51
|
The clinicopathological significance of microRNA-155 in breast cancer: a meta-analysis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:724209. [PMID: 25157366 PMCID: PMC4137503 DOI: 10.1155/2014/724209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/03/2014] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Previous studies demonstrated that the associations between expression level of microRNA-155 (miR-155) and clinicopathological significance of breast cancer remained inconsistent. Therefore, we performed a meta-analysis based on eligible studies to summarize the possible associations. METHODS We identified eligible studies published up to May 2014 by a comprehensive search of PubMed, EMBASE, CNKI, and VIP databases. The analysis was performed with RevMan. 5.0 software. RESULTS A total of 15 studies were included. The results of meta-analysis showed that miR-155 was positively correlated with breast cancer with standardized mean difference (SMD) = 1.22. Elevated miR-155 was found in Her-2 positive or lymph node metastasis positive, or p53 mutant type breast cancer. But the result showed to be insignificant in TNM comparison. With respect to estrogen receptor alpha (ER) and progesterone receptor (PR) status, both of them showed significant associations with SMD = -1.2 and -1.85, respectively. CONCLUSION MiR-155 detection might have a diagnostic value in breast cancer patients. It might be used as an auxiliary biomarker for different clinicopathological breast cancer.
Collapse
|
52
|
Expression status of let-7a and miR-335 among breast tumors in patients with and without germ-line BRCA mutations. Mol Cell Biochem 2014; 395:77-88. [PMID: 24942235 DOI: 10.1007/s11010-014-2113-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/30/2014] [Indexed: 12/19/2022]
Abstract
The genetic factors of cancer predisposition remain elusive in the majority of familial and/or early-onset cases of breast cancer (BC). This type of BC is promoted by germ-line mutations that inactivate BRCA1 or BRCA2. On the other hand, recent studies have indicated that alterations in the levels of miRNA expression are linked to this disease. Although BRCA1 and BRCA2 gene mutations have been reported to commonly lead to alterations in genes that encode cancer-related proteins, little is known regarding the putative impact of these mutations on noncoding miRNAs. In the present study, we aimed to determine whether miRNA dysregulation is involved in the pathogenesis of BRCA-mutated BC. An expression analysis of 14 human miRNAs previously shown to be related to BC diagnosis, prognosis, and drug resistance was conducted using tissues from 60 familial and/or early-onset patients whose peripheral blood samples had been screened for BRCA1 and BRCA2 mutations through sequence analysis. Let-7a and miR-335 expression levels were significantly downregulated in the tumors of patients with a BRCA mutation compared with those of patients without a BRCA mutation (P = 0.04 and P = 0.02, respectively). Our results defined the associations between the expression status of let-7a and miR-335 and BRCA mutations. The expression analysis of these miRNAs might be used as biomarkers of the BRCA mutation status of early-onset and/or familial BC.
Collapse
|
53
|
MicroRNA-30b is a multifunctional regulator of aortic valve interstitial cells. J Thorac Cardiovasc Surg 2014; 147:1073-1080.e2. [DOI: 10.1016/j.jtcvs.2013.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/04/2013] [Accepted: 05/09/2013] [Indexed: 01/21/2023]
|
54
|
Nieto-Diaz M, Esteban FJ, Reigada D, Muñoz-Galdeano T, Yunta M, Caballero-López M, Navarro-Ruiz R, Del Águila A, Maza RM. MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci 2014; 8:53. [PMID: 24701199 PMCID: PMC3934005 DOI: 10.3389/fncel.2014.00053] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/06/2014] [Indexed: 01/18/2023] Open
Abstract
Trauma to the spinal cord causes permanent disability to more than 180,000 people every year worldwide. The initial mechanical damage triggers a complex set of secondary events involving the neural, vascular, and immune systems that largely determine the functional outcome of the spinal cord injury (SCI). Cellular and biochemical mechanisms responsible for this secondary injury largely depend on activation and inactivation of specific gene programs. Recent studies indicate that microRNAs function as gene expression switches in key processes of the SCI. Microarray data from rodent contusion models reveal that SCI induces changes in the global microRNA expression patterns. Variations in microRNA abundance largely result from alterations in the expression of the cells at the damaged spinal cord. However, microRNA expression levels after SCI are also influenced by the infiltration of immune cells to the injury site and the death and migration of specific neural cells after injury. Evidences on the role of microRNAs in the SCI pathophysiology have come from different sources. Bioinformatic analysis of microarray data has been used to identify specific variations in microRNA expression underlying transcriptional changes in target genes, which are involved in key processes in the SCI. Direct evidences on the role of microRNAs in SCI are scarcer, although recent studies have identified several microRNAs (miR-21, miR-486, miR-20) involved in key mechanisms of the SCI such as cell death or astrogliosis, among others. From a clinical perspective, different evidences make clear that microRNAs can be potent therapeutic tools to manipulate cell state and molecular processes in order to enhance functional recovery. The present article reviews the actual knowledge on how injury affects microRNA expression and the meaning of these changes in the SCI pathophysiology, to finally explore the clinical potential of microRNAs in the SCI.
Collapse
Affiliation(s)
- Manuel Nieto-Diaz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Francisco J Esteban
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales y de la Salud, Universidad de Jaén Jaén, Spain
| | - David Reigada
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Teresa Muñoz-Galdeano
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Mónica Yunta
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain ; Unidad de Patología Mitocondrial, Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III Madrid, Spain
| | - Marcos Caballero-López
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Rosa Navarro-Ruiz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Angela Del Águila
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Rodrigo M Maza
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| |
Collapse
|
55
|
Ebrahimi F, Gopalan V, Smith RA, Lam AKY. miR-126 in human cancers: Clinical roles and current perspectives. Exp Mol Pathol 2014; 96:98-107. [DOI: 10.1016/j.yexmp.2013.12.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/03/2013] [Indexed: 12/16/2022]
|
56
|
Chouchane L, Boussen H, Sastry KSR. Breast cancer in Arab populations: molecular characteristics and disease management implications. Lancet Oncol 2013; 14:e417-24. [PMID: 23993386 DOI: 10.1016/s1470-2045(13)70165-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer is a major health problem in both developing and developed countries. It is the most frequently diagnosed female malignant disease in Arab populations. The incidence of breast cancer is lower in Arab countries than in Europe and the USA but is rising fast. Breast cancers in women from Arab populations have different characteristics to those reported in individuals from Europe and the USA. For example, affected patients are at least a decade younger, they have a more advanced stage of disease at first presentation, and their tumour size is larger. Moreover, in some Arab populations, reports suggest increased axillary-lymph-node invasion, a larger proportion of negative hormone receptors, and a higher tumour grade. These disparities are not only confined to clinicopathological features but also exist at the molecular level, as shown by findings of genome-wide association studies and expression profiling.
Collapse
Affiliation(s)
- Lotfi Chouchane
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medical College in Qatar, Qatar Foundation, Doha, Qatar.
| | | | | |
Collapse
|
57
|
Regulation of breast cancer and bone metastasis by microRNAs. DISEASE MARKERS 2013; 35:369-87. [PMID: 24191129 PMCID: PMC3809754 DOI: 10.1155/2013/451248] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/17/2013] [Accepted: 08/27/2013] [Indexed: 01/05/2023]
Abstract
Breast cancer progression including bone metastasis is a complex process involving numerous changes in gene expression and function. MicroRNAs (miRNAs) are small endogenous noncoding RNAs that regulate gene expression by targeting protein-coding mRNAs posttranscriptionally, often affecting a number of gene targets simultaneously. Alteration in expression of miRNAs is common in human breast cancer, possessing with either oncogenic or tumor suppressive activity. The expression and the functional role of several miRNAs (miR-206, miR-31, miR-27a/b, miR-21, miR-92a, miR-205, miR-125a/b, miR-10b, miR-155, miR-146a/b, miR-335, miR-204, miR-211, miR-7, miR-22, miR-126, and miR-17) in breast cancer has been identified. In this review we summarize the experimentally validated targets of up- and downregulated miRNAs and their regulation in breast cancer and bone metastasis for diagnostic and therapeutic purposes.
Collapse
|
58
|
Surgucheva I, Gunewardena S, Rao HS, Surguchov A. Cell-specific post-transcriptional regulation of γ-synuclein gene by micro-RNAs. PLoS One 2013; 8:e73786. [PMID: 24040069 PMCID: PMC3770685 DOI: 10.1371/journal.pone.0073786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/28/2013] [Indexed: 11/18/2022] Open
Abstract
γ-Synuclein is a member of the synucleins family of small proteins, which consists of three members:α, β- and γ-synuclein. γ-Synuclein is abnormally expressed in a high percentage of advanced and metastatic tumors, but not in normal or benign tissues. Furthermore, γ-synuclein expression is strongly correlated with disease progression, and can stimulate proliferation, induce invasion and metastasis of cancer cells. γ-Synuclein transcription is regulated basically through the binding of AP-1 to specific sequences in intron 1. Here we show that γ-synuclein expression may be also regulated by micro RNAs (miRs) on post-transcriptional level. According to prediction by several methods, the 3′-untranslated region (UTR) of γ-synuclein gene contains targets for miRs. Insertion of γ-synuclein 3′-UTR downstream of the reporter luciferase (LUC) gene causes a 51% reduction of LUC activity after transfection into SKBR3 and Y79 cells, confirming the presence of efficient targets for miRs in this fragment. Expression of miR-4437 and miR-4674 for which putative targets in 3′-UTR were predicted caused a 61.2% and 60.1% reduction of endogenous γ-synuclein expression confirming their role in gene expression regulation. On the other hand, in cells overexpressing γ-synuclein no significant effect of miRs on γ-synuclein expression was found suggesting that miRs exert their regulatory effect only at low or moderate, but not at high level of γ-synuclein expression. Elevated level of γ-synuclein differentially changes the level of several miRs expression, upregulating the level of some miRs and downregulating the level of others. Three miRs upregulated as a result of γ-synuclein overexpression, i.e., miR-885-3p, miR-138 and miR-497 have putative targets in 3′-UTR of the γ-synuclein gene. Some of miRs differentially regulated by γ-synuclein may modulate signaling pathways and cancer related gene expression. This study demonstrates that miRs might provide cell-specific regulation of γ-synuclein expression and set the stage to further evaluate their role in pathophysiological processes.
Collapse
Affiliation(s)
- Irina Surgucheva
- Retinal Biology Research Laboratory, Veterans Administration Medical Center, Kansas City, Missouri, United States of America
- Department of Neurology, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - H. Shanker Rao
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - Andrei Surguchov
- Retinal Biology Research Laboratory, Veterans Administration Medical Center, Kansas City, Missouri, United States of America
- Department of Neurology, Kansas University Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
59
|
Pencheva N, Tavazoie SF. Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol 2013; 15:546-54. [PMID: 23728460 DOI: 10.1038/ncb2769] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant microRNA (miRNA) expression is a defining feature of human malignancy. Specific miRNAs have been identified as promoters or suppressors of metastatic progression. miRNAs control metastasis through divergent or convergent regulation of metastatic gene pathways. Some miRNA regulatory networks govern cell-autonomous cancer phenotypes, whereas others modulate the cell-extrinsic composition of the metastatic microenvironment. The use of small RNAs as probes into the molecular and cellular underpinnings of metastasis holds promise for the identification of candidate genes for potential therapeutic intervention.
Collapse
Affiliation(s)
- Nora Pencheva
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
60
|
MicroRNAs: Are they indicators for prediction of response to radiotherapy in breast cancer? JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2013. [DOI: 10.1016/j.jmhi.2013.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
61
|
Abstract
PURPOSE OF REVIEW To evaluate recent developments in nutritional epigenomics and related challenges, opportunities, and implications for cancer control and prevention. RECENT FINDINGS Cancer is one of the leading causes of death worldwide, and understanding the factors that contribute to cancer development may facilitate the development of strategies for cancer prevention and control. Cancer development involves genetic and epigenetic alterations. Genetic marks are permanent, whereas epigenetic marks are dynamic, change with age, and are influenced by the external environment. Thus, epigenetics provides a link between the environment, diet, and cancer development. Proper food selection is imperative for better health and to avoid cancer and other diseases. Nutrients either contribute directly to cancer prevention or support the repair of genomic and epigenomic damage caused by exposure to cancer-causing agents such as toxins, free radicals, radiation, and infectious agents. Nutritional epigenomics provides an opportunity for cancer prevention because selected nutrients have the potential to reverse cancer-associated epigenetic marks in different tumor types. A number of natural foods and their bioactive components have been shown to have methylation-inhibitory and deacetylation-inhibitory properties. SUMMARY Natural foods and bioactive food components have characteristics and functions that are similar to epigenetic inhibitors and therefore have potential in cancer control and prevention.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-7324, USA.
| |
Collapse
|
62
|
Liu JL, Wei W, Tang W, Jiang Y, Yang HW, Li JT, Zhou X. Silencing of lysyl oxidase gene expression by RNA interference suppresses metastasis of breast cancer. Asian Pac J Cancer Prev 2013; 13:3507-11. [PMID: 22994786 DOI: 10.7314/apjcp.2012.13.7.3507] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate possible mechanisms of LOX gene effects on invasion and metastasis of breast cancer cells by RNA interference. METHODS LOX-RNAi-LV was designed, synthesized, and then transfected into a breast cancer cell line (MDA-MB-231). Expression of LOX, MMP-2 and MMP-9 was determined by real-time PCR, and protein expression of LOX by Western blotting. Cell migration and invasiveness were assessed with Transwell chambers. A total of 111 cases of breast cancer tissues, cancer-adjacent normal breast tissues, and 20 cases of benign lesion tissues were assessed by immunohistochemistry. RESULTS Expression of LOX mRNA and protein was suppressed, and the expression of MMP-2 and MMP-9 was significantly lower in the RNAi group than the control group (P<0.05), after LOX-RNAi-LV was transfection into MDA-MB-231 cells. Migration and invasion abilities were obviously inhibited. The expression of LOX protein in breast cancer, cancer-adjacent normal breast tissues and benign breast tumor were 48.6% (54/111), 26.1% (29/111), 20.0% (4/20), respectively, associations being noted with clinical stage, lymph node metastasis, tumor size and ER, PR, HER2, but not age. LOX protein was positively correlated with MMP-2 and MMP-9. CONCLUSION LOX displayed an important role in invasion and metastasis of breast cancer by regulating MMP-2 and MMP-9 expression which probably exerted synergistic effects on the extracellular matrix (ECM).
Collapse
Affiliation(s)
- Jian-Lun Liu
- Department of Breast Surgery, Cancer Hospital, Guangxi Medical University, Guangxi, China.
| | | | | | | | | | | | | |
Collapse
|
63
|
Li JY, Zhang Y, Zhang WH, Jia S, Kang Y, Zhu XY. Differential distribution of miR-20a and miR-20b may underly metastatic heterogeneity of breast cancers. Asian Pac J Cancer Prev 2013; 13:1901-6. [PMID: 22901144 DOI: 10.7314/apjcp.2012.13.5.1901] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The discovery that microRNA (miRNA) regulates metastasis provide a principal molecular basis for tumor heterogeneity. A characteristic of solid tumors is their heterogenous distribution of blood vessels, with significant hypoxia occurring in regions (centers of tumor) of low blood flow. It is necessary to discover the mechanism of breast cancer metastasis in relation to the fact that there is a differential distribution of crucial microRNA in tumors from centers to edges. METHODS Breast tissues from 48 patients (32 patients with breast cancer) were classified into the high invasive and metastatic group (HIMG), low invasive and metastatic group (LIMG), and normal group. Samples were collected from both the centers and edges of all tumors. The first six specimens were detected by microRNA array, and the second ten specimens were detected by real-time qRT- PCR and Western blot analyses. Correlation analysis was performed between the miRNAs and target proteins. RESULTS The relative content of miR-20a and miR-20b was lower in the center of the tumor than at the edge in the LIMG, lower at the edge of the tumor than in the center in the HIMG, and lower in breast cancer tissues than in normal tissues. VEGF-A and HIF-1alpha mRNA levels were higher in the HIMG than in the LIMG, and levels were higher in both groups than in the normal group; there was no difference in mRNA levels between the edge and center of the tumor. VEGF-A and HIF-1alpha protein levels were higher in the HIMG than in the LIMG, and protein levels in both groups were higher than in the normal group; there was a significant difference in protein expression between the edge and center of the tumor. Correlation analysis showed that the key miRNAs (miR-20a and miR-20b) negatively correlated with the target proteins (VEGF-A and HIF-1alpha). CONCLUSIONS Our data suggest that miR-20a and miR-20b are differentially distributed in breast cancer, while VEGF-A and HIF-1alpha mRNA had coincident distributions, and VEGF-A and HIF-1alpha proteins had uneven and opposing distributions to the miRNAs. It appears that one of the most important facets underlying metastatic heterogeneity is the differential distribution of miR-20a and miR-20b and their regulation of target proteins.
Collapse
Affiliation(s)
- Jian-Yi Li
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | | | | | | | | | | |
Collapse
|