51
|
Wasserman MR, Schauer GD, O'Donnell ME, Liu S. Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase. Cell 2020; 178:600-611.e16. [PMID: 31348887 DOI: 10.1016/j.cell.2019.06.032] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 04/05/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
The eukaryotic replicative helicase CMG is a closed ring around double-stranded (ds)DNA at origins yet must transition to single-stranded (ss)DNA for helicase action. CMG must also handle repair intermediates, such as reversed forks that lack ssDNA. Here, using correlative single-molecule fluorescence and force microscopy, we show that CMG harbors a ssDNA gate that enables transitions between ss and dsDNA. When coupled to DNA polymerase, CMG remains on ssDNA, but when uncoupled, CMG employs this gate to traverse forked junctions onto dsDNA. Surprisingly, CMG undergoes rapid diffusion on dsDNA and can transition back onto ssDNA to nucleate a functional replisome. The gate-distinct from that between Mcm2/5 used for origin loading-is intrinsic to CMG; however, Mcm10 promotes strand passage by enhancing the affinity of CMG to DNA. This gating process may explain the dsDNA-to-ssDNA transition of CMG at origins and help preserve CMG on dsDNA during fork repair.
Collapse
Affiliation(s)
- Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY 10065, USA
| | - Grant D Schauer
- Laboratory of DNA Replication, The Rockefeller University, New York, NY 10065, USA
| | - Michael E O'Donnell
- Laboratory of DNA Replication, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
52
|
Rad53 limits CMG helicase uncoupling from DNA synthesis at replication forks. Nat Struct Mol Biol 2020; 27:461-471. [PMID: 32341532 PMCID: PMC7225081 DOI: 10.1038/s41594-020-0407-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
Abstract
The coordination of DNA unwinding and synthesis at replication forks promotes efficient and faithful replication of chromosomal DNA. Disruption of the balance between helicase and polymerase activities during replication stress leads to fork progression defects and activation of the Rad53 checkpoint kinase, which is essential for the functional maintenance of stalled replication forks. The mechanism of Rad53-dependent fork stabilization is not known. Using reconstituted budding yeast replisomes, we show that mutational inactivation of the leading strand DNA polymerase, Pol ε, dNTP depletion, and chemical inhibition of DNA polymerases cause excessive DNA unwinding by the replicative DNA helicase, CMG, demonstrating that budding yeast replisomes lack intrinsic mechanisms that control helicase-polymerase coupling at the fork. Importantly, we find that the Rad53 kinase restricts excessive DNA unwinding at replication forks by limiting CMG helicase activity, suggesting a mechanism for fork stabilization by the replication checkpoint.
Collapse
|
53
|
Yuan Z, Georgescu R, Bai L, Zhang D, Li H, O'Donnell ME. DNA unwinding mechanism of a eukaryotic replicative CMG helicase. Nat Commun 2020; 11:688. [PMID: 32019936 PMCID: PMC7000775 DOI: 10.1038/s41467-020-14577-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
High-resolution structures have not been reported for replicative helicases at a replication fork at atomic resolution, a prerequisite to understanding the unwinding mechanism. The eukaryotic replicative CMG (Cdc45, Mcm2-7, GINS) helicase contains a Mcm2-7 motor ring, with the N-tier ring in front and the C-tier motor ring behind. The N-tier ring is structurally divided into a zinc finger (ZF) sub-ring followed by the oligosaccharide/oligonucleotide-binding (OB) fold ring. Here we report the cryo-EM structure of CMG on forked DNA at 3.9 Å, revealing that parental DNA enters the ZF sub-ring and strand separation occurs at the bottom of the ZF sub-ring, where the lagging strand is blocked and diverted sideways by OB hairpin-loops of Mcm3, Mcm4, Mcm6, and Mcm7. Thus, instead of employing a specific steric exclusion process, or even a separation pin, unwinding is achieved via a "dam-and-diversion tunnel" mechanism that does not require specific protein-DNA interaction. The C-tier motor ring contains spirally configured PS1 and H2I loops of Mcms 2, 3, 5, 6 that translocate on the spirally-configured leading strand, and thereby pull the preceding DNA segment through the diversion tunnel for strand separation.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Roxana Georgescu
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.,DNA Replication Laboratory, The Rockefeller University, New York, NY, USA
| | - Lin Bai
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Dan Zhang
- DNA Replication Laboratory, The Rockefeller University, New York, NY, USA
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA.
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,DNA Replication Laboratory, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
54
|
Zou Z, Liang T, Xu Z, Xie J, Zhang S, Chen W, Wan S, Ling Y, Zhang H. Protein interactions in T7 DNA replisome inhibit the bypass of abasic site by DNA polymerase. Mutagenesis 2019; 34:355-361. [PMID: 31318416 DOI: 10.1093/mutage/gez013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/14/2019] [Indexed: 11/13/2022] Open
Abstract
Abasic site as a common DNA lesion blocks DNA replication and is highly mutagenic. Protein interactions in T7 DNA replisome facilitate DNA replication and translesion DNA synthesis. However, bypass of an abasic site by T7 DNA replisome has never been investigated. In this work, we used T7 DNA replisome and T7 DNA polymerase alone as two models to study DNA replication on encountering an abasic site. Relative to unmodified DNA, abasic site strongly inhibited primer extension and completely blocked strand-displacement DNA synthesis, due to the decreased fraction of enzyme-DNA productive complex and the reduced average extension rates. Moreover, abasic site at DNA fork inhibited the binding of DNA polymerase or helicase onto fork and the binding between polymerase and helicase at fork. Notably and unexpectedly, we found DNA polymerase alone bypassed an abasic site on primer/template (P/T) substrate more efficiently than did polymerase and helicase complex bypass it at fork. The presence of gp2.5 further inhibited the abasic site bypass at DNA fork. Kinetic analysis showed that this inhibition at fork relative to that on P/T was due to the decreased fraction of productive complex instead of the average extension rates. Therefore, we found that protein interactions in T7 DNA replisome inhibited the bypass of DNA lesion, different from all the traditional concept that protein interactions or accessory proteins always promote DNA replication and DNA damage bypass, providing new insights in translesion DNA synthesis performed by DNA replisome.
Collapse
Affiliation(s)
- Zhenyu Zou
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tingting Liang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhongyan Xu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayu Xie
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shuming Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Weina Chen
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Siqi Wan
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,The Key Laboratory of Environment and Health Among Universities and Colleges in Fujian, School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
55
|
Defects in the GINS complex increase the instability of repetitive sequences via a recombination-dependent mechanism. PLoS Genet 2019; 15:e1008494. [PMID: 31815930 PMCID: PMC6922473 DOI: 10.1371/journal.pgen.1008494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/19/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Faithful replication and repair of DNA lesions ensure genome maintenance. During replication in eukaryotic cells, DNA is unwound by the CMG helicase complex, which is composed of three major components: the Cdc45 protein, Mcm2-7, and the GINS complex. The CMG in complex with DNA polymerase epsilon (CMG-E) participates in the establishment and progression of the replisome. Impaired functioning of the CMG-E was shown to induce genomic instability and promote the development of various diseases. Therefore, CMG-E components play important roles as caretakers of the genome. In Saccharomyces cerevisiae, the GINS complex is composed of the Psf1, Psf2, Psf3, and Sld5 essential subunits. The Psf1-1 mutant form fails to interact with Psf3, resulting in impaired replisome assembly and chromosome replication. Here, we show increased instability of repeat tracts (mononucleotide, dinucleotide, trinucleotide and longer) in yeast psf1-1 mutants. To identify the mechanisms underlying this effect, we analyzed repeated sequence instability using derivatives of psf1-1 strains lacking genes involved in translesion synthesis, recombination, or mismatch repair. Among these derivatives, deletion of RAD52, RAD51, MMS2, POL32, or PIF1 significantly decreased DNA repeat instability. These results, together with the observed increased amounts of single-stranded DNA regions and Rfa1 foci suggest that recombinational mechanisms make important contributions to repeat tract instability in psf1-1 cells. We propose that defective functioning of the CMG-E complex in psf1-1 cells impairs the progression of DNA replication what increases the contribution of repair mechanisms such as template switch and break-induced replication. These processes require sequence homology search which in case of a repeated DNA tract may result in misalignment leading to its expansion or contraction. Processes that ensure genome stability are crucial for all organisms to avoid mutations and decrease the risk of diseases. The coordinated activity of mechanisms underlying the maintenance of high-fidelity DNA duplication and repair is critical to deal with the malfunction of replication forks or DNA damage. Repeated sequences in DNA are particularly prone to instability; these sequences undergo expansions or contractions, leading in humans to various neurological, neurodegenerative, and neuromuscular disorders. A mutant form of one of the noncatalytic subunits of active DNA helicase complex impairs DNA replication. Here, we show that this form also significantly increases the instability of mononucleotide, dinucleotide, trinucleotide and longer repeat tracts. Our results suggest that in cells that harbor a mutated variant of the helicase complex, continuation of DNA replication is facilitated by recombination processes, and this mechanism can be highly mutagenic during repair synthesis through repetitive regions, especially regions that form secondary structures. Our results indicate that proper functioning of the DNA helicase complex is crucial for maintenance of the stability of repeated DNA sequences, especially in the context of recently described disorders in which mutations or deregulation of the human homologs of genes encoding DNA helicase subunits were observed.
Collapse
|
56
|
Lewis JS, Spenkelink LM, Schauer GD, Yurieva O, Mueller SH, Natarajan V, Kaur G, Maher C, Kay C, O'Donnell ME, van Oijen AM. Tunability of DNA Polymerase Stability during Eukaryotic DNA Replication. Mol Cell 2019; 77:17-25.e5. [PMID: 31704183 DOI: 10.1016/j.molcel.2019.10.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/25/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022]
Abstract
Structural and biochemical studies have revealed the basic principles of how the replisome duplicates genomic DNA, but little is known about its dynamics during DNA replication. We reconstitute the 34 proteins needed to form the S. cerevisiae replisome and show how changing local concentrations of the key DNA polymerases tunes the ability of the complex to efficiently recycle these proteins or to dynamically exchange them. Particularly, we demonstrate redundancy of the Pol α-primase DNA polymerase activity in replication and show that Pol α-primase and the lagging-strand Pol δ can be re-used within the replisome to support the synthesis of large numbers of Okazaki fragments. This unexpected malleability of the replisome might allow it to deal with barriers and resource challenges during replication of large genomes.
Collapse
Affiliation(s)
- Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Grant D Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olga Yurieva
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | - Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Varsha Natarajan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Gurleen Kaur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Claire Maher
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Callum Kay
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Michael E O'Donnell
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Cambridge, MA 02138, USA.
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
57
|
Abstract
The replisome quickly and accurately copies billions of DNA bases each cell division cycle. However, it can make errors, especially when the template DNA is damaged. In these cases, replication-coupled repair mechanisms remove the mistake or repair the template lesions to ensure high fidelity and complete copying of the genome. Failures in these genome maintenance activities generate mutations, rearrangements, and chromosome segregation problems that cause many human diseases. In this review, I provide a broad overview of replication-coupled repair pathways, explaining how they fix polymerase mistakes, respond to template damage that acts as obstacles to the replisome, deal with broken forks, and impact human health and disease.
Collapse
|
58
|
Yuan Z, Georgescu R, Santos RDLA, Zhang D, Bai L, Yao NY, Zhao G, O'Donnell ME, Li H. Ctf4 organizes sister replisomes and Pol α into a replication factory. eLife 2019; 8:47405. [PMID: 31589141 PMCID: PMC6800005 DOI: 10.7554/elife.47405] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
The current view is that eukaryotic replisomes are independent. Here we show that Ctf4 tightly dimerizes CMG helicase, with an extensive interface involving Psf2, Cdc45, and Sld5. Interestingly, Ctf4 binds only one Pol α-primase. Thus, Ctf4 may have evolved as a trimer to organize two helicases and one Pol α-primase into a replication factory. In the 2CMG–Ctf43–1Pol α-primase factory model, the two CMGs nearly face each other, placing the two lagging strands toward the center and two leading strands out the sides. The single Pol α-primase is centrally located and may prime both sister replisomes. The Ctf4-coupled-sister replisome model is consistent with cellular microscopy studies revealing two sister forks of an origin remain attached and are pushed forward from a protein platform. The replication factory model may facilitate parental nucleosome transfer during replication.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| | - Roxana Georgescu
- Howard Hughes Medical Institute, Chevy Chase, United States.,DNA Replication Laboratory, The Rockefeller University, New York, United States
| | | | - Daniel Zhang
- DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Lin Bai
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| | - Nina Y Yao
- DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Gongpu Zhao
- David Van Andel Advanced Cryo-EM Suite, Van Andel Institute, Grand Rapids, United States
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Chevy Chase, United States.,DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| |
Collapse
|
59
|
Whinn KS, Kaur G, Lewis JS, Schauer GD, Mueller SH, Jergic S, Maynard H, Gan ZY, Naganbabu M, Bruchez MP, O'Donnell ME, Dixon NE, van Oijen AM, Ghodke H. Nuclease dead Cas9 is a programmable roadblock for DNA replication. Sci Rep 2019; 9:13292. [PMID: 31527759 PMCID: PMC6746809 DOI: 10.1038/s41598-019-49837-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/31/2019] [Indexed: 01/19/2023] Open
Abstract
Limited experimental tools are available to study the consequences of collisions between DNA-bound molecular machines. Here, we repurpose a catalytically inactivated Cas9 (dCas9) construct as a generic, novel, targetable protein-DNA roadblock for studying mechanisms underlying enzymatic activities on DNA substrates in vitro. We illustrate the broad utility of this tool by demonstrating replication fork arrest by the specifically bound dCas9-guideRNA complex to arrest viral, bacterial and eukaryotic replication forks in vitro.
Collapse
Affiliation(s)
- Kelsey S Whinn
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Gurleen Kaur
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Jacob S Lewis
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Grant D Schauer
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, 10065, USA
| | - Stefan H Mueller
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Slobodan Jergic
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Hamish Maynard
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Zhong Yan Gan
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Matharishwan Naganbabu
- Department of Chemistry and Molecular Biosensors and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Marcel P Bruchez
- Department of Chemistry and Molecular Biosensors and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, 10065, USA
| | - Nicholas E Dixon
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Antoine M van Oijen
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| | - Harshad Ghodke
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
60
|
Perera HM, Behrmann MS, Hoang JM, Griffin WC, Trakselis MA. Contacts and context that regulate DNA helicase unwinding and replisome progression. Enzymes 2019; 45:183-223. [PMID: 31627877 DOI: 10.1016/bs.enz.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hexameric DNA helicases involved in the separation of duplex DNA at the replication fork have a universal architecture but have evolved from two separate protein families. The consequences are that the regulation, translocation polarity, strand specificity, and architectural orientation varies between phage/bacteria to that of archaea/eukaryotes. Once assembled and activated for single strand DNA translocation and unwinding, the DNA polymerase couples tightly to the helicase forming a robust replisome complex. However, this helicase-polymerase interaction can be challenged by various forms of endogenous or exogenous agents that can stall the entire replisome or decouple DNA unwinding from synthesis. The consequences of decoupling can be severe, leading to a build-up of ssDNA requiring various pathways for replication fork restart. All told, the hexameric helicase sits prominently at the front of the replisome constantly responding to a variety of obstacles that require transient unwinding/reannealing, traversal of more stable blocks, and alternations in DNA unwinding speed that regulate replisome progression.
Collapse
Affiliation(s)
- Himasha M Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Megan S Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Joy M Hoang
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Wezley C Griffin
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States.
| |
Collapse
|
61
|
Langston LD, O'Donnell ME. An explanation for origin unwinding in eukaryotes. eLife 2019; 8:e46515. [PMID: 31282859 PMCID: PMC6634965 DOI: 10.7554/elife.46515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/06/2019] [Indexed: 12/14/2022] Open
Abstract
Twin CMG complexes are assembled head-to-head around duplex DNA at eukaryotic origins of replication. Mcm10 activates CMGs to form helicases that encircle single-strand (ss) DNA and initiate bidirectional forks. How the CMGs melt duplex DNA while encircling it is unknown. Here we show that S. cerevisiae CMG tracks with force while encircling double-stranded (ds) DNA and that in the presence of Mcm10 the CMG melts long blocks of dsDNA while it encircles dsDNA. We demonstrate that CMG tracks mainly on the 3'-5' strand during duplex translocation, predicting that head-to-head CMGs at an origin exert force on opposite strands. Accordingly, we show that CMGs that encircle double strand DNA in a head-to-head orientation melt the duplex in an Mcm10-dependent reaction.
Collapse
Affiliation(s)
- Lance D Langston
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Michael E O'Donnell
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
62
|
Mueller SH, Spenkelink LM, van Oijen AM. When proteins play tag: the dynamic nature of the replisome. Biophys Rev 2019; 11:641-651. [PMID: 31273608 PMCID: PMC6682189 DOI: 10.1007/s12551-019-00569-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
DNA replication, or the copying of DNA, is a fundamental process to all life. The system of proteins that carries out replication, the replisome, encounters many roadblocks on its way. An inability of the replisome to properly overcome these roadblocks will negatively affect genomic integrity which in turn can lead to disease. Over the past decades, efforts by many researchers using a broad array of approaches have revealed roles for many different proteins during the initial response of the replisome upon encountering roadblocks. Here, we revisit what is known about DNA replication and the effect of roadblocks during DNA replication across different organisms. We also address how advances in single-molecule techniques have changed our view of the replisome from a highly stable machine with behavior dictated by deterministic principles to a dynamic system that is controlled by stochastic processes. We propose that these dynamics will play crucial roles in roadblock bypass. Further single-molecule studies of this bypass will, therefore, be essential to facilitate the in-depth investigation of multi-protein complexes that is necessary to understand complicated collisions on the DNA.
Collapse
Affiliation(s)
- Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
63
|
Hizume K, Araki H. Replication fork pausing at protein barriers on chromosomes. FEBS Lett 2019; 593:1449-1458. [PMID: 31199500 DOI: 10.1002/1873-3468.13481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
When a cell divides prior to completion of DNA replication, serious DNA damage may occur. Thus, in addition to accuracy, the processivity of the replication forks is important. DNA synthesis at replication forks should be completed in time, and forks overcome aberrant structures on the template DNA, including damaged sites, using trans-lesion synthesis, occasionally introducing mutations. By contrast, the protein barrier built on the DNA is known to block the progression of replication forks at specific chromosomal loci. Such protein barriers avert any collision of replication and transcription machineries, or control the recombination of specific loci. The components and the mechanisms of action of protein barriers have been revealed mainly using genetic and biochemical techniques. In addition to proteins involved in replication fork pausing, the interaction of the replicative helicase and DNA polymerase is also essential for replication fork pausing. Here, we provide an overview of replication fork pausing at protein barriers.
Collapse
Affiliation(s)
- Kohji Hizume
- Division of RI Laboratory, Biomedical Research Center, Saitama Medical University, Japan
| | - Hiroyuki Araki
- Microbial Genetics Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
64
|
Burnham DR, Kose HB, Hoyle RB, Yardimci H. The mechanism of DNA unwinding by the eukaryotic replicative helicase. Nat Commun 2019; 10:2159. [PMID: 31089141 PMCID: PMC6517413 DOI: 10.1038/s41467-019-09896-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022] Open
Abstract
Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG). It is not clear how this replicative ring helicase translocates on, and unwinds, DNA. We measure real-time dynamics of purified recombinant Drosophila melanogaster CMG unwinding DNA with single-molecule magnetic tweezers. Our data demonstrates that CMG exhibits a biased random walk, not the expected unidirectional motion. Through building a kinetic model we find CMG may enter up to three paused states rather than unwinding, and should these be prevented, in vivo fork rates would be recovered in vitro. We propose a mechanism in which CMG couples ATP hydrolysis to unwinding by acting as a lazy Brownian ratchet, thus providing quantitative understanding of the central process in eukaryotic DNA replication.
Collapse
Affiliation(s)
- Daniel R Burnham
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Hazal B Kose
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rebecca B Hoyle
- School of Mathematical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Hasan Yardimci
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
65
|
Brosh RM, Trakselis MA. Fine-tuning of the replisome: Mcm10 regulates fork progression and regression. Cell Cycle 2019; 18:1047-1055. [PMID: 31014174 DOI: 10.1080/15384101.2019.1609833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several decades of research have identified Mcm10 hanging around the replisome making several critical contacts with a number of proteins but with no real disclosed function. Recently, the O'Donnell laboratory has been better able to map the interactions of Mcm10 with a larger Cdc45/GINS/MCM (CMG) unwinding complex placing it at the front of the replication fork. They have shown biochemically that Mcm10 has the impressive ability to strip off single-strand binding protein (RPA) and reanneal complementary DNA strands. This has major implications in controlling DNA unwinding speed as well as responding to various situations where fork reversal is needed. This work opens up a number of additional facets discussed here revolving around accessing the DNA junction for different molecular purposes within a crowded replisome. Abbreviations: alt-NHEJ: Alternative Nonhomologous End-Joining; CC: Coli-Coil motif; CMG: Cdc45/GINS/MCM2-7; CMGM: Cdc45/GINS/Mcm2-7/Mcm10; CPT: Camptothecin; CSB: Cockayne Syndrome Group B protein; CTD: C-Terminal Domain; DSB: Double-Strand Break; DSBR: Double-Strand Break Repair; dsDNA: Double-Stranded DNA; GINS: go-ichi-ni-san, Sld5-Psf1-Psf2-Psf3; HJ Dis: Holliday Junction dissolution; HJ Res: Holliday Junction resolution; HR: Homologous Recombination; ICL: Interstrand Cross-Link; ID: Internal Domain; MCM: Minichromosomal Maintenance; ND: Not Determined; NTD: N-Terminal Domain; PCNA: Proliferating Cell Nuclear Antigen; RPA: Replication Protein A; SA: Strand Annealing; SE: Strand Exchange; SEW: Steric Exclusion and Wrapping; ssDNA: Single-Stranded DNA; TCR: Transcription-Coupled Repair; TOP1: Topoisomerase.
Collapse
Affiliation(s)
- Robert M Brosh
- a Laboratory of Molecular Gerontology , National Institute on Aging, National Institutes of Health , Baltimore , MD USA
| | - Michael A Trakselis
- b Department of Chemistry and Biochemistry , Baylor University , Waco , TX , USA
| |
Collapse
|
66
|
Post-Translational Modifications of the Mini-Chromosome Maintenance Proteins in DNA Replication. Genes (Basel) 2019; 10:genes10050331. [PMID: 31052337 PMCID: PMC6563057 DOI: 10.3390/genes10050331] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
The eukaryotic mini-chromosome maintenance (MCM) complex, composed of MCM proteins 2-7, is the core component of the replisome that acts as the DNA replicative helicase to unwind duplex DNA and initiate DNA replication. MCM10 tightly binds the cell division control protein 45 homolog (CDC45)/MCM2-7/ DNA replication complex Go-Ichi-Ni-San (GINS) (CMG) complex that stimulates CMG helicase activity. The MCM8-MCM9 complex may have a non-essential role in activating the pre-replicative complex in the gap 1 (G1) phase by recruiting cell division cycle 6 (CDC6) to the origin recognition complex (ORC). Each MCM subunit has a distinct function achieved by differential post-translational modifications (PTMs) in both DNA replication process and response to replication stress. Such PTMs include phosphorylation, ubiquitination, small ubiquitin-like modifier (SUMO)ylation, O-N-acetyl-D-glucosamine (GlcNAc)ylation, and acetylation. These PTMs have an important role in controlling replication progress and genome stability. Because MCM proteins are associated with various human diseases, they are regarded as potential targets for therapeutic development. In this review, we summarize the different PTMs of the MCM proteins, their involvement in DNA replication and disease development, and the potential therapeutic implications.
Collapse
|
67
|
Rescuing Replication from Barriers: Mechanistic Insights from Single-Molecule Studies. Mol Cell Biol 2019; 39:MCB.00576-18. [PMID: 30886122 DOI: 10.1128/mcb.00576-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To prevent replication failure due to fork barriers, several mechanisms have evolved to restart arrested forks independent of the origin of replication. Our understanding of these mechanisms that underlie replication reactivation has been aided through unique dynamic perspectives offered by single-molecule techniques. These techniques, such as optical tweezers, magnetic tweezers, and fluorescence-based methods, allow researchers to monitor the unwinding of DNA by helicase, nucleotide incorporation during polymerase synthesis, and replication fork progression in real time. In addition, they offer the ability to distinguish DNA intermediates after obstacles to replication at high spatial and temporal resolutions, providing new insights into the replication reactivation mechanisms. These and other highlights of single-molecule techniques and remarkable studies on the recovery of the replication fork from barriers will be discussed in this review.
Collapse
|
68
|
Deegan TD, Baxter J, Ortiz Bazán MÁ, Yeeles JTP, Labib KPM. Pif1-Family Helicases Support Fork Convergence during DNA Replication Termination in Eukaryotes. Mol Cell 2019; 74:231-244.e9. [PMID: 30850330 PMCID: PMC6477153 DOI: 10.1016/j.molcel.2019.01.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/26/2018] [Accepted: 01/29/2019] [Indexed: 01/21/2023]
Abstract
The convergence of two DNA replication forks creates unique problems during DNA replication termination. In E. coli and SV40, the release of torsional strain by type II topoisomerases is critical for converging replisomes to complete DNA synthesis, but the pathways that mediate fork convergence in eukaryotes are unknown. We studied the convergence of reconstituted yeast replication forks that include all core replisome components and both type I and type II topoisomerases. We found that most converging forks stall at a very late stage, indicating a role for additional factors. We showed that the Pif1 and Rrm3 DNA helicases promote efficient fork convergence and completion of DNA synthesis, even in the absence of type II topoisomerase. Furthermore, Rrm3 and Pif1 are also important for termination of plasmid DNA replication in vivo. These findings identify a eukaryotic pathway for DNA replication termination that is distinct from previously characterized prokaryotic mechanisms.
Collapse
Affiliation(s)
- Tom D Deegan
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Jonathan Baxter
- Genome Damage and Stability Centre, Department of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - María Ángeles Ortiz Bazán
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Joseph T P Yeeles
- The MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Karim P M Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
69
|
Kose HB, Larsen NB, Duxin JP, Yardimci H. Dynamics of the Eukaryotic Replicative Helicase at Lagging-Strand Protein Barriers Support the Steric Exclusion Model. Cell Rep 2019; 26:2113-2125.e6. [PMID: 30784593 PMCID: PMC6381796 DOI: 10.1016/j.celrep.2019.01.086] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/19/2018] [Accepted: 01/24/2019] [Indexed: 12/01/2022] Open
Abstract
Progression of DNA replication depends on the ability of the replisome complex to overcome nucleoprotein barriers. During eukaryotic replication, the CMG helicase translocates along the leading-strand template and unwinds the DNA double helix. While proteins bound to the leading-strand template efficiently block the helicase, the impact of lagging-strand protein obstacles on helicase translocation and replisome progression remains controversial. Here, we show that CMG and replisome progressions are impaired when proteins crosslinked to the lagging-strand template enhance the stability of duplex DNA. In contrast, proteins that exclusively interact with the lagging-strand template influence neither the translocation of isolated CMG nor replisome progression in Xenopus egg extracts. Our data imply that CMG completely excludes the lagging-strand template from the helicase central channel while unwinding DNA at the replication fork, which clarifies how two CMG helicases could freely cross one another during replication initiation and termination.
Collapse
Affiliation(s)
- Hazal B Kose
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Nicolai B Larsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT London, UK.
| |
Collapse
|
70
|
Lerner LK, Sale JE. Replication of G Quadruplex DNA. Genes (Basel) 2019; 10:genes10020095. [PMID: 30700033 PMCID: PMC6409989 DOI: 10.3390/genes10020095] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
A cursory look at any textbook image of DNA replication might suggest that the complex machine that is the replisome runs smoothly along the chromosomal DNA. However, many DNA sequences can adopt non-B form secondary structures and these have the potential to impede progression of the replisome. A picture is emerging in which the maintenance of processive DNA replication requires the action of a significant number of additional proteins beyond the core replisome to resolve secondary structures in the DNA template. By ensuring that DNA synthesis remains closely coupled to DNA unwinding by the replicative helicase, these factors prevent impediments to the replisome from causing genetic and epigenetic instability. This review considers the circumstances in which DNA forms secondary structures, the potential responses of the eukaryotic replisome to these impediments in the light of recent advances in our understanding of its structure and operation and the mechanisms cells deploy to remove secondary structure from the DNA. To illustrate the principles involved, we focus on one of the best understood DNA secondary structures, G quadruplexes (G4s), and on the helicases that promote their resolution.
Collapse
Affiliation(s)
- Leticia Koch Lerner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
71
|
Mcm10 has potent strand-annealing activity and limits translocase-mediated fork regression. Proc Natl Acad Sci U S A 2018; 116:798-803. [PMID: 30598452 PMCID: PMC6338834 DOI: 10.1073/pnas.1819107116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fork regression is a way of circumventing or dealing with DNA lesions and is important to genome integrity. Fork regression is performed by double-strand DNA ATPases that initially cause newly synthesized strands to unpair from the parental strands, followed by pairing of the new strands and reversal of the fork. This study shows that Mcm10, an essential replication factor, efficiently anneals complementary strands and also inhibits fork regression by SMARCAL1. Moreover, the study localizes the Mcm10 DNA-binding domain to the N-terminal domains of the replicative CMG helicase at the forked nexus. Thus, forks that are unimpeded would contain Mcm10 at a strategic position where its DNA-binding and/or annealing function may block fork regression enzymes and thereby protect active forks from becoming reversed. The 11-subunit eukaryotic replicative helicase CMG (Cdc45, Mcm2-7, GINS) tightly binds Mcm10, an essential replication protein in all eukaryotes. Here we show that Mcm10 has a potent strand-annealing activity both alone and in complex with CMG. CMG-Mcm10 unwinds and then reanneals single strands soon after they have been unwound in vitro. Given the DNA damage and replisome instability associated with loss of Mcm10 function, we examined the effect of Mcm10 on fork regression. Fork regression requires the unwinding and pairing of newly synthesized strands, performed by a specialized class of ATP-dependent DNA translocases. We show here that Mcm10 inhibits fork regression by the well-known fork reversal enzyme SMARCAL1. We propose that Mcm10 inhibits the unwinding of nascent strands to prevent fork regression at normal unperturbed replication forks, either by binding the fork junction to form a block to SMARCAL1 or by reannealing unwound nascent strands to their parental template. Analysis of the CMG-Mcm10 complex by cross-linking mass spectrometry reveals Mcm10 interacts with six CMG subunits, with the DNA-binding region of Mcm10 on the N-face of CMG. This position on CMG places Mcm10 at the fork junction, consistent with a role in regulating fork regression.
Collapse
|
72
|
Sparks JL, Chistol G, Gao AO, Räschle M, Larsen NB, Mann M, Duxin JP, Walter JC. The CMG Helicase Bypasses DNA-Protein Cross-Links to Facilitate Their Repair. Cell 2018; 176:167-181.e21. [PMID: 30595447 DOI: 10.1016/j.cell.2018.10.053] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/13/2018] [Accepted: 10/24/2018] [Indexed: 02/04/2023]
Abstract
Covalent DNA-protein cross-links (DPCs) impede replication fork progression and threaten genome integrity. Using Xenopus egg extracts, we previously showed that replication fork collision with DPCs causes their proteolysis, followed by translesion DNA synthesis. We show here that when DPC proteolysis is blocked, the replicative DNA helicase CMG (CDC45, MCM2-7, GINS), which travels on the leading strand template, bypasses an intact leading strand DPC. Single-molecule imaging reveals that GINS does not dissociate from CMG during bypass and that CMG slows dramatically after bypass, likely due to uncoupling from the stalled leading strand. The DNA helicase RTEL1 facilitates bypass, apparently by generating single-stranded DNA beyond the DPC. The absence of RTEL1 impairs DPC proteolysis, suggesting that CMG must bypass the DPC to enable proteolysis. Our results suggest a mechanism that prevents inadvertent CMG destruction by DPC proteases, and they reveal CMG's remarkable capacity to overcome obstacles on its translocation strand.
Collapse
Affiliation(s)
- Justin L Sparks
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Gheorghe Chistol
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alan O Gao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Markus Räschle
- Department of Molecular Biotechnology and Systems Biology, Technical University of Kaiserslautern, 67653 Kaiserslautern, Germany
| | - Nicolai B Larsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
73
|
Tsao WC, Eckert KA. Detours to Replication: Functions of Specialized DNA Polymerases during Oncogene-induced Replication Stress. Int J Mol Sci 2018; 19:ijms19103255. [PMID: 30347795 PMCID: PMC6214091 DOI: 10.3390/ijms19103255] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
Incomplete and low-fidelity genome duplication contribute to genomic instability and cancer development. Difficult-to-Replicate Sequences, or DiToRS, are natural impediments in the genome that require specialized DNA polymerases and repair pathways to complete and maintain faithful DNA synthesis. DiToRS include non B-DNA secondary structures formed by repetitive sequences, for example within chromosomal fragile sites and telomeres, which inhibit DNA replication under endogenous stress conditions. Oncogene activation alters DNA replication dynamics and creates oncogenic replication stress, resulting in persistent activation of the DNA damage and replication stress responses, cell cycle arrest, and cell death. The response to oncogenic replication stress is highly complex and must be tightly regulated to prevent mutations and tumorigenesis. In this review, we summarize types of known DiToRS and the experimental evidence supporting replication inhibition, with a focus on the specialized DNA polymerases utilized to cope with these obstacles. In addition, we discuss different causes of oncogenic replication stress and its impact on DiToRS stability. We highlight recent findings regarding the regulation of DNA polymerases during oncogenic replication stress and the implications for cancer development.
Collapse
Affiliation(s)
- Wei-Chung Tsao
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
| | - Kristin A Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
| |
Collapse
|
74
|
Villa-Hernández S, Bermejo R. Replisome-Cohesin Interfacing: A Molecular Perspective. Bioessays 2018; 40:e1800109. [PMID: 30106480 DOI: 10.1002/bies.201800109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/23/2018] [Indexed: 12/27/2022]
Abstract
Cohesion is established in S-phase through the action of key replisome factors as replication forks engage cohesin molecules. By holding sister chromatids together, cohesion critically assists both an equal segregation of the duplicated genetic material and an efficient repair of DNA breaks. Nonetheless, the molecular events leading the entrapment of nascent chromatids by cohesin during replication are only beginning to be understood. The authors describe here the essential structural features of the cohesin complex in connection to its ability to associate DNA molecules and review the current knowledge on the architectural-functional organization of the eukaryotic replisome, significantly advanced by recent biochemical and structural studies. In light of this novel insight, the authors discuss the mechanisms proposed to assist interfacing of replisomes with chromatin-bound cohesin complexes and elaborate on models for nascent chromatids entrapment by cohesin in the environment of the replication fork.
Collapse
Affiliation(s)
- Sara Villa-Hernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 928040 Madrid, Spain
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 928040 Madrid, Spain
| |
Collapse
|
75
|
Zou Z, Chen Z, Xue Q, Xu Y, Xiong J, Yang P, Le S, Zhang H. Protein Interactions in the T7 DNA Replisome Facilitate DNA Damage Bypass. Chembiochem 2018; 19:1740-1749. [PMID: 29900646 DOI: 10.1002/cbic.201800203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 01/07/2023]
Abstract
The DNA replisome inevitably encounters DNA damage during DNA replication. The T7 DNA replisome contains a DNA polymerase (gp5), the processivity factor thioredoxin (trx), a helicase-primase (gp4), and a ssDNA-binding protein (gp2.5). T7 protein interactions mediate this DNA replication. However, whether the protein interactions could promote DNA damage bypass is still little addressed. In this study, we investigated strand-displacement DNA synthesis past 8-oxoG or O6 -MeG lesions at the synthetic DNA fork by the T7 DNA replisome. DNA damage does not obviously affect the binding affinities between helicase, polymerase, and DNA fork. Relative to unmodified G, both 8-oxoG and O6 -MeG-as well as GC-rich template sequence clusters-inhibit strand-displacement DNA synthesis and produce partial extension products. Relative to the gp4 ΔC-tail, gp4 promotes DNA damage bypass. The presence of gp2.5 also promotes it. Thus, the interactions of polymerase with helicase and ssDNA-binding protein facilitate DNA damage bypass. Accessory proteins in other complicated DNA replisomes also facilitate bypassing DNA damage in similar manner. This work provides new mechanistic information relating to DNA damage bypass by the DNA replisome.
Collapse
Affiliation(s)
- Zhenyu Zou
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No.17 People's South Road, Chengdu, 6100041, P. R. China
| | - Ze Chen
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No.17 People's South Road, Chengdu, 6100041, P. R. China
| | - Qizhen Xue
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No.17 People's South Road, Chengdu, 6100041, P. R. China
| | - Ying Xu
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No.17 People's South Road, Chengdu, 6100041, P. R. China
| | - Jingyuan Xiong
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No.17 People's South Road, Chengdu, 6100041, P. R. China
| | - Ping Yang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511439, P. R. China
| | - Shuai Le
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Huidong Zhang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No.17 People's South Road, Chengdu, 6100041, P. R. China
| |
Collapse
|
76
|
Li H, O'Donnell ME. The Eukaryotic CMG Helicase at the Replication Fork: Emerging Architecture Reveals an Unexpected Mechanism. Bioessays 2018; 40. [PMID: 29405332 DOI: 10.1002/bies.201700208] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/27/2017] [Indexed: 01/12/2023]
Abstract
The eukaryotic helicase is an 11-subunit machine containing an Mcm2-7 motor ring that encircles DNA, Cdc45 and the GINS tetramer, referred to as CMG (Cdc45, Mcm2-7, GINS). CMG is "built" on DNA at origins in two steps. First, two Mcm2-7 rings are assembled around duplex DNA at origins in G1 phase, forming the Mcm2-7 "double hexamer." In a second step, in S phase Cdc45 and GINS are assembled onto each Mcm2-7 ring, hence producing two CMGs that ultimately form two replication forks that travel in opposite directions. Here, we review recent findings about CMG structure and function. The CMG unwinds the parental duplex and is also the organizing center of the replisome: it binds DNA polymerases and other factors. EM studies reveal a 20-subunit core replisome with the leading Pol ϵ and lagging Pol α-primase on opposite faces of CMG, forming a fundamentally asymmetric architecture. Structural studies of CMG at a replication fork reveal unexpected details of how CMG engages the DNA fork. The structures of CMG and the Mcm2-7 double hexamer on DNA suggest a completely unanticipated process for formation of bidirectional replication forks at origins.
Collapse
Affiliation(s)
- Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Michael E O'Donnell
- Department of DNA Replication, Rockefeller University and HHMI, New York, NY 10065, USA
| |
Collapse
|
77
|
The ring-shaped hexameric helicases that function at DNA replication forks. Nat Struct Mol Biol 2018; 25:122-130. [PMID: 29379175 DOI: 10.1038/s41594-018-0024-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/27/2017] [Indexed: 11/08/2022]
Abstract
DNA replication requires separation of genomic duplex DNA strands, an operation that is performed by a hexameric ring-shaped helicase in all domains of life. The structures and chemomechanical actions of these fascinating machines are coming into sharper focus. Although there is no evolutionary relationship between the hexameric helicases of bacteria and those of archaea and eukaryotes, they share many fundamental features. Here we review recent studies of these two groups of hexameric helicases and the unexpected distinctions they have also unveiled.
Collapse
|
78
|
Scherr MJ, Safaric B, Duderstadt KE. Noise in the Machine: Alternative Pathway Sampling is the Rule During DNA Replication. Bioessays 2017; 40. [PMID: 29282758 DOI: 10.1002/bies.201700159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/01/2017] [Indexed: 11/07/2022]
Abstract
The astonishing efficiency and accuracy of DNA replication has long suggested that refined rules enforce a single highly reproducible sequence of molecular events during the process. This view was solidified by early demonstrations that DNA unwinding and synthesis are coupled within a stable molecular factory, known as the replisome, which consists of conserved components that each play unique and complementary roles. However, recent single-molecule observations of replisome dynamics have begun to challenge this view, revealing that replication may not be defined by a uniform sequence of events. Instead, multiple exchange pathways, pauses, and DNA loop types appear to dominate replisome function. These observations suggest we must rethink our fundamental assumptions and acknowledge that each replication cycle may involve sampling of alternative, sometimes parallel, pathways. Here, we review our current mechanistic understanding of DNA replication while highlighting findings that exemplify multi-pathway aspects of replisome function and considering the broader implications.
Collapse
Affiliation(s)
- Matthias J Scherr
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Barbara Safaric
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany.,Physik Department, Technische Universität München, Garching, Germany
| |
Collapse
|
79
|
Langston LD, Mayle R, Schauer GD, Yurieva O, Zhang D, Yao NY, Georgescu RE, O'Donnell ME. Mcm10 promotes rapid isomerization of CMG-DNA for replisome bypass of lagging strand DNA blocks. eLife 2017; 6:e29118. [PMID: 28869037 PMCID: PMC5599239 DOI: 10.7554/elife.29118] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/03/2017] [Indexed: 12/18/2022] Open
Abstract
Replicative helicases in all cell types are hexameric rings that unwind DNA by steric exclusion in which the helicase encircles the tracking strand only and excludes the other strand from the ring. This mode of translocation allows helicases to bypass blocks on the strand that is excluded from the central channel. Unlike other replicative helicases, eukaryotic CMG helicase partially encircles duplex DNA at a forked junction and is stopped by a block on the non-tracking (lagging) strand. This report demonstrates that Mcm10, an essential replication protein unique to eukaryotes, binds CMG and greatly stimulates its helicase activity in vitro. Most significantly, Mcm10 enables CMG and the replisome to bypass blocks on the non-tracking DNA strand. We demonstrate that bypass occurs without displacement of the blocks and therefore Mcm10 must isomerize the CMG-DNA complex to achieve the bypass function.
Collapse
Affiliation(s)
- Lance D Langston
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Ryan Mayle
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | | | - Olga Yurieva
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | | | - Nina Y Yao
- The Rockefeller UniversityNew YorkUnited States
| | - Roxana E Georgescu
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Mike E O'Donnell
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|