51
|
Ashrafizadeh M, Zarabi A, Hushmandi K, Moghadam ER, Hashemi F, Daneshi S, Hashemi F, Tavakol S, Mohammadinejad R, Najafi M, Dudha N, Garg M. C-Myc Signaling Pathway in Treatment and Prevention of Brain Tumors. Curr Cancer Drug Targets 2021; 21:2-20. [PMID: 33069197 DOI: 10.2174/1568009620666201016121005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
Brain tumors are responsible for high morbidity and mortality worldwide. Several factors such as the presence of blood-brain barrier (BBB), sensitive location in the brain, and unique biological features challenge the treatment of brain tumors. The conventional drugs are no longer effective in the treatment of brain tumors, and scientists are trying to find novel therapeutics for brain tumors. In this way, identification of molecular pathways can facilitate finding an effective treatment. c-Myc is an oncogene signaling pathway capable of regulation of biological processes such as apoptotic cell death, proliferation, survival, differentiation, and so on. These pleiotropic effects of c-Myc have resulted in much fascination with its role in different cancers, particularly brain tumors. In the present review, we aim to demonstrate the upstream and down-stream mediators of c-Myc in brain tumors such as glioma, glioblastoma, astrocytoma, and medulloblastoma. The capacity of c-Myc as a prognostic factor in brain tumors will be investigated. Our goal is to define an axis in which the c-Myc signaling pathway plays a crucial role and to provide direction for therapeutic targeting in these signaling networks in brain tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Universite Caddesi No. 27, Orhanli, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of physiotherapy, Faculty of rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, Uttar Pradesh, India
| | - Manoj Garg
- Amity of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida-201313, India
| |
Collapse
|
52
|
Duro J, Nilsson J. SAC during early cell divisions: Sacrificing fidelity over timely division, regulated differently across organisms: Chromosome alignment and segregation are left unsupervised from the onset of development until checkpoint activity is acquired, varying from species to species. Bioessays 2020; 43:e2000174. [PMID: 33251610 DOI: 10.1002/bies.202000174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Early embryogenesis is marked by a frail Spindle Assembly Checkpoint (SAC). The time of SAC acquisition varies depending on the species, cell size or a yet to be uncovered developmental timer. This means that for a specific number of divisions, biorientation of sister chromatids occurs unsupervised. When error-prone segregation is an issue, an aneuploidy-selective apoptosis system can come into play to eliminate chromosomally unbalanced cells resulting in healthy newborns. However, aneuploidy content can be too great to overcome, endangering viability. SAC generates a diffusible signal to lengthen time spent in mitosis if needed, ensuring correct chromosome segregation, a fundamental factor in the generation of euploid cells. Thus, it remains puzzling what benefit could come from delaying SAC acquisition till later in the development. In this review, we describe what is known on SAC acquisition in distinct species and highlight pending research as well as potential applications for such knowledge.
Collapse
Affiliation(s)
- Joana Duro
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
53
|
|
54
|
Balboni M, Yang C, Komaki S, Brun J, Schnittger A. COMET Functions as a PCH2 Cofactor in Regulating the HORMA Domain Protein ASY1. Curr Biol 2020; 30:4113-4127.e6. [DOI: 10.1016/j.cub.2020.07.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
|
55
|
p31 comet promotes homologous recombination by inactivating REV7 through the TRIP13 ATPase. Proc Natl Acad Sci U S A 2020; 117:26795-26803. [PMID: 33051298 PMCID: PMC7604461 DOI: 10.1073/pnas.2008830117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The repair of DNA double strand breaks (DSBs) that arise from external mutagenic agents and routine cellular processes is essential for life. DSBs are repaired by two major pathways, homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). DSB repair pathway choice is largely dictated at the step of 5'-3' DNA end resection, which is promoted during S phase, in part by BRCA1. Opposing end resection is the 53BP1 protein, which recruits the ssDNA-binding REV7-Shieldin complex to favor C-NHEJ repair. We recently identified TRIP13 as a proresection factor that remodels REV7, causing its dissociation from the Shieldin subunit SHLD3. Here, we identify p31comet, a negative regulator of MAD2 and the spindle assembly checkpoint, as an important mediator of the TRIP13-REV7 interaction. p31comet binds to the REV7-Shieldin complex in cells, promotes REV7 inactivation, and causes PARP inhibitor resistance. p31comet also participates in the extraction of REV7 from the chromatin. Furthermore, p31comet can counteract REV7 function in translesion synthesis (TLS) by releasing it from REV3 in the Pol ζ complex. Finally, p31comet, like TRIP13, is overexpressed in many cancers and this correlates with poor prognosis. Thus, we reveal a key player in the regulation of HR and TLS with significant clinical implications.
Collapse
|
56
|
Défachelles L, Russo AE, Nelson CR, Bhalla N. The conserved AAA-ATPase PCH-2 TRIP13 regulates spindle checkpoint strength. Mol Biol Cell 2020; 31:2219-2233. [PMID: 32697629 PMCID: PMC7550697 DOI: 10.1091/mbc.e20-05-0310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spindle checkpoint strength is dictated by the number of unattached kinetochores, cell volume, and cell fate. We show that the conserved AAA-ATPase PCH-2/TRIP13, which remodels the checkpoint effector Mad2 from an active conformation to an inactive one, controls checkpoint strength in Caenorhabditis elegans. Having previously established that this function is required for spindle checkpoint activation, we demonstrate that in cells genetically manipulated to decrease in cell volume, PCH-2 is no longer required for the spindle checkpoint or recruitment of Mad2 at unattached kinetochores. This role is not limited to large cells: the stronger checkpoint in germline precursor cells also depends on PCH-2. PCH-2 is enriched in germline precursor cells, and this enrichment relies on conserved factors that induce asymmetry in the early embryo. Finally, the stronger checkpoint in germline precursor cells is regulated by CMT-1, the ortholog of p31comet, which is required for both PCH-2′s localization to unattached kinetochores and its enrichment in germline precursor cells. Thus, PCH-2, likely by regulating the availability of inactive Mad2 at and near unattached kinetochores, governs checkpoint strength. This requirement may be particularly relevant in oocytes and early embryos enlarged for developmental competence, cells that divide in syncytial tissues, and immortal germline cells.
Collapse
Affiliation(s)
- Lénaïg Défachelles
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Anna E Russo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Christian R Nelson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
57
|
Villar-Fernández MA, Cardoso da Silva R, Firlej M, Pan D, Weir E, Sarembe A, Raina VB, Bange T, Weir JR, Vader G. Biochemical and functional characterization of a meiosis-specific Pch2/ORC AAA+ assembly. Life Sci Alliance 2020; 3:3/11/e201900630. [PMID: 32826290 PMCID: PMC7442955 DOI: 10.26508/lsa.201900630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
The AAA+ protein Pch2 forms a biochemical complex with Orc1/ORC to suppress DNA break formation in the meiotic G2/prophase. Pch2 is a meiosis-specific AAA+ protein that controls several important chromosomal processes. We previously demonstrated that Orc1, a subunit of the ORC, functionally interacts with budding yeast Pch2. The ORC (Orc1-6) AAA+ complex loads the AAA+ MCM helicase to origins of replication, but whether and how ORC collaborates with Pch2 remains unclear. Here, we show that a Pch2 hexamer directly associates with ORC during the meiotic G2/prophase. Biochemical analysis suggests that Pch2 uses its non-enzymatic NH2-terminal domain and AAA+ core and likely engages the interface of ORC that also binds to Cdc6, a factor crucial for ORC-MCM binding. Canonical ORC function requires association with origins, but we show here that despite causing efficient removal of Orc1 from origins, nuclear depletion of Orc2 and Orc5 does not trigger Pch2/Orc1-like meiotic phenotypes. This suggests that the function for Orc1/Pch2 in meiosis can be executed without efficient association of ORC with origins of replication. In conclusion, we uncover distinct functionalities for Orc1/ORC that drive the establishment of a non-canonical, meiosis-specific AAA+ assembly with Pch2.
Collapse
Affiliation(s)
- María Ascensión Villar-Fernández
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,International Max Planck Research School in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Richard Cardoso da Silva
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Dongqing Pan
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Elisabeth Weir
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Annika Sarembe
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Vivek B Raina
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,International Max Planck Research School in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - John R Weir
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Friedrich Miescher Laboratory, Tübingen, Germany
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
58
|
PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions. PLoS Genet 2020; 16:e1008904. [PMID: 32730253 PMCID: PMC7433886 DOI: 10.1371/journal.pgen.1008904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/18/2020] [Accepted: 06/01/2020] [Indexed: 11/19/2022] Open
Abstract
The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2E253Q. In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.
Collapse
|
59
|
Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1103-1129. [DOI: 10.1007/s11427-020-1752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
60
|
Cardoso da Silva R, Villar-Fernández MA, Vader G. Active transcription and Orc1 drive chromatin association of the AAA+ ATPase Pch2 during meiotic G2/prophase. PLoS Genet 2020; 16:e1008905. [PMID: 32569318 PMCID: PMC7332104 DOI: 10.1371/journal.pgen.1008905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 07/02/2020] [Accepted: 06/03/2020] [Indexed: 01/26/2023] Open
Abstract
Pch2 is an AAA+ protein that controls DNA break formation, recombination and checkpoint signaling during meiotic G2/prophase. Chromosomal association of Pch2 is linked to these processes, and several factors influence the association of Pch2 to euchromatin and the specialized chromatin of the ribosomal (r)DNA array of budding yeast. Here, we describe a comprehensive mapping of Pch2 localization across the budding yeast genome during meiotic G2/prophase. Within non-rDNA chromatin, Pch2 associates with a subset of actively RNA Polymerase II (RNAPII)-dependent transcribed genes. Chromatin immunoprecipitation (ChIP)- and microscopy-based analysis reveals that active transcription is required for chromosomal recruitment of Pch2. Similar to what was previously established for association of Pch2 with rDNA chromatin, we find that Orc1, a component of the Origin Recognition Complex (ORC), is required for the association of Pch2 to these euchromatic, transcribed regions, revealing a broad connection between chromosomal association of Pch2 and Orc1/ORC function. Ectopic mitotic expression is insufficient to drive recruitment of Pch2, despite the presence of active transcription and Orc1/ORC in mitotic cells. This suggests meiosis-specific ‘licensing’ of Pch2 recruitment to sites of transcription, and accordingly, we find that the synaptonemal complex (SC) component Zip1 is required for the recruitment of Pch2 to transcription-associated binding regions. Interestingly, Pch2 binding patterns are distinct from meiotic axis enrichment sites (as defined by Red1, Hop1, and Rec8). Inactivating RNAPII-dependent transcription/Orc1 does not lead to effects on the chromosomal abundance of Hop1, a known chromosomal client of Pch2, suggesting a complex relationship between SC formation, Pch2 recruitment and Hop1 chromosomal association. We thus report characteristics and dependencies for Pch2 recruitment to meiotic chromosomes, and reveal an unexpected link between Pch2, SC formation, chromatin and active transcription. Meiosis is a specialized cellular division program that is required to produce haploid reproductive cells, also known as gametes. To allow meiosis to occur faithfully, several processes centred around DNA breakage and recombination are needed. Pch2, an AAA+ ATPase enzyme is important to coordinate several of these processes. Here, we analyze the genome-wide association of Pch2 to budding yeast meiotic chromosomes. Our results show that Pch2 is recruited to a subset of actively transcribed genes, and we find that active RNAPII transcription contributes to Pch2 chromosomal association. In addition, we reveal a general contribution of Orc1, a subunit of the ORC assembly, to Pch2 chromosomal recruitment. These findings thus reveal a connection between Pch2, Orc1 and RNAPII activity during meiosis.
Collapse
Affiliation(s)
- Richard Cardoso da Silva
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - María Ascensión Villar-Fernández
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- International Max Planck Research School (IMPRS) in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- * E-mail:
| |
Collapse
|
61
|
Abstract
In the past decade, the study of the major DNA double strand break (DSB) repair pathways, homologous recombination (HR) and classical non-homologous end joining (C-NHEJ), has revealed a vast and intricate network of regulation. The choice between HR and C-NHEJ is largely controlled at the step of DNA end-resection. A pro-C-NHEJ cascade commencing with 53BP1 and culminating in the newly discovered REV7-Shieldin complex impedes end resection and therefore HR. Importantly, loss of any component of this pathway confers PARP inhibitor resistance in BRCA1-deficient cells; hence, their study is of great clinical importance. The newest entrant on the scene of end resection regulation is the ATPase TRIP13 that disables the pro-C-NHEJ cascade by promoting a novel conformational change of the HORMA protein REV7. Here, we tie these new findings and factors with previous research on the regulation of DSB repair and HORMA proteins, and suggest testable hypotheses for how TRIP13 could specifically inactivate REV7-Shieldin to promote HR. We also discuss these biological questions in the context of clinical therapeutics.
Collapse
Affiliation(s)
- Prabha Sarangi
- Department of Radiation Oncology, Dana-Farber Cancer Institute , Boston, MA, USA.,Center for DNA Damage and Repair, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Connor S Clairmont
- Department of Radiation Oncology, Dana-Farber Cancer Institute , Boston, MA, USA.,Center for DNA Damage and Repair, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute , Boston, MA, USA.,Center for DNA Damage and Repair, Dana-Farber Cancer Institute , Boston, MA, USA
| |
Collapse
|
62
|
Pachis ST, Hiruma Y, Tromer EC, Perrakis A, Kops GJPL. Interactions between N-terminal Modules in MPS1 Enable Spindle Checkpoint Silencing. Cell Rep 2020; 26:2101-2112.e6. [PMID: 30784592 DOI: 10.1016/j.celrep.2019.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/13/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022] Open
Abstract
Faithful chromosome segregation relies on the ability of the spindle assembly checkpoint (SAC) to delay anaphase onset until chromosomes are attached to the mitotic spindle via their kinetochores. MPS1 kinase is recruited to kinetochores to initiate SAC signaling and is removed from kinetochores once stable microtubule attachments have been formed to allow normal mitotic progression. Here, we show that a helical fragment within the kinetochore-targeting N-terminal extension (NTE) module of MPS1 is required for interactions with kinetochores and forms intramolecular interactions with its adjacent tetratricopeptide repeat (TPR) domain. Bypassing this NTE-TPR interaction results in high MPS1 levels at kinetochores due to loss of regulatory input into MPS1 localization, inefficient MPS1 delocalization upon microtubule attachment, and SAC silencing defects. These results show that SAC responsiveness to attachments relies on regulated intramolecular interactions in MPS1 and highlight the sensitivity of mitosis to perturbations in the dynamics of the MPS1-NDC80-C interactions.
Collapse
Affiliation(s)
- Spyridon T Pachis
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, the Netherlands
| | - Yoshitaka Hiruma
- Department of Biochemistry, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Anastassis Perrakis
- Department of Biochemistry, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, the Netherlands.
| |
Collapse
|
63
|
Barford D. Structural interconversions of the anaphase-promoting complex/cyclosome (APC/C) regulate cell cycle transitions. Curr Opin Struct Biol 2020; 61:86-97. [PMID: 31864160 DOI: 10.1016/j.sbi.2019.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multi-subunit complex that functions as a RING domain E3 ubiquitin ligase to regulate transitions through the cell cycle, achieved by controlling the defined ubiquitin-dependent degradation of specific cell cycle regulators. APC/C activity and substrate selection are controlled at various levels to ensure that specific cell cycle events occur in the correct order and time. Structural and mechanistic studies over the past two decades have complemented functional studies to provide comprehensive insights that explain APC/C molecular mechanisms. This review discusses how modifications of the core APC/C are responsible for the APC/C's interconversion between different structural and functional states that govern its capacity to control transitions between specific cell cycle phases. A unifying theme is that these structural interconversions involve competition between short linear sequence motifs (SLIMs), shared between substrates, coactivators, inhibitors and E2s, for their common binding sites on the APC/C.
Collapse
Affiliation(s)
- David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom.
| |
Collapse
|
64
|
Kardon JR, Moroco JA, Engen JR, Baker TA. Mitochondrial ClpX activates an essential biosynthetic enzyme through partial unfolding. eLife 2020; 9:54387. [PMID: 32091391 PMCID: PMC7077987 DOI: 10.7554/elife.54387] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/19/2020] [Indexed: 01/28/2023] Open
Abstract
Mitochondria control the activity, quality, and lifetime of their proteins with an autonomous system of chaperones, but the signals that direct substrate-chaperone interactions and outcomes are poorly understood. We previously discovered that the mitochondrial AAA+ protein unfoldase ClpX (mtClpX) activates the initiating enzyme for heme biosynthesis, 5-aminolevulinic acid synthase (ALAS), by promoting cofactor incorporation. Here, we ask how mtClpX accomplishes this activation. Using S. cerevisiae proteins, we identified sequence and structural features within ALAS that position mtClpX and provide it with a grip for acting on ALAS. Observation of ALAS undergoing remodeling by mtClpX revealed that unfolding is limited to a region extending from the mtClpX-binding site to the active site. Unfolding along this path is required for mtClpX to gate cofactor binding to ALAS. This targeted unfolding contrasts with the global unfolding canonically executed by ClpX homologs and provides insight into how substrate-chaperone interactions direct the outcome of remodeling.
Collapse
Affiliation(s)
- Julia R Kardon
- Department of Biochemistry, Brandeis University, Waltham, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Jamie A Moroco
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
65
|
Lok TM, Wang Y, Xu WK, Xie S, Ma HT, Poon RYC. Mitotic slippage is determined by p31 comet and the weakening of the spindle-assembly checkpoint. Oncogene 2020; 39:2819-2834. [PMID: 32029899 PMCID: PMC7098889 DOI: 10.1038/s41388-020-1187-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/14/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022]
Abstract
Mitotic slippage involves cells exiting mitosis without proper chromosome segregation. Although degradation of cyclin B1 during prolonged mitotic arrest is believed to trigger mitotic slippage, its upstream regulation remains obscure. Whether mitotic slippage is caused by APC/CCDC20 activity that is able to escape spindle-assembly checkpoint (SAC)-mediated inhibition, or is actively promoted by a change in SAC activity remains an outstanding issue. We found that a major culprit for mitotic slippage involves reduction of MAD2 at the kinetochores, resulting in a progressive weakening of SAC during mitotic arrest. A further level of control of the timing of mitotic slippage is through p31comet-mediated suppression of MAD2 activation. The loss of kinetochore MAD2 was dependent on APC/CCDC20, indicating a feedback control of APC/C to SAC during prolonged mitotic arrest. The gradual weakening of SAC during mitotic arrest enables APC/CCDC20 to degrade cyclin B1, cumulating in the cell exiting mitosis by mitotic slippage.
Collapse
Affiliation(s)
- Tsun Ming Lok
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Yang Wang
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Wendy Kaichun Xu
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.,Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Siwei Xie
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hoi Tang Ma
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Randy Y C Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
66
|
HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity. Mol Cell 2020; 77:709-722.e7. [PMID: 31932165 DOI: 10.1016/j.molcel.2019.12.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/03/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Bacteria are continually challenged by foreign invaders, including bacteriophages, and have evolved a variety of defenses against these invaders. Here, we describe the structural and biochemical mechanisms of a bacteriophage immunity pathway found in a broad array of bacteria, including E. coli and Pseudomonas aeruginosa. This pathway uses eukaryotic-like HORMA domain proteins that recognize specific peptides, then bind and activate a cGAS/DncV-like nucleotidyltransferase (CD-NTase) to generate a cyclic triadenylate (cAAA) second messenger; cAAA in turn activates an endonuclease effector, NucC. Signaling is attenuated by a homolog of the AAA+ ATPase Pch2/TRIP13, which binds and disassembles the active HORMA-CD-NTase complex. When expressed in non-pathogenic E. coli, this pathway confers immunity against bacteriophage λ through an abortive infection mechanism. Our findings reveal the molecular mechanisms of a bacterial defense pathway integrating a cGAS-like nucleotidyltransferase with HORMA domain proteins for threat sensing through protein detection and negative regulation by a Trip13 ATPase.
Collapse
|
67
|
Dai Y, Zhang F, Wang L, Shan S, Gong Z, Zhou Z. Structural basis for shieldin complex subunit 3-mediated recruitment of the checkpoint protein REV7 during DNA double-strand break repair. J Biol Chem 2020; 295:250-262. [PMID: 31796627 PMCID: PMC6952594 DOI: 10.1074/jbc.ra119.011464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/27/2019] [Indexed: 01/09/2023] Open
Abstract
Shieldin complex subunit 3 (SHLD3) is the apical subunit of a recently-identified shieldin complex and plays a critical role in DNA double-strand break repair. To fulfill its function in DNA repair, SHLD3 interacts with the mitotic spindle assembly checkpoint protein REV7 homolog (REV7), but the details of this interaction remain obscure. Here, we present the crystal structures of REV7 in complex with SHLD3's REV7-binding domain (RBD) at 2.2-2.3 Å resolutions. The structures revealed that the ladle-shaped RBD in SHLD3 uses its N-terminal loop and C-terminal α-helix (αC-helix) in its interaction with REV7. The N-terminal loop exhibited a structure similar to those previously identified in other REV7-binding proteins, and the less-conserved αC-helix region adopted a distinct mode for binding REV7. In vitro and in vivo binding analyses revealed that the N-terminal loop and the αC-helix are both indispensable for high-affinity REV7 binding (with low-nanomolar affinity), underscoring the crucial role of SHLD3 αC-helix in protein binding. Moreover, binding kinetics analyses revealed that the REV7 "safety belt" region, which plays a role in binding other proteins, is essential for SHLD3-REV7 binding, as this region retards the dissociation of the RBD from the bound REV7. Together, the findings of our study reveal the molecular basis of the SHLD3-REV7 interaction and provide critical insights into how SHLD3 recognizes REV7.
Collapse
Affiliation(s)
- Yaxin Dai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Longge Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Shan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195.
| | - Zheng Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
68
|
Clairmont CS, Sarangi P, Ponnienselvan K, Galli LD, Csete I, Moreau L, Adelmant G, Chowdhury D, Marto JA, D'Andrea AD. TRIP13 regulates DNA repair pathway choice through REV7 conformational change. Nat Cell Biol 2020; 22:87-96. [PMID: 31915374 PMCID: PMC7336368 DOI: 10.1038/s41556-019-0442-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/25/2019] [Indexed: 01/21/2023]
Abstract
DNA double-strand breaks (DSBs) are repaired through homology-directed repair (HDR) or non-homologous end joining (NHEJ). BRCA1/2-deficient cancer cells cannot perform HDR, conferring sensitivity to poly(ADP-ribose) polymerase inhibitors (PARPi). However, concomitant loss of the pro-NHEJ factors 53BP1, RIF1, REV7-Shieldin (SHLD1-3) or CST-DNA polymerase alpha (Pol-α) in BRCA1-deficient cells restores HDR and PARPi resistance. Here, we identify the TRIP13 ATPase as a negative regulator of REV7. We show that REV7 exists in active 'closed' and inactive 'open' conformations, and TRIP13 catalyses the inactivating conformational change, thereby dissociating REV7-Shieldin to promote HDR. TRIP13 similarly disassembles the REV7-REV3 translesion synthesis (TLS) complex, a component of the Fanconi anaemia pathway, inhibiting error-prone replicative lesion bypass and interstrand crosslink repair. Importantly, TRIP13 overexpression is common in BRCA1-deficient cancers, confers PARPi resistance and correlates with poor prognosis. Thus, TRIP13 emerges as an important regulator of DNA repair pathway choice-promoting HDR, while suppressing NHEJ and TLS.
Collapse
Affiliation(s)
- Connor S Clairmont
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Prabha Sarangi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Lucas D Galli
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Isabelle Csete
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lisa Moreau
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
69
|
TRIP13 interference inhibits the proliferation and metastasis of thyroid cancer cells through regulating TTC5/p53 pathway and epithelial-mesenchymal transition related genes expression. Biomed Pharmacother 2019; 120:109508. [DOI: 10.1016/j.biopha.2019.109508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022] Open
|
70
|
Zhang G, Zhu Q, Fu G, Hou J, Hu X, Cao J, Peng W, Wang X, Chen F, Cui H. TRIP13 promotes the cell proliferation, migration and invasion of glioblastoma through the FBXW7/c-MYC axis. Br J Cancer 2019; 121:1069-1078. [PMID: 31740732 PMCID: PMC6964669 DOI: 10.1038/s41416-019-0633-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/21/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022] Open
Abstract
Background Thyroid hormone receptor interactor 13 (TRIP13) is an AAA + ATPase that plays an important role in the mitotic checkpoint. TRIP13 is highly expressed in various human tumours and promotes tumorigenesis. However, the biological effect of TRIP13 in GBM cells remains unclear. Methods We generated GBM cell models with overexpressed or silenced TRIP13 via lentivirus-mediated overexpression and RNAi methods. The biological role of TRIP13 in the proliferation, migration and invasion of GBM cells has been further explored. Results Our research indicated that TRIP13 was highly expressed in GBM tissues and cells. We found that the proliferation, migration and invasion abilities were inhibited in TRIP13-knockdown GBM cells. These results indicated that TRIP13 plays an important role in the tumorigenesis of GBM. Moreover, we found that TRIP13 first stabilised c-MYC by inhibiting the transcription of FBXW7, which is an E3 ubiquitin ligase of c-MYC, by directly binding to the promoter region of FBXW7. Therefore, our study indicated that the TRIP13/FBXW7/c-MYC pathway might provide a prospective therapeutic target in the treatment of GBM. Conclusions These results indicated that TRIP13 plays an oncogenic role in GBM. The TRIP13/FBXW7/c-MYC pathway might act as a prospective therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Qingzong Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Gang Fu
- Dental Hospital Affiliated to Chongqing Medical University, Chongqing, 400016, China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Xiaosong Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Jiangjun Cao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Fei Chen
- Department of Pharmaceutical Sciences EACPHS, Wayne State University 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China. .,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China. .,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China. .,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
71
|
Prattes M, Lo YH, Bergler H, Stanley RE. Shaping the Nascent Ribosome: AAA-ATPases in Eukaryotic Ribosome Biogenesis. Biomolecules 2019; 9:E715. [PMID: 31703473 PMCID: PMC6920918 DOI: 10.3390/biom9110715] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
AAA-ATPases are molecular engines evolutionarily optimized for the remodeling of proteins and macromolecular assemblies. Three AAA-ATPases are currently known to be involved in the remodeling of the eukaryotic ribosome, a megadalton range ribonucleoprotein complex responsible for the translation of mRNAs into proteins. The correct assembly of the ribosome is performed by a plethora of additional and transiently acting pre-ribosome maturation factors that act in a timely and spatially orchestrated manner. Minimal disorder of the assembly cascade prohibits the formation of functional ribosomes and results in defects in proliferation and growth. Rix7, Rea1, and Drg1, which are well conserved across eukaryotes, are involved in different maturation steps of pre-60S ribosomal particles. These AAA-ATPases provide energy for the efficient removal of specific assembly factors from pre-60S particles after they have fulfilled their function in the maturation cascade. Recent structural and functional insights have provided the first glimpse into the molecular mechanism of target recognition and remodeling by Rix7, Rea1, and Drg1. Here we summarize current knowledge on the AAA-ATPases involved in eukaryotic ribosome biogenesis. We highlight the latest insights into their mechanism of mechano-chemical complex remodeling driven by advanced cryo-EM structures and the use of highly specific AAA inhibitors.
Collapse
Affiliation(s)
- Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010 Graz, Austria;
| | - Yu-Hua Lo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, Durham, NC 27709, USA;
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010 Graz, Austria;
| | - Robin E. Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, Durham, NC 27709, USA;
| |
Collapse
|
72
|
Niu L, Gao Z, Cui Y, Yang X, Li H. Thyroid Receptor-Interacting Protein 13 is Correlated with Progression and Poor Prognosis in Bladder Cancer. Med Sci Monit 2019; 25:6660-6668. [PMID: 31486418 PMCID: PMC6752094 DOI: 10.12659/msm.917112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Bladder cancer is the fourth most common cancer worldwide. Thyroid receptor-interacting protein 13 (TRIP13) is a member of the AAA+ ATPase family. The upregulation of TRIP13 has been shown to be involved in a few diseases, especially in cancers, but the expression and function of TRIP13 in bladder cancer is still elusive. Material/Methods In our study, the expression of TRIP13 was investigated with immunohistochemistry (IHC). The mRNAs of TRIP13 in bladder cancer and adjacent normal tissues were compared using quantitative real-time polymerase chain reaction (qRT-PCR) and IHC scores. The clinical value of TRIP13 was estimated by evaluating its correlation with other clinicopathological factors using the chi-square test. The prognostic significance of TRIP13 was evaluated using univariate and multivariate analyses. The effect of TRIP13 on proliferation and invasion was evaluated using function assays in vitro. Results In the 139 samples of bladder cancer tissues, the patients with low and high expression of TRIP13 accounted for 64.03% and 35.97%, respectively. Moreover, the mRNA expression of TRIP13 in bladder cancer was significantly higher than in normal tissues. High expression of TRIP13 was remarkably correlated with T stage, metastasis, and poor prognosis. In addition, TRIP13 was demonstrated to promote the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of bladder cancer. Conclusions TRIP13 is correlated with poor prognosis of bladder cancer by promoting proliferation, invasion, and EMT, indicating that TRIP13 may be a promising drug target in bladder cancer.
Collapse
Affiliation(s)
- Lijuan Niu
- Department of Nephrology, Yidu Central Hospital of Weifang City, Weifang, Shandong, China (mainland).,Department of Nephrology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Zhiqiang Gao
- Department of Nephrology, Yidu Central Hospital of Weifang City, Weifang, Shandong, China (mainland)
| | - Yubin Cui
- Department of Nephrology, Yidu Central Hospital of Weifang City, Weifang, Shandong, China (mainland)
| | - Xiaoqing Yang
- Department of Pathology, Qianfoshan Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Haiyang Li
- Department of Urology, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
73
|
Zhang Q, Dong Y, Hao S, Tong Y, Luo Q, Aerxiding P. The oncogenic role of TRIP13 in regulating proliferation, invasion, and cell cycle checkpoint in NSCLC cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3357-3366. [PMID: 31934178 PMCID: PMC6949856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
TRIP13 (thyroid hormone receptor interacting protein 13) AAA-ATPase has been reported to be involved in the metaphase checkpoint in human breast cancer, prostate cancer, and cervical cancer. However, the expression pattern and biologic role of TRIP13 in non-small cell lung cancer (NSCLC) remained unknown. In our present study, real-time PCR and western blot were used to detect the expression level of TRIP13 in NSCLC tissues and cell lines. We found that the expression levels of TRIP13 mRNA and protein were significantly upregulated in cell lines and lung tissues. Knockdown of TRIP13 by lentivirus inhibited cell proliferation and invasion in both A549 and H1299 cells. Furthermore, flow cytometry, western blot and immunoprecipitation showed that the MCC complex was disassembled and cells became arrested in metaphase, when TRIP13 was inhibited. In conclusion, here we first report that TRIP13 acts as a tumor promoter in regulating cell proliferation, invasion, and cell cycle checkpoint in NSCLC cells and may be a clinically useful marker for the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Thoraciconcology, The Third Affiliated Hospital of Xinjiang Medical University, Tumor Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Yan Dong
- Department of Critical Care Medicine, The Third Affiliated Hospital of Xinjiang Medical University, Tumor Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Shaohuan Hao
- Department of Medical Oncology, The First People’s Hospital of KashgarKashgar 844000, Xinjiang, China
| | - Ying Tong
- Department of Daytime Inpatient Ward, The Third Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Qin Luo
- General Department (Area1), The Third Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Patiguli Aerxiding
- Department of Thoraciconcology, The Third Affiliated Hospital of Xinjiang Medical University, Tumor Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| |
Collapse
|
74
|
Vlummens P, De Veirman K, Menu E, De Bruyne E, Offner F, Vanderkerken K, Maes K. The Use of Murine Models for Studying Mechanistic Insights of Genomic Instability in Multiple Myeloma. Front Genet 2019; 10:740. [PMID: 31475039 PMCID: PMC6704229 DOI: 10.3389/fgene.2019.00740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. In normal plasma cell development, cells undergo programmed DNA breaks and translocations, a process necessary for generation of a wide repertoire of antigen-specific antibodies. This process also makes them vulnerable for the acquisition of chromosomal defects. Well-known examples of these aberrations, already seen at time of MM diagnosis, are hyperdiploidy or the translocations involving the immunoglobulin heavy chain. Over the recent years, however, novel aspects concerning genomic instability and its role in tumor development, disease progression and nascence of refractory disease were identified. As such, genomic instability is becoming a very relevant research topic with the potential identification of novel disease pathways. In this review, we aim to describe recent studies involving murine MM models focusing on the deregulation of processes implicated in genomic instability and their clinical impact. More specifically, we will discuss chromosomal instability, DNA damage and repair responses, development of drug resistance, and recent insights into the study of clonal hierarchy using different murine MM models. Lastly, we will discuss the importance and the use of murine MM models in the pre-clinical evaluation of promising novel therapeutic agents.
Collapse
Affiliation(s)
- Philip Vlummens
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Clinical Hematology, Ghent University Hospital, Gent, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fritz Offner
- Department of Clinical Hematology, Ghent University Hospital, Gent, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
75
|
Lu S, Guo M, Fan Z, Chen Y, Shi X, Gu C, Yang Y. Elevated TRIP13 drives cell proliferation and drug resistance in bladder cancer. Am J Transl Res 2019; 11:4397-4410. [PMID: 31396344 PMCID: PMC6684882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Dysregulation of mitotic processes can induce chromosome instability, which results in aneuploidy, tumorigenesis, and chemo-resistance. Thyroid hormone receptor interactor 13 (TRIP13) is a critical mitosis regulator, and recent studies suggest that it functions as an oncogene in multiple cancers. However, the role of TRIP13 in bladder cancer (BC) is still unknown. In this study, our analysis of RNA-sequencing data from the Cancer Genome Atlas and Gene expression profiling databases showed that TRIP13 expression was upregulated in BC tissues, and overexpression of TRIP13 was significantly associated with poor prognosis of BC patients. In addition, we found a remarkable elevation of TRIP13 in BC samples compared to normal controls by immunohistochemistry. Furthermore, our in vitro functional assays showed that overexpression of TRIP13 promoted the growth/viability, colony formation ability by inducing cell cycle arrest in G2/M phase, as well as enhancing drug resistance of BC cells to cisplatin and doxorubicin. Conversely, knockdown of TRIP13 inhibited cell growth and induced apoptosis of BC cells. Furthermore, TRIP13 acted as an oncogene in BC by inhibiting spindle assembly checkpoint signaling by targeting mitotic arrest deficient 2 (MAD2) protein. TRIP13 overexpression also alleviated cisplatin- and doxorubicin-induced DNA damage and enhanced DNA repair as evidenced by the reduced expression of γH2AX and enhanced expression of RAD50 in drug-treated BC cells. In conclusion, TRIP13 may be a novel target for the treatment of BC.
Collapse
Affiliation(s)
- Sicheng Lu
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Mengjie Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Zhimin Fan
- The Third Affiliated Hospital of Nanjing University of Chinese MedicineNanjing 210001, Jiangsu, China
| | - Ying Chen
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Xuqin Shi
- School of Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Chunyan Gu
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
- The Third Affiliated Hospital of Nanjing University of Chinese MedicineNanjing 210001, Jiangsu, China
| | - Ye Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
- School of Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| |
Collapse
|
76
|
West AMV, Komives EA, Corbett KD. Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2. Nucleic Acids Res 2019; 46:279-292. [PMID: 29186573 PMCID: PMC5758881 DOI: 10.1093/nar/gkx1196] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022] Open
Abstract
The HORMA domain is a highly conserved protein–protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short ‘closure motifs’ in partner proteins by wrapping their C-terminal ‘safety belt’ region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain–closure motif interactions underlie both Hop1’s initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed ‘closed’ conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13.
Collapse
Affiliation(s)
- Alan M V West
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
77
|
Lu S, Qian J, Guo M, Gu C, Yang Y. Insights into a Crucial Role of TRIP13 in Human Cancer. Comput Struct Biotechnol J 2019; 17:854-861. [PMID: 31321001 PMCID: PMC6612527 DOI: 10.1016/j.csbj.2019.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 01/06/2023] Open
Abstract
Thyroid Hormone Receptor Interacting Protein 13 (TRIP13) plays a key role in regulating mitotic processes, including spindle assembly checkpoint and DNA repair pathways, which may account for Chromosome instability (CIN). As CIN is a predominant hallmark of cancer, TRIP13 may act as a tumor susceptibility locus. Amplification of TRIP13 has been observed in various human cancers and implicated in several aspects of malignant transformation, including cancer cell proliferation, drug resistance and tumor progression. Here, we discussed the functional significance of TRIP13 in cell progression, highlighted the recent findings on the aberrant expression in human cancers and emphasized its significance for the therapeutic potential.
Collapse
Affiliation(s)
- S Lu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - J Qian
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - M Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - C Gu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Y Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 0Nanjing, China
| |
Collapse
|
78
|
Kaisari S, Shomer P, Ziv T, Sitry-Shevah D, Miniowitz-Shemtov S, Teichner A, Hershko A. Role of Polo-like kinase 1 in the regulation of the action of p31 comet in the disassembly of mitotic checkpoint complexes. Proc Natl Acad Sci U S A 2019; 116:11725-11730. [PMID: 31118282 PMCID: PMC6575526 DOI: 10.1073/pnas.1902970116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Mad2-binding protein p31comet has important roles in the inactivation of the mitotic checkpoint system, which delays anaphase until chromosomes attach correctly to the mitotic spindle. The activation of the checkpoint promotes the assembly of a Mitotic Checkpoint Complex (MCC), which inhibits the action of the ubiquitin ligase APC/C (Anaphase-Promoting Complex/Cyclosome) to degrade inhibitors of anaphase initiation. The inactivation of the mitotic checkpoint requires the disassembly of MCC. p31comet promotes the disassembly of mitotic checkpoint complexes by liberating their Mad2 component in a joint action with the ATPase TRIP13. Here, we investigated the regulation of p31comet action. The release of Mad2 from checkpoint complexes in extracts from nocodazole-arrested HeLa cells was inhibited by Polo-like kinase 1 (Plk1), as suggested by the effects of selective inhibitors of Plk1. Purified Plk1 bound to p31comet and phosphorylated it, resulting in the suppression of its activity (with TRIP13) to disassemble checkpoint complexes. Plk1 phosphorylated p31comet on S102, as suggested by the prevention of the phosphorylation of this residue in checkpoint extracts by the selective Plk1 inhibitor BI-2536 and by the phosphorylation of S102 with purified Plk1. An S102A mutant of p31comet had a greatly decreased sensitivity to inhibition by Plk1 of its action to disassemble mitotic checkpoint complexes. We propose that the phosphorylation of p31comet by Plk1 prevents a futile cycle of MCC assembly and disassembly during the active mitotic checkpoint.
Collapse
Affiliation(s)
- Sharon Kaisari
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | - Pnina Shomer
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | - Tamar Ziv
- Department of Biology, Smoler Proteomics Center, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Danielle Sitry-Shevah
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | - Shirly Miniowitz-Shemtov
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | - Adar Teichner
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | - Avram Hershko
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel;
| |
Collapse
|
79
|
Gao Y, Liu S, Guo Q, Zhang S, Zhao Y, Wang H, Li T, Gong Y, Wang Y, Zhang T, Dong Z, Bacich D, Chowdhury WH, Rodriguez R, Wang Z. Increased expression of TRIP13 drives the tumorigenesis of bladder cancer in association with the EGFR signaling pathway. Int J Biol Sci 2019; 15:1488-1499. [PMID: 31337978 PMCID: PMC6643140 DOI: 10.7150/ijbs.32718] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormone receptor interactor 13 (TRIP13) is a crucial regulator of the spindle apparatus checkpoint and double-stranded break repair. The abnormal expression of TRIP13 was recently found in several human cancers, whereas the role of TRIP13 in the development of bladder cancer (BCa) has not been fully elucidated. Here, we reported that TRIP13 expression was elevated in BCa tissues compared with normal bladder tissues. Notably, the increased expression of TRIP13 was correlated with advanced tumor stage, lymph node metastasis, distant metastasis and reduced survival in BCa patients. Knockdown of TRIP13 in bladder cancer cells suppressed proliferation, induced cell cycle arrest, promoted apoptosis, and impaired cell motility, ultimately inhibiting tumor xenograft growth. Mechanistic investigations revealed that TRIP13 directly bound to epidermal growth factor receptor (EGFR), modulating the EGFR signaling pathway. Furthermore, TRIP13 expression was positively correlated with EGFR expression in BCa specimens, and the high expression of both TRIP13 and EGFR predicted poor survival. Overall, our results underscore the crucial role of TRIP13 in the tumorigenesis of BCa and provide a novel biomarker and therapeutic target for BCa treatment.
Collapse
Affiliation(s)
- Yanjun Gao
- Department of Urology, The Second Hospital of Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou 730000, China
| | - Shanhui Liu
- Department of Urology, The Second Hospital of Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou 730000, China
| | - Qi Guo
- Department of Urology, The Second Hospital of Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou 730000, China
| | - Su Zhang
- Department of Urology, The Second Hospital of Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou 730000, China
| | - Youli Zhao
- Department of Urology, The Second Hospital of Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou 730000, China
| | - Hanzhang Wang
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tianbao Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Yuwen Gong
- Department of Urology, The Second Hospital of Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou 730000, China
| | - Yuhan Wang
- Department of Urology, The Second Hospital of Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou 730000, China
| | - Tao Zhang
- Department of Urology, The Second Hospital of Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou 730000, China
| | - Zhilong Dong
- Department of Urology, The Second Hospital of Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou 730000, China
| | - Dean Bacich
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Wasim H Chowdhury
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ronald Rodriguez
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhiping Wang
- Department of Urology, The Second Hospital of Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou 730000, China
| |
Collapse
|
80
|
Di S, Li M, Ma Z, Guo K, Li X, Yan X. TRIP13 upregulation is correlated with poor prognosis and tumor progression in esophageal squamous cell carcinoma. Pathol Res Pract 2019; 215:152415. [DOI: 10.1016/j.prp.2019.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
|
81
|
Ma HT, Poon RYC. TRIP13 Functions in the Establishment of the Spindle Assembly Checkpoint by Replenishing O-MAD2. Cell Rep 2019; 22:1439-1450. [PMID: 29425500 DOI: 10.1016/j.celrep.2018.01.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/10/2017] [Accepted: 01/10/2018] [Indexed: 12/14/2022] Open
Abstract
The spindle assembly checkpoint (SAC) prevents premature segregation of chromosomes during mitosis. This process requires structural remodeling of MAD2 from O-MAD2 to C-MAD2 conformation. After the checkpoint is satisfied, C-MAD2 is reverted to O-MAD2 to allow anaphase-promoting complex/cyclosome (APC/C) to trigger anaphase. Recently, the AAA+-ATPase TRIP13 was shown to act in concert with p31comet to catalyze C- to O-MAD2. Paradoxically, although C-MAD2 is present in TRIP13-deficient cells, the SAC cannot be activated. Using a degron-mediated system to uncouple TRIP13 from O- and C-MAD2 equilibrium, we demonstrated that the loss of TRIP13 did not immediately abolish the SAC, but the resulting C-MAD2-only environment was insufficient to enable the SAC. These results favor a model in which MAD2-CDC20 interaction is coupled directly to the conversion of O- to C-MAD2 instead of one that involves unliganded C-MAD2. TRIP13 replenishes the O-MAD2 pool for activation by unattached kinetochores.
Collapse
Affiliation(s)
- Hoi Tang Ma
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Randy Y C Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
82
|
Cupido T, Pisa R, Kelley ME, Kapoor TM. Designing a chemical inhibitor for the AAA protein spastin using active site mutations. Nat Chem Biol 2019; 15:444-452. [PMID: 30778202 PMCID: PMC6558985 DOI: 10.1038/s41589-019-0225-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/21/2018] [Indexed: 11/10/2022]
Abstract
Spastin is a microtubule-severing AAA (ATPases associated with diverse cellular activities) protein needed for cell division and intracellular vesicle transport. Currently, we lack chemical inhibitors to probe spastin function in such dynamic cellular processes. To design a chemical inhibitor of spastin, we tested selected heterocyclic scaffolds against wild-type protein and constructs with engineered mutations in the nucleotide-binding site that do not substantially disrupt ATPase activity. These data, along with computational docking, guided improvements in compound potency and selectivity and led to spastazoline, a pyrazolyl-pyrrolopyrimidine-based cell-permeable probe for spastin. These studies also identified spastazoline-resistance-conferring point mutations in spastin. Spastazoline, along with the matched inhibitor-sensitive and inhibitor-resistant cell lines we generated, were used in parallel experiments to dissect spastin-specific phenotypes in dividing cells. Together, our findings suggest how chemical probes for AAA proteins, along with inhibitor resistance-conferring mutations, can be designed and used to dissect dynamic cellular processes.
Collapse
Affiliation(s)
- Tommaso Cupido
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Rudolf Pisa
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Megan E Kelley
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
83
|
Setiaputra D, Durocher D. Shieldin - the protector of DNA ends. EMBO Rep 2019; 20:embr.201847560. [PMID: 30948458 DOI: 10.15252/embr.201847560] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/26/2019] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
DNA double-strand breaks are a threat to genome integrity and cell viability. The nucleolytic processing of broken DNA ends plays a central role in dictating the repair processes that will mend these lesions. Usually, DNA end resection promotes repair by homologous recombination, whereas minimally processed ends are repaired by non-homologous end joining. Important in this process is the chromatin-binding protein 53BP1, which inhibits DNA end resection. How 53BP1 shields DNA ends from nucleases has been an enduring mystery. The recent discovery of shieldin, a four-subunit protein complex with single-stranded DNA-binding activity, illuminated a strong candidate for the ultimate effector of 53BP1-dependent end protection. Shieldin consists of REV7, a known 53BP1-pathway component, and three hitherto uncharacterized proteins: C20orf196 (SHLD1), FAM35A (SHLD2), and CTC-534A2.2 (SHLD3). Shieldin promotes many 53BP1-associated activities, such as the protection of DNA ends, non-homologous end joining, and immunoglobulin class switching. This review summarizes the identification of shieldin and the various models of shieldin action and highlights some outstanding questions requiring answers to gain a full molecular understanding of shieldin function.
Collapse
Affiliation(s)
- Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
84
|
Choi E, Kikuchi S, Gao H, Brodzik K, Nassour I, Yopp A, Singal AG, Zhu H, Yu H. Mitotic regulators and the SHP2-MAPK pathway promote IR endocytosis and feedback regulation of insulin signaling. Nat Commun 2019; 10:1473. [PMID: 30931927 PMCID: PMC6443781 DOI: 10.1038/s41467-019-09318-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Insulin controls glucose homeostasis and cell growth through bifurcated signaling pathways. Dysregulation of insulin signaling is linked to diabetes and cancer. The spindle checkpoint controls the fidelity of chromosome segregation during mitosis. Here, we show that insulin receptor substrate 1 and 2 (IRS1/2) cooperate with spindle checkpoint proteins to promote insulin receptor (IR) endocytosis through recruiting the clathrin adaptor complex AP2 to IR. A phosphorylation switch of IRS1/2 orchestrated by extracellular signal-regulated kinase 1 and 2 (ERK1/2) and Src homology phosphatase 2 (SHP2) ensures selective internalization of activated IR. SHP2 inhibition blocks this feedback regulation and growth-promoting IR signaling, prolongs insulin action on metabolism, and improves insulin sensitivity in mice. We propose that mitotic regulators and SHP2 promote feedback inhibition of IR, thereby limiting the duration of insulin signaling. Targeting this feedback inhibition can improve insulin sensitivity. The mechanisms promoting insulin resistance at the receptor level are poorly understood. Here, Choi et al. show that mitotic proteins and the SHP2-MAPK pathway regulate receptor endocytosis and insulin signaling feedback, identifying a potential role for SHP2 inhibitors to treat diabetes.
Collapse
Affiliation(s)
- Eunhee Choi
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Sotaro Kikuchi
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Haishan Gao
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Karolina Brodzik
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Ibrahim Nassour
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Adam Yopp
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Amit G Singal
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA.
| |
Collapse
|
85
|
Characterization of Pch2 localization determinants reveals a nucleolar-independent role in the meiotic recombination checkpoint. Chromosoma 2019; 128:297-316. [PMID: 30859296 DOI: 10.1007/s00412-019-00696-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
The meiotic recombination checkpoint blocks meiotic cell cycle progression in response to synapsis and/or recombination defects to prevent aberrant chromosome segregation. The evolutionarily conserved budding yeast Pch2TRIP13 AAA+ ATPase participates in this pathway by supporting phosphorylation of the Hop1HORMAD adaptor at T318. In the wild type, Pch2 localizes to synapsed chromosomes and to the unsynapsed rDNA region (nucleolus), excluding Hop1. In contrast, in synaptonemal complex (SC)-defective zip1Δ mutants, which undergo checkpoint activation, Pch2 is detected only on the nucleolus. Alterations in some epigenetic marks that lead to Pch2 dispersion from the nucleolus suppress zip1Δ-induced checkpoint arrest. These observations have led to the notion that Pch2 nucleolar localization could be important for the meiotic recombination checkpoint. Here we investigate how Pch2 chromosomal distribution impacts checkpoint function. We have generated and characterized several mutations that alter Pch2 localization pattern resulting in aberrant Hop1 distribution and compromised meiotic checkpoint response. Besides the AAA+ signature, we have identified a basic motif in the extended N-terminal domain critical for Pch2's checkpoint function and localization. We have also examined the functional relevance of the described Orc1-Pch2 interaction. Both proteins colocalize in the rDNA, and Orc1 depletion during meiotic prophase prevents Pch2 targeting to the rDNA allowing unwanted Hop1 accumulation on this region. However, Pch2 association with SC components remains intact in the absence of Orc1. We finally show that checkpoint activation is not affected by the lack of Orc1 demonstrating that, in contrast to previous hypotheses, nucleolar localization of Pch2 is actually dispensable for the meiotic checkpoint.
Collapse
|
86
|
Choi E, Yu H. Spindle Checkpoint Regulators in Insulin Signaling. Front Cell Dev Biol 2018; 6:161. [PMID: 30555826 PMCID: PMC6281718 DOI: 10.3389/fcell.2018.00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
The spindle checkpoint ensures accurate chromosome segregation during mitosis and guards against aneuploidy. Insulin signaling governs metabolic homeostasis and cell growth, and its dysregulation leads to metabolic disorders, such as diabetes. These critical pathways have been extensively investigated, but a link between the two has not been established until recently. Our recent study reveals a critical role of spindle checkpoint regulators in insulin signaling and metabolic homeostasis through regulating endocytosis of the insulin receptor (IR). These findings have linked spindle checkpoint proteins to metabolic regulation, expanding the connection between cell division and metabolism. Here, we briefly review the unexpected roles of spindle checkpoint regulators in vesicle trafficking and insulin signaling.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
87
|
Liu M, Qiu YL, Jin T, Zhou Y, Mao ZY, Zhang YJ. Meta-analysis of microarray datasets identify several chromosome segregation-related cancer/testis genes potentially contributing to anaplastic thyroid carcinoma. PeerJ 2018; 6:e5822. [PMID: 30386706 PMCID: PMC6203939 DOI: 10.7717/peerj.5822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023] Open
Abstract
AIM Anaplastic thyroid carcinoma (ATC) is the most lethal thyroid malignancy. Identification of novel drug targets is urgently needed. MATERIALS & METHODS We re-analyzed several GEO datasets by systematic retrieval and data merging. Differentially expressed genes (DEGs) were filtered out. We also performed pathway enrichment analysis to interpret the data. We predicted key genes based on protein-protein interaction networks, weighted gene co-expression network analysis and genes' cancer/testis expression pattern. We also further characterized these genes using data from the Cancer Genome Atlas (TCGA) project and gene ontology annotation. RESULTS Cell cycle-related pathways were significantly enriched in upregulated genes in ATC. We identified TRIP13, DLGAP5, HJURP, CDKN3, NEK2, KIF15, TTK, KIF2C, AURKA and TPX2 as cell cycle-related key genes with cancer/testis expression pattern. We further uncovered that most of these putative key genes were critical components during chromosome segregation. CONCLUSION We predicted several key genes harboring potential therapeutic value in ATC. Cell cycle-related processes, especially chromosome segregation, may be the key to tumorigenesis and treatment of ATC.
Collapse
Affiliation(s)
- Mu Liu
- The First Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Lu Qiu
- The First Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tong Jin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yin Zhou
- The First Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi-Yuan Mao
- Department of Human Anatomy, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong-Jie Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
88
|
Kim DH, Han JS, Ly P, Ye Q, McMahon MA, Myung K, Corbett KD, Cleveland DW. TRIP13 and APC15 drive mitotic exit by turnover of interphase- and unattached kinetochore-produced MCC. Nat Commun 2018; 9:4354. [PMID: 30341343 PMCID: PMC6195577 DOI: 10.1038/s41467-018-06774-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022] Open
Abstract
The mitotic checkpoint ensures accurate chromosome segregation through assembly of the mitotic checkpoint complex (MCC), a soluble inhibitor of the anaphase-promoting complex/cyclosome (APC/C) produced by unattached kinetochores. MCC is also assembled during interphase by Mad1/Mad2 bound at nuclear pores, thereby preventing premature mitotic exit prior to kinetochore maturation and checkpoint activation. Using degron tagging to rapidly deplete the AAA+ ATPase TRIP13, we show that its catalytic activity is required to maintain a pool of open-state Mad2 for MCC assembly, thereby supporting mitotic checkpoint activation, but is also required for timely mitotic exit through catalytic disassembly of MCC. Strikingly, combining TRIP13 depletion with elimination of APC15-dependent Cdc20 ubiquitination/degradation results in a complete inability to exit mitosis, even when MCC assembly at unattached kinetochores is prevented. Thus, mitotic exit requires MCC produced either in interphase or mitosis to be disassembled by TRIP13-catalyzed removal of Mad2 or APC15-driven ubiquitination/degradation of its Cdc20 subunit.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Joo Seok Han
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Peter Ly
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Qiaozhen Ye
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Moira A McMahon
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA.,Ionis Pharmaceuticals, 2855 Gazelle Ct, Carlsbad, CA, 92010, USA
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.,School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA. .,Department of Chemistry, University of California-San Diego, La Jolla, CA, 92093, USA.
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA. .,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
89
|
Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PMA, Bousbaa H. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett 2018; 440-441:64-81. [PMID: 30312726 DOI: 10.1016/j.canlet.2018.10.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Current microtubule-targeting agents (MTAs) remain amongst the most important antimitotic drugs used against a broad range of malignancies. By perturbing spindle assembly, MTAs activate the spindle assembly checkpoint (SAC), which induces mitotic arrest and subsequent apoptosis. However, besides toxic side effects and resistance, mitotic slippage and failure in triggering apoptosis in various cancer cells are limiting factors of MTAs efficacy. Alternative strategies to target mitosis without affecting microtubules have, thus, led to the identification of small molecules, such as those that target spindle Kinesins, Aurora and Polo-like kinases. Unfortunately, these so-called second-generation of antimitotics, encompassing mitotic blockers and mitotic drivers, have failed in clinical trials. Our recent understanding regarding the mechanisms of cell death during a mitotic arrest pointed out apoptosis as the main variable, providing an opportunity to control the cell fates and influence the effectiveness of antimitotics. Here, we provide an overview on the second-generation of antimitotics, and discuss possible strategies that exploit SAC activity, mitotic slippage/exit and apoptosis induction, in order to improve the efficacy of anticancer strategies that target mitosis.
Collapse
Affiliation(s)
- Ana C Henriques
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - Diana Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal
| | - Joel Pedrosa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
90
|
Dong L, Ding H, Li Y, Xue D, Li Z, Liu Y, Zhang T, Zhou J, Wang P. TRIP13 is a predictor for poor prognosis and regulates cell proliferation, migration and invasion in prostate cancer. Int J Biol Macromol 2018; 121:200-206. [PMID: 30267820 DOI: 10.1016/j.ijbiomac.2018.09.168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
Thyroid hormone receptor interactor 13 (TRIP13) has been reported to be overexpressed in serval types of human cancers, and regulate tumor cell proliferation, migration and invasion. However, the role of TRIP13 in prostate cancer was still unclear. In our study, the correlation between TRIP13 expression and clinical parameters including prognosis was evaluated in 160 prostate cancer patients. Moreover, the MTT assay, cell migration and invasion assays were performed to assess the effect of TRIP13 on prostate cancer cell biological behaviour. In our results, the expression status of TRIP13 was observed to be elevated in prostate cancer tissue samples through analyzing microarray (GSE55945). Furthermore, mRNA and protein TRIP13 expression were confirmed to be overexpressed in prostate cancer tissue samples and cell lines. High-expression of TRIP13 was correlated with present lymph node involvement, distant metastasis, high Gleason score, levels of serum PSA and poor prognosis in prostate cancer patients. The gain-of-function and loss-of-function studies suggested that TRIP13 functioned as oncogene to regulate prostate cancer cell proliferation, migration, invasion through controlling YWHAZ and epithelial-mesenchymal transition (EMT)-associated genes. In conclusion, TRIP13 is correlated with clinical progression and poor prognosis, and serves as oncogene in prostate cancer.
Collapse
Affiliation(s)
- Liming Dong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Honglin Ding
- Department of Urology, The Affiliated Hospital of Chifeng Medical College, Chifeng 024000, Inner Mongolia, China
| | - Yanpei Li
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Dongwei Xue
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Zhi Li
- Department of Ethnpharmacology, School of Pharmaeutical Scineces, China Medical University, Shenyang 110000, Liaoning, China
| | - Yili Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Teng Zhang
- Department of Urology, Tachengqu Hospital Affiliated of China Medical University, Tacheng 834700, Xinjiang, China
| | - Jian Zhou
- Department of Urology, Tachengqu Hospital Affiliated of China Medical University, Tacheng 834700, Xinjiang, China
| | - Ping Wang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| |
Collapse
|
91
|
Rev7 dimerization is important for assembly and function of the Rev1/Polζ translesion synthesis complex. Proc Natl Acad Sci U S A 2018; 115:E8191-E8200. [PMID: 30111544 DOI: 10.1073/pnas.1801149115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The translesion synthesis (TLS) polymerases Polζ and Rev1 form a complex that enables replication of damaged DNA. The Rev7 subunit of Polζ, which is a multifaceted HORMA (Hop1, Rev7, Mad2) protein with roles in TLS, DNA repair, and cell-cycle control, facilitates assembly of this complex by binding Rev1 and the catalytic subunit of Polζ, Rev3. Rev7 interacts with Rev3 by a mechanism conserved among HORMA proteins, whereby an open-to-closed transition locks the ligand underneath the "safety belt" loop. Dimerization of HORMA proteins promotes binding and release of this ligand, as exemplified by the Rev7 homolog, Mad2. Here, we investigate the dimerization of Rev7 when bound to the two Rev7-binding motifs (RBMs) in Rev3 by combining in vitro analyses of Rev7 structure and interactions with a functional assay in a Rev7-/- cell line. We demonstrate that Rev7 uses the conventional HORMA dimerization interface both to form a homodimer when tethered by the two RBMs in Rev3 and to heterodimerize with other HORMA domains, Mad2 and p31comet Structurally, the Rev7 dimer can bind only one copy of Rev1, revealing an unexpected Rev1/Polζ architecture. In cells, mutation of the Rev7 dimer interface increases sensitivity to DNA damage. These results provide insights into the structure of the Rev1/Polζ TLS assembly and highlight the function of Rev7 homo- and heterodimerization.
Collapse
|
92
|
Aziz K, Sieben CJ, Jeganathan KB, Hamada M, Davies BA, Velasco ROF, Rahman N, Katzmann DJ, van Deursen JM. Mosaic-variegated aneuploidy syndrome mutation or haploinsufficiency in Cep57 impairs tumor suppression. J Clin Invest 2018; 128:3517-3534. [PMID: 30035751 PMCID: PMC6063474 DOI: 10.1172/jci120316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/06/2018] [Indexed: 12/29/2022] Open
Abstract
A homozygous truncating frameshift mutation in CEP57 (CEP57T/T) has been identified in a subset of mosaic-variegated aneuploidy (MVA) patients; however, the physiological roles of the centrosome-associated protein CEP57 that contribute to disease are unknown. To investigate these, we have generated a mouse model mimicking this disease mutation. Cep57T/T mice died within 24 hours after birth with short, curly tails and severely impaired vertebral ossification. Osteoblasts in lumbosacral vertebrae of Cep57T/T mice were deficient for Fgf2, a Cep57 binding partner implicated in diverse biological processes, including bone formation. Furthermore, a broad spectrum of tissues of Cep57T/T mice had severe aneuploidy at birth, consistent with the MVA patient phenotype. Cep57T/T mouse embryonic fibroblasts and patient-derived skin fibroblasts failed to undergo centrosome maturation in G2 phase, causing premature centriole disjunction, centrosome amplification, aberrant spindle formation, and high rates of chromosome missegregation. Mice heterozygous for the truncating frameshift mutation or a Cep57-null allele were overtly indistinguishable from WT mice despite reduced Cep57 protein levels, yet prone to aneuploidization and cancer, with tumors lacking evidence for loss of heterozygosity. This study identifies Cep57 as a haploinsufficient tumor suppressor with biologically diverse roles in centrosome maturation and Fgf2-mediated bone formation.
Collapse
Affiliation(s)
- Khaled Aziz
- Department of Biochemistry and Molecular Biology and
| | | | - Karthik B. Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Masakazu Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Nazneen Rahman
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | | | - Jan M. van Deursen
- Department of Biochemistry and Molecular Biology and
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
93
|
Zhang G, Nilsson J. The closed form of Mad2 is bound to Mad1 and Cdc20 at unattached kinetochores. Cell Cycle 2018; 17:1087-1091. [PMID: 29895228 DOI: 10.1080/15384101.2018.1480209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures accurate chromosome segregation by delaying anaphase onset in response to unattached kinetochores. Anaphase is delayed by the generation of the mitotic checkpoint complex (MCC) composed of the checkpoint proteins Mad2 and BubR1/Bub3 bound to the protein Cdc20. Current models assume that MCC production is catalyzed at unattached kinetochores and that the Mad1/Mad2 complex is instrumental in the conversion of Mad2 from an open form (O-Mad2) to a closed form (C-Mad2) that can bind to Cdc20. Importantly the levels of Mad2 at kinetochores correlate with SAC activity but whether C-Mad2 at kinetochores exclusively represents its complex with Mad1 is not fully established. Here we use a recently established C-Mad2 specific monoclonal antibody to show that Cdc20 and C-Mad2 levels correlate at kinetochores and that depletion of Cdc20 reduces Mad2 but not Mad1 kinetochore levels. Importantly reintroducing wild type Cdc20 but not Cdc20 R132A, a mutant form that cannot bind Mad2, restores Mad2 levels. In agreement with this live cell imaging of fluorescent tagged Mad2 reveals that Cdc20 depletion strongly reduces Mad2 localization to kinetochores. These results support the presence of Mad2-Cdc20 complexes at kinetochores in agreement with current models of the SAC but also argue that Mad2 levels at kinetochores cannot be used as a direct readout of Mad1 levels.
Collapse
Affiliation(s)
- Gang Zhang
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of health and medical sciences , University of Copenhagen , Copenhagen , Denmark.,b Cancer Institute , The Affiliated Hospital of Qingdao University , Qingdao , China.,c Qingdao Cancer Institute , Qingdao , China
| | - Jakob Nilsson
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of health and medical sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
94
|
Alfieri C, Chang L, Barford D. Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature 2018; 559:274-278. [PMID: 29973720 PMCID: PMC6057611 DOI: 10.1038/s41586-018-0281-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/16/2018] [Indexed: 11/09/2022]
Abstract
The maintenance of genome stability during mitosis is coordinated by the spindle assembly checkpoint (SAC) through its effector the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex (APC/C, also known as the cyclosome)1,2. Unattached kinetochores control MCC assembly by catalysing a change in the topology of the β-sheet of MAD2 (an MCC subunit), thereby generating the active closed MAD2 (C-MAD2) conformer3-5. Disassembly of free MCC, which is required for SAC inactivation and chromosome segregation, is an ATP-dependent process driven by the AAA+ ATPase TRIP13. In combination with p31comet, an SAC antagonist6, TRIP13 remodels C-MAD2 into inactive open MAD2 (O-MAD2)7-10. Here, we present a mechanism that explains how TRIP13-p31comet disassembles the MCC. Cryo-electron microscopy structures of the TRIP13-p31comet-C-MAD2-CDC20 complex reveal that p31comet recruits C-MAD2 to a defined site on the TRIP13 hexameric ring, positioning the N terminus of C-MAD2 (MAD2NT) to insert into the axial pore of TRIP13 and distorting the TRIP13 ring to initiate remodelling. Molecular modelling suggests that by gripping MAD2NT within its axial pore, TRIP13 couples sequential ATP-driven translocation of its hexameric ring along MAD2NT to push upwards on, and simultaneously rotate, the globular domains of the p31comet-C-MAD2 complex. This unwinds a region of the αA helix of C-MAD2 that is required to stabilize the C-MAD2 β-sheet, thus destabilizing C-MAD2 in favour of O-MAD2 and dissociating MAD2 from p31comet. Our study provides insights into how specific substrates are recruited to AAA+ ATPases through adaptor proteins and suggests a model of how translocation through the axial pore of AAA+ ATPases is coupled to protein remodelling.
Collapse
Affiliation(s)
| | - Leifu Chang
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
95
|
Zhou K, Zhang W, Zhang Q, Gui R, Zhao H, Chai X, Li Y, Wei X, Song Y. Loss of thyroid hormone receptor interactor 13 inhibits cell proliferation and survival in human chronic lymphocytic leukemia. Oncotarget 2018; 8:25469-25481. [PMID: 28424416 PMCID: PMC5421944 DOI: 10.18632/oncotarget.16038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Background The genetic regulation of apoptosis and cell proliferation plays a role in the growth of chronic lymphocytic leukemia (CLL), the most common form of leukemia in the Western hemisphere. Although thyroid hormone receptor interactors (TRIPs) are known to play roles in cell cycle, the potential involvement of the novel family member TRIP13 in CLL has not yet been investigated. Methods Quantitative PCR (qPCR) was used to detect expression of TRIP13 in 36 CLL patients and 33 healthy donors CD19+ B cells. Loss-of-function (siRNA) assays were used to alter TRIP13 expression levels. The effect of TRIP13 on cell proliferation and apoptosis was measured by MTT, Annexin V-based flow cytometry and Caspase 3/7 activity assay. Affymetrix GeneChip and Ingenuity Pathway Analysis (IPA) were used to describe an overview of TRIP13 potential biological function and downstream pathways. Dual-luciferase reporter assay was performed to assess the promoting effect of c-MYC on TRIP13 transcription. RESULTS The qPCR data showed that TRIP13 is significantly over-expressed in CLL patients. Microarray analyses indicated that the biological function of TRIP13 in CLL is majorly cell apoptosis and cell proliferation associated. TRIP13 siRNA expressing cells exhibited a slower cell proliferation rate and underwent apoptosis compared with control cells. TRIP13 knockdown induced CLL cells apoptosis through PUMA independent of p53. TRIP13 up-regulation is induced by c-MYC dependent transcriptional activation. Conclusion Overall, our data suggest the bio-function of TRIP13 in CLL cell for the first time, and that this gene might be a therapeutic target for CLL.
Collapse
Affiliation(s)
- Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Wentao Zhang
- Armed Police Forces Hospital of Henan, People's Republic of China
| | - Qing Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Ruirui Gui
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Huifang Zhao
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Xiaofei Chai
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Yufu Li
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Xudong Wei
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People's Republic of China
| |
Collapse
|
96
|
Sheng N, Yan L, Wu K, You W, Gong J, Hu L, Tan G, Chen H, Wang Z. TRIP13 promotes tumor growth and is associated with poor prognosis in colorectal cancer. Cell Death Dis 2018. [PMID: 29540729 PMCID: PMC5852242 DOI: 10.1038/s41419-018-0434-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is one of the most common neoplasms worldwide. However, the mechanisms underlying its development are still poorly understood. Thyroid hormone Receptor Interactor 13 (TRIP13) is a key mitosis regulator, and recent evidence has shown that it is an oncogene. Here, we report that TRIP13, which is overexpressed in CRC, is correlated with the CEA (carcino-embryonic antigen), CA19-9 (carbohydrate antigen 19-9) and pTNM (pathologic primary tumor, lymph nodes, distant metastasis) classification. Multivariate analyses showed that TRIP13 might serve as an independent prognostic marker of CRC. We also found that TRIP13 promoted CRC cell proliferation, invasion and migration in vitro and subcutaneous tumor formation in vivo. Furthermore, the potential mechanism underlying these effects involves the interaction of TRIP13 with a 14-3-3 protein, YWHAZ, which mediates G2-M transition and epithelial-mesenchymal transition (EMT). Together, these findings suggest that TRIP13 may be a potential biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Nengquan Sheng
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Li Yan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Kai Wu
- State Key Laboratory of Medical Genomics, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Weiqiang You
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jianfeng Gong
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Landian Hu
- State Key Laboratory of Medical Genomics, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gewen Tan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Hongqi Chen
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Zhigang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
97
|
Marks DH, Thomas R, Chin Y, Shah R, Khoo C, Benezra R. Mad2 Overexpression Uncovers a Critical Role for TRIP13 in Mitotic Exit. Cell Rep 2018; 19:1832-1845. [PMID: 28564602 DOI: 10.1016/j.celrep.2017.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022] Open
Abstract
The mitotic checkpoint ensures proper segregation of chromosomes by delaying anaphase until all kinetochores are bound to microtubules. This inhibitory signal is composed of a complex containing Mad2, which inhibits anaphase progression. The complex can be disassembled by p31comet and TRIP13; however, TRIP13 knockdown has been shown to cause only a mild mitotic delay. Overexpression of checkpoint genes, as well as TRIP13, is correlated with chromosomal instability (CIN) in cancer, but the initial effects of Mad2 overexpression are prolonged mitosis and decreased proliferation. Here, we show that TRIP13 overexpression significantly reduced, and TRIP13 reduction significantly exacerbated, the mitotic delay associated with Mad2 overexpression, but not that induced by microtubule depolymerization. The combination of Mad2 overexpression and TRIP13 loss reduced the ability of checkpoint complexes to disassemble and significantly inhibited the proliferation of cells in culture and tumor xenografts. These results identify an unexpected dependency on TRIP13 in cells overexpressing Mad2.
Collapse
Affiliation(s)
- Daniel Henry Marks
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Rozario Thomas
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Yvette Chin
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Riddhi Shah
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Christine Khoo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Robert Benezra
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA.
| |
Collapse
|
98
|
Tao Y, Yang G, Yang H, Song D, Hu L, Xie B, Wang H, Gao L, Gao M, Xu H, Xu Z, Wu X, Zhang Y, Zhu W, Zhan F, Shi J. TRIP13 impairs mitotic checkpoint surveillance and is associated with poor prognosis in multiple myeloma. Oncotarget 2018; 8:26718-26731. [PMID: 28157697 PMCID: PMC5432292 DOI: 10.18632/oncotarget.14957] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 01/10/2017] [Indexed: 11/25/2022] Open
Abstract
AAA-ATPase TRIP13 is one of the chromosome instability gene recently established in multiple myeloma (MM), the second most common and incurable hematological malignancy. However, the specific function of TRIP13 in MM is largely unknown. Using sequential gene expression profiling, we demonstrated that high TRIP13 expression levels were positively correlated with progression, disease relapse, and poor prognosis in MM patients. Overexpressing human TRIP13 in myeloma cells prompted cell growth and drug resistance, and overexpressing murine TRIP13, which shares 93% sequence identity with human TRIP13, led to colony formation of NIH/3T3 fibroblasts in vitro and tumor formation in vivo. Meanwhile, the knockdown of TRIP13 inhibited myeloma cell growth, induced cell apoptosis, and reduced tumor burden in xenograft MM mice. Mechanistically, we observed that the overexpression of TRIP13 abrogated the spindle checkpoint and induced proteasome-mediated degradation of MAD2 primarily through the Akt pathway. Thus, our results demonstrate that TRIP13 may serve as a biomarker for MM disease development and prognosis, making it a potential target for future therapies.
Collapse
Affiliation(s)
- Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongxing Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.,Shanghai Chenshan Plant Science Research Center, Chienes Academy of Sciences, Shanghai 201602, China
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Bingqian Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Houcai Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Minjie Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongwei Xu
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yiwen Zhang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fenghuang Zhan
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
99
|
Mechanistic insight into TRIP13-catalyzed Mad2 structural transition and spindle checkpoint silencing. Nat Commun 2017; 8:1956. [PMID: 29208896 PMCID: PMC5717197 DOI: 10.1038/s41467-017-02012-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/01/2017] [Indexed: 01/20/2023] Open
Abstract
The spindle checkpoint maintains genomic stability and prevents aneuploidy. Unattached kinetochores convert the latent open conformer of the checkpoint protein Mad2 (O-Mad2) to the active closed conformer (C-Mad2), bound to Cdc20. C-Mad2–Cdc20 is incorporated into the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex/cyclosome (APC/C). The C-Mad2-binding protein p31comet and the ATPase TRIP13 promote MCC disassembly and checkpoint silencing. Here, using nuclear magnetic resonance (NMR) spectroscopy, we show that TRIP13 and p31comet catalyze the conversion of C-Mad2 to O-Mad2, without disrupting its stably folded core. We determine the crystal structure of human TRIP13, and identify functional TRIP13 residues that mediate p31comet–Mad2 binding and couple ATP hydrolysis to local unfolding of Mad2. TRIP13 and p31comet prevent APC/C inhibition by MCC components, but cannot reactivate APC/C already bound to MCC. Therefore, TRIP13–p31comet intercepts and disassembles free MCC not bound to APC/C through mediating the local unfolding of the Mad2 C-terminal region. The spindle checkpoint ensures the fidelity of chromosome segregation during mitosis and meiosis. Here the authors use a combination of biochemical and structural biology approaches to show how the TRIP13 ATPase and its adaptor, p31comet, catalyze the conversion of the checkpoint protein Mad2 between latent and active forms
Collapse
|
100
|
Taming the Beast: Control of APC/C Cdc20-Dependent Destruction. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:111-121. [PMID: 29133301 DOI: 10.1101/sqb.2017.82.033712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multisubunit ubiquitin ligase that triggers the metaphase-to-anaphase transition in the cell cycle by targeting the substrates cyclin B and securin for destruction. APC/C activity toward these two key substrates requires the coactivator Cdc20. To ensure that cells enter mitosis and partition their duplicated genome with high accuracy, APC/CCdc20 activity must be tightly controlled. Here, we discuss the mechanisms that regulate APC/CCdc20 activity both before and during mitosis. We focus our discussion primarily on the chromosomal pathways that both accelerate and delay APC/C activation by targeting Cdc20 to opposing fates. The findings discussed provide an overview of how cells control the activation of this major cell cycle regulator to ensure both accurate and timely cell division.
Collapse
|