51
|
Yoon BJ, Oh HK, Lee J, Cho JR, Kim MJ, Kim DW, Kang SB. Effects of probiotics on bowel function restoration following ileostomy closure in rectal cancer patients: a randomized controlled trial. Colorectal Dis 2021; 23:901-910. [PMID: 33247529 DOI: 10.1111/codi.15463] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/14/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
AIM The aim was to determine the efficacy of probiotics in restoring bowel function following ileostomy reversal in patients with rectal cancer. METHOD This was a pilot, randomized, double-blind, placebo-controlled trial. The probiotic used in this study, Lactobacillus plantarum CJLP243, was derived from kimchi. Patients were randomly allocated to a probiotic or placebo group and medication was taken once daily from preoperative day 1 to day 21. Primary outcomes were the Memorial Sloan Kettering Cancer Centre Bowel Function Index (MSKCC BFI) instrument and the low anterior resection syndrome score. The secondary outcomes were the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire C30 and CR29 questionnaire responses. RESULTS Forty patients were enrolled, and 36 patients (probiotics, n = 17; placebo, n = 19) completed the primary outcomes. Total scores for the MSKCC questionnaire (56.2 ± 12.0 vs. 55.0 ± 10.7, P = 0.356) and low anterior resection syndrome scores (33.3 ± 7.6 vs. 36.0 ± 5.3, P = 0.257) were not significantly different between the probiotic and placebo groups, respectively. In the MSKCC BFI, the postoperative dietary scale score at week 1 was significantly higher in the probiotic group (13.1 ± 3.8 vs. 9.0 ± 3.0, P < 0.001). There were no other significant differences between the two groups for any other questionnaire scores. CONCLUSION There were no significant effects supporting the use of a probiotic for improved bowel function in patients following ileostomy reversal. Nevertheless, the administration of probiotics showed trends toward improvements in some subscale bowel function measures, suggesting further studies may be warranted.
Collapse
Affiliation(s)
- Byung Jun Yoon
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Heung-Kwon Oh
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeehye Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jung Rae Cho
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Myung Jo Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
52
|
Yang J, Zhou X, Liu X, Ling Z, Ji F. Role of the Gastric Microbiome in Gastric Cancer: From Carcinogenesis to Treatment. Front Microbiol 2021; 12:641322. [PMID: 33790881 PMCID: PMC8005548 DOI: 10.3389/fmicb.2021.641322] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
The development of sequencing technology has expanded our knowledge of the human gastric microbiome, which is now known to play a critical role in the maintenance of homeostasis, while alterations in microbial community composition can promote the development of gastric diseases. Recently, carcinogenic effects of gastric microbiome have received increased attention. Gastric cancer (GC) is one of the most common malignancies worldwide with a high mortality rate. Helicobacter pylori is a well-recognized risk factor for GC. More than half of the global population is infected with H. pylori, which can modulate the acidity of the stomach to alter the gastric microbiome profile, leading to H. pylori-associated diseases. Moreover, there is increasing evidence that bacteria other than H. pylori and their metabolites also contribute to gastric carcinogenesis. Therefore, clarifying the contribution of the gastric microbiome to the development and progression of GC can lead to improvements in prevention, diagnosis, and treatment. In this review, we discuss the current state of knowledge regarding changes in the microbial composition of the stomach caused by H. pylori infection, the carcinogenic effects of H. pylori and non-H. pylori bacteria in GC, as well as the potential therapeutic role of gastric microbiome in H. pylori infection and GC.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
53
|
Barra WF, Sarquis DP, Khayat AS, Khayat BCM, Demachki S, Anaissi AKM, Ishak G, Santos NPC, Dos Santos SEB, Burbano RR, Moreira FC, de Assumpção PP. Gastric Cancer Microbiome. Pathobiology 2021; 88:156-169. [PMID: 33588422 DOI: 10.1159/000512833] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Identifying a microbiome pattern in gastric cancer (GC) is hugely debatable due to the variation resulting from the diversity of the studied populations, clinical scenarios, and metagenomic approach. H. pylori remains the main microorganism impacting gastric carcinogenesis and seems necessary for the initial steps of the process. Nevertheless, an additional non-H. pylori microbiome pattern is also described, mainly at the final steps of the carcinogenesis. Unfortunately, most of the presented results are not reproducible, and there are no consensual candidates to share the H. pylori protagonists. Limitations to reach a consistent interpretation of metagenomic data include contamination along every step of the process, which might cause relevant misinterpretations. In addition, the functional consequences of an altered microbiome might be addressed. Aiming to minimize methodological bias and limitations due to small sample size and the lack of standardization of bioinformatics assessment and interpretation, we carried out a comprehensive analysis of the publicly available metagenomic data from various conditions relevant to gastric carcinogenesis. Mainly, instead of just analyzing the results of each available publication, a new approach was launched, allowing the comprehensive analysis of the total sample amount, aiming to produce a reliable interpretation due to using a significant number of samples, from different origins, in a standard protocol. Among the main results, Helicobacter and Prevotella figured in the "top 6" genera of every group. Helicobacter was the first one in chronic gastritis (CG), gastric cancer (GC), and adjacent (ADJ) groups, while Prevotella was the leader among healthy control (HC) samples. Groups of bacteria are differently abundant in each clinical situation, and bacterial metabolic pathways also diverge along the carcinogenesis cascade. This information may support future microbiome interventions aiming to face the carcinogenesis process and/or reduce GC risk.
Collapse
Affiliation(s)
| | | | - André Salim Khayat
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | - Samia Demachki
- Unidade Laboratorial de Anatomia Patológica, Universidade Federal do Pará, Belém, Brazil
| | - Ana Karyssa Mendes Anaissi
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil.,Unidade Laboratorial de Anatomia Patológica, Universidade Federal do Pará, Belém, Brazil
| | - Geraldo Ishak
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil.,Serviço de Cirurgia Geral e do Aparelho Digestivo, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | | | | | - Rommel Rodriguez Burbano
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Hospital Ophir Loyola, Belém, Brazil
| | | | - Paulo Pimentel de Assumpção
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil, .,Serviço de Cirurgia Geral e do Aparelho Digestivo, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil,
| |
Collapse
|
54
|
Davoodvandi A, Marzban H, Goleij P, Sahebkar A, Morshedi K, Rezaei S, Mahjoubin-Tehran M, Tarrahimofrad H, Hamblin MR, Mirzaei H. Effects of therapeutic probiotics on modulation of microRNAs. Cell Commun Signal 2021; 19:4. [PMID: 33430873 PMCID: PMC7798223 DOI: 10.1186/s12964-020-00668-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Probiotics are beneficial bacteria that exist within the human gut, and which are also present in different food products and supplements. They have been investigated for some decades, due to their potential beneficial impact on human health. Probiotics compete with pathogenic microorganisms for adhesion sites within the gut, to antagonize them or to regulate the host immune response resulting in preventive and therapeutic effects. Therefore, dysbiosis, defined as an impairment in the gut microbiota, could play a role in various pathological conditions, such as lactose intolerance, gastrointestinal and urogenital infections, various cancers, cystic fibrosis, allergies, inflammatory bowel disease, and can also be caused by antibiotic side effects. MicroRNAs (miRNAs) are short non-coding RNAs that can regulate gene expression in a post-transcriptional manner. miRNAs are biochemical biomarkers that play an important role in almost all cellular signaling pathways in many healthy and disease states. For the first time, the present review summarizes current evidence suggesting that the beneficial properties of probiotics could be explained based on the pivotal role of miRNAs. Video Abstract.
Collapse
Affiliation(s)
| | - Havva Marzban
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology,Sana Institute of Higher Education, Sari, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Korosh Morshedi
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Rezaei
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114 USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
55
|
Xie Y, Feng Y, Li W, Zhan F, Huang G, Hu H, Xiong Y, Tan B, Chen T. Revealing the Disturbed Vaginal Micobiota Caused by Cervical Cancer Using High-Throughput Sequencing Technology. Front Cell Infect Microbiol 2020; 10:538336. [PMID: 33365275 PMCID: PMC7750457 DOI: 10.3389/fcimb.2020.538336] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth most prevalent cancer type among all malignancies, so it is of great significance to find its actual pathogenesis mechanisms. In the present study, 90 women were enrolled, and high-throughput sequencing technology was firstly used to analyze the vaginal microbiota of healthy women (C group), cervical intraepithelial neoplasia patients (CIN group) and cervical cancer patients (CER group). Our results indicates that compared with C group, a higher HPV infection rate as well as increased Neutrophil ratio and tumor marker squamous cell carcinoma antigen (SCCA) were obtained, and a decrease in Lymphocyte ratio and Hemoglobin were also present. In addition, the cervical cancer showed a strong association with reduced probiotics Lactobacillus, increased pathogens Prevotella spp., Sneathia spp. and Pseudomonas spp. These results prove that the immunological changes generated by the cervical cancer and the vaginal microbiota can interact with each other. However, further study investigating the key bacteria for cervical cancer is still needed, which can be a clue for the diagnosis or treatment of cervical cancer.
Collapse
Affiliation(s)
- Yupei Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Feng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenyu Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Fuliang Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Genhua Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yifei Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
56
|
Zhang Z, Shao S, Zhang Y, Jia R, Hu X, Liu H, Sun M, Zhang B, Li Q, Wang Y. Xiaoyaosan slows cancer progression and ameliorates gut dysbiosis in mice with chronic restraint stress and colorectal cancer xenografts. Biomed Pharmacother 2020; 132:110916. [PMID: 33113425 DOI: 10.1016/j.biopha.2020.110916] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
Depression is a risk factor for colorectal cancer (CRC) progression. Xiaoyaosan (XYS) is a traditional Chinese medicine prescription for treating depression. Our present study aimed to investigate the effect of XYS on chronic restraint stress (CRS) in mice with CRC xenografts and explore its underlying mechanisms. XYS treatment for 21 consecutive days successfully reduced the tumour volume and tumour weight in mice and prolonged the overall survival time. In addition, the intestinal permeability in the XYS group was significantly improved after administration. The 16S rRNA high-throughput sequencing method was used to sequence stool samples to check the structure and changes of gut bacteria. XYS mainly regulated the abundance of Bacteroides, Lactobacillus, Desulfovibrio and Rikenellaceae. Taken together, these results provide direct strong evidence that XYS effectively improves the progression of CRC in CRS-handled mice, and its efficacy is associated with the modulation of gut dysbiosis. The application of XYS can be a novel therapeutic strategy for CRC patients with depression.
Collapse
Affiliation(s)
- Zhaozhou Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyun Shao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ru Jia
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingyu Sun
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China.
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
57
|
Hu H, Cui L, Lu J, Wei K, Wei J, Li S, Zou C, Chen T. Intestinal microbiota regulates anti-tumor effect of disulfiram combined with Cu 2+ in a mice model. Cancer Med 2020; 9:6791-6801. [PMID: 32750218 PMCID: PMC7520343 DOI: 10.1002/cam4.3346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
Background A growing number of studies show that intestinal microbiota affect the therapeutic effects of antineoplastic agents. Disulfiram (tetraethylthiuram disulfide, DSF) is an old alcohol‐aversion drug that has been shown to be effective against various types of cancers in preclinical studies, while few studies are carried out to explore its mechanism. Methods A mice model of melanoma xenograft was generated and treated with antibiotics (Abx), disulfiram/copper (DSF/Cu2+), Abx + DSF/Cu2+, and the tumor volume and survival curve were observed. Hematoxylin‐eosin (HE) staining and western blotting (WB) were used to observe the protein changes related to cell morphology, inflammation, and apoptosis in tumor tissues. Quantitative real time polymerase chain reaction (qPCR) was used to detect the expression of pro‐inflammatory cytokines in tumors. High‐throughput sequencing was used to detect the effects of Abx and DSF/Cu2+ on intestinal microbiota. Results The DSF/Cu2+ and Abx + DSF/Cu2+ markedly delayed tumor progression and prolonged mice survival, of which the combination of Abx and DSF/Cu2+ possessed the best anti‐tumor effect. Abx + DSF/Cu2+ significantly reduced the pro‐inflammatory cytokines Interleukin‐1β (IL‐1β), IL‐6 and tumor necrosis factor α (TNF‐α) in tumors, and significantly reduced the expression of phosphorylated‐protein kinase B (p‐AKT)/protein kinase B (AKT), toll‐like receptors 4 (TLR‐4), and phosphorylated‐ nuclear factor kappa‐B (p‐NFκB)/NFκB in tumors. Moreover our high‐throughput sequencing first indicated that the sound anti‐cancer effect of Abx + DSF/Cu2+ had a strong connection with the increased abundance of intestinal beneficial bacteria Akkermansia, as well as the reduced abundance of opportunistic pathogenic bacteria Campylobacterales, Helicobacteraceae, and Coriobacteriaceae. Conclusions The disturbed intestinal microbiota (increased abundance of opportunistic pathogens Campylobacterales, Helicobacteraceae, and Coriobacteriaceae) and the over‐activated TLR4/NF‐κB signaling pathway in tumor tissues deteriorated the cancer development, and the using of antibiotics is benefit to enhance the therapeutic effect of DSF on tumors via inhibiting the growth of opportunistic pathogenic bacteria.
Collapse
Affiliation(s)
- Hong Hu
- School of Life Sciences, Nanchang University, Nanchang, PR China
| | - Lanyue Cui
- School of Life Sciences, Nanchang University, Nanchang, PR China
| | - Jiachen Lu
- School of Life Sciences, Nanchang University, Nanchang, PR China
| | - Kehong Wei
- School of Life Sciences, Nanchang University, Nanchang, PR China
| | - Jing Wei
- School of Life Sciences, Nanchang University, Nanchang, PR China.,National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, PR China
| | - Shaobo Li
- School of Life Sciences, Nanchang University, Nanchang, PR China
| | - Changwei Zou
- School of Resources Environmental and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Tingtao Chen
- School of Life Sciences, Nanchang University, Nanchang, PR China.,National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, PR China
| |
Collapse
|
58
|
Gao Y, Shang Q, Li W, Guo W, Stojadinovic A, Mannion C, Man YG, Chen T. Antibiotics for cancer treatment: A double-edged sword. J Cancer 2020; 11:5135-5149. [PMID: 32742461 PMCID: PMC7378927 DOI: 10.7150/jca.47470] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/14/2020] [Indexed: 12/13/2022] Open
Abstract
Various antibiotics have been used in the treatment of cancers, via their anti-proliferative, pro-apoptotic and anti-epithelial-mesenchymal-transition (EMT) capabilities. However, increasingly studies have indicated that antibiotics may also induce cancer generation by disrupting intestinal microbiota, which further promotes chronic inflammation, alters normal tissue metabolism, leads to genotoxicity and weakens the immune response to bacterial malnutrition, thereby adversely impacting cancer treatment. Despite the advent of high-throughput sequencing technology in recent years, the potential adverse effects of antibiotics on cancer treatments via causing microbial imbalance has been largely ignored. In this review, we discuss the double-edged sword of antibiotics in the field of cancer treatments, explore their potential mechanisms and provide solutions to reduce the potential negative effects of antibiotics.
Collapse
Affiliation(s)
- Yuan Gao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Road, Honggu District, Nanchang, 330031 People's Republic of China
- Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Qingyao Shang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Road, Honggu District, Nanchang, 330031 People's Republic of China
- Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Wenyu Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Road, Honggu District, Nanchang, 330031 People's Republic of China
- Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Wenxuan Guo
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Road, Honggu District, Nanchang, 330031 People's Republic of China
| | - Alexander Stojadinovic
- Department of Pathology, Hackensack University Medical Center, 30 Prospec Avenue, Hackensack, NJ 07601, USA
| | - Ciaran Mannion
- Department of Pathology, Hackensack University Medical Center, 30 Prospec Avenue, Hackensack, NJ 07601, USA
- Department of Pathology, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Yan-gao Man
- Department of Pathology, Hackensack University Medical Center, 30 Prospec Avenue, Hackensack, NJ 07601, USA
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Road, Honggu District, Nanchang, 330031 People's Republic of China
| |
Collapse
|
59
|
Niu JW, Zhou L, Liu ZZ, Pei DP, Fan WQ, Ning W. A Systematic Review and Meta-Analysis of the Effects of Perioperative Immunonutrition in Gastrointestinal Cancer Patients. Nutr Cancer 2020; 73:252-261. [PMID: 32285694 DOI: 10.1080/01635581.2020.1749291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jin-Wei Niu
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Lei Zhou
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhi-Ze Liu
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Dong-Po Pei
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Wen-Qiang Fan
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Wu Ning
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
60
|
Xu X, Feng X, He M, Zhang Z, Wang J, Zhu H, Li T, Wang F, Sun M, Wang Z. The effect of acupuncture on tumor growth and gut microbiota in mice inoculated with osteosarcoma cells. Chin Med 2020; 15:33. [PMID: 32292489 PMCID: PMC7140491 DOI: 10.1186/s13020-020-00315-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer is a complex systemic disease. As a key component of traditional Chinese medicine, acupuncture is a clinically proven medical treatment for many diseases, and it also has preventative effects as it balances the body, allowing it to self-regulate. For cancer patients, acupuncture is widely used as complementary therapy to boost the immune system and reduce the side effects of radiotherapy and chemotherapy. However, few studies have determined how acupuncture against cancer, especially in regulating the intestinal flora of the tumor-burdened mice. METHODS We treated osteosarcoma tumor-burdened mice by using needling on different acupoints and acupoints combination, thereafter determined the effects of acupuncture on tumor growth by using imaging technology in vitro. In addition, intestinal bacteria were analyzed for further understanding the holistic and systemic treatment effects of acupuncture in osteosarcoma tumor-burdened mice. RESULTS Acupuncture treatment can delay tumor growth and changes of intestinal bacteria in osteosarcoma tumor-burdened mice. In detail, the loss of body weight and the development of tumor volume of mice have been postposed by needling specific acupoints. In addition, acupuncture treatment has delayed the changes of the relative abundance of Bacteroidetes, Firmicutes and Candidatus Saccharibacteria at the phylum level. Moreover, the relative abundance of many bacteria (e.g., Catabacter, Acetatifactor and Aestuariispira) has been regulated by using acupuncture treatment, and the trend of structural changes of these bacteria at the genus level has also been postposed compared to that of the tumor-burdened mice model group. CONCLUSION Our results suggest that acupuncture may provide a systemic treatment for cancer. Our findings encourage new and extensive research into the effects of acupuncture on changes of the intestinal microbiome associated with the development of cancer.
Collapse
Affiliation(s)
- Xiaoru Xu
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Xiangru Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022 People’s Republic of China
| | - Min He
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Zepeng Zhang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Jiajia Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Haiyu Zhu
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Tie Li
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Fuchun Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Mengmeng Sun
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
- SKL of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22 Avenida da Universidade, Taipa, Macau China
| | - Zhihong Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| |
Collapse
|
61
|
Lactobacillus acidophilus loaded pickering double emulsion with enhanced viability and colon-adhesion efficiency. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108928] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
62
|
Deng X, Tian H, Yang R, Han Y, Wei K, Zheng C, Liu Z, Chen T. Oral Probiotics Alleviate Intestinal Dysbacteriosis for People Receiving Bowel Preparation. Front Med (Lausanne) 2020; 7:73. [PMID: 32181256 PMCID: PMC7059130 DOI: 10.3389/fmed.2020.00073] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Bowel preparation is necessary for successful colonoscopy, while it can seriously affect intestinal microbial composition and damage the intestinal mucosal barriers in humans. Methods: To figure out whether probiotics can sustain intestinal homeostasis and guard people's health, the probiotic drug of Bifidobacterium Tetragenous viable Bacteria Tablets (P group, n = 16) or placebo (C group, n = 16) was used for volunteers receiving bowel preparation, and high-throughput sequencing method was applied to monitor their intestinal microbial changes. Results: The present results suggested that bowel preparation obviously reduced the intestinal microbial diversity, while taking probiotics significantly restored it to normal level. In addition, probiotics sharply reduced the abundance of pathogenic Proteobacteria, and obviously lowered the ratio of Firmicutes/Bacteroidetes compared with control group at phylum level (P < 0.05). And probiotics markedly decreased the abundance of pathogenic Acinetobacter and Streptococcus, while greatly enriched the relative abundance of beneficial bacteria Bacteroides, Roseburia, Faecalibacterium, and Parabacteroides at genus level (P < 0.05). Conclusion: Probiotic drugs, e.g., Bifidobacterium Tetragenous viable Bacteria Tablets, can be used to restore intestinal dysbacteriosis caused by bowel preparation, and reduce side effects during colonoscopy.
Collapse
Affiliation(s)
- Xiaorong Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huakai Tian
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiwen Han
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Kehong Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Cihua Zheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tingtao Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
63
|
Nagano T, Otoshi T, Hazama D, Kiriu T, Umezawa K, Katsurada N, Nishimura Y. Novel cancer therapy targeting microbiome. Onco Targets Ther 2019; 12:3619-3624. [PMID: 31190864 PMCID: PMC6526180 DOI: 10.2147/ott.s207546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022] Open
Abstract
In the human intestinal tract, there are more than 100 trillion symbiotic bacteria, which form the gut microbiota. Approximately 70% of the human immune system is in the intestinal tract, which prevents infection by pathogenic bacteria. When the intestinal microbiota is disturbed, causing dysbiosis, it can lead to obesity, diabetes mellitus, inflammatory bowel disease, rheumatoid arthritis, multiple sclerosis, autism spectrum disorder and cancer. Recent metabolomics analyses have also made the association between the microbiota and carcinogenesis clear. Here, we review the current evidence on the association between the microbiota and gastric, bladder, hepatobiliary, pancreatic, lung and colorectal cancer. Moreover, several animal studies have revealed that probiotics seem to be effective for the prevention of carcinogenesis to some extent. In this review, we focused on this relationship between the microbiota and cancer, and considered how to prevent cancer using strategies involving the gut microbiota.
Collapse
Affiliation(s)
- Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takehiro Otoshi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Daisuke Hazama
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tatsunori Kiriu
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kanoko Umezawa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Naoko Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|