51
|
Wang S, Liu Y, Li S, Chen Y, Liu Y, Yan J, Wu J, Li J, Wang L, Xiang R, Shi Y, Qin X, Yang S. COMMD3-Mediated Endosomal Trafficking of HER2 Inhibits the Progression of Ovarian Carcinoma. Mol Cancer Res 2023; 21:199-213. [PMID: 36445330 DOI: 10.1158/1541-7786.mcr-22-0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The dysregulated endocytic traffic of oncogenic receptors, such as the EGFR family especially HER2, contributes to the uncontrolled activation of the downstream oncogenic signaling and progression of various carcinomas, including 90% of ovarian carcinoma. However, the key regulators in the intracellular trafficking of HER2 and their impacts for cancer progression remain largely unknown. In this study, through a genome-wide CRISPR/Cas9 screening for key genes affecting the peritoneal disseminated metastasis of ovarian carcinoma, we identified a member of COMMD family, that is, COMMD3, as a key regulator in the endosomal trafficking of HER2. In the patients with high-grade serous ovarian carcinoma (HGSOC), the expression of COMMD3 is dramatically decreased in the peritoneal disseminated ovarian carcinoma cells comparing with that in the primary ovarian carcinoma cells. COMMD3 greatly inhibits the proliferation, migration, and epithelial-mesenchymal transition (EMT) of HGSOC cells, and dramatically suppresses the tumor growth, the formation of malignant ascites, and the peritoneal dissemination of cancer cells in the orthotopic murine model of HGSOC. Further transcriptome analysis reveals that silencing COMMD3 boosts the activation of HER2 downstream signaling. As a component in the Retriever-associated COMMD/CCDC22/CCDC93 complex responsible for the recognition and recycling of membrane receptors, COMMD3 physically interacts with HER2 for directing it to the slow recycling pathway, leading to the attenuated downstream tumor-promoting signaling. IMPLICATIONS Collectively, this study reveals a novel HER2 inactivation mechanism with a high value for the clinic diagnosis of new ovarian carcinoma types and the design of new therapeutic strategy.
Collapse
Affiliation(s)
- Shiqing Wang
- The School of Medicine, Nankai University, Tianjin, China
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuxin Liu
- The School of Medicine, Nankai University, Tianjin, China
| | - Siyu Li
- The School of Medicine, Nankai University, Tianjin, China
| | - Yanan Chen
- The School of Medicine, Nankai University, Tianjin, China
| | - Yanhua Liu
- The School of Medicine, Nankai University, Tianjin, China
| | - Jie Yan
- The School of Medicine, Nankai University, Tianjin, China
| | - Jiayi Wu
- The School of Medicine, Nankai University, Tianjin, China
| | - Jia Li
- The School of Medicine, Nankai University, Tianjin, China
| | - Longlong Wang
- The School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- The School of Medicine, Nankai University, Tianjin, China
| | - Yi Shi
- The School of Medicine, Nankai University, Tianjin, China
| | - Xuan Qin
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shuang Yang
- The School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
52
|
Wang Y, Jiang Y, Guo W, Tang K, Fu Y, Liu R, Chen L. dl-THP recovered the decreased NKp44 expression level on CD56 dim CD16 + natural killer cells partially in choriocarcinoma microenvironment. Immunobiology 2023; 228:152363. [PMID: 36870142 DOI: 10.1016/j.imbio.2023.152363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/05/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Natural killer cell-based immunotherapy has become a leading-edge tool against cancer, but still faces a variety of challenges, such as phenotype shift and dysfunction of NK cells in tumor microenvironment. Thus, finding potent agents that could inhibit the phenotype shift and incapacity of NK cells in the tumor microenvironment is essential for improving antitumor effects. dl-tetrahydropalmatine (dl-THP), one of the active alkaloids of Chinese herb Corydalis Rhizoma, has been proven to possess antitumor activity. However, whether dl-THP acts on NK cells to enhance antitumor activity remains unknown. In this study, we found that the proportion of blood CD56dimCD16+ NK cells was decreased while the proportion of CD56brightCD16- NK cells was increased when the cells were cultured in conditional medium (CM, medium from the human choriocarcinoma cell lines JEG-3). dl-THP could alter the varied proportion of CD56dimCD16+ NK cells and CD56brightCD16- NK cells in CM respectively. Importantly, the expression level of NKp44 on CD56dimCD16+ NK cells was dramatically reduced when the cells were cultured in CM, which could also be reversed by dl-THP. Furthermore, dl-THP increased the decreased NK-cell cytotoxicity when cells were cultured in CM. In summary, our study demonstrated that dl-THP could recover the decreased NKp44 expression level on CD56dimCD16+ NK cells and restore the cytotoxicity of NK cells in tumor microenvironment.
Collapse
Affiliation(s)
- Yazhen Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yuan Jiang
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China; School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
| | - Wenwei Guo
- Department of Obstetrics and Gynecology, Shanghai Gongli Hospital, The Second Military Medical University. Shanghai 200135, China
| | - Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yue Fu
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ruiyan Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
53
|
Xiao C, Liu S, Ge G, Jiang H, Wang L, Chen Q, Jin C, Mo J, Li J, Wang K, Zhang Q, Zhou J. Roles of hypoxia-inducible factor in hepatocellular carcinoma under local ablation therapies. Front Pharmacol 2023; 14:1086813. [PMID: 36814489 PMCID: PMC9939531 DOI: 10.3389/fphar.2023.1086813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common digestive malignancies. HCC It ranges as the fifth most common cause of cancer mortality worldwide. While The prognosis of metastatic or advanced HCC is still quite poor. Recently, locoregional treatment, especially local ablation therapies, plays an important role in the treatment of HCC. Radiofrequency ablation (RFA) and high-intensity focused ultrasound (HIFU) ablation are the most common-used methods effective and feasible for treating HCC. However, the molecular mechanisms underlying the actions of ablation in the treatments for HCC and the HCC recurrence after ablation still are poorly understood. Hypoxia-inducible factor (HIF), the key gene switch for adaptive responses to hypoxia, has been found to play an essential role in the rapid aggressive recurrence of HCC after ablation treatment. In this review, we summarized the current evidence of the roles of HIF in the treatment of HCC with ablation. Fifteen relevant studies were included and further analyzed. Among them, three clinical studies suggested that HIF-1α might serve as a crucial role in the RAF treatment of HCC or the local recurrence of HCC after RFA. The remainder included experimental studies demonstrated that HIF-1, 2α might target the different molecules (e.g., BNIP3, CA-IX, and arginase-1) and signaling cascades (e.g., VEGFA/EphA2 pathway), constituting a complex network that promoted HCC invasion and metastasis after ablation. Currently, the inhibitors of HIF have been developed, providing important proof of targeting HIF for the prevention of HCC recurrence after IRFA and HIFU ablation. Further confirmation by prospective clinical and in-depth experimental studies is still warranted to illustrate the effects of HIF in HCC recurrence followed ablation treatment in the future.
Collapse
Affiliation(s)
- Chunying Xiao
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Sheng Liu
- Department of Hepatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Ge
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Jin Li
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Qianqian Zhang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyu Zhou
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
54
|
Hu Y, Li Y, Yao Z, Huang F, Cai H, Liu H, Zhang X, Zhang J. Immunotherapy: Review of the Existing Evidence and Challenges in Breast Cancer. Cancers (Basel) 2023; 15:563. [PMID: 36765522 PMCID: PMC9913569 DOI: 10.3390/cancers15030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Breast cancer (BC) is a representative malignant tumor that affects women across the world, and it is the main cause of cancer-related deaths in women. Although a large number of treatment methods have been developed for BC in recent years, the results are sometimes unsatisfying. In recent years, treatments of BC have been expanded with immunotherapy. In our article, we list some tumor markers related to immunotherapy for BC. Moreover, we introduce the existing relatively mature immunotherapy and the markers' pathogenesis are involved. The combination of immunotherapy and other therapies for BC are introduced in detail, including the combination of immunotherapy and chemotherapy, the combined use of immunosuppressants and chemotherapy drugs, immunotherapy and molecular targeted therapy. We summarize the clinical effects of these methods. In addition, this paper also makes a preliminary exploration of the combination of immunotherapy, radiotherapy, and nanotechnology for BC.
Collapse
Affiliation(s)
- Yun Hu
- Department of Breast Cancer, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yan Li
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Zhangcheng Yao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Fenglin Huang
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Hongzhou Cai
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Hanyuan Liu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210012, China
| | - Xiaoyi Zhang
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Junying Zhang
- Department of Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
55
|
Yang F, Wang D, Zhang X, Fan H, Zheng Y, Xiao Z, Chen Z, Xiao Y, Liu Q. Novel variants of seryl-tRNA synthetase resulting in HUPRA syndrome featured in pulmonary hypertension. Front Cardiovasc Med 2023; 9:1058569. [PMID: 36698945 PMCID: PMC9868236 DOI: 10.3389/fcvm.2022.1058569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023] Open
Abstract
Hyperuricemia, pulmonary hypertension, and renal failure in infancy and alkalosis syndrome (HUPRA syndrome) is an ultrarare mitochondrial disease that is characterized by hyperuricemia, pulmonary hypertension, renal failure, and alkalosis. Seryl-tRNA synthetase 2 (SARS2) gene variants are believed to cause HUPRA syndrome, and these variants result in the loss of function of seryl-tRNA synthetase. Eventually, mutated seryl-tRNA synthetase is unable to catalyze tRNA synthesis and leads to the inhibition of the biosynthesis of mitochondrial proteins. This causes oxidative phosphorylation (OXPHOS) system impairments. To date, five mutation sites in the SARS2 gene have been identified. We used whole-exome sequencing and Sanger sequencing to find and validate a novel compound heterozygous variants of SARS2 [c.1205G>A (p.Arg402His) and c.680G>A (p.Arg227Gln)], and in silico analysis to analyze the structural change of the variants. We found that both variants were not sufficient to cause obvious structural damage but changed the intermolecular bond of the protein, which could be the cause of HUPRA syndrome in this case. We also performed the literature review and found this patient had significant pulmonary hypertension and minor renal dysfunction compared with other reported cases. This study inspired us to recognize HUPRA syndrome and broaden our knowledge of gene variation in PH.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Cardiology, Hunan Children's Hospital, Changsha, China
| | - Xuehua Zhang
- Department of Ultrasound, Fujian Children's Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Haoqin Fan
- Department of Cardiology, Hunan Children's Hospital, Changsha, China
| | - Yu Zheng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Zhenghui Xiao
- Department of Intensive Care Unit, Hunan Children's Hospital, Changsha, China
| | - Zhi Chen
- Department of Cardiology, Hunan Children's Hospital, Changsha, China
| | - Yunbin Xiao
- Department of Cardiology, Hunan Children's Hospital, Changsha, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
56
|
Xu J, Huang L, Bao T, Duan K, Cheng Y, Zhang H, Zhang Y, Li J, Li Q, Li F. CircCDR1as mediates PM 2.5-induced lung cancer progression by binding to SRSF1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114367. [PMID: 36508830 DOI: 10.1016/j.ecoenv.2022.114367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/05/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Research indicates that particulate matter with an aerodynamic equivalent diameter of less than or equal to 2.5 µm in ambient air may induce lung cancer progression. Circular RNAs are a special kind of endogenous noncoding RNA, and their functions are reflected in various diseases and physiological processes, but there are still few studies related to PM2.5-induced lung cancer. Here, we identified that circCDR1as was upregulated in lung cancer cells stimulated with PM2.5 and positively correlated with the malignant features of lung cancer. The lower expression of CircCDR1as reduced the adverse progression of lung cancer cells after PM2.5 treatment; the lower expression of circCDR1as impaired the growth size and metastatic ability of lung cancer cells in mouse tumour models. Mechanistically, circCDR1as specifically bound to serine/arginine-rich splicing Factor 1 (SRSF1) and affected the splicing of vascular endothelial growth factor-A (VEGFA) by SRSF1. Furthermore, circCDR1as affected SRSF1 function by regulating PARK2-mediated SRSF1 ubiquitination, protein production and degradation. CircCDR1as also affected C-myc and cyclin D1 expression by regulating SRSF1 and affecting the wnt/β-catenin signalling pathway, ultimately promoting malignant behavior and inhibiting the apoptosis of lung cancer cells, thereby causing PM2.5-induced lung cancer development.
Collapse
Affiliation(s)
- Jingbin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Lanyi Huang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Tuya Bao
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Kaiqian Duan
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yu Cheng
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Haimin Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yong Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Jing Li
- Department of Pathology and Forensic Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Qiujuan Li
- Department of Preventive medicine laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
57
|
RBCK1 regulates the progression of ER-positive breast cancer through the HIF1α signaling. Cell Death Dis 2022; 13:1023. [PMID: 36473847 PMCID: PMC9726878 DOI: 10.1038/s41419-022-05473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most common malignancy in women on a global scale. It can generally be divided into four main categories, of which estrogen receptor ER-positive breast cancer accounts for most breast cancer cases. RBCK1 protein is an E3 ubiquitin ligase containing the UBL, NZF, and RBR domains. It is well known to exhibit abnormal expression in breast tumors, making it a valuable diagnostic marker and drug target. Additionally, studies have confirmed that in breast cancer, about 25 to 40% of tumors appear as visible hypoxic regions, while in hypoxia, tumor cells can activate the hypoxia-inducing factor HIF1 pathway and widely activate the expression of downstream genes. Previous studies have confirmed that in the hypoxic environment of tumors, HIF1α promotes the remodeling of extracellular matrix, induces the recruitment of tumor-associated macrophages (TAM) and immunosuppression of allogeneic tumors, thereby influencing tumor recurrence and metastasis. This research aims to identify RBCK1 as an important regulator of HIF1α signaling pathway. Targeted therapy with RBCK1 could be a promising treatment strategy for ER-positive breast cancer.
Collapse
|
58
|
Liu K, Shi X. Magnolol Suppresses Breast Cancer Cells via Regulating miR-140-5p/TLR4 Signaling Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: To discuss Mag effects and relative mechanisms in breast cancer treatment by vitro study. Materials and methods: In first step, using difference concentrations of Mag to treat breast cancer cell lines; In next step, the cell liens were divided into NC, Mag and
Mag+si-miRNA group. Using MTT to measure cell proliferation rates; using TUNEL and flow cytometry to evaluate apoptosis cell number and rate; measuring invasion cell number and wound healing rate using transwell or wound healing; evaluating relative gene expressions using RT-qPCR and WB assay.
Results: Cell proliferation rates, invasion cell number, Ki67 positive cell number, wound healing rates significant depressed (P < 0.05) and cell apoptosis rate and apoptosis cell number significantly increased (P <0.05, respectively), meanwhile, miR-140-5p, TLR4,
MyD88 and NF-κB(p65)gene significantly changed (P < 0.05) and TLR4, MyD88 and NF-κB(p65) protein significant down-regulation (P < 0.05). However, with si-miRNA which inhibited miR-140-5p supplement, the cell biological activities significantly
increased (P <0.001), with miR-140-5p significant down-regulation, TLR4, MyD88 and NF-κB(p65) significantly up-regulation (P < 0.001). Conclusion: Mag had anti-tumor effects to breast cancer via miR-140-5p/TLR4 axis by vitro cell experiment.
Collapse
Affiliation(s)
- Ke Liu
- Department of Oncology, Chaohu Hospital of Anhui Medical University, No.64, Chaohu North Road, Chaohu, 238001, Anhui, China
| | - Xianfeng Shi
- Department of Oncology, Chaohu Hospital of Anhui Medical University, No.64, Chaohu North Road, Chaohu, 238001, Anhui, China
| |
Collapse
|
59
|
Li SQ, Yang Y, Ye LS. Angiogenesis and immune checkpoint dual blockade: Opportunities and challenges for hepatocellular carcinoma therapy. World J Gastroenterol 2022; 28:6034-6044. [PMID: 36405383 PMCID: PMC9669824 DOI: 10.3748/wjg.v28.i42.6034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/06/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
The disease burden related to hepatocellular carcinoma (HCC) is increasing. Most HCC patients are diagnosed at the advanced stage and multikinase inhibitors have been the only treatment choice for them. Recently, the approval of immune checkpoint inhibitors (ICIs) has provided a new therapeutic strategy for HCC. It is noteworthy that the positive outcomes of the phase III clinical trial IMBrave150 [atezolizumab (anti-programmed cell death ligand 1 antibody) combined with bevacizumab (anti-vascular endothelial growth factor monoclonal antibody)], showed that overall survival and progression-free survival were significantly better with sorafenib. This combination therapy has become the new standard therapy for advanced HCC and has also attracted more attention in the treatment of HCC with anti-angiogenesis-immune combination therapy. Currently, the synergistic antitumor efficacy of this combination has been shown in many preclinical and clinical studies. In this review, we discuss the mechanism and clinical application of anti-angiogenics and immunotherapy in HCC, outline the relevant mechanism and rationality of the combined application of anti-angiogenics and ICIs, and point out the existing challenges of the combination therapy.
Collapse
Affiliation(s)
- Si-Qi Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Lin-Sen Ye
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
60
|
Tan LJ, Yu Y, Fang ZH, Zhang JL, Huang HL, Liu HJ. Potential Molecular Mechanism of Guishao Pingchan Recipe in the Treatment of Parkinson’s Disease Based on Network Pharmacology and Molecular Docking. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221118486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: To investigate the potential mechanism of Guishao Pingchan Recipe (GPR) against Parkinson's disease (PD) based on network pharmacology and molecular docking. Methods: The main components of GPR were collected based on TCMSP database, Batman-TCM database, Chinese Pharmacopoeia, and Literatures. The potential therapeutic targets of PD were predicted by Drug Bank Database and Gene Cards database. Cytoscape 3.8.2 software was used to construct herb–component–target network. Then, String database was used to construct a PPI network, and DAVID database was used for gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation of targets function. Core components of GPR and hub targets were imported into AutoDock Vina for molecular docking verification and results were visualized by Pymol. Results: 13 candidate components were selected and 288 corresponding targets of GPR for treating PD were obtained. The GO enrichment analysis mainly involved 135 cell components, 187 molecular functions, and 1753 biological processes. Moreover, KEGG pathway enrichment analysis mainly involved 200 signaling pathways. Molecular docking simulation indicated a good binding ability of components and targets. Conclusion: Based on network pharmacology and molecular docking, we found that sitosterol, 4-Cholesten-3-one and stigmasterol in GPR could combine with MAPK3, APP, VEGFA, and CXCR4 and involved in the cAMP, PI3K/Akt, Rap1 signaling pathways. It is suggested that GPR may have therapeutic effects on PD through multi-component, multi-target, and multi-pathway and predict the relevant mechanism of the anti-PD effect of GPR.
Collapse
Affiliation(s)
- Li-Juan Tan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ying Yu
- In Station Post-doctorate, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ze-Hai Fang
- School of Nursing, Zibo Vocational Institute, Zibo, China
| | - Jiong-Lu Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hai-Liang Huang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Jie Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
61
|
Emodin Sensitizes Cervical Cancer Cells to Vinblastine by Inducing Apoptosis and Mitotic Death. Int J Mol Sci 2022; 23:ijms23158510. [PMID: 35955645 PMCID: PMC9369386 DOI: 10.3390/ijms23158510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
In recent years, studies on the effects of combining novel plant compounds with cytostatics used in cancer therapy have received considerable attention. Since emodin sensitizes tumor cells to chemotherapeutics, we evaluated changes in cervical cancer cells after its combination with the antimitotic drug vinblastine. Cellular changes were demonstrated using optical, fluorescence, confocal and electron microscopy. Cell viability was assessed by MTT assay. The level of apoptosis, caspase 3/7, Bcl-2 protein, ROS, mitochondrial membrane depolarization, cell cycle and degree of DNA damage were analyzed by flow cytometry. The microscopic image showed indicators characteristic for emodin- and vinblastine-induced mitotic catastrophe, i.e., multinucleated cells, giant cells, cells with micronuclei, and abnormal mitotic figures. These compounds also increased blocking of cells in the G2/M phase, and the generated ROS induced swelling and mitochondrial damage. This translated into the growth of apoptotic cells with active caspase 3/7 and inactivation of Bcl-2 protein and active ATM kinase. Emodin potentiated the cytotoxic effect of vinblastine, increasing oxidative stress, mitotic catastrophe and apoptosis. Preliminary studies show that the combined action of both compounds, may constitute an interesting form of anticancer therapy.
Collapse
|
62
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
63
|
Dai G, Wang D, Ma S, Hong S, Ding K, Tan X, Ju W. ACSL4 promotes colorectal cancer and is a potential therapeutic target of emodin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154149. [PMID: 35567995 DOI: 10.1016/j.phymed.2022.154149] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is an important death-related disease in the world and new therapeutic strategies are urgently needed to reduce mortality. Several studies have demonstrated that emodin, the main ingredient of Rheum palmatum, fights cancer but its potential anti-tumor effect on CRC is still unknown. PURPOSE The present study is aimed to explore the potential anti-tumor effects of emodin against CRC and the underlying molecular mechanism. METHODS CRC-related datasets were screened according to filter criteria in the GEO database and TCGA database. By using screened differentially expressed genes, GO, KEGG and survival analysis were carried out. The expressions of ACSL4, VEGFR1, and VEGFR2 were examined by immunohistochemistry and western blot. Then, pcDNA-ACSL4, pcDNA-VEGFR1, and pcDNA-VEGFR2 were used to overexpress ACSL4, VEGFR1, and VEGFR2, while ACSL4 siRNA was used to silence ACSL4 expression in HCT116 cells. CCK-8 assay and transwell migration assay were used to detect the cell proliferation and invasion. A docking simulation assay and an MST assay were performed to explore the potential mode of emodin binding to ACSL4. The HCT116 cells and CRC mouse model were established to investigate the effects of emodin on CRC. RESULTS The ACSL4, VEGFR1, and VEGFR2 expression were upregulated in CRC tissues and ACSL4 was associated with a shorter survival time in CRC patients. ACSL4 downregulation reduced cell proliferation and invasion, while ACSL4 exhibited a positive correlation with the levels of VEGFR1, VEGFR2, and VEGF. In HCT116 cells, emodin reduced cell proliferation and invasion by inhibiting ACSL4, VEGFR1, and VEGFR2 expression and VEGF secretion. Docking simulation and MST assay confirmed that emodin can directly bind to ACSL4 target. Moreover, ACSL4 overexpression abolished the inhibitory effect of emodin on VEGF secretion and VEGFR1 and VEGFR2 expression, but VEGFR1 and VEGFR2 overexpression did not affect the inhibitory effect of emodin on ACSL4 expression and VEGF secretion. Furthermore, emodin reduced the mortality and tumorigenesis of CRC mice and reduced ACSL4, VEGFR1, VEGFR2 expression, and VEGF content. CONCLUSION Our findings indicate that emodin inhibits proliferation and invasion of CRC cells and reduces VEGF secretion and VEGFR1 and VEGFR2 expression by inhibiting ACSL4. This emodin-induced pathway offers insights into the molecular mechanism of its antitumor effect and provides a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Dong Wang
- Department of Acupuncture and Rehabilitation, Jiangsu Second Chinese Medicine Hospital, Nanjing 210017, China
| | - Shitang Ma
- Life and Health College, Anhui Science and Technology University, Fengyang 233100, China
| | - Shengwei Hong
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Kang Ding
- National Center of Colorectal Surgery, Jiangsu Integrate Colorectal Oncology Center, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
| | - Xiying Tan
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wenzheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
64
|
Peptide-Mediated Targeted Delivery of Aloe-Emodin as Anticancer Drug. Molecules 2022; 27:molecules27144615. [PMID: 35889487 PMCID: PMC9320513 DOI: 10.3390/molecules27144615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Breast cancer is one of the most diffuse cancers in the world and despite the availability of the different drugs employed against it, the need for new and particularly more specific molecules is ever growing. In this framework, natural products are increasingly assuming an important role as new anticancer drugs. Aloe-emodin (AE) is one of the best characterized molecules in this field. The functionalization of bioactive natural products with selected peptide sequences to enhance their bioavailability and specificity of action is a powerful and promising strategy. In this study, we analyzed the cell specificity, cell viability effects, intracellular distribution, and immune cell response of a new peptide conjugate of Aloe-emodin in SKBR3 and A549 cell lines by means of viability tests, flow cytometry, and confocal microscopy. The conjugate proved to be more effective at reducing cell viability than AE in both cell lines. Furthermore, the results showed that it was mainly internalized within the SKBR3 cells, showing a nuclear localization, while A459 cells displayed mainly a cytoplasmic distribution. A preserving effect of the conjugate on NKs’ cell function was also observed. The designed conjugate showed a promising specific activity towards HER2-expressing cells coupled with an enhanced water solubility and a higher cytotoxicity; thus, the resulting proof-of-concept molecule can be further improved as an anticancer compound.
Collapse
|
65
|
Lv B, Zheng K, Sun Y, Wu L, Qiao L, Wu Z, Zhao Y, Zheng Z. Network Pharmacology Experiments Show That Emodin Can Exert a Protective Effect on MCAO Rats by Regulating Hif-1α/VEGF-A Signaling. ACS OMEGA 2022; 7:22577-22593. [PMID: 35811865 PMCID: PMC9260753 DOI: 10.1021/acsomega.2c01897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 05/13/2023]
Abstract
Modern pharmacological studies have shown that emodin, the main effective component of rhubarb, has good anti-inflammatory and antioxidant effects, but its pharmacodynamic mechanism remains unclear yet. This study aims to elucidate the multitarget action mechanism of emodin in ischemic stroke through network pharmacology and in vivo experiments. Sprague-Dawley rats were randomly divided into control (normal saline), sham (normal saline), model (normal saline), and emodin groups (n = 9 per group). Emodin was administered at 40 mg/kg/d for 3 consecutive days. The rats were subjected to middle cerebral artery occlusion for 2 h, followed by reperfusion for 24 h to establish the cerebral ischemia-reperfusion injury. To search for relevant studies in databases, emodin, ischemic stroke, and stroke were used as keywords. Subsequently, protein-protein interaction networks and complex disease target networks were established, and an enrichment analysis and molecular docking of core targets were performed. Gene expression was detected through western blotting and reverse-transcription polymerase chain reaction. Localization and expression of proteins were detected through immunohistochemistry. Furthermore, the neurological function, 2,3,5-triphenyltetrazolium chloride staining, levels of brain tissue inflammatory factors, the role of the blood-brain barrier (BBB), and relevant signaling pathways were assessed in vivo. The molecular docking of core targets revealed that the docking between vascular endothelial growth factor A (VEGF-A) and emodin was the most efficient. Emodin pretreatment decreased the neurological score from 2.875 to 1.125. Moreover, emodin inhibited the degradation of occludin and claudin-5 caused by matrix metalloprotein kinase (MMP)-2/MMP-9, thereby protecting the BBB. Additionally, related proteins such as hypoxia-inducible factor-1α/VEGF-A and nuclear factor kappa B were down-regulated. Thus, emodin may play a protective role during cerebral ischemia reperfusion through mediation of the Hif-1α/VEGF-A signaling pathway to inhibit the expression of inflammatory factors.
Collapse
Affiliation(s)
- Baojiang Lv
- The
First Clinical Medical College, Guangzhou
University of Chinese Medicine, Guangzhou 510405, China
- Lingnan
Medical Research Center, Guangzhou University
of Chinese Medicine, Guangzhou 510405, China
| | - Kenan Zheng
- The
First Clinical Medical College, Guangzhou
University of Chinese Medicine, Guangzhou 510405, China
- Lingnan
Medical Research Center, Guangzhou University
of Chinese Medicine, Guangzhou 510405, China
| | - Yifan Sun
- Department
of Encephalopathy, The Second Affiliated
Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Guangdong
Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Lulu Wu
- The
First Clinical Medical College, Guangzhou
University of Chinese Medicine, Guangzhou 510405, China
- Lingnan
Medical Research Center, Guangzhou University
of Chinese Medicine, Guangzhou 510405, China
| | - Lijun Qiao
- Department
of Encephalopathy, The Second Affiliated
Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Zhibing Wu
- Department
of Encephalopathy, The First Affiliated
Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanqi Zhao
- Department
of Encephalopathy, The Second Affiliated
Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Zequan Zheng
- Department
of Encephalopathy, The Second Affiliated
Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Guangdong
Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
- Doctor of
equivalent degree, Guangzhou University
of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
66
|
Liu T, Zhang ZQ, Xiao X, Li XQ. Bioassay-guided isolation of anti-tumor polyprenylphloroglucinols from Calophyllum polyanthum and primary mechanism. Biomed Pharmacother 2022; 151:113129. [PMID: 35594705 DOI: 10.1016/j.biopha.2022.113129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
Five compounds were isolated from Calophyllum polyanthum leaves (10.09 g) by bioassay-guided fractionation to evaluate their anti-tumor activity. Among these compounds, apetalic acid (1) demonstrated significant inhibitory activity against 8 types of tumor cells (MHCC97H, CNE1, CNE2, B16, LOVO, SW480, A549, 1299), especially against two colon cancer cells (LOVO, SW480). Apetalic acid could inhibit cell proliferation, migration, invasion and induce apoptosis. It could significantly up-regulate the expression levels of apoptosis-related genes (BAX, Caspase-9,) and proteins (BAX, Cleaved-caspase-9, Cleaved-caspase-3) and down-regulated the expression of inhibitor of apoptosis gene (Bcl-2) and proteins (Bcl-2, phosphorylated AKT). Possible mechanism of the antitumor activity of apetalic acid derived from Calophyllum polyanthum supports its use in the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tie Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhuang-Qin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Xia Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Xiao-Qian Li
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Scientific Research Center, Guizhou 563002, People's Republic of China.
| |
Collapse
|
67
|
SLC7A11/GPX4 Inactivation-Mediated Ferroptosis Contributes to the Pathogenesis of Triptolide-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3192607. [PMID: 35757509 PMCID: PMC9225845 DOI: 10.1155/2022/3192607] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/18/2022]
Abstract
Triptolide exhibits promising efficacy in various cancers and immune diseases while its clinical application has been strongly restricted by its severe side effects, especially cardiotoxicity. However, the underlying mechanism of triptolide-induced cardiotoxicity (TIC) remains unclear. The RNA-seq analysis of triptolide-injured AC16 human cardiomyocyte cell line hinted that ferroptosis is involved in TIC. Further experimental validations proved that triptolide triggered ferroptosis, as evidenced by significant accumulation of lipid peroxidation (4-HNE and MDA levels) and ferrous iron, as well as depletion of intracellular GSH. Furthermore, triptolide-induced iron overload involved the upregulation of TF/TRFC/DMT1 signal axis and the degradation of ferritin, which contribute to ROS generation via Fenton reaction. In addition, inhibition of the antioxidant Nrf2/HO-1 pathway was observed in TIC, which may also lead to the overproduction of lethal lipid peroxides. Mechanistically, using streptavidin-biotin affinity pull-down assay and computational molecular docking, we unveiled that triptolide directly binds to SLC7A11 to inactivate SLC7A11/GPX4 signal axis. More importantly, employment of a ferroptosis inhibitor Ferrostatin-1 alleviated TIC by partially reversing the inhibitory effects of triptolide on SLC7A11/GPX4 signal. Altogether, our study demonstrated that SLC7A11/GPX4 inactivation-mediated ferroptosis contributed to the pathogenesis of TIC. Combating ferroptosis may be a promising therapeutic avenue to prevent TIC.
Collapse
|
68
|
Luan X, Sun M, Zhao X, Wang J, Han Y, Gao Y. Bisimidazolium Salt Glycosyltransferase Inhibitors Suppress Hepatocellular Carcinoma Progression In Vitro and In Vivo. Pharmaceuticals (Basel) 2022; 15:ph15060716. [PMID: 35745636 PMCID: PMC9229238 DOI: 10.3390/ph15060716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma is a leading cause of cancer death, and the disease progression has been related to glycophenotype modifications. Previously synthesized bisimidazolium salts (C20 and C22) have been shown to selectively inhibit the activity of glycosyltransferases in cultured cancer cell homogenates. The current study investigated the anticancer effects of C20/C22 and the possible pathways through which these effects are achieved. The therapeutic value of C20/C22 in terms of inhibiting cancer cell proliferation, metastasis, and angiogenesis, as well as inducing apoptosis, were examined with hepatic cancer cell line HepG2 and a xenograft mouse model. C20/C22 treatment downregulated the synthesis of SLex and Ley sugar epitopes and suppressed selectin-mediated cancer cell metastasis. C20/C22 inhibited HepG2 proliferation, induced cell-cycle arrest, increased intracellular ROS level, led to ER stress, and eventually induced apoptosis through the intrinsic pathway. Furthermore, C20/C22 upregulated the expressions of death receptors DR4 and DR5, substantially increasing the sensitivity of HepG2 to TRAIL-triggered apoptosis. In vivo, C20/C22 effectively inhibited tumor growth and angiogenesis in the xenograft mouse model without adverse effects on major organs. In summary, C20 and C22 are new promising anti-hepatic cancer agents with multiple mechanisms in controlling cancer cell growth, metastasis, and apoptosis, and they merit further development into anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Yin Gao
- Correspondence: ; Fax: +86-431-85168175
| |
Collapse
|
69
|
Wang L, Xie Y, Wang J, Zhang Y, Liu S, Zhan Y, Zhao Y, Li J, Li P, Wang C. Characterization of a Novel LUCAT1/miR-4316/VEGF-A Axis in Metastasis and Glycolysis of Lung Adenocarcinoma. Front Cell Dev Biol 2022; 10:833579. [PMID: 35646922 PMCID: PMC9136330 DOI: 10.3389/fcell.2022.833579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Objective: Accumulating literatures suggested that long non-coding RNAs (lncRNAs) were involved in tumorigenesis and cancer progression in lung adenocarcinoma (LUAD). However, the precise regulatory mechanism of lncRNA Lung cancer-associated transcript 1 (LUCAT1) in LUAD is not well defined. In this study, we aimed to investigate the biological function and mechanism of lncRNA LUCAT1 in regulating tumor migration and glycolysis of LUAD. Methods: High throughput sequencing was performed to identify differentially expressed lncRNAs between LUAD patients and healthy controls. The expression levels of LUCAT1 in LUAD clinical specimens or cell lines were evaluated by In situ hybridization (ISH) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Functional experiments, including wound-healing, transwell invasion assays, glucose absorption, lactate metabolism and tumor xenograft experiments were conducted to identify the biological functions of LUCAT1 in LUAD. Silencing of LUCAT1, over-expression of LUCAT1 and miR-4316 were generated in LUAD cell lines to verify the regulatory mode of LUCAT1-mir-4316-VEGFA axis. Results: Our findings revealed that lncRNA LUCAT1 was significantly up-regulated in LUAD serum exosomes, tumor tissues, and LUAD cells in comparison with corresponding controls. Receiver operating characteristic curve (ROC) analysis indicated that the area under the curve (AUC) value of serum exosomal LUCAT1 reached 0.852 in distinguishing LUAD patients from healthy individuals. High expression of LUCAT1 in LUAD patient tissues was associated with enhanced Lymph Node Metastasis (LNM), advanced Tumor Node Metastasis (TNM) stage and poorer clinical outcome in LUAD patients. Knockdown of LUCAT1 inhibited LUAD cell metastasis and glycolysis in vitro as well as tumor metastasis in vivo, while overexpression of LUCAT1 induced a promoted LUAD metastasis and glycolysis. Furthermore, mechanistic investigations revealed that LUCAT1 elevated LUAD cell metastasis and glycolysis by sponging miR-4316, which further led to the upregulation of VEGFA. Finally, the regulatory axis LUCAT1-miR-4316-VEGFA was verified in LUAD. Conclusion: Our present research suggested that LUCAT1 facilitate LUAD cell metastasis and glycolysis via serving as a competing endogenous RNA to regulate miR-4316/VEGFA axis, which provided a novel diagnostic marker and therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Lishui Wang
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Xie
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shibiao Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yao Zhan
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
- Shandong Technology Innovation Center for Big Data and Precision Medicine of Cancer, Jinan, China
| |
Collapse
|
70
|
Anticolon Cancer Targets and Molecular Mechanisms of Tao-He-Cheng-Qi Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7998664. [PMID: 35479514 PMCID: PMC9038428 DOI: 10.1155/2022/7998664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 11/18/2022]
Abstract
Background Tao-He-Cheng-Qi Formula (THCQF) is a traditional Chinese medicine that has been proven to have antitumor effects. The aim of this study was to elucidate the molecular targets and mechanisms of THCQF against colon cancer and construct a prognostic model based on network pharmacology, bioinformatics analysis, and in vitro experiments. Methods Potential THCQF compounds and targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine databases. Differentially expressed genes for colon cancer were screened in The Cancer Genome Atlas and Gene Expression Omnibus databases. The anticolon cancer mechanisms of THCQF were explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Molecular docking simulations and molecular dynamics analysis were used to evaluate the binding between target proteins and active compounds. Finally, the identified compounds were used to treat colon cancer cells from the HCT116 cell line, and expression of mRNA and protein after relevant posttreatment were tested using real-time polymerase chain reaction and western blotting. Results A total of 27 anticolon cancer targets of THCQF were selected, among which four genes (CCNB1, CCNA2, IL1A, and MMP3) were shown to effectively predict patient outcomes in a prognostic colon cancer model. GO and KEGG enrichment analyses indicated that the activity against colon cancer of THCQF was associated with the interleukin (IL)-4 and IL-3 signaling pathways. Two compounds in THCQF, aloe emodin (AE) and quercetin (QR), were shown to efficiently bind to cyclin B1, the protein encoded by CCNB1. Finally, incubation of HCT116 cells with AE and QR significantly decreased CCNB1 mRNA expression and cyclin B1 levels. Conclusions Taken together, the results indicate that AE and QR are the pivotal active compounds of THCQF, and CCNB1 is the main molecular target through which THCQF exerts its anticolon cancer effects. The study findings provide insight for studies investigating the anticancer effects of other traditional Chinese medicines.
Collapse
|
71
|
Yin J, Zhao X, Chen X, Shen G. Emodin suppresses hepatocellular carcinoma growth by regulating macrophage polarization via microRNA-26a/transforming growth factor beta 1/protein kinase B. Bioengineered 2022; 13:9548-9563. [PMID: 35387564 PMCID: PMC9208510 DOI: 10.1080/21655979.2022.2061295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Accumulating evidence has demonstrated that M2 macrophages contribute to the progression of hepatocellular carcinoma (HCC). Emodin is an anti-tumor agent and potentially regulates macrophage polarization. This study aims to explore the effect of emodin on M2 polarization in HCC and its underlying mechanism. After co-culture systems of M2 macrophages and HCC (HepG2 and Huh7) cells were established, it was shown that co-culture with M2 macrophages could promote both the proliferation and invasion of HepG2 and Huh7 cells. Emodin induces the transformation of M2 to M1 macrophages, thereby inhibiting the proliferation and invasion of HepG2 and Huh7 cells mediated by co-culturing with M2 macrophages. Based on bioinformatics analysis and in vitro validation, it was found that the effect of emodin on M2 polarization was regulated by the microRNA-26a (miR-26)/Transforming growth factor beta 1 (TGF-β1)/Protein kinase B (Akt) axis. In vivo analysis showed that co-culturing with M2 macrophages markedly facilitated the growth of HepG2 cells, which was significantly inhibited by emodin. Western blot analysis on xenografts confirmed that emodin could induce transformation of M2 to M1 macrophages and reverse the up-regulation of PCNA, TGF-β1, and p-Akt induced by M2 macrophages. In summary, our findings uncover a novel mechanism behind the anti-tumor effects of emodin that regulates M2 polarization via miR-26a/TGF-β1/Akt to suppress HCC growth.
Collapse
Affiliation(s)
- Jiao Yin
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiansheng Zhao
- Department of Hepatology Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xuejiao Chen
- Department of Immunology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
72
|
Berillo D, Kozhahmetova M, Lebedeva L. Overview of the Biological Activity of Anthraquinons and Flavanoids of the Plant Rumex Species. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041204. [PMID: 35208994 PMCID: PMC8880800 DOI: 10.3390/molecules27041204] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
Abstract
Rumex confertus belongs to the genus Rumex and is classified as an invasive parasitic plant in agriculture. Despite other Rumex species being widely used in herbal medicine due to their antimicrobial, antioxidant, antitumor, and anti-inflammatory effects, there are almost no information about the potential of Rumex confertus for the treatment of various diseases. In this review we analyzed scientific articles revealing properties of Rumex plant’s substances against cancer, diabetes, pathogenic bacterial invasions, viruses, inflammation, and oxidative stress for the past 20 years. Compounds dominating in each composition of solvents for extraction were discussed, and common thin layer chromatography(TLC) and high performance liquid chromatography(HPLC) methods for efficient separation of the plant’s extract are included. Physico-chemical properties such as solubility, hydrophobicity (Log P), pKa of flavonoids, anthraquinones, and other derivatives are very important for modeling of pharmacokinetic and pharmacodynamics. An overview of clinical studies for abounded selected substances of Rumex species is presented.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050040, Kazakhstan;
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Correspondence:
| | - Marzhan Kozhahmetova
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050040, Kazakhstan;
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Lina Lebedeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| |
Collapse
|
73
|
Wang S, Li J, Wang Y. M2PP: a novel computational model for predicting drug-targeted pathogenic proteins. BMC Bioinformatics 2022; 23:7. [PMID: 34983358 PMCID: PMC8728953 DOI: 10.1186/s12859-021-04522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Detecting pathogenic proteins is the origin way to understand the mechanism and resist the invasion of diseases, making pathogenic protein prediction develop into an urgent problem to be solved. Prediction for genome-wide proteins may be not necessarily conducive to rapidly cure diseases as developing new drugs specifically for the predicted pathogenic protein always need major expenditures on time and cost. In order to facilitate disease treatment, computational method to predict pathogenic proteins which are targeted by existing drugs should be exploited. RESULTS In this study, we proposed a novel computational model to predict drug-targeted pathogenic proteins, named as M2PP. Three types of features were presented on our constructed heterogeneous network (including target proteins, diseases and drugs), which were based on the neighborhood similarity information, drug-inferred information and path information. Then, a random forest regression model was trained to score unconfirmed target-disease pairs. Five-fold cross-validation experiment was implemented to evaluate model's prediction performance, where M2PP achieved advantageous results compared with other state-of-the-art methods. In addition, M2PP accurately predicted high ranked pathogenic proteins for common diseases with public biomedical literature as supporting evidence, indicating its excellent ability. CONCLUSIONS M2PP is an effective and accurate model to predict drug-targeted pathogenic proteins, which could provide convenience for the future biological researches.
Collapse
Affiliation(s)
- Shiming Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Jie Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
74
|
Periyasamy L, Muruganantham B, Park WY, Muthusami S. Phyto-targeting the CEMIP Expression as a Strategy to Prevent Pancreatic Cancer Metastasis. Curr Pharm Des 2022; 28:922-946. [PMID: 35236267 DOI: 10.2174/1381612828666220302153201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Metastasis of primary pancreatic cancer (PC) to adjacent or distant organs is responsible for the poor survival rate of affected individuals. Chemotherapy, radiotherapy, and immunotherapy are currently being prescribed to treat PC in addition to surgical resection. Surgical resection is the preferred treatment for PC that leads to 20% of 5-year survival, but only less than 20% of patients are eligible for surgical resection because of the poor prognosis. To improve the prognosis and clinical outcome, early diagnostic markers need to be identified, and targeting them would be of immense benefit to increase the efficiency of the treatment. Cell migration-inducing hyaluronan-binding protein (CEMIP) is identified as an important risk factor for the metastasis of various cancers, including PC. Emerging studies have pointed out the crucial role of CEMIP in the regulation of various signaling mechanisms, leading to enhanced migration and metastasis of PC. METHODS The published findings on PC metastasis, phytoconstituents, and CEMIP were retrieved from Pubmed, ScienceDirect, and Cochrane Library. Computational tools, such as gene expression profiling interactive analysis (GEPIA) and Kaplan-Meier (KM) plotter, were used to study the relationship between CEMIP expression and survival of PC individuals. RESULTS Gene expression analysis using the GEPIA database identified a stupendous increase in the CEMIP transcript in PC compared to adjacent normal tissues. KM plotter analysis revealed the impact of CEMIP on the overall survival (OS) and disease-free survival (DFS) among PC patients. Subsequently, several risk factors associated with PC development were screened, and their ability to regulate CEMIP gene expression was analyzed using computational tools. CONCLUSION The current review is focused on gathering information regarding the regulatory role of phytocomponents in PC migration and exploring their possible impact on the CEMIP expression.
Collapse
Affiliation(s)
- Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Bharathi Muruganantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| |
Collapse
|
75
|
Geng Y, Wang Y, Sun R, Kang X, Zhao H, Zhu M, Sun Y, Hu Y, Wang Z, Tian X, Zhao Y, Yao J. Carnosol alleviates nonalcoholic fatty liver disease by inhibiting mitochondrial dysfunction and apoptosis through targeting of PRDX3. Toxicol Appl Pharmacol 2021; 432:115758. [PMID: 34678374 DOI: 10.1016/j.taap.2021.115758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/15/2021] [Accepted: 10/16/2021] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction is a major factor in nonalcoholic fatty liver disease (NAFLD), preceding insulin resistance and hepatic steatosis. Carnosol (CAR) is a kind of diterpenoid with antioxidant, anti-inflammatory and antitumor activities. Peroxiredoxin 3 (PRDX3), a mitochondrial H2O2-eliminating enzyme, undergoes overoxidation and subsequent inactivation under oxidative stress. The purpose of this study was to investigate the protective effect of the natural phenolic compound CAR on NAFLD via PRDX3. Mice fed a high-fat diet (HFD) and AML-12 cells treated with palmitic acid (PA) were used to detect the molecular mechanism of CAR in NAFLD. We found that pharmacological treatment with CAR notably moderated HFD- and PA- induced steatosis and liver injury, as shown by biochemical assays, Oil Red O and Nile Red staining. Further mechanistic investigations revealed that CAR exerted anti-NAFLD effects by inhibiting mitochondrial oxidative stress, perturbation of mitochondrial dynamics, and apoptosis in vivo and in vitro. The decreased protein and mRNA levels of PRDX3 were accompanied by intense oxidative stress after PA intervention. Interestingly, CAR specifically bound PRDX3, as shown by molecular docking assays, and increased the expression of PRDX3. However, the hepatoprotection of CAR in NAFLD was largely abolished by specific PRDX3 siRNA, which increased mitochondrial dysfunction and exacerbated apoptosis in vitro. In conclusion, CAR suppressed lipid accumulation, mitochondrial dysfunction and hepatocyte apoptosis by activating PRDX3, mitigating the progression of NAFLD, and thus, CAR may represent a promising candidate for clinical treatment of steatosis.
Collapse
Affiliation(s)
- Yunfei Geng
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yue Wang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Ruimin Sun
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Xiaohui Kang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Huanyu Zhao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Meiyang Zhu
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yu Sun
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yan Hu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Xiaofeng Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
76
|
Kumar G, Du B, Chen J. Effects and mechanisms of dietary bioactive compounds on breast cancer prevention. Pharmacol Res 2021; 178:105974. [PMID: 34818569 DOI: 10.1016/j.phrs.2021.105974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) is the most often diagnosed cancer among females globally and has become an increasing global health issue over the last decades. Despite the substantial improvement in screening methods for initial diagnosis, effective therapy remains lacking. Still, there has been high recurrence and disease progression after treatment of surgery, endocrine therapy, chemotherapy, and radiotherapy. Considering this view, there is a crucial requirement to develop safe, freely accessible, and effective anticancer therapy for BC. The dietary bioactive compounds as auspicious anticancer agents have been recognized to be active and their implications in the treatment of BC with negligible side effects. Hence, this review focused on various dietary bioactive compounds as potential therapeutic agents in the prevention and treatment of BC with the mechanisms of action. Bioactive compounds have chemo-preventive properties as they inhibit the proliferation of cancer cells, downregulate the expression of estrogen receptors, and cell cycle arrest by inducing apoptotic settings in tumor cells. Therapeutic drugs or natural compounds generally incorporate engineered nanoparticles with ideal sizes, shapes, and enhance their solubility, circulatory half-life, and biodistribution. All data of in vitro, in vivo, and clinical studies of dietary bioactive compounds and their impact on BC were collected from Science Direct, PubMed, and Google Scholar. The data of chemopreventive and anticancer activity of dietary bioactive compounds were collected and orchestrated in a suitable place in the review. These shreds of data will be extremely beneficial to recognize a series of additional diet-derived bioactive compounds to treat BC with the lowest side effects.
Collapse
Affiliation(s)
- Ganesan Kumar
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
77
|
Qin Y, Zheng Y, Huang C, Li Y, Gu M, Wu Q. Knockdown of circSMAD2 inhibits the tumorigenesis of gallbladder cancer through binding with eIF4A3. BMC Cancer 2021; 21:1172. [PMID: 34727877 PMCID: PMC8564960 DOI: 10.1186/s12885-021-08895-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/08/2021] [Indexed: 01/17/2023] Open
Abstract
Background Gallbladder cancer (GBC) is the seventh most common gastrointestinal cancer worldwide. This study aimed to investigate the function of circSMAD2 in GBC. Methods To investigate the function of circSMAD2 in GBC, the level of circSMAD2 in GBC cells was detected by RT-qPCR. CCK-8 assay was performed to investigate the cell viability. Cell apoptosis was tested by flow cytometry. In addition, transwell assay was used to detect the cell migration and invasion. RIP and RNA pull-down were used to explore the relation among circSMAD2, eIF4A3 and SMAD2. Meanwhile, xenograft mice model was established to investigate the function of circSMAD2 in GBC. Results The data revealed that circSMAD2 was upregulated in GBC, and circSMAD2 knockdown significantly inhibited the viability of GBC cells. In addition, circSMAD2 siRNA notably induced the apoptosis in GBC cells. The migration and invasion of GBC cells were obviously suppressed in the presence of circSMAD2 siRNA. Meanwhile, circSMAD2 suppressed the binding between eukaryotic translation initiation factor 4A3 (eIF4A3) and SMAD2 through binding with eIF4A3. Knockdown of circSMAD2 notably inhibited the expression of SMAD2 in GBC cells, and SMAD2 overexpression partially reversed the anti-tumor effect of circSMAD2 knockdown. Finally, circSMAD2 siRNA significantly inhibited the tumor growth of GBC in vivo. Conclusion Knockdown of circSMAD2 inhibits the tumorigenesis of gallbladder cancer through binding with eIF4A3. Thus, our study provided a new strategy for the treatment of GBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08895-1.
Collapse
Affiliation(s)
- Yiyu Qin
- Clinical Medical College, Jiangsu Vocational College of Medicine, 283 Jiefang South Road, Yancheng, 224005, Jiangsu, China.
| | - Yongliang Zheng
- Rehabilitation College, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Cheng Huang
- Clinical Medical College, Jiangsu Vocational College of Medicine, 283 Jiefang South Road, Yancheng, 224005, Jiangsu, China
| | - Yuanyuan Li
- Clinical Medical College, Jiangsu Vocational College of Medicine, 283 Jiefang South Road, Yancheng, 224005, Jiangsu, China
| | - Min Gu
- Clinical Medical College, Jiangsu Vocational College of Medicine, 283 Jiefang South Road, Yancheng, 224005, Jiangsu, China
| | - Qin Wu
- Clinical Medical College, Jiangsu Vocational College of Medicine, 283 Jiefang South Road, Yancheng, 224005, Jiangsu, China
| |
Collapse
|
78
|
Das A, Agarwal P, Jain GK, Aggarwal G, Lather V, Pandita D. Repurposing drugs as novel triple negative breast cancer therapeutics. Anticancer Agents Med Chem 2021; 22:515-550. [PMID: 34674627 DOI: 10.2174/1871520621666211021143255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/23/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Among all the types of breast cancer (BC), triple negative breast cancer (TNBC) is the most aggressive form having high metastasis and recurrence rate with limited treatment options. Conventional treatments such as chemotherapy and radiotherapy have lots of toxic side effects and also no FDA approved therapies are available till now. Repurposing of old clinically approved drugs towards various targets of TNBC is the new approach with lesser side effects and also leads to successful inexpensive drug development with less time consuming. Medicinal plants containg various phytoconstituents (flavonoids, alkaloids, phenols, essential oils, tanins, glycosides, lactones) plays very crucial role in combating various types of diseases and used in drug development process because of having lesser side effects. OBJECTIVE The present review focuses in summarization of various categories of repurposed drugs against multitarget of TNBC and also summarizes the phytochemical categories that targets TNBC singly or in combination with synthetic old drugs. METHODS Literature information was collected from various databases such as Pubmed, Web of Science, Scopus and Medline to understand and clarify the role and mechanism of repurposed synthetic drugs and phytoconstituents aginst TNBC by using keywords like "breast cancer", "repurposed drugs", "TNBC" and "phytoconstituents". RESULTS Various repurposed drugs and phytochemicals targeting different signaling pathways that exerts their cytotoxic activities on TNBC cells ultimately leads to apoptosis of cells and also lowers the recurrence rate and stops the metastasis process. CONCLUSION Inhibitory effects seen in different levels, which provides information and evidences to researchers towards drug developments process and thus further more investigations and researches need to be taken to get the better therapeutic treatment options against TNBC.
Collapse
Affiliation(s)
- Amiya Das
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313. India
| | - Pallavi Agarwal
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313. India
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017. India
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017. India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida, 201313. India
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017. India
| |
Collapse
|
79
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Lee DY. A Network Pharmacology Analysis of the Systems-Perspective Anticancer Mechanisms of the Herbal Drug FDY2004 for Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a malignant tumor with high incidence, prevalence, and mortality rates in women. In recent years, herbal drugs have been assessed as anticancer therapy against breast cancer, owing to their promising therapeutic effects and reduced toxicity. However, their pharmacological mechanisms have not been fully explored at the systemic level. Here, we conducted a network pharmacology analysis of the systems-perspective molecular mechanisms of FDY2004, an anticancer herbal formula that consists of Moutan Radicis Cortex, Persicae Semen , and Rhei Radix et Rhizoma, against breast cancer. We determined that FDY2004 may contain 28 active compounds that exert pharmacological effects by targeting 113 breast cancer-related human genes/proteins. Based on the gene ontology terms, the FDY2004 targets were involved in modulating biological processes such as cell growth, cell proliferation, and apoptosis. Pathway enrichment analysis identified various breast cancer-associated pathways that may mediate the anticancer activity of FDY2004, including the PI3K-Akt, MAPK, TNF, HIF-1, focal adhesion, estrogen, ErbB, NF-kappa B, p53, and VEGF signaling pathways. Thus, our analysis offers novel insights into the anticancer properties of herbal drugs for breast cancer treatment from a systemic perspective.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
80
|
Zhao J, Bai H, Li X, Yan J, Zou G, Wang L, Li X, Liu Z, Xiang R, Yang XL, Shi Y. Glucose-sensitive acetylation of Seryl tRNA synthetase regulates lipid synthesis in breast cancer. Signal Transduct Target Ther 2021; 6:303. [PMID: 34400610 PMCID: PMC8368063 DOI: 10.1038/s41392-021-00714-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Abnormally enhanced de novo lipid biosynthesis has been increasingly realized to play crucial roles in the initiation and progression of varieties of cancers including breast cancer. However, the mechanisms underlying the dysregulation of lipid biosynthesis in breast cancer remain largely unknown. Here, we reported that seryl tRNA synthetase (SerRS), a key enzyme for protein biosynthesis, could translocate into the nucleus in a glucose-dependent manner to suppress key genes involved in the de novo lipid biosynthesis. In normal mammary gland epithelial cells glucose can promote the nuclear translocation of SerRS by increasing the acetylation of SerRS at lysine 323. In SerRS knock-in mice bearing acetylation-defective lysine to arginine mutation, we observed increased body weight and adipose tissue mass. In breast cancer cells the acetylation and nuclear translocation of SerRS are greatly inhibited. Overexpression of SerRS, in particularly the acetylation-mimetic lysine to glutamine mutant, dramatically inhibits the de novo lipid synthesis and hence greatly suppresses the proliferation of breast cancer cells and the growth of breast cancer xenografts in mice. We further identified that HDAC4 and HDAC5 regulated the acetylation and nuclear translocation of SerRS. Thus, we identified a SerRS-meditated inhibitory pathway in glucose-induced lipid biosynthesis, which is dysregulated in breast cancer.
Collapse
Affiliation(s)
- Jin Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Hangming Bai
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaoyu Li
- School of Medicine, Nankai University, Tianjin, China
| | - Jie Yan
- School of Medicine, Nankai University, Tianjin, China
| | - Gengyi Zou
- School of Medicine, Nankai University, Tianjin, China
| | - Longlong Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Xiru Li
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Ze Liu
- The Scripps Research Institute, La Jolla, CA, USA
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China
| | | | - Yi Shi
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
81
|
Kaleem M, Perwaiz M, Nur SM, Abdulrahman AO, Ahmad W, Al-Abbasi FA, Kumar V, Kamal MA, Anwar F. Epigenetics of Triple-negative breast cancer via natural compounds. Curr Med Chem 2021; 29:1436-1458. [PMID: 34238140 DOI: 10.2174/0929867328666210707165530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly resistant, lethal, and metastatic sub-division of breast carcinoma, characterized by the deficiency of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). In women, TNBC shows a higher aggressive behavior with poor patient prognosis and a higher recurrence rate during reproductive age. TNBC is defined by the presence of epithelial-to-mesenchymal-transition (EMT), which shows a significant role in cancer progression. At the epigenetic level, TNBC is characterized by epigenetic signatures, such as DNA methylation, histone remodeling, and a host of miRNA, MiR-193, LncRNA, HIF-2α, eEF2K, LIN9/NEK2, IMP3, LISCH7/TGF-β1, GD3s and KLK12 mediated regulation. These modifications either are silenced or activate the necessary genes that are prevalent in TNBC. The review is based on epigenetic mediated mechanistic changes in TNBC. Furthermore, Thymoquinone (TQ), Regorafenib, Fangjihuangqi decoction, Saikosaponin A, and Huaier, etc., are potent antitumor natural compounds extensively reported in the literature. Further, the review emphasizes the role of these natural compounds in TNBC and their possible epigenetic targets, which can be utilized as a potential therapeutic strategy in treatment of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Maryam Perwaiz
- Department of Sciences, University of Toronto. Mississauga. Canada
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Wasim Ahmad
- Department of Kuliyate Tib, National Institute of Unani Medicine, Kottigepalya, Bengaluru, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences. SHUATS, Naini, Prayagraj, India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
82
|
Wang X, Wang C, Guan J, Chen B, Xu L, Chen C. Progress of Breast Cancer basic research in China. Int J Biol Sci 2021; 17:2069-2079. [PMID: 34131406 PMCID: PMC8193257 DOI: 10.7150/ijbs.60631] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most commonly diagnosed and the most lethal cancer in females both in China and worldwide. Currently, the origin of cancer stem cells, the heterogeneity of cancer cells, the mechanism of cancer metastasis and drug resistance are the most important issues that need to be addressed. Chinese investigators have recently made new discoveries in basic breast cancer researches, especially regarding cancer stem cells, cancer metabolism, and microenvironments. These efforts have led to a deeper understanding of drug resistance and metastasis and have also indicated new biomarkers and therapeutic targets. These findings emphasized the importance of the cancer stem cells for targeted therapy. In this review, we summarized the latest important findings in this field in China.
Collapse
Affiliation(s)
- Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chao Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Jiaheng Guan
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
83
|
Yang T, Jiang YX, Wu Y, Lu D, Huang R, Wang LL, Wang SQ, Guan YY, Zhang H, Luan X. Resibufogenin Suppresses Triple-Negative Breast Cancer Angiogenesis by Blocking VEGFR2-Mediated Signaling Pathway. Front Pharmacol 2021; 12:682735. [PMID: 33995111 PMCID: PMC8121540 DOI: 10.3389/fphar.2021.682735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Resibufogenin (RBF), an active compound from Bufo bufonis, has been used for the treatment of multiple malignant cancers, including pancreatic cancer, colorectal cancer, and breast cancer. However, whether RBF could exert its antitumor effect by inhibiting angiogenesis remains unknown. Here, we aimed to explore the antiangiogenic activity of RBF and its underlying mechanism on human umbilical vein endothelial cell (HUVEC), and the therapeutic efficacy with regard to antiangiogenesis in vivo using two triple-negative breast cancer (TNBC) models. Our results demonstrated that RBF can inhibit the proliferation, migration, and tube formation of HUVECs in a dose-dependent manner. Spheroid sprouts were thinner and shorter after RBF treatment in vitro 3D spheroid sprouting assay. RBF also significantly suppressed VEGF-mediated vascular network formation in vivo Matrigel plug assay. In addition, Western blot analysis was used to reveal that RBF inhibited the phosphorylation of VEGFR2 and its downstream protein kinases FAK and Src in endothelial cells (ECs). Molecular docking simulations showed that RBF affected the phosphorylation of VEGFR2 by competitively binding to the ATP-bound VEGFR2 kinase domain, thus preventing ATP from providing phosphate groups. Finally, we found that RBF exhibited promising antitumor effect through antiangiogenesis in vivo without obvious toxicity. The present study first revealed the high antiangiogenic activity and the underlying molecular basis of RBF, suggesting that RBF could be a potential antiangiogenic agent for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Ting Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Xin Jiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long-Ling Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi-Qi Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
84
|
Wei W, Tang J, Li H, Huang Y, Yin C, Li D, Tang F. Antitumor Effects of Self-Assembling Peptide-Emodin in situ Hydrogels in vitro and in vivo. Int J Nanomedicine 2021; 16:47-60. [PMID: 33442249 PMCID: PMC7797320 DOI: 10.2147/ijn.s282154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To study the in vitro and in vivo antitumor effects of the colloidal suspension-in situ hydrogel of emodin (EM) constructed with the self-assembling peptide RADA16-I and systematically evaluate the feasibility of the delivery system. METHODS The MTT and colony-formation assays were used to determine the viability of normal cells NCTC 1469 and tumor cells Hepa1-6. The uptake of EM in the RADA16-I-EM in situ hydrogel by tumor cells was analyzed by laser confocal microscope and flow cytometry. Flow cytometry was used to detect the cell apoptosis and cell cycle distribution. Transwell assay was used to detect the migration and invasion of tumor cells. The antitumor efficacy of the RADA16-I-EM in situ hydrogel and its toxic effects was further assessed in vivo on Hepa1-6 tumor-bearing C57 mice. RESULTS The results showed that the RADA16-I-EM in situ hydrogels could obviously reduce the toxicity of EM to normal cells and the survival of tumor cells. The uptake of EM by the cells from the hydrogels was obviously increased and could significantly induce apoptosis and arrest cell cycle in the G2/M phase, and reduce the migration, invasion and clone-formation ability of the cells. The RADA16-I-EM in situ hydrogel could also effectively inhibit the tumor growth and obviously decrease the toxic effects of EM on normal tissues in vivo. CONCLUSION Our results demonstrated that RADA16-I has the potential to be a carrier for the hydrophobic drug EM and can effectively improve the delivery of hydrophobic antitumor drugs with enhanced antitumor effects and reduced toxic effects of the drugs on normal cells and tissues.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Jianhua Tang
- Cancer Research UK Manchester Institute, The University of Manchester, CheshireSK10 4TG, UK
| | - Hongfang Li
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Yongsheng Huang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing100005, People’s Republic of China
| | - Chengchen Yin
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Dan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, People’s Republic of China
| | - Fushan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi563000, People’s Republic of China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi563000, People’s Republic of China
| |
Collapse
|
85
|
Yu X, Xie Y, Zhang S, Song X, Xiao B, Yan Z. tRNA-derived fragments: Mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections. Am J Cancer Res 2021; 11:461-469. [PMID: 33391486 PMCID: PMC7681095 DOI: 10.7150/thno.51963] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
tRNA-derived fragments (tRFs) are a new category of regulatory noncoding RNAs with distinct biological functions in cancers and stress-induced diseases. Herein, we first summarize the classification and biogenesis of tRFs. tRFs are produced from pre-tRNAs or mature tRNAs. Based on the incision loci, tRFs are classified into several types: tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF. Some tRFs participate in posttranscriptional regulation through microRNA-like actions or by displacing RNA binding proteins and regulating protein translation by promoting ribosome biogenesis or interfering with translation initiation. Other tRFs prevent cell apoptosis by binding to cytochrome c or promoting virus replication. More importantly, the dysregulation of tRFs has important clinical implications. They are potential diagnostic and prognostic biomarkers of gastric cancer, liver cancer, breast cancer, prostate cancer, and chronic lymphocytic leukemia. tRFs may become new therapeutic targets for the treatment of diseases such as hepatocellular carcinoma and respiratory syncytial virus infection. Finally, we point out the existing problems and future research directions associated with tRFs. In conclusion, the current progress in the research of tRFs reveals that they have important clinical implications and may constitute novel molecular therapeutic targets for modulating pathological processes.
Collapse
|