51
|
Carew NT, Nelson AM, Liang Z, Smith SM, Milcarek C. Linking Endoplasmic Reticular Stress and Alternative Splicing. Int J Mol Sci 2018; 19:ijms19123919. [PMID: 30544499 PMCID: PMC6321306 DOI: 10.3390/ijms19123919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
RNA splicing patterns in antibody-secreting cells are shaped by endoplasmic reticulum stress, ELL2 (eleven-nineteen lysine-rich leukemia gene 2) induction, and changes in the levels of snRNAs. Endoplasmic reticulum stress induces the unfolded protein response comprising a highly conserved set of genes crucial for cell survival; among these is Ire1, whose auto-phosphorylation drives it to acquire a regulated mRNA decay activity. The mRNA-modifying function of phosphorylated Ire1 non-canonically splices Xbp1 mRNA and yet degrades other cellular mRNAs with related motifs. Naïve splenic B cells will activate Ire1 phosphorylation early on after lipopolysaccharide (LPS) stimulation, within 18 h; large-scale changes in mRNA content and splicing patterns result. Inhibition of the mRNA-degradation function of Ire1 is correlated with further differences in the splicing patterns and a reduction in the mRNA factors for snRNA transcription. Some of the >4000 splicing changes seen at 18 h after LPS stimulation persist into the late stages of antibody secretion, up to 72 h. Meanwhile some early splicing changes are supplanted by new splicing changes introduced by the up-regulation of ELL2, a transcription elongation factor. ELL2 is necessary for immunoglobulin secretion and does this by changing mRNA processing patterns of immunoglobulin heavy chain and >5000 other genes.
Collapse
Affiliation(s)
- Nolan T Carew
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Ashley M Nelson
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Zhitao Liang
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Sage M Smith
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Christine Milcarek
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| |
Collapse
|
52
|
Liu XM, Yamasaki A, Du XM, Coffman VC, Ohsumi Y, Nakatogawa H, Wu JQ, Noda NN, Du LL. Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein. eLife 2018; 7:41237. [PMID: 30451685 PMCID: PMC6279349 DOI: 10.7554/elife.41237] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/18/2018] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin-like protein Atg8, in its lipidated form, plays central roles in autophagy. Yet, remarkably, Atg8 also carries out lipidation-independent functions in non-autophagic processes. How Atg8 performs its moonlighting roles is unclear. Here we report that in the fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae, the lipidation-independent roles of Atg8 in maintaining normal morphology and functions of the vacuole require its interaction with a vacuole membrane protein Hfl1 (homolog of human TMEM184 proteins). Crystal structures revealed that the Atg8-Hfl1 interaction is not mediated by the typical Atg8-family-interacting motif (AIM) that forms an intermolecular β-sheet with Atg8. Instead, the Atg8-binding regions in Hfl1 proteins adopt a helical conformation, thus representing a new type of AIMs (termed helical AIMs here). These results deepen our understanding of both the functional versatility of Atg8 and the mechanistic diversity of Atg8 binding.
Collapse
Affiliation(s)
- Xiao-Man Liu
- National Institute of Biological Sciences, Beijing, China
| | | | - Xiao-Min Du
- National Institute of Biological Sciences, Beijing, China.,College of Life Sciences, Beijing Normal University, Beijing, China
| | | | - Yoshinori Ohsumi
- Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hitoshi Nakatogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Jian-Qiu Wu
- The Ohio State University, Columbus, United States
| | | | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
53
|
Ghiasi SM, Krogh N, Tyrberg B, Mandrup-Poulsen T. The No-Go and Nonsense-Mediated RNA Decay Pathways Are Regulated by Inflammatory Cytokines in Insulin-Producing Cells and Human Islets and Determine β-Cell Insulin Biosynthesis and Survival. Diabetes 2018; 67:2019-2037. [PMID: 30065031 DOI: 10.2337/db18-0073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022]
Abstract
Stress-related changes in β-cell mRNA levels result from a balance between gene transcription and mRNA decay. The regulation of RNA decay pathways has not been investigated in pancreatic β-cells. We found that no-go and nonsense-mediated RNA decay pathway components (RDPCs) and exoribonuclease complexes were expressed in INS-1 cells and human islets. Pelo, Dcp2, Dis3L2, Upf2, and Smg1/5/6/7 were upregulated by inflammatory cytokines in INS-1 cells under conditions where central β-cell mRNAs were downregulated. These changes in RDPC mRNA or corresponding protein levels were largely confirmed in INS-1 cells and rat/human islets. Cytokine-induced upregulation of Pelo, Xrn1, Dis3L2, Upf2, and Smg1/6 was reduced by inducible nitric oxide synthase inhibition, as were endoplasmic reticulum (ER) stress, inhibition of Ins1/2 mRNA, and accumulated insulin secretion. Reactive oxygen species inhibition or iron chelation did not affect RDPC expression. Pelo or Xrn1 knockdown (KD) aggravated, whereas Smg6 KD ameliorated, cytokine-induced INS-1 cell death without affecting ER stress; both increased insulin biosynthesis and medium accumulation but not glucose-stimulated insulin secretion in cytokine-exposed INS-1 cells. In conclusion, RDPCs are regulated by inflammatory stress in β-cells. RDPC KD improved insulin biosynthesis, likely by preventing Ins1/2 mRNA clearance. Pelo/Xrn1 KD aggravated, but Smg6 KD ameliorated, cytokine-mediated β-cell death, possibly through prevention of proapoptotic and antiapoptotic mRNA degradation, respectively.
Collapse
Affiliation(s)
- Seyed Mojtaba Ghiasi
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Björn Tyrberg
- Translational Science; Cardiovascular, Renal and Metabolism; and IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
54
|
The Unfolded Protein Response Pathway in the Yeast Kluyveromyces lactis. A Comparative View among Yeast Species. Cells 2018; 7:cells7080106. [PMID: 30110882 PMCID: PMC6116095 DOI: 10.3390/cells7080106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/04/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells have evolved signalling pathways that allow adaptation to harmful conditions that disrupt endoplasmic reticulum (ER) homeostasis. When the function of the ER is compromised in a condition known as ER stress, the cell triggers the unfolded protein response (UPR) in order to restore ER homeostasis. Accumulation of misfolded proteins due to stress conditions activates the UPR pathway. In mammalian cells, the UPR is composed of three branches, each containing an ER sensor (PERK, ATF6 and IRE1). However, in yeast species, the only sensor present is the inositol-requiring enzyme Ire1. To cope with unfolded protein accumulation, Ire1 triggers either a transcriptional response mediated by a transcriptional factor that belongs to the bZIP transcription factor family or an mRNA degradation process. In this review, we address the current knowledge of the UPR pathway in several yeast species: Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida glabrata, Cryptococcus neoformans, and Candida albicans. We also include unpublished data on the UPR pathway of the budding yeast Kluyveromyces lactis. We describe the basic components of the UPR pathway along with similarities and differences in the UPR mechanism that are present in these yeast species.
Collapse
|
55
|
Abstract
During protein synthesis, ribosomes encounter many roadblocks, the outcomes of which are largely determined by substrate availability, amino acid features and reaction kinetics. Prolonged ribosome stalling is likely to be resolved by ribosome rescue or quality control pathways, whereas shorter stalling is likely to be resolved by ongoing productive translation. How ribosome function is affected by such hindrances can therefore have a profound impact on the translational output (yield) of a particular mRNA. In this Review, we focus on these roadblocks and the resumption of normal translation elongation rather than on alternative fates wherein the stalled ribosome triggers degradation of the mRNA and the incomplete protein product. We discuss the fundamental stages of the translation process in eukaryotes, from elongation through ribosome recycling, with particular attention to recent discoveries of the complexity of the genetic code and regulatory elements that control gene expression, including ribosome stalling during elongation, the role of mRNA context in translation termination and mechanisms of ribosome rescue that resemble recycling.
Collapse
Affiliation(s)
- Anthony P Schuller
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
56
|
Li W, Okreglak V, Peschek J, Kimmig P, Zubradt M, Weissman JS, Walter P. Engineering ER-stress dependent non-conventional mRNA splicing. eLife 2018; 7:35388. [PMID: 29985129 PMCID: PMC6037481 DOI: 10.7554/elife.35388] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/16/2018] [Indexed: 12/26/2022] Open
Abstract
The endoplasmic reticulum (ER) protein folding capacity is balanced with the protein folding burden to prevent accumulation of un- or misfolded proteins. The ER membrane-resident kinase/RNase Ire1 maintains ER protein homeostasis through two fundamentally distinct processes. First, Ire1 can initiate a transcriptional response through a non-conventional mRNA splicing reaction to increase the ER folding capacity. Second, Ire1 can decrease the ER folding burden through selective mRNA decay. In Saccharomyces cerevisiae and Schizosaccharomyces pombe, the two Ire1 functions have been evolutionarily separated. Here, we show that the respective Ire1 orthologs have become specialized for their functional outputs by divergence of their RNase specificities. In addition, RNA structural features separate the splicing substrates from the decay substrates. Using these insights, we engineered an S. pombe Ire1 cleavage substrate into a splicing substrate, which confers S. pombe with both Ire1 functional outputs.
Collapse
Affiliation(s)
- Weihan Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, San Francisco, United States
| | - Voytek Okreglak
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, San Francisco, United States
| | - Jirka Peschek
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, San Francisco, United States
| | - Philipp Kimmig
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, San Francisco, United States
| | - Meghan Zubradt
- Howard Hughes Medical Institute, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Jonathan S Weissman
- Howard Hughes Medical Institute, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, San Francisco, United States
| |
Collapse
|
57
|
Kadowaki H, Nishitoh H. Endoplasmic reticulum quality control by garbage disposal. FEBS J 2018; 286:232-240. [PMID: 29923316 DOI: 10.1111/febs.14589] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
Various types of intracellular and extracellular stresses disturb homeostasis in the endoplasmic reticulum (ER) and, thus, trigger the ER stress response. Unavoidable and/or prolonged ER stress causes cell toxicity and occasionally cell death. The malfunction or death of irreplaceable cells leads to conformational diseases, including diabetes mellitus, ischemic diseases, metabolic diseases, and neurodegenerative diseases. In the past several decades, many studies have revealed the molecular mechanisms of the ER quality control system. Cells resolve ER stress by promptly and accurately reducing the amount of malfolded proteins. Recent reports have revealed that cells possess several types of ER-related disposal systems, including mRNA decay, proteasomal degradation, and autophagy. The removal of dispensable RNAs, proteins, and organelle parts may enable the effective maintenance of a functional ER. Here, we provide a comprehensive understanding of the ER quality control system by focusing on ER-related garbage disposal systems.
Collapse
Affiliation(s)
- Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Japan
| |
Collapse
|
58
|
Ibrahim F, Maragkakis M, Alexiou P, Mourelatos Z. Ribothrypsis, a novel process of canonical mRNA decay, mediates ribosome-phased mRNA endonucleolysis. Nat Struct Mol Biol 2018; 25:302-310. [PMID: 29507394 PMCID: PMC5889319 DOI: 10.1038/s41594-018-0042-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/30/2018] [Indexed: 01/06/2023]
Abstract
mRNAs transmit the genetic information that dictates protein production and are a nexus for numerous pathways that regulate gene expression. The prevailing view of canonical mRNA decay is that it is mediated by deadenylation and decapping followed by exonucleolysis from the 3' and 5' ends. By developing Akron-seq, a novel approach that captures the native 3' and 5' ends of capped and polyadenylated RNAs, respectively, we show that canonical human mRNAs are subject to repeated cotranslational and ribosome-phased endonucleolytic cuts at the exit site of the mRNA ribosome channel, in a process that we term ribothrypsis. We uncovered RNA G quadruplexes among likely ribothrypsis triggers and show that ribothrypsis is a conserved process. Strikingly, we found that mRNA fragments are abundant in living cells and thus have important implications for the interpretation of experiments, such as RNA-seq, that rely on the assumption that mRNAs exist largely as full-length molecules in vivo.
Collapse
Affiliation(s)
- Fadia Ibrahim
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Medicine Translational Neuroscience Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Manolis Maragkakis
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Medicine Translational Neuroscience Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Panagiotis Alexiou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Medicine Translational Neuroscience Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Medicine Translational Neuroscience Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
59
|
Liakath-Ali K, Mills EW, Sequeira I, Lichtenberger BM, Pisco AO, Sipilä KH, Mishra A, Yoshikawa H, Wu CCC, Ly T, Lamond AI, Adham IM, Green R, Watt FM. An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature 2018; 556:376-380. [PMID: 29643507 DOI: 10.1038/s41586-018-0032-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/28/2018] [Indexed: 01/01/2023]
Abstract
Ribosome-associated mRNA quality control mechanisms ensure the fidelity of protein translation1,2. Although these mechanisms have been extensively studied in yeast, little is known about their role in mammalian tissues, despite emerging evidence that stem cell fate is controlled by translational mechanisms3,4. One evolutionarily conserved component of the quality control machinery, Dom34 (in higher eukaryotes known as Pelota (Pelo)), rescues stalled ribosomes 5 . Here we show that Pelo is required for mammalian epidermal homeostasis. Conditional deletion of Pelo in mouse epidermal stem cells that express Lrig1 results in hyperproliferation and abnormal differentiation of these cells. By contrast, deletion of Pelo in Lgr5-expressing stem cells has no effect and deletion in Lgr6-expressing stem cells induces only a mild phenotype. Loss of Pelo results in accumulation of short ribosome footprints and global upregulation of translation, rather than affecting the expression of specific genes. Translational inhibition by rapamycin-mediated downregulation of mTOR (mechanistic target of rapamycin kinase) rescues the epidermal phenotype. Our study reveals that the ribosome-rescue machinery is important for mammalian tissue homeostasis and that it has specific effects on different stem cell populations.
Collapse
Affiliation(s)
- Kifayathullah Liakath-Ali
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, CA, USA
| | - Eric W Mills
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Inês Sequeira
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Beate M Lichtenberger
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Kalle H Sipilä
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Ajay Mishra
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge, UK
| | - Harunori Yoshikawa
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Colin Chih-Chien Wu
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tony Ly
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ibrahim M Adham
- Institute of Human Genetics, University Medical Centre of Göttingen, Göttingen, Germany
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK.
| |
Collapse
|
60
|
Ho N, Xu C, Thibault G. From the unfolded protein response to metabolic diseases - lipids under the spotlight. J Cell Sci 2018; 131:131/3/jcs199307. [PMID: 29439157 DOI: 10.1242/jcs.199307] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The unfolded protein response (UPR) is classically viewed as a stress response pathway to maintain protein homeostasis at the endoplasmic reticulum (ER). However, it has recently emerged that the UPR can be directly activated by lipid perturbation, independently of misfolded proteins. Comprising primarily phospholipids, sphingolipids and sterols, individual membranes can contain hundreds of distinct lipids. Even with such complexity, lipid distribution in a cell is tightly regulated by mechanisms that remain incompletely understood. It is therefore unsurprising that lipid dysregulation can be a key factor in disease development. Recent advances in analysis of lipids and their regulators have revealed remarkable mechanisms and connections to other cellular pathways including the UPR. In this Review, we summarize the current understanding in UPR transducers functioning as lipid sensors and the interplay between lipid metabolism and ER homeostasis in the context of metabolic diseases. We attempt to provide a framework consisting of a few key principles to integrate the different lines of evidence and explain this rather complicated mechanism.
Collapse
Affiliation(s)
- Nurulain Ho
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| | - Chengchao Xu
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142-1479, USA
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| |
Collapse
|
61
|
Arribere JA, Fire AZ. Nonsense mRNA suppression via nonstop decay. eLife 2018; 7:33292. [PMID: 29309033 PMCID: PMC5777819 DOI: 10.7554/elife.33292] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/05/2018] [Indexed: 11/13/2022] Open
Abstract
Nonsense-mediated mRNA decay is the process by which mRNAs bearing premature stop codons are recognized and cleared from the cell. While considerable information has accumulated regarding recognition of the premature stop codon, less is known about the ensuing mRNA suppression. During the characterization of a second, distinct translational surveillance pathway (nonstop mRNA decay), we trapped intermediates in nonsense mRNA degradation. We present data in support of a model wherein nonsense-mediated decay funnels into the nonstop decay pathway in Caenorhabditis elegans. Specifically, our results point to SKI-exosome decay and pelota-based ribosome removal as key steps facilitating suppression and clearance of prematurely-terminated translation complexes. These results suggest a model in which premature stop codons elicit nucleolytic cleavage, with the nonstop pathway disengaging ribosomes and degrading the resultant RNA fragments to suppress ongoing expression.
Collapse
Affiliation(s)
- Joshua A Arribere
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States
| | - Andrew Z Fire
- Departments of Pathology and Genetics, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|