51
|
Metal-Phenolic Network-Coated Hyaluronic Acid Nanoparticles for pH-Responsive Drug Delivery. Pharmaceutics 2019; 11:pharmaceutics11120636. [PMID: 31795253 PMCID: PMC6956368 DOI: 10.3390/pharmaceutics11120636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/02/2022] Open
Abstract
Although self-assembled nanoparticles (SNPs) have been used extensively for targeted drug delivery, their clinical applications have been limited since most of the drugs are released into the blood before they reach their target site. In this study, metal-phenolic network (MPN)-coated SNPs (MPN-SNPs), which consist of an amphiphilic hyaluronic acid derivative, were prepared to be a pH-responsive nanocarrier to facilitate drug release in tumor microenvironments (TME). Due to their amphiphilic nature, SNPs were capable of encapsulating doxorubicin (DOX), chosen as the model anticancer drug. Tannic acid and FeCl3 were added to the surface of the DOX-SNPs, which allowed them to be readily coated with MPNs as the diffusion barrier. The pH-sensitive MPN corona allowed for a rapid release of DOX and effective cellular SNP uptake in the mildly acidic condition (pH 6.5) mimicking TME, to which the hyaluronic acid was exposed to facilitate receptor-mediated endocytosis. The DOX-loaded MPN-SNPs exhibited a higher cytotoxicity for the cancer cells, suggesting their potential use as a drug carrier in targeted cancer therapy.
Collapse
|
52
|
Madamsetty VS, Mukherjee A, Mukherjee S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front Pharmacol 2019; 10:1264. [PMID: 31708785 PMCID: PMC6823240 DOI: 10.3389/fphar.2019.01264] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
In recent years, various nanomaterials have emerged as an exciting tool in cancer theranostic applications due to their multifunctional property and intrinsic molecular property aiding effective diagnosis, imaging, and successful therapy. However, chemically synthesized nanoparticles have several issues related to the cost, toxicity and effectiveness. In this context, bio-inspired nanoparticles (NPs) held edges over conventionally synthesized nanoparticles due to their low cost, easy synthesis and low toxicity. In this present review article, a detailed overview of the cancer theranostics applications of various bio-inspired has been provided. This includes the recent examples of liposomes, lipid nanoparticles, protein nanoparticles, inorganic nanoparticles, and viral nanoparticles. Finally, challenges and the future scopes of these NPs in cancer therapy and diagnostics applications are highlighted.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Anubhab Mukherjee
- Department of Formulation, Sealink Pharmaceuticals, Hyderabad, India
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
53
|
Lin LS, Wang JF, Song J, Liu Y, Zhu G, Dai Y, Shen Z, Tian R, Song J, Wang Z, Tang W, Yu G, Zhou Z, Yang Z, Huang T, Niu G, Yang HH, Chen ZY, Chen X. Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics 2019; 9:7200-7209. [PMID: 31695762 PMCID: PMC6831298 DOI: 10.7150/thno.39831] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS)-generating anticancer agents can act through two different mechanisms: (i) elevation of endogenous ROS production in mitochondria, or (ii) formation/delivery of exogenous ROS within cells. However, there is a lack of research on the development of ROS-generating nanosystems that combine endogenous and exogenous ROS to enhance oxidative stress-mediated cancer cell death. Methods: A ROS-generating agent based on polymer-modified zinc peroxide nanoparticles (ZnO2 NPs) was presented, which simultaneously delivered exogenous H2O2 and Zn2+ capable of amplifying endogenous ROS production for synergistic cancer therapy. Results: After internalization into tumor cells, ZnO2 NPs underwent decomposition in response to mild acidic pH, resulting in controlled release of H2O2 and Zn2+. Intriguingly, Zn2+ could increase the production of mitochondrial O2·- and H2O2 by inhibiting the electron transport chain, and thus exerted anticancer effect in a synergistic manner with the exogenously released H2O2 to promote cancer cell killing. Furthermore, ZnO2 NPs were doped with manganese via cation exchange, making them an activatable magnetic resonance imaging contrast agent. Conclusion: This study establishes a ZnO2-based theranostic nanoplatform which achieves enhanced oxidative damage to cancer cells by a two-pronged approach of combining endogenous and exogenous ROS.
Collapse
Affiliation(s)
- Li-Sen Lin
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Jun-Feng Wang
- Department of Ultrasound, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150076, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Yunlu Dai
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Justin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Tao Huang
- Department of Radiology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150076, China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Huang-Hao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhi-Yi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
54
|
Yang K, Liu Y, Wang Y, Ren Q, Guo H, Matson JB, Chen X, Nie Z. Enzyme-induced in vivo assembly of gold nanoparticles for imaging-guided synergistic chemo-photothermal therapy of tumor. Biomaterials 2019; 223:119460. [PMID: 31513993 DOI: 10.1016/j.biomaterials.2019.119460] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/17/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
Abstract
This article describes a nanoplatform based on matrix metalloproteinase (MMP)-responsive gold nanoparticles (AuNPs) for tumor-targeted photoacoustic (PA) imaging-guided photothermal therapy and drug delivery. AuNPs were grafted with complementary DNA strands, tethered with doxorubicin and coated with poly(ethylene glycol) via a thermal-labile linker and a MMP-cleavable peptide, respectively. The nanoprobes remained well-isolated in healthy tissues, but formed aggregates rapidly under MMP-abundant conditions. The DNA hybridization-induced assembly of the nanoprobes led to prolonged tumor retention and strong near-infrared (NIR) absorption, which is beneficial to deep-tissue imaging and therapy. Compared with MMP-inert nanoprobes, our platform demonstrated significantly enhanced efficiency in PA imaging and photothermal conversion upon NIR irradiation. Meanwhile, doxorubicin could be released rapidly in response to the localized elevation of temperature, leading to synergistic chemo-photothermal therapy. The unique nanoplatform may find applications in effective disease control by delivering imaging and therapy to tumors with high specificity, safety, and universality.
Collapse
Affiliation(s)
- Kuikun Yang
- Department of Chemistry and Biochemistry, University of Maryland College Park, Maryland, 20742, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Maryland, 20892, United States
| | - Yin Wang
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Qilong Ren
- Department of Chemistry and Biochemistry, University of Maryland College Park, Maryland, 20742, United States
| | - Hongyu Guo
- Department of Chemistry and Biochemistry, University of Maryland College Park, Maryland, 20742, United States
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Maryland, 20892, United States.
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, PR China; Department of Chemistry and Biochemistry, University of Maryland College Park, Maryland, 20742, United States.
| |
Collapse
|
55
|
Mahajan PG, Dige NC, Vanjare BD, Eo SH, Seo SY, Kim SJ, Hong SK, Choi CS, Lee KH. A potential mediator for photodynamic therapy based on silver nanoparticles functionalized with porphyrin. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
56
|
Liu C, Wang D, Zhang S, Cheng Y, Yang F, Xing Y, Xu T, Dong H, Zhang X. Biodegradable Biomimic Copper/Manganese Silicate Nanospheres for Chemodynamic/Photodynamic Synergistic Therapy with Simultaneous Glutathione Depletion and Hypoxia Relief. ACS NANO 2019; 13:4267-4277. [PMID: 30901515 DOI: 10.1021/acsnano.8b09387] [Citation(s) in RCA: 430] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The integration of reactive oxygen species (ROS)-involved photodynamic therapy (PDT) and chemodynamic therapy (CDT) holds great promise for enhanced anticancer effects. Herein, we report biodegradable cancer cell membrane-coated mesoporous copper/manganese silicate nanospheres (mCMSNs) with homotypic targeting ability to the cancer cell lines and enhanced ROS generation through singlet oxygen (1O2) production and glutathione (GSH)-activated Fenton reaction, showing excellent CDT/PDT synergistic therapeutic effects. We demonstrate that mCMSNs are able to relieve the tumor hypoxia microenvironment by catalytic decomposition of endogenous H2O2 to O2 and further react with O2 to produce toxic 1O2 with a 635 nm laser irradiation. GSH-triggered mCMSNs biodegradation can simultaneously generate Fenton-like Cu+ and Mn2+ ions and deplete GSH for efficient hydroxyl radical (•OH) production. The specific recognition and homotypic targeting ability to the cancer cells were also revealed. Notably, relieving hypoxia and GSH depletion disrupts the tumor microenvironment (TME) and cellular antioxidant defense system, achieving exceptional cancer-targeting therapeutic effects in vitro and in vivo. The cancer cells growth was significantly inhibited. Moreover, the released Mn2+ can also act as an advanced contrast agent for cancer magnetic resonance imaging (MRI). Thus, together with photosensitizers, Fenton agent provider and MRI contrast effects along with the modulating of the TME allow mCMSNs to realize MRI-monitored enhanced CDT/PDT synergistic therapy. It provides a paradigm to rationally design TME-responsive and ROS-involved therapeutic strategies based on a single polymetallic silicate nanomaterial with enhanced anticancer effects.
Collapse
Affiliation(s)
- Conghui Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
| | - Dongdong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
| | - Shuyuan Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
| | - Yaru Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
| | - Fan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
| | - Yi Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
| | - Tailin Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
| | - Haifeng Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
| | - Xueji Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
| |
Collapse
|
57
|
Wang Y, Tian N, Li C, Hou Y, Wang X, Zhou Q. Incorporation of 7-dehydrocholesterol into liposomes as a simple, universal and efficient way to enhance anticancer activity by combining PDT and photoactivated chemotherapy. Chem Commun (Camb) 2019; 55:14081-14084. [DOI: 10.1039/c9cc05691b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Incorporation of 7-dehydrocholesterol instead of cholesterol can efficiently enhance the anticancer activity of photosensitizer-encapsulated liposomes upon irradiation.
Collapse
Affiliation(s)
- Youchao Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Nana Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chao Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yuanjun Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|