor microenvironment (TME). Consequently, immune cells will also secrete molecules that will shape the activities of other neighboring immune and tumor cells. Specifically, NK cells can polarize to activities as diverse as angiogenic ones instead of their killer activity. In addition, tumor cell phagocytosis by macrophages, which is required to remove dying tumor cells after the attack of NK cells or CAR-T cells, can be avoided in the TME. In addition, chemotherapy or radiotherapy treatments can induce senescence in tumor cells modifying their secretome to a known as “senescence-associated secretory phenotype” (SASP) that will also impact the immune response. Whereas the SASP initially attracts immune cells to eliminate senescent tumor cells, at high numbers of senescent cells, the SASP becomes detrimental, impacting negatively in the immune response. Last, CAR-T cells are an attractive option to overcome these events. Here, we review how molecules secreted in the TME by either tumor cells or even by immune cells impact the anti-tumor activity of surrounding immune cells.
Collapse
Affiliation(s)
- Mikel Etxebeste-Mitxeltorena
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz, UAM, Madrid, Spain
| | - Inés Del Rincón-Loza
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz, UAM, Madrid, Spain
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz, UAM, Madrid, Spain
| |
Collapse
|
65
|
Ballesteros S, Domenech J, Velázquez A, Marcos R, Hernández A. Ex vivo exposure to different types of graphene-based nanomaterials consistently alters human blood secretome. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125471. [PMID: 33647622 DOI: 10.1016/j.jhazmat.2021.125471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The biomedical applications of graphene-based nanomaterials (GBN) have significantly grown in the last years. Many of these applications suppose their intravenous exposure and, in this way, GBN could encounter blood cells triggering an immunological response of unknown effects. Consequently, understanding the relationships between GBN and the immune system response should be a prerequisite for its adequate use in biomedicine. In the present study, we have conducted a little explored ex vivo exposure method in order to study the complexity of the secretome given by the interactions between GBN and blood cells. Blood samples from different healthy donors were exposed to three different types of GBN widely used in the biomedical field. In this sense, graphene oxide (GO), graphene nanoplatelets (GNPs), graphene nanoribbons (GNRs) and a panel of 105 proteins representatives of the blood secretome were evaluated. The results show broad changes in both the cytokines number and the expression levels, with important changes in inflammatory response markers. Furthermore, the indirect soft-agar assay was used as a tool to unravel the global functional impact of the found secretome changes. Our results indicate that the GBN-induced altered secretome can modify the natural anchorage-independent growth capacity of HeLa cells, used as a model. As a conclusion, this study describes an innovative approach to study the potential harmful effects of GBN, providing relevant data to be considered in the biomedical context when GBN are planned to be used in patients.
Collapse
Affiliation(s)
- Sandra Ballesteros
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain
| | - Josefa Domenech
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
66
|
Kim JH, Park SH, Han J, Ko PW, Kwon D, Suk K. Gliome database: a comprehensive web-based tool to access and analyze glia secretome data. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5879255. [PMID: 32743661 PMCID: PMC7396318 DOI: 10.1093/database/baaa057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Glial cells are phenotypically heterogeneous non-neuronal components of the central and peripheral nervous systems. These cells are endowed with diverse functions and molecular machineries to detect and regulate neuronal or their own activities by various secreted mediators, such as proteinaceous factors. In particular, glia-secreted proteins form a basis of a complex network of glia-neuron or glia-glia interactions in health and diseases. In recent years, the analysis and profiling of glial secretomes have raised new expectations for the diagnosis and treatment of neurological disorders due to the vital role of glia in numerous physiological or pathological processes of the nervous system. However, there is no online database of glia-secreted proteins available to facilitate glial research. Here, we developed a user-friendly 'Gliome' database (available at www.gliome.org), a web-based tool to access and analyze glia-secreted proteins. The database provides a vast collection of information on 3293 proteins that are released from glia of multiple species and have been reported to have differential functions under diverse experimental conditions. It contains a web-based interface with the following four key features regarding glia-secreted proteins: (i) fundamental information, such as signal peptide, SecretomeP value, functions and Gene Ontology category; (ii) differential expression patterns under distinct experimental conditions; (iii) disease association; and (iv) interacting proteins. In conclusion, the Gliome database is a comprehensive web-based tool to access and analyze glia-secretome data obtained from diverse experimental settings, whereby it may facilitate the integration of bioinformatics into glial research.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Su-Hyeong Park
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.,D&P BIOTECH, 807 Hoguk-ro, Buk-gu, Daegu, 41404, Republic of Korea
| | - Jin Han
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Pan-Woo Ko
- Department of Neurology, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404, Republic of Korea
| | - Dongseop Kwon
- School of Software Convergence, Myongji University, 34 Geobukgol-ro, Seodaemun-gu, Seoul, 03674, Republic of Korea
| | - Kyoungho Suk
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| |
Collapse
|
67
|
Gupta R, Sharma D. Therapeutic response differences between 2D and 3D tumor models of magnetic hyperthermia. NANOSCALE ADVANCES 2021; 3:3663-3680. [PMID: 36133021 PMCID: PMC9418625 DOI: 10.1039/d1na00224d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/05/2021] [Indexed: 05/02/2023]
Abstract
Magnetic hyperthermia-based cancer therapy (MHCT) has surfaced as one of the promising techniques for inaccessible solid tumors. It involves generation of localized heat in the tumor tissues on application of an alternating magnetic field in the presence of magnetic nanoparticles (MNPs). Unfortunately, lack of precise temperature and adequate MNP distribution at the tumor site under in vivo conditions has limited its application in the biomedical field. Evaluation of in vitro tumor models is an alternative for in vivo models. However, generally used in vitro two-dimensional (2D) models cannot mimic all the characteristics of a patient's tumor and hence, fail to establish or address the experimental variables and concerns. Considering that three-dimensional (3D) models have emerged as the best possible state to replicate the in vivo conditions successfully in the laboratory for most cell types, it is possible to conduct MHCT studies with higher clinical relevance for the analysis of the selection of magnetic parameters, MNP distribution, heat dissipation, action and acquired thermotolerance in cancer cells. In this review, various forms of 3D cultures have been considered and the successful implication of MHCT on them has been summarized, which includes tumor spheroids, and cultures grown in scaffolds, cell culture inserts and microfluidic devices. This review aims to summarize the contrast between 2D and 3D in vitro tumor models for pre-clinical MHCT studies. Furthermore, we have collated and discussed the usefulness, suitability, pros and cons of these tumor models. Even though numerous cell culture models have been established, further investigations on the new pre-clinical models and selection of best fit model for successful MHCT applications are still necessary to confer a better understanding for researchers.
Collapse
Affiliation(s)
- Ruby Gupta
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali Punjab-140306 India
| | - Deepika Sharma
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali Punjab-140306 India
| |
Collapse
|
68
|
Hsu PC, Chen YH, Cheng CF, Kuo CY, Sytwu HK. Interleukin-6 and Interleukin-8 Regulate STAT3 Activation Migration/Invasion and EMT in Chrysophanol-Treated Oral Cancer Cell Lines. Life (Basel) 2021; 11:life11050423. [PMID: 34063134 PMCID: PMC8148210 DOI: 10.3390/life11050423] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment plays a critical role in the control of metastasis. The epithelial–mesenchymal transition (EMT) is strongly associated with tumor metastasis, and consists of several protein markers, including E-cadherin and vimentin. We discovered that chrysophanol causes oral cancer cell apoptosis and the inhibition of migration/invasion and EMT. However, the detailed mechanisms of chrysophanol and its role in oral cancer with respect to the tumor microenvironment remain unknown. In the clinic, proinflammatory cytokines, such as IL-6 and IL-8, exhibit a higher expression in patients with oral cancer. However, the effect of chrysophanol on the production of IL-6 and IL-8 is unknown. We evaluated the expression of IL-6 and IL-8 in human SAS and FaDu oral cancer cell lines in the presence or absence of chrysophanol. The migration and invasion abilities were also determined using a Boyden chamber assay. Our results showed that treatment with chrysophanol significantly decreased the expression of IL-6 and IL-8, as well as the invasion ability of oral cancer cells. Moreover, chrysophanol also attenuated the EMT by increasing the expression of E-cadherin and reducing the expression of vimentin. Mechanistically, chrysophanol inhibited IL-6- and IL-8-induced invasion and STAT3 phosphorylation. IL-6 and IL-8 promote EMT and cell invasion, which is potentially related to the STAT3 signaling pathway in oral cancer. These findings provide insight into new aspects of chrysophanol activity and may contribute to the development of new therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Po-Chih Hsu
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 114, Taiwan;
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Yi-Hsuan Chen
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 114, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 114, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien 970, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Correspondence: (C.-Y.K.); (H.-K.S.)
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 350, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (C.-Y.K.); (H.-K.S.)
| |
Collapse
|
69
|
Plasma Treated Water Solutions in Cancer Treatments: The Contrasting Role of RNS. Antioxidants (Basel) 2021; 10:antiox10040605. [PMID: 33920049 PMCID: PMC8071004 DOI: 10.3390/antiox10040605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 12/21/2022] Open
Abstract
Plasma Treated Water Solutions (PTWS) recently emerged as a novel tool for the generation of Reactive Oxygen and Nitrogen Species (ROS and RNS) in liquids. The presence of ROS with a strong oxidative power, like hydrogen peroxide (H2O2), has been proposed as the main effector for the cancer-killing properties of PTWS. A protective role has been postulated for RNS, with nitric oxide (NO) being involved in the activation of antioxidant responses and cell survival. However, recent evidences proved that NO-derivatives in proper mixtures with ROS in PTWS could enhance rather than reduce the selectivity of PTWS-induced cancer cell death through the inhibition of specific antioxidant cancer defenses. In this paper we discuss the formation of RNS in different liquids with a Dielectric Barrier Discharge (DBD), to show that NO is absent in PTWS of complex composition like plasma treated (PT)-cell culture media used for in vitro experiments, as well as its supposed protective role. Nitrite anions (NO2-) instead, present in our PTWS, were found to improve the selective death of Saos2 cancer cells compared to EA.hy926 cells by decreasing the cytotoxic threshold of H2O2 to non-toxic values for the endothelial cell line.
Collapse
|
70
|
Dieters-Castator D, Dantonio PM, Piaseczny M, Zhang G, Liu J, Kuljanin M, Sherman S, Jewer M, Quesnel K, Kang EY, Köbel M, Siegers GM, Leask A, Hess D, Lajoie G, Postovit LM. Embryonic protein NODAL regulates the breast tumor microenvironment by reprogramming cancer-derived secretomes. Neoplasia 2021; 23:375-390. [PMID: 33784590 PMCID: PMC8041663 DOI: 10.1016/j.neo.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an important mediator of breast cancer progression. Cancer-associated fibroblasts constitute a major component of the TME and may originate from tissue-associated fibroblasts or infiltrating mesenchymal stromal cells (MSCs). The mechanisms by which cancer cells activate fibroblasts and recruit MSCs to the TME are largely unknown, but likely include deposition of a pro-tumorigenic secretome. The secreted embryonic protein NODAL is clinically associated with breast cancer stage and promotes tumor growth, metastasis, and vascularization. Herein, we show that NODAL expression correlates with the presence of activated fibroblasts in human triple-negative breast cancers and that it directly induces Cancer-associated fibroblasts phenotypes. We further show that NODAL reprograms cancer cell secretomes by simultaneously altering levels of chemokines (e.g., CXCL1), cytokines (e.g., IL-6) and growth factors (e.g., PDGFRA), leading to alterations in MSC chemotaxis. We therefore demonstrate a hitherto unappreciated mechanism underlying the dynamic regulation of the TME.
Collapse
Affiliation(s)
| | - Paola M Dantonio
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Matt Piaseczny
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Guihua Zhang
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jiahui Liu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Miljan Kuljanin
- Robarts Research Institute, London, ON, Canada; Department of Biochemistry, Western University, London, ON, Canada
| | - Stephen Sherman
- Robarts Research Institute, London, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Michael Jewer
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Katherine Quesnel
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Eun Young Kang
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Andrew Leask
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - David Hess
- Robarts Research Institute, London, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Gilles Lajoie
- Department of Biochemistry, Western University, London, ON, Canada
| | - Lynne-Marie Postovit
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
71
|
Golabek A, Kaczmarek M, Dondajewska E, Sakrajda K, Mackiewicz A, Dams-Kozlowska H. Application of a three-dimensional (3D) breast cancer model to study macrophage polarization. Exp Ther Med 2021; 21:482. [PMID: 33790991 PMCID: PMC8005691 DOI: 10.3892/etm.2021.9913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Knowledge of the tumor microenvironment is crucial for developing an effective strategy to treat cancer. Recently, anticancer therapies targeting macrophages have been intensively investigated. Increased understanding of the importance of the tumor microenvironment has led to the development of three-dimensional (3D) in vitro tumor models. However, established techniques for studying tumor-associated macrophages in vitro are limited. We have previously characterized a 3D breast cancer model consisting of breast cancer cells and fibroblasts cocultured on a silk scaffold. In the present study, the influence of this model on macrophage polarization was investigated. The expression of macrophage markers was studied using reverse transcription-quantitative PCR and flow cytometry. The activity of nitric oxide synthase and arginase in macrophages was also measured. The presented model appeared to induce the polarization of macrophages towards an M2 phenotype. In this 3D tumor model, the in vivo behavior of macrophages could be reproduced. This model may be beneficial for the study of tumor biology and for screening drugs.
Collapse
Affiliation(s)
- Agata Golabek
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland.,Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Ewelina Dondajewska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Kosma Sakrajda
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland.,Department of Cancer Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland.,Department of Cancer Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
72
|
An JH, Song WJ, Li Q, Bhang DH, Youn HY. 3D-culture models as drug-testing platforms in canine lymphoma and their cross talk with lymph node-derived stromal cells. J Vet Sci 2021; 22:e25. [PMID: 33908202 PMCID: PMC8170217 DOI: 10.4142/jvs.2021.22.e25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Malignant lymphoma is the most common hematopoietic malignancy in dogs, and relapse is frequently seen despite aggressive initial treatment. In order for the treatment of these recurrent lymphomas in dogs to be effective, it is important to choose a personalized and sensitive anticancer agent. To provide a reliable tool for drug development and for personalized cancer therapy, it is critical to maintain key characteristics of the original tumor. OBJECTIVES In this study, we established a model of hybrid tumor/stromal spheroids and investigated the association between canine lymphoma cell line (GL-1) and canine lymph node (LN)-derived stromal cells (SCs). METHODS A hybrid spheroid model consisting of GL-1 cells and LN-derived SC was created using ultra low attachment plate. The relationship between SCs and tumor cells (TCs) was investigated using a coculture system. RESULTS TCs cocultured with SCs were found to have significantly upregulated multidrug resistance genes, such as P-qp, MRP1, and BCRP, compared with TC monocultures. Additionally, it was revealed that coculture with SCs reduced doxorubicin-induced apoptosis and G2/M cell cycle arrest of GL-1 cells. CONCLUSIONS SCs upregulated multidrug resistance genes in TCs and influenced apoptosis and the cell cycle of TCs in the presence of anticancer drugs. This study revealed that understanding the interaction between the tumor microenvironment and TCs is essential in designing experimental approaches to personalized medicine and to predict the effect of drugs.
Collapse
Affiliation(s)
- Ju Hyun An
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Woo Jin Song
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Qiang Li
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji 133000, China
| | - Dong Ha Bhang
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
| | - Hwa Young Youn
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
73
|
Lan M, Lu W, Zou T, Li L, Liu F, Cai T, Cai Y. Role of inflammatory microenvironment: potential implications for improved breast cancer nano-targeted therapy. Cell Mol Life Sci 2021; 78:2105-2129. [PMID: 33386887 PMCID: PMC11073202 DOI: 10.1007/s00018-020-03696-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/20/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Tumor cells, inflammatory cells and chemical factors work together to mediate complex signaling networks, which forms inflammatory tumor microenvironment (TME). The development of breast cancer is closely related to the functional activities of TME. This review introduces the origins of cancer-related chronic inflammation and the main constituents of inflammatory microenvironment. Inflammatory microenvironment plays an important role in breast cancer growth, metastasis, drug resistance and angiogenesis through multifactorial mechanisms. It is suggested that inflammatory microenvironment contributes to providing possible mechanisms of drug action and modes of drug transport for anti-cancer treatment. Nano-drug delivery system (NDDS) becomes a popular topic for optimizing the design of tumor targeting drugs. It is seen that with the development of therapeutic approaches, NDDS can be used to achieve drug-targeted delivery well across the biological barriers and into cells, resulting in superior bioavailability, drug dose reduction as well as off-target side effect elimination. This paper focuses on the review of modulation mechanisms of inflammatory microenvironment and combination with nano-targeted therapeutic strategies, providing a comprehensive basis for further research on breast cancer prevention and control.
Collapse
Affiliation(s)
- Meng Lan
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wenping Lu
- Guang an'men Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lihong Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fengjie Liu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang, 110036, China.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- Cancer Research Institute of Jinan University, Guangzhou, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
74
|
Lanfredi GP, Thomé CH, Ferreira GA, Silvestrini VC, Masson AP, Vargas AP, Grassi ML, Poersch A, Candido Dos Reis FJ, Faça VM. Analysis of ovarian cancer cell secretome during epithelial to mesenchymal transition reveals a protein signature associated with advanced stages of ovarian tumors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140623. [PMID: 33607274 DOI: 10.1016/j.bbapap.2021.140623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
Ovarian cancer (OvCA) is the most lethal neoplasia among gynecologic malignancies and faces high rates of new cases particularly in South America. In special, the High Grade Serous Ovarian Carcinoma (HGSC) presents very poor prognosis with deaths caused mainly by metastasis. Among several mechanisms involved in metastasis, the Epithelial to Mesenchymal Transition (EMT) molecular reprogramming represents a model for latest stages of cancer progression. EMT promotes important cellular changes in cellular adhesion and cell-cell communication, which particularly depends on the paracrine signaling from neighbor cells. Considering the importance of cellular communication during EMT and metastasis, here we analyzed the changes in the secretome of the ovarian cancer cell line Caov-3 induced to EMT by Epidermal Growth Factor (EGF). Using a combination of GEL-LC-MS/MS and stable isotopic metabolic labelling (SILAC), we identified up-regulated candidates during EMT as a starting point to identify relevant proteins for HGSC. Based on public databases, our candidate proteins were validated and prioritized for further analysis. Importantly, several of the protein candidates were associated with cellular vesicles, which are important to the cell-cell communication and metastasis. Furthermore, the association of candidate proteins with gene expression data uncovered a subset of proteins correlated with the mesenchymal subtype of ovarian cancer. Based on this relevant molecular signature for aggressive ovarian cancer, supported by protein and gene expression data, we developed a targeted proteomic method to evaluate individual OvCA clinical samples. The quantitative information obtained for 33 peptides, representative of 18 proteins, was able to segregate HGSC from other tumor types. Our study highlighted the richness of the secretome and EMT to reveal relevant proteins for HGSC, which could be used in further studies and larger patient cohorts as a potential stratification signature for ovarian cancer tumor that could guide clinical conduct for patient treatment.
Collapse
Affiliation(s)
- Guilherme P Lanfredi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina H Thomé
- Regional Blood Center of Ribeirão Preto and Center for Cell Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Germano A Ferreira
- Regional Blood Center of Ribeirão Preto and Center for Cell Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Virgínia C Silvestrini
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana P Masson
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alessandra P Vargas
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mariana L Grassi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Aline Poersch
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco J Candido Dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vitor M Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Regional Blood Center of Ribeirão Preto and Center for Cell Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
75
|
Zhang DX, Vu LT, Ismail NN, Le MTN, Grimson A. Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Semin Cancer Biol 2021; 74:24-44. [PMID: 33545339 DOI: 10.1016/j.semcancer.2021.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are increasingly recognised as a pivotal player in cell-cell communication, an attribute of EVs that derives from their ability to transport bioactive cargoes between cells, resulting in complex intercellular signalling mediated by EVs, which occurs under both physiological and pathological conditions. In the context of cancer, recent studies have demonstrated the versatile and crucial roles of EVs in the tumour microenvironment (TME). Here, we revisit EV biology, and focus on EV-mediated interactions between cancer cells and stromal cells, including fibroblasts, immune cells, endothelial cells and neurons. In addition, we focus on recent reports indicating interactions between EVs and non-cell constituents within the TME, including the extracellular matrix. We also review and summarise the intricate cancer-associated network modulated by EVs, which promotes metabolic reprogramming, horizontal transfer of neoplastic traits, and therapeutic resistance in the TME. We aim to provide a comprehensive and updated landscape of EVs in the TME, focusing on oncogenesis, cancer progression and therapeutic resistance, together with our future perspectives on the field.
Collapse
Affiliation(s)
- Daniel Xin Zhang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Luyen Tien Vu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Nur Nadiah Ismail
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore.
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
76
|
Pirlog R, Cismaru A, Nutu A, Berindan-Neagoe I. Field Cancerization in NSCLC: A New Perspective on MicroRNAs in Macrophage Polarization. Int J Mol Sci 2021; 22:ijms22020746. [PMID: 33451052 PMCID: PMC7828565 DOI: 10.3390/ijms22020746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is currently the first cause of cancer-related death. The major lung cancer subtype is non-small cell lung cancers (NSCLC), which accounts for approximatively 85% of cases. The major carcinogenic associated with lung cancer is tobacco smoke, which produces long-lasting and progressive damage to the respiratory tract. The progressive and diffuse alterations that occur in the respiratory tract of patients with cancer and premalignant lesions have been described as field cancerization. At the level of tumor cells, adjacent tumor microenvironment (TME) and cancerized field are taking place dynamic interactions through direct cell-to-cell communication or through extracellular vesicles. These molecular messages exchanged between tumor and nontumor cells are represented by proteins, noncoding RNAs (ncRNAs) and microRNAs (miRNAs). In this paper, we analyze the miRNA roles in the macrophage polarization at the level of TME and cancerized field in NSCLC. Identifying molecular players that can influence the phenotypic states at the level of malignant cells, tumor microenvironment and cancerized field can provide us new insights into tumor regulatory mechanisms that can be further modulated to restore the immunogenic capacity of the TME. This approach could revert alterations in the cancerized field and could enhance currently available therapy approaches.
Collapse
Affiliation(s)
- Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Functional Sciences, Immunology and Allergology, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- The Functional Genomics Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-743-111-800
| |
Collapse
|
77
|
Clinicopathologic Analysis of Cathepsin B as a Prognostic Marker of Thyroid Cancer. Int J Mol Sci 2020; 21:ijms21249537. [PMID: 33333840 PMCID: PMC7765333 DOI: 10.3390/ijms21249537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
Thyroid cancer incidence has increased worldwide; however, investigations of thyroid cancer-related factors as potential prognosis markers remain insufficient. Secreted proteins from the cancer secretome are regulators of several molecular mechanisms and are, thereby, ideal candidates for potential markers. We aimed to identify a specific factor for thyroid cancer by analyzing the secretome from normal thyroid cells, papillary thyroid cancer (PTC) cells, and anaplastic thyroid cancer cells using mass spectrometry (MS). Cathepsin B (CTSB) showed highest expression in PTC cells compared to other cell lines, and CTSB levels in tumor samples were higher than that seen in normal tissue. Further, among thyroid cancer patients, increased CTSB expression was related to higher risk of lymph node metastasis (LNM) and advanced N stage. Overexpression of CTSB in thyroid cancer cell lines activated cell migration by increasing the expression of vimentin and Snail, while its siRNA-mediated silencing inhibited cell migration by decreasing vimentin and Snail expression. Mechanistically, CTSB-associated enhanced cell migration and upregulation of vimentin and Snail occurred via increased phosphorylation of p38. As our results suggest that elevated CTSB in thyroid cancer induces the expression of metastatic proteins and thereby leads to LNM, CTSB may be a good and clinically relevant prognostic marker.
Collapse
|
78
|
Interleukin-34 Enhances the Tumor Promoting Function of Colorectal Cancer-Associated Fibroblasts. Cancers (Basel) 2020; 12:cancers12123537. [PMID: 33260828 PMCID: PMC7761053 DOI: 10.3390/cancers12123537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
The stromal compartment of colorectal cancer (CRC) is marked by the presence of large numbers of fibroblasts, termed cancer-associated fibroblasts (CAFs), which promote CRC growth and progression through the synthesis of various molecules targeting the neoplastic cells. Interleukin (IL)-34, a cytokine over-produced by CRC cells, stimulates CRC cell growth. Since IL-34 also regulates the function of inflammatory fibroblasts, we hypothesized that it could regulate the tumor promoting function of colorectal CAFs. By immunostaining and real-time PCR, we initially showed that IL-34 was highly produced by CAFs and to lesser extent by normal fibroblasts isolated from non-tumoral colonic mucosa of CRC patients. CAFs and normal fibroblasts expressed the functional receptors of IL-34. IL-34 induced normal fibroblasts to express α-SMA, vimentin and fibroblast activation protein and enhanced fibroblast growth, thus generating a cellular phenotype resembling that of CAFs. Consistently, knockdown of IL-34 in CAFs with an antisense oligonucleotide (AS) decreased expression of such markers and inhibited cell proliferation. Co-culture of CRC cells with IL-34 AS-treated CAFs supernatants resulted in less cancer cell proliferation and migration. Among CAF-derived molecules known to promote CRC cell growth/migration, only netrin-1 and basic-fibroblast growth factor were induced by IL-34. Data suggest a role for IL-34 in the control of colorectal CAF function.
Collapse
|
79
|
Macrophages produce and functionally respond to interleukin-34 in colon cancer. Cell Death Discov 2020; 6:117. [PMID: 33298879 PMCID: PMC7644720 DOI: 10.1038/s41420-020-00350-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
In colorectal cancer (CRC), macrophages represent a major component of the tumor mass and exert mostly functions promoting tumor cell survival, proliferation, and dissemination. Interleukin-34 (IL-34) is a cytokine overproduced by colon cancer (CRC) cells and supposed to make a valid contribution to the growth and diffusion of CRC cells. The biological functions of IL-34 are mediated by the macrophage colony-stimulating factor receptor (M-CSFR-1), which controls monocyte/macrophage differentiation, growth, and survival. We here investigated whether, in CRC, tumor-associated macrophages (TAMs) express M-CSFR-1 and functionally respond to IL-34. By flow-cytometry analysis of tumor-infiltrating cells (TICs) and lamina propria mononuclear cells (LPMCs) isolated from normal, adjacent mucosa of CRC patients, we showed that CD68/HLA-DRII-expressing TICs and LPMCs expressed M-CSFR-1. Both these cell types produced IL-34 even though the expression of the cytokine was more pronounced in TICs as compared to normal LPMCs. Moreover, in CRC samples, there was a positive correlation between IL-34-producing cells and CD68-positive cells. Stimulation of LPMCs and TICs with IL-34 resulted in enhanced expression of CD163 and CD206, two markers of type II-polarized macrophages, and this was evident at both RNA and protein level. In the same cell cultures, IL-34 stimulated expression and production of IL-6, a cytokine known to promote CRC cell growth and diffusion. Finally, knockdown of IL-34 in TICs with specific antisense oligonucleotides with: a specific antisesne oligonucleotide decreased IL-6 production and the number of TAMs producing this cytokine. This is the first to show a positive role of IL-34 in the control of TAMs in CRC, further supporting the notion that IL-34 sustains colon tumorigenesis.
Collapse
|
80
|
Whitby S, Zhou W, Dimitriadis E. Alterations in Epithelial Cell Polarity During Endometrial Receptivity: A Systematic Review. Front Endocrinol (Lausanne) 2020; 11:596324. [PMID: 33193109 PMCID: PMC7652731 DOI: 10.3389/fendo.2020.596324] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Background Abnormal endometrial receptivity is one of the major causes of embryo implantation failure and infertility. The plasma membrane transformation (PMT) describes the collective morphological and molecular alterations occurring to the endometrial luminal epithelium across the mid-secretory phase of the menstrual cycle to facilitate implantation. Dysregulation of this process directly affects endometrial receptivity and implantation. Multiple parallels between these alterations to confer endometrial receptivity in women have been drawn to those seen during the epithelial-mesenchymal transition (EMT) in tumorigenesis. Understanding these similarities and differences will improve our knowledge of implantation biology, and may provide novel therapeutic targets to manage implantation failure. Methods A systematic review was performed using the Medline (Ovid), Embase, and Web of Science databases without additional limits. The search terms used were "(plasma membrane* or cell membrane*) and transformation*" and "endometrium or endometrial." Research studies on the PMT or its regulation in women, discussing either the endometrial epithelium, decidualized stroma, or both, were eligible for inclusion. Results A total of 198 articles were identified. Data were extracted from 15 studies that matched the inclusion criteria. Collectively, these included studies confirmed the alterations occurring to the endometrial luminal epithelium during the PMT are similar to those seen during the EMT. Such similarities included alterations to the actin cytoskeleton remodeling of adherens junctions, integrin expression and epithelial-stromal communication. These were also some differences between these processes, such as the regulation of tight junctions and mucins, which need to be further researched. Conclusions This review raised the prospect of shared and distinct mechanisms existing in PMT and EMT. Further investigation into similarities between the PMT in the endometrium and the EMT in tumorigenesis may provide new mechanistic insights into PMT and new targets for the management of implantation failure and infertility.
Collapse
Affiliation(s)
- Sarah Whitby
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, Melbourne, VIC, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, Melbourne, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
81
|
Altea‐Manzano P, Cuadros AM, Broadfield LA, Fendt S. Nutrient metabolism and cancer in the in vivo context: a metabolic game of give and take. EMBO Rep 2020; 21:e50635. [PMID: 32964587 PMCID: PMC7534637 DOI: 10.15252/embr.202050635] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/08/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Nutrients are indispensable resources that provide the macromolecular building blocks and energy requirements for sustaining cell growth and survival. Cancer cells require several key nutrients to fulfill their changing metabolic needs as they progress through stages of development. Moreover, both cell-intrinsic and microenvironment-influenced factors determine nutrient dependencies throughout cancer progression-for which a comprehensive characterization remains incomplete. In addition to the widely studied role of genetic alterations driving cancer metabolism, nutrient use in cancer tissue may be affected by several factors including the following: (i) diet, the primary source of bodily nutrients which influences circulating metabolite levels; (ii) tissue of origin, which can influence the tumor's reliance on specific nutrients to support cell metabolism and growth; (iii) local microenvironment, which dictates the accessibility of nutrients to tumor cells; (iv) tumor heterogeneity, which promotes metabolic plasticity and adaptation to nutrient demands; and (v) functional demand, which intensifies metabolic reprogramming to fuel the phenotypic changes required for invasion, growth, or survival. Here, we discuss the influence of these factors on nutrient metabolism and dependence during various steps of tumor development and progression.
Collapse
Affiliation(s)
- Patricia Altea‐Manzano
- Laboratory of Cellular Metabolism and Metabolic RegulationVIB‐KU Leuven Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Cellular Metabolism and Metabolic RegulationDepartment of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Alejandro M Cuadros
- Laboratory of Cellular Metabolism and Metabolic RegulationVIB‐KU Leuven Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Cellular Metabolism and Metabolic RegulationDepartment of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Lindsay A Broadfield
- Laboratory of Cellular Metabolism and Metabolic RegulationVIB‐KU Leuven Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Cellular Metabolism and Metabolic RegulationDepartment of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Sarah‐Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic RegulationVIB‐KU Leuven Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Cellular Metabolism and Metabolic RegulationDepartment of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| |
Collapse
|
82
|
Lindsey ML, Deleon-Pennell KY, Bradshaw AD, Larue RAC, Anderson DR, Thiele GM, Baicu CF, Jones JA, Menick DR, Zile MR, Spinale FG. Focusing Heart Failure Research on Myocardial Fibrosis to Prioritize Translation. J Card Fail 2020; 26:876-884. [PMID: 32446948 PMCID: PMC7584737 DOI: 10.1016/j.cardfail.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 01/05/2023]
Abstract
Heart failure (HF) has traditionally been defined by symptoms of fluid accumulation and poor perfusion, but it is now recognized that specific HF classifications hold prognostic and therapeutic relevance. Specifically, HF with reduced ejection fraction is characterized by reduced left ventricular systolic pump function and dilation and HF with preserved ejection fraction is characterized primarily by abnormal left ventricular filling (diastolic failure) with relatively preserved left ventricular systolic function. These forms of HF are distributed equally among patients with HF and likely require distinctly different strategies to mitigate the morbidity, mortality, and medical resource utilization of this disease. In particular, HF is a significant medical issue within the US Department of Veterans Affairs (VA) hospital system and constitutes a major translational research priority for the VA. Because a common underpinning of both HF with reduced ejection fraction and HF with preserved ejection fraction seems to be changes in the structure and function of the myocardial extracellular matrix, a conference was convened sponsored by the VA, entitled, "Targeting Myocardial Fibrosis in Heart Failure" to explore the extracellular matrix as a potential therapeutic target and to propose specific research directions. The conference was conceptually framed around the hypothesis that although HF with reduced ejection fraction and HF with preserved ejection fraction clearly have distinct mechanisms, they may share modifiable pathways and biological mediators in common. Inflammation and extracellular matrix were identified as major converging themes. A summary of our discussion on unmet challenges and possible solutions to move the field forward, as well as recommendations for future research opportunities, are provided.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska.
| | - Kristine Y Deleon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Amy D Bradshaw
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - R Amanda C Larue
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel R Anderson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Geoffrey M Thiele
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Division of Rheumatology and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Catalin F Baicu
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Jeffrey A Jones
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; Department of Surgery, Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Donald R Menick
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Michael R Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, SC and William Jennings Bryan Dorn VA Medical Center, Columbia, South Carolina
| |
Collapse
|
83
|
Fiocchetti M, Solar Fernandez V, Segatto M, Leone S, Cercola P, Massari A, Cavaliere F, Marino M. Extracellular Neuroglobin as a Stress-Induced Factor Activating Pre-Adaptation Mechanisms against Oxidative Stress and Chemotherapy-Induced Cell Death in Breast Cancer. Cancers (Basel) 2020; 12:cancers12092451. [PMID: 32872414 PMCID: PMC7564643 DOI: 10.3390/cancers12092451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Components of tumor microenvironment, including tumor and/or stromal cells-derived factors, exert a critical role in breast cancer (BC) progression. Here we evaluated the possible role of neuroglobin (NGB), a monomeric globin that acts as a compensatory protein against oxidative and apoptotic processes, as part of BC microenvironment. The extracellular NGB levels were evaluated by immunofluorescence of BC tissue sections and by Western blot of the culture media of BC cell lines. Moreover, reactive oxygen species (ROS) generation, cell apoptosis, and cell migration were evaluated in different BC cells and non-tumorigenic epithelial mammary cells treated with BC cells (i.e., Michigan Cancer Foundation-7, MCF-7) conditioned culture media and extracellular NGB. Results demonstrate that NGB is a component of BC microenvironment. NGB is released in tumor microenvironment by BC cells only under oxidative stress conditions where it can act as autocrine/paracrine factor able to communicate cell resilience against oxidative stress and chemotherapeutic treatment.
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
- Correspondence: (M.F.); (M.M.); Tel.: +39-06-5733-6455 (M.F.); +39-06-5733-6320 (M.M.); Fax: +39-06-5733-6321 (M.F. & M.M.)
| | - Virginia Solar Fernandez
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy;
| | - Stefano Leone
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
| | - Paolo Cercola
- Division of Senology, Belcolle Hospital, Str. Sammartinese, 01100 Viterbo, Italy; (P.C.); (A.M.); (F.C.)
| | - Annalisa Massari
- Division of Senology, Belcolle Hospital, Str. Sammartinese, 01100 Viterbo, Italy; (P.C.); (A.M.); (F.C.)
| | - Francesco Cavaliere
- Division of Senology, Belcolle Hospital, Str. Sammartinese, 01100 Viterbo, Italy; (P.C.); (A.M.); (F.C.)
| | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
- Correspondence: (M.F.); (M.M.); Tel.: +39-06-5733-6455 (M.F.); +39-06-5733-6320 (M.M.); Fax: +39-06-5733-6321 (M.F. & M.M.)
| |
Collapse
|
84
|
Keller F, Bruch R, Schneider R, Meier-Hubberten J, Hafner M, Rudolf R. A Scaffold-Free 3-D Co-Culture Mimics the Major Features of the Reverse Warburg Effect In Vitro. Cells 2020; 9:cells9081900. [PMID: 32823793 PMCID: PMC7463893 DOI: 10.3390/cells9081900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
Most tumors consume large amounts of glucose. Concepts to explain the mechanisms that mediate the achievement of this metabolic need have proposed a switch of the tumor mass to aerobic glycolysis. Depending on whether primarily tumor or stroma cells undergo such a commutation, the terms ‘Warburg effect’ or ‘reverse Warburg effect’ were coined to describe the underlying biological phenomena. However, current in vitro systems relying on 2-D culture, single cell-type spheroids, or basal-membrane extract (BME/Matrigel)-containing 3-D structures do not thoroughly reflect these processes. Here, we aimed to establish a BME/Matrigel-free 3-D microarray cancer model to recapitulate the metabolic interplay between cancer and stromal cells that allows mechanistic analyses and drug testing. Human HT-29 colon cancer and CCD-1137Sk fibroblast cells were used in mono- and co-cultures as 2-D monolayers, spheroids, and in a cell-chip format. Metabolic patterns were studied with immunofluorescence and confocal microscopy. In chip-based co-cultures, HT-29 cells showed facilitated 3-D growth and increased levels of hexokinase-2, TP53-induced glycolysis and apoptosis regulator (TIGAR), lactate dehydrogenase, and: translocase of outer mitochondrial membrane 20 (TOMM20), when compared with HT-29 mono-cultures. Fibroblasts co-cultured with HT-29 cells expressed higher levels of mono-carboxylate transporter 4, hexokinase-2, microtubule-associated proteins 1A/1B light chain 3, and ubiquitin-binding protein p62 than in fibroblast mono-cultures, in both 2-D cultures and chips. Tetramethylrhodamin-methylester (TMRM) live-cell imaging of chip co-cultures revealed a higher mitochondrial potential in cancer cells than in fibroblasts. The findings demonstrate a crosstalk between cancer cells and fibroblasts that affects cellular growth and metabolism. Chip-based 3-D co-cultures of cancer cells and fibroblasts mimicked features of the reverse Warburg effect.
Collapse
Affiliation(s)
- Florian Keller
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (F.K.); (R.B.); (M.H.)
- Institute of Medical Technology, Medical Faculty Mannheim of Heidelberg University and Mannheim University of Applied Sciences, 68167 Mannheim, Germany
| | - Roman Bruch
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (F.K.); (R.B.); (M.H.)
| | - Richard Schneider
- TIP Oncology, Merck Healthcare KGaA, 64289 Darmstadt, Germany; (R.S.); (J.M.-H.)
| | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (F.K.); (R.B.); (M.H.)
- Institute of Medical Technology, Medical Faculty Mannheim of Heidelberg University and Mannheim University of Applied Sciences, 68167 Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (F.K.); (R.B.); (M.H.)
- Institute of Medical Technology, Medical Faculty Mannheim of Heidelberg University and Mannheim University of Applied Sciences, 68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-621-292-6804
| |
Collapse
|
85
|
Ding M, Tegel H, Sivertsson Å, Hober S, Snijder A, Ormö M, Strömstedt PE, Davies R, Holmberg Schiavone L. Secretome-Based Screening in Target Discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:535-551. [PMID: 32425085 PMCID: PMC7309359 DOI: 10.1177/2472555220917113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Secreted proteins and their cognate plasma membrane receptors regulate human physiology by transducing signals from the extracellular environment into cells resulting in different cellular phenotypes. Systematic use of secretome proteins in assays enables discovery of novel biology and signaling pathways. Several secretome-based phenotypic screening platforms have been described in the literature and shown to facilitate target identification in drug discovery. In this review, we summarize the current status of secretome-based screening. This includes annotation, production, quality control, and sample management of secretome libraries, as well as how secretome libraries have been applied to discover novel target biology using different disease-relevant cell-based assays. A workflow for secretome-based screening is shared based on the AstraZeneca experience. The secretome library offers several advantages compared with other libraries used for target discovery: (1) screening using a secretome library directly identifies the active protein and, in many cases, its cognate receptor, enabling a rapid understanding of the disease pathway and subsequent formation of target hypotheses for drug discovery; (2) the secretome library covers significant areas of biological signaling space, although the size of this library is small; (3) secretome proteins can be added directly to cells without additional manipulation. These factors make the secretome library ideal for testing in physiologically relevant cell types, and therefore it represents an attractive approach to phenotypic target discovery.
Collapse
Affiliation(s)
- Mei Ding
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Hanna Tegel
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Åsa Sivertsson
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Arjan Snijder
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Mats Ormö
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Per-Erik Strömstedt
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rick Davies
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
86
|
Avagliano A, Fiume G, Ruocco MR, Martucci N, Vecchio E, Insabato L, Russo D, Accurso A, Masone S, Montagnani S, Arcucci A. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers (Basel) 2020; 12:E1697. [PMID: 32604738 PMCID: PMC7352995 DOI: 10.3390/cancers12061697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
The stromal microenvironment regulates mammary gland development and tumorigenesis. In normal mammary glands, the stromal microenvironment encompasses the ducts and contains fibroblasts, the main regulators of branching morphogenesis. Understanding the way fibroblast signaling pathways regulate mammary gland development may offer insights into the mechanisms of breast cancer (BC) biology. In fact, the unregulated mammary fibroblast signaling pathways, associated with alterations in extracellular matrix (ECM) remodeling and branching morphogenesis, drive breast cancer microenvironment (BCM) remodeling and cancer growth. The BCM comprises a very heterogeneous tissue containing non-cancer stromal cells, namely, breast cancer-associated fibroblasts (BCAFs), which represent most of the tumor mass. Moreover, the different components of the BCM highly interact with cancer cells, thereby generating a tightly intertwined network. In particular, BC cells activate recruited normal fibroblasts in BCAFs, which, in turn, promote BCM remodeling and metastasis. Thus, comparing the roles of normal fibroblasts and BCAFs in the physiological and metastatic processes, could provide a deeper understanding of the signaling pathways regulating BC dissemination. Here, we review the latest literature describing the structure of the mammary gland and the BCM and summarize the influence of epithelial-mesenchymal transition (EpMT) and autophagy in BC dissemination. Finally, we discuss the roles of fibroblasts and BCAFs in mammary gland development and BCM remodeling, respectively.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzia Martucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| |
Collapse
|
87
|
Cervantes-Villagrana RD, Albores-García D, Cervantes-Villagrana AR, García-Acevez SJ. Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduct Target Ther 2020; 5:99. [PMID: 32555170 PMCID: PMC7303203 DOI: 10.1038/s41392-020-0205-z] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Normal cells are hijacked by cancer cells forming together heterogeneous tumor masses immersed in aberrant communication circuits that facilitate tumor growth and dissemination. Besides the well characterized angiogenic effect of some tumor-derived factors; others, such as BDNF, recruit peripheral nerves and leukocytes. The neurogenic switch, activated by tumor-derived neurotrophins and extracellular vesicles, attracts adjacent peripheral fibers (autonomic/sensorial) and neural progenitor cells. Strikingly, tumor-associated nerve fibers can guide cancer cell dissemination. Moreover, IL-1β, CCL2, PGE2, among other chemotactic factors, attract natural immunosuppressive cells, including T regulatory (Tregs), myeloid-derived suppressor cells (MDSCs), and M2 macrophages, to the tumor microenvironment. These leukocytes further exacerbate the aberrant communication circuit releasing factors with neurogenic effect. Furthermore, cancer cells directly evade immune surveillance and the antitumoral actions of natural killer cells by activating immunosuppressive mechanisms elicited by heterophilic complexes, joining cancer and immune cells, formed by PD-L1/PD1 and CD80/CTLA-4 plasma membrane proteins. Altogether, nervous and immune cells, together with fibroblasts, endothelial, and bone-marrow-derived cells, promote tumor growth and enhance the metastatic properties of cancer cells. Inspired by the demonstrated, but restricted, power of anti-angiogenic and immune cell-based therapies, preclinical studies are focusing on strategies aimed to inhibit tumor-induced neurogenesis. Here we discuss the potential of anti-neurogenesis and, considering the interplay between nervous and immune systems, we also focus on anti-immunosuppression-based therapies. Small molecules, antibodies and immune cells are being considered as therapeutic agents, aimed to prevent cancer cell communication with neurons and leukocytes, targeting chemotactic and neurotransmitter signaling pathways linked to perineural invasion and metastasis.
Collapse
Affiliation(s)
- Rodolfo Daniel Cervantes-Villagrana
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), 07360, Mexico City, Mexico.
| | - Damaris Albores-García
- Department of Environmental Health Sciences, Florida International University (FIU), Miami, Florida, 33199, USA
| | - Alberto Rafael Cervantes-Villagrana
- Laboratorio de investigación en Terapéutica Experimental, Unidad Académica de Ciencias Químicas, Área de Ciencias de la Salud, Universidad Autónoma de Zacatecas (UAZ), Zacatecas, México
| | - Sara Judit García-Acevez
- Dirección de Proyectos e Investigación, Grupo Diagnóstico Médico Proa, 06400 CDMX, Cuauhtémoc, México
| |
Collapse
|
88
|
Butera G, Brandi J, Cavallini C, Scarpa A, Lawlor RT, Scupoli MT, Marengo E, Cecconi D, Manfredi M, Donadelli M. The Mutant p53-Driven Secretome Has Oncogenic Functions in Pancreatic Ductal Adenocarcinoma Cells. Biomolecules 2020; 10:biom10060884. [PMID: 32526853 PMCID: PMC7356389 DOI: 10.3390/biom10060884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
The cancer secretome is a rich repository of useful information for both cancer biology and clinical oncology. A better understanding of cancer secretome is particularly relevant for pancreatic ductal adenocarcinoma (PDAC), whose extremely high mortality rate is mainly due to early metastasis, resistance to conventional treatments, lack of recognizable symptoms, and assays for early detection. TP53 gene is a master transcriptional regulator controlling several key cellular pathways and it is mutated in ~75% of PDACs. We report the functional effect of the hot-spot p53 mutant isoforms R175H and R273H on cancer cell secretome, showing their influence on proliferation, chemoresistance, apoptosis, and autophagy, as well as cell migration and epithelial-mesenchymal transition. We compared the secretome of p53-null AsPC-1 PDAC cells after ectopic over-expression of R175H-mutp53 or R273H-mutp53 to identify the differentially secreted proteins by mutant p53. By using high-resolution SWATH-MS technology, we found a great number of differentially secreted proteins by the two p53 mutants, 15 of which are common to both mutants. Most of these secreted proteins are reported to promote cancer progression and epithelial-mesenchymal transition and might constitute a biomarker secreted signature that is driven by the hot-spot p53 mutants in PDAC.
Collapse
Affiliation(s)
- Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (G.B.); (M.T.S.)
| | - Jessica Brandi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Chiara Cavallini
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, 37134 Verona, Italy;
| | - Aldo Scarpa
- Department of Diagnostics and Public health, Section of Pathology, University of Verona, 37134 Verona, Italy;
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Rita T. Lawlor
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (G.B.); (M.T.S.)
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, 37134 Verona, Italy;
| | - Emílio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Italy, ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Italy, ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Italy, CAAD, corso Trieste 15/A, 28100 Novara, Italy
- Correspondence: (M.M.); (M.D.); Tel.: +39-032-1660810 (M.M.); +39-045-8027281 (M.D.); Fax: +39-045-8027170 (M.D.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (G.B.); (M.T.S.)
- Correspondence: (M.M.); (M.D.); Tel.: +39-032-1660810 (M.M.); +39-045-8027281 (M.D.); Fax: +39-045-8027170 (M.D.)
| |
Collapse
|
89
|
Franzè E, Stolfi C, Troncone E, Scarozza P, Monteleone G. Role of Interleukin-34 in Cancer. Cancers (Basel) 2020; 12:E252. [PMID: 31968663 PMCID: PMC7017118 DOI: 10.3390/cancers12010252] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cross-talk between cancer cells and the immune cells occurring in the tumor microenvironment is crucial in promoting signals that foster tumor growth and metastasis. Both cancer cells and immune cells secrete various interleukins (IL), which, either directly or indirectly, stimulate cancer-cell proliferation, survival, and diffusion, as well as contribute to sculpt the immune microenvironment, thereby amplifying tumorigenic stimuli. IL-34, a cytokine produced by a wide range of cells, has been initially involved in the control of differentiation, proliferation, and survival of myeloid cells. More recent studies documented the overexpression of IL-34 in several cancers, such as hepatocarcinoma, osteosarcoma, multiple myeloma, colon cancer, and lung cancer, and showed that tumor cells can produce and functionally respond to this cytokine. In this review, we summarize the multiple roles of IL-34 in various cancers, with the aim to better understand the relationship between the expression of this cytokine and cancer behavior and to provide new insights for exploring a new potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome “TOR VERGATA”, 00133 Rome, Italy; (E.F.); (C.S.); (E.T.); (P.S.)
| |
Collapse
|