51
|
Binner MI, Kogan A, Panser K, Schleiffer A, Deneke VE, Pauli A. The Sperm Protein Spaca6 is Essential for Fertilization in Zebrafish. Front Cell Dev Biol 2022; 9:806982. [PMID: 35047514 PMCID: PMC8762341 DOI: 10.3389/fcell.2021.806982] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Fertilization is a key process in all sexually reproducing species, yet the molecular mechanisms that underlie this event remain unclear. To date, only a few proteins have been shown to be essential for sperm-egg binding and fusion in mice, and only some are conserved across vertebrates. One of these conserved, testis-expressed factors is SPACA6, yet its function has not been investigated outside of mammals. Here we show that zebrafish spaca6 encodes for a sperm membrane protein which is essential for fertilization. Zebrafish spaca6 knockout males are sterile. Furthermore, Spaca6-deficient sperm have normal morphology, are motile, and can approach the egg, but fail to bind to the egg and therefore cannot complete fertilization. Interestingly, sperm lacking Spaca6 have decreased levels of another essential and conserved sperm fertility factor, Dcst2, revealing a previously unknown dependence of Dcst2 expression on Spaca6. Together, our results show that zebrafish Spaca6 regulates Dcst2 levels and is required for binding between the sperm membrane and the oolemma. This is in contrast to murine sperm lacking SPACA6, which was reported to be able to bind but unable to fuse with oocytes. These findings demonstrate that Spaca6 is essential for zebrafish fertilization and is a conserved sperm factor in vertebrate reproduction.
Collapse
Affiliation(s)
| | | | | | | | - Victoria E. Deneke
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| |
Collapse
|
52
|
Epithelial and Neural Cadherin in Mammalian Fertilization: Studies in the Mouse Model. Cells 2021; 11:cells11010102. [PMID: 35011663 PMCID: PMC8750299 DOI: 10.3390/cells11010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
Successful mammalian fertilization requires a well-orchestrated sequence of molecular events leading to gamete fusion. Since this interaction involves Ca2+-dependent adhesion events, the participation of the Ca+2-dependent cell-cell adhesion proteins Epithelial (E-cad) and Neural (N-cad) cadherin is envisaged. We have previously reported the expression of E-cad and N-cad in human gametes and showed evidence of their involvement in sperm-oocyte adhesion events leading to fertilization. To overcome ethical limitations associated with the use of human gametes in fertilization-related studies, the mouse has been selected worldwide as the experimental model for over 4 decades. Herein, we report a detailed study aimed at characterizing the expression of E-cad and N-cad in murine gametes and their involvement in murine fertilization using specific antibodies and blocking peptides towards both adhesion proteins. E-cad and N-cad protein forms, as well as other members of the adhesion complex, specifically β-catenin and actin, were identified in spermatozoa, cumulus cells and oocytes protein extracts by means of Western immunoblotting. In addition, subcellular localization of these proteins was determined in whole cells using optical fluorescent microscopy. Gamete pre-incubation with anti-E-cad (ECCD-1) or N-cad (H-63) antibodies resulted in decreased (p < 0.05) In Vitro Fertilization (IVF) rates, when using both cumulus-oocytes complexes and cumulus-free oocytes. Moreover, IVF assays done with denuded oocytes and either antibodies or blocking peptides against E-cad and N-cad led to lower (p < 0.05) fertilization rates. When assessing each step, penetration of the cumulus mass was lower (p < 0.05) when spermatozoa were pre-incubated with ECCD-1 or blocking peptides towards E-cad or towards both E- and N-cad. Moreover, sperm-oolemma binding was impaired (p < 0.0005) after sperm pre-incubation with E-cad antibody or blocking peptide towards E-cad, N-cad or both proteins. Finally, sperm-oocyte fusion was lower (p < 0.05) after sperm pre-incubation with either antibody or blocking peptide against E-cad or N-cad. Our studies demonstrate the expression of members of the adherent complex in the murine model, and the use of antibodies and specific peptides revealed E-cad and N-cad participation in mammalian fertilization.
Collapse
|
53
|
Leung MR, Ravi RT, Gadella BM, Zeev-Ben-Mordehai T. Membrane Remodeling and Matrix Dispersal Intermediates During Mammalian Acrosomal Exocytosis. Front Cell Dev Biol 2021; 9:765673. [PMID: 34957098 PMCID: PMC8708559 DOI: 10.3389/fcell.2021.765673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
To become fertilization-competent, mammalian sperm must undergo a complex series of biochemical and morphological changes in the female reproductive tract. These changes, collectively called capacitation, culminate in the exocytosis of the acrosome, a large vesicle overlying the nucleus. Acrosomal exocytosis is not an all-or-nothing event but rather a regulated process in which vesicle cargo disperses gradually. However, the structural mechanisms underlying this controlled release remain undefined. In addition, unlike other exocytotic events, fusing membranes are shed as vesicles; the cell thus loses the entire anterior two-thirds of its plasma membrane and yet remains intact, while the remaining nonvesiculated plasma membrane becomes fusogenic. Precisely how cell integrity is maintained throughout this drastic vesiculation process is unclear, as is how it ultimately leads to the acquisition of fusion competence. Here, we use cryoelectron tomography to visualize these processes in unfixed, unstained, fully hydrated sperm. We show that paracrystalline structures within the acrosome disassemble during capacitation and acrosomal exocytosis, representing a plausible mechanism for gradual dispersal of the acrosomal matrix. We find that the architecture of the sperm head supports an atypical membrane fission-fusion pathway that maintains cell integrity. Finally, we detail how the acrosome reaction transforms both the micron-scale topography and the nanoscale protein landscape of the sperm surface, thus priming the sperm for fertilization.
Collapse
Affiliation(s)
- Miguel Ricardo Leung
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, United Kingdom
| | - Ravi Teja Ravi
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Bart M Gadella
- Department of Farm and Animal Health and Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Tzviya Zeev-Ben-Mordehai
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
54
|
Pinello JF, Liu Y, Snell WJ. MAR1 links membrane adhesion to membrane merger during cell-cell fusion in Chlamydomonas. Dev Cell 2021; 56:3380-3392.e9. [PMID: 34813735 DOI: 10.1016/j.devcel.2021.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/22/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023]
Abstract
Union of two gametes to form a zygote is a defining event in the life of sexual eukaryotes, yet the mechanisms that underlie cell-cell fusion during fertilization remain poorly characterized. Here, in studies of fertilization in the green alga, Chlamydomonas, we report identification of a membrane protein on minus gametes, Minus Adhesion Receptor 1 (MAR1), that is essential for the membrane attachment with plus gametes that immediately precedes lipid bilayer merger. We show that MAR1 forms a receptor pair with previously identified receptor FUS1 on plus gametes, whose ectodomain architecture we find is identical to a sperm adhesion protein conserved throughout plant lineages. Strikingly, before fusion, MAR1 is biochemically and functionally associated with the ancient, evolutionarily conserved eukaryotic Class II fusion protein HAP2 on minus gametes. Thus, the integral membrane protein MAR1 provides a molecular link between membrane adhesion and bilayer merger during fertilization in Chlamydomonas.
Collapse
Affiliation(s)
- Jennifer F Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yanjie Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
55
|
Inoue N. Gamete Fusion Assay in Mice. Bio Protoc 2021; 11:e4233. [PMID: 34909454 DOI: 10.21769/bioprotoc.4233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/02/2022] Open
Abstract
Gamete fusion, which is the final event of fertilization, is a crucial physiological event in the creation of a new fetus. In mammals, sperm IZUMO1 and oocyte IZUMO1R (JUNO) recognition play a role in triggering this process. Gamete fusion occurs through a complex but steady and unfailing intermolecular reaction because fertilization must ensure species specificity, in which fusion takes place between gametes of the same species only. Although many factors involved in this process have recently been identified, their specific contributions remain largely unknown. The current article describes detailed methods for assessment of gamete fusion in mice, visualized by fluorescent dye transfer, from unfertilized oocyte to spermatozoa. These methods are applicable not only for fixed cells but also live imaging of gametes.
Collapse
Affiliation(s)
- Naokazu Inoue
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| |
Collapse
|
56
|
Kekäläinen J. Genetic incompatibility of the reproductive partners: an evolutionary perspective on infertility. Hum Reprod 2021; 36:3028-3035. [PMID: 34580729 PMCID: PMC8600657 DOI: 10.1093/humrep/deab221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/22/2021] [Indexed: 12/18/2022] Open
Abstract
In natural fertilisation, the female reproductive tract allows only a strictly selected sperm subpopulation to proceed in the vicinity of an unfertilised oocyte. Female-mediated sperm selection (also known as cryptic female choice (CFC)) is far from a random process, which frequently biases paternity towards particular males over others. Earlier studies have shown that CFC is a ubiquitous phenomenon in the animal kingdom and often promotes assortative fertilisation between genetically compatible mates. Here, I demonstrate that CFC for genetic compatibility likely also occurs in humans and is mediated by a complex network of interacting male and female genes. I also show that the relative contribution of genetic compatibility (i.e. the male-female interaction effect) to reproductive success is generally high and frequently outweighs the effects of individual males and females. Together, these facts indicate that, along with male- and female-dependent pathological factors, reproductive failure can also result from gamete-level incompatibility of the reproductive partners. Therefore, I argue that a deeper understanding of these evolutionary mechanisms of sperm selection can pave the way towards a more inclusive view of infertility and open novel possibilities for the development of more personalised infertility diagnostics and treatments.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
57
|
Merc V, Frolikova M, Komrskova K. Role of Integrins in Sperm Activation and Fertilization. Int J Mol Sci 2021; 22:11809. [PMID: 34769240 PMCID: PMC8584121 DOI: 10.3390/ijms222111809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
In mammals, integrins are heterodimeric transmembrane glycoproteins that represent a large group of cell adhesion receptors involved in cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Integrin receptors are an important part of signalization pathways and have an ability to transmit signals into and out of cells and participate in cell activation. In addition to somatic cells, integrins have also been detected on germ cells and are known to play a crucial role in complex gamete-specific physiological events, resulting in sperm-oocyte fusion. The main aim of this review is to summarize the current knowledge on integrins in reproduction and deliver novel perspectives and graphical interpretations presenting integrin subunits localization and their dynamic relocation during sperm maturation in comparison to the oocyte. A significant part of this review is devoted to discussing the existing view of the role of integrins during sperm migration through the female reproductive tract; oviductal reservoir formation; sperm maturation processes ensuing capacitation and the acrosome reaction, and their direct and indirect involvement in gamete membrane adhesion and fusion leading to fertilization.
Collapse
Affiliation(s)
- Veronika Merc
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.M.); (M.F.)
| | - Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.M.); (M.F.)
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.M.); (M.F.)
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic
| |
Collapse
|
58
|
Same gene, opposite sexes: Sex-specific divergent expression of a gene required for vertebrate fertilization. Proc Natl Acad Sci U S A 2021; 118:2116001118. [PMID: 34642252 PMCID: PMC8545453 DOI: 10.1073/pnas.2116001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 11/24/2022] Open
|
59
|
Siu KK, Serrão VHB, Ziyyat A, Lee JE. The cell biology of fertilization: Gamete attachment and fusion. J Cell Biol 2021; 220:e202102146. [PMID: 34459848 PMCID: PMC8406655 DOI: 10.1083/jcb.202102146] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Fertilization is defined as the union of two gametes. During fertilization, sperm and egg fuse to form a diploid zygote to initiate prenatal development. In mammals, fertilization involves multiple ordered steps, including the acrosome reaction, zona pellucida penetration, sperm-egg attachment, and membrane fusion. Given the success of in vitro fertilization, one would think that the mechanisms of fertilization are understood; however, the precise details for many of the steps in fertilization remain a mystery. Recent studies using genetic knockout mouse models and structural biology are providing valuable insight into the molecular basis of sperm-egg attachment and fusion. Here, we review the cell biology of fertilization, specifically summarizing data from recent structural and functional studies that provide insights into the interactions involved in human gamete attachment and fusion.
Collapse
Affiliation(s)
- Karen K. Siu
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vitor Hugo B. Serrão
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ahmed Ziyyat
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris, France
- Service d’Histologie, d’Embryologie, Biologie de la Reproduction, Assistance Publique - Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
60
|
A protein bridging the gap between sea urchin generations. Proc Natl Acad Sci U S A 2021; 118:2114056118. [PMID: 34497126 DOI: 10.1073/pnas.2114056118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
|
61
|
Hamze JG, Jiménez-Movilla M, Romar R. Sperm-Binding Assay Using an In Vitro 3D Model of the Mammalian Cumulus-Oocyte Complex. ACTA ACUST UNITED AC 2021; 86:e100. [PMID: 33331693 DOI: 10.1002/cptx.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have recently described a new model to study gamete interaction in mammalian species. The model recreates the spherical surface of the oocyte by using magnetic Sepharose beads coated with a layer of a recombinant protein involved in gamete interaction (such as ZP2, or the IZUMO1 receptor JUNO) and an external layer of cumulus oophorus cells, thus mimicking, to some extent, a native cumulus-oocyte complex. Once generated, this 3D model can be used in a sperm-binding assay to obtain valuable information about the molecular basis of gamete interaction, since different recombinant proteins can be used to coat the bead surface, thus generating a variety of models to be used for several species. Furthermore, thanks to the ability of the model to decoy sperm, the physiological status of the bound sperm can be studied, making this a powerful tool to select sperm with high fertilizing capacity, to unmask subfertile animals in livestock breeding centers, or for toxicological studies. Here, we describe how to generate and use this model for sperm-binding assays, using porcine sperm as an example, and ZP2, a protein from zona pellucida, as the recombinant protein of interest. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Generation of the in vitro 3D model Alternate Protocol 1: Binding cumulus oophorus cells to the model Basic Protocol 2: Quality control of the model by SDS-PAGE electrophoresis and western blot Support Protocol 1: Immunochemistry to confirm proper protein distribution on surface of beads Support Protocol 2: Elution of recombinant conjugated proteins Basic Protocol 3: Sperm-binding assay Alternate Protocol 2: Sperm preparation by the swim-up method.
Collapse
Affiliation(s)
- Julieta Gabriela Hamze
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - María Jiménez-Movilla
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
62
|
Nosková A, Hiltpold M, Janett F, Echtermann T, Fang ZH, Sidler X, Selige C, Hofer A, Neuenschwander S, Pausch H. Infertility due to defective sperm flagella caused by an intronic deletion in DNAH17 that perturbs splicing. Genetics 2021; 217:6041611. [PMID: 33724408 DOI: 10.1093/genetics/iyaa033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
Artificial insemination in pig (Sus scrofa domesticus) breeding involves the evaluation of the semen quality of breeding boars. Ejaculates that fulfill predefined quality requirements are processed, diluted and used for inseminations. Within short time, eight Swiss Large White boars producing immotile sperm that had multiple morphological abnormalities of the sperm flagella were noticed at a semen collection center. The eight boars were inbred on a common ancestor suggesting that the novel sperm flagella defect is a recessive trait. Transmission electron microscopy cross-sections revealed that the immotile sperm had disorganized flagellar axonemes. Haplotype-based association testing involving microarray-derived genotypes at 41,094 SNPs of six affected and 100 fertile boars yielded strong association (P = 4.22 × 10-15) at chromosome 12. Autozygosity mapping enabled us to pinpoint the causal mutation on a 1.11 Mb haplotype located between 3,473,632 and 4,587,759 bp. The haplotype carries an intronic 13-bp deletion (Chr12:3,556,401-3,556,414 bp) that is compatible with recessive inheritance. The 13-bp deletion excises the polypyrimidine tract upstream exon 56 of DNAH17 (XM_021066525.1: c.8510-17_8510-5del) encoding dynein axonemal heavy chain 17. Transcriptome analysis of the testis of two affected boars revealed that the loss of the polypyrimidine tract causes exon skipping which results in the in-frame loss of 89 amino acids from DNAH17. Disruption of DNAH17 impairs the assembly of the flagellar axoneme and manifests in multiple morphological abnormalities of the sperm flagella. Direct gene testing may now be implemented to monitor the defective allele in the Swiss Large White population and prevent the frequent manifestation of a sterilizing sperm tail disorder in breeding boars.
Collapse
Affiliation(s)
- Adéla Nosková
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, 8315 Lindau, Switzerland
| | - Maya Hiltpold
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, 8315 Lindau, Switzerland
| | - Fredi Janett
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Thomas Echtermann
- Division of Swine Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Zih-Hua Fang
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, 8315 Lindau, Switzerland
| | - Xaver Sidler
- Division of Swine Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | | | | | - Stefan Neuenschwander
- Animal Genetics, Institute of Agricultural Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Hubert Pausch
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, 8315 Lindau, Switzerland
| |
Collapse
|
63
|
Abstract
Fertilization is a multistep process that culminates in the fusion of sperm and egg, thus marking the beginning of a new organism in sexually reproducing species. Despite its importance for reproduction, the molecular mechanisms that regulate this singular event, particularly sperm-egg fusion, have remained mysterious for many decades. Here, we summarize our current molecular understanding of sperm-egg interaction, focusing mainly on mammalian fertilization. Given the fundamental importance of sperm-egg fusion yet the lack of knowledge of this process in vertebrates, we discuss hallmarks and emerging themes of cell fusion by drawing from well-studied examples such as viral entry, placenta formation, and muscle development. We conclude by identifying open questions and exciting avenues for future studies in gamete fusion. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Victoria E Deneke
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; ,
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; ,
| |
Collapse
|
64
|
Oyama Y, Miyata H, Shimada K, Fujihara Y, Tokuhiro K, Garcia TX, Matzuk MM, Ikawa M. CRISPR/Cas9-mediated genome editing reveals 12 testis-enriched genes dispensable for male fertility in mice. Asian J Androl 2021; 24:266-272. [PMID: 34290169 PMCID: PMC9226692 DOI: 10.4103/aja.aja_63_21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gene expression analyses suggest that more than 1000–2000 genes are expressed predominantly in mouse and human testes. Although functional analyses of hundreds of these genes have been performed, there are still many testis-enriched genes whose functions remain unexplored. Analyzing gene function using knockout (KO) mice is a powerful tool to discern if the gene of interest is essential for sperm formation, function, and male fertility in vivo. In this study, we generated KO mice for 12 testis-enriched genes, 1700057G04Rik, 4921539E11Rik, 4930558C23Rik, Cby2, Ldhal6b, Rasef, Slc25a2, Slc25a41, Smim8, Smim9, Tmem210, and Tomm20l, using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. We designed two gRNAs for each gene to excise almost all the protein-coding regions to ensure that the deletions in these genes result in a null mutation. Mating tests of KO mice reveal that these 12 genes are not essential for male fertility, at least when individually ablated, and not together with other potentially compensatory paralogous genes. Our results could prevent other laboratories from expending duplicative effort generating KO mice, for which no apparent phenotype exists.
Collapse
Affiliation(s)
- Yuki Oyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keisuke Shimada
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Fujihara
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1191, Japan
| | - Thomas X Garcia
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX 77058, USA
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Masahito Ikawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
65
|
Long JE, Lee MS, Blithe DL. Update on Novel Hormonal and Nonhormonal Male Contraceptive Development. J Clin Endocrinol Metab 2021; 106:e2381-e2392. [PMID: 33481994 PMCID: PMC8344836 DOI: 10.1210/clinem/dgab034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The advent of new methods of male contraception would increase contraceptive options for men and women and advance male contraceptive agency. Pharmaceutical R&D for male contraception has been dormant since the 1990s. The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) has supported a contraceptive development program since 1969 and supports most ongoing hormonal male contraceptive development. Nonhormonal methods are in earlier stages of development. CONTENT Several hormonal male contraceptive agents have entered clinical trials. Novel single agent products being evaluated include dimethandrolone undecanoate, 11β-methyl-nortestosterone dodecylcarbonate, and 7α-methyl-19-nortestosterone. A contraceptive efficacy trial of Nestorone®/testosterone gel is underway. Potential nonhormonal methods are at preclinical stages of development. Many nonhormonal male contraceptive targets that affect sperm production, sperm function, or sperm transport have been identified. SUMMARY NICHD supports development of reversible male contraceptive agents. Other organizations such as the World Health Organization, the Population Council, and the Male Contraception Initiative are pursuing male contraceptive development, but industry involvement remains limited.
Collapse
Affiliation(s)
- Jill E Long
- Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Dr. Jill Long, 6710B Rockledge Drive, Room 3243, Bethesda, MD 20892, USA.
| | - Min S Lee
- Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Diana L Blithe
- Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
66
|
Guo X, Zhang S, Yang H, Pei J, Wu X, Bao P, Liang C, Xiong L, Chu M, Lan X, Yan P. Bovine TMEM95 gene: Polymorphisms detecting in five Chinese indigenous cattle breeds and their association with growth traits. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
67
|
Inoue N, Hagihara Y, Wada I. Evolutionarily conserved sperm factors, DCST1 and DCST2, are required for gamete fusion. eLife 2021; 10:66313. [PMID: 33871360 PMCID: PMC8055269 DOI: 10.7554/elife.66313] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
To trigger gamete fusion, spermatozoa need to activate the molecular machinery in which sperm IZUMO1 and oocyte JUNO (IZUMO1R) interaction plays a critical role in mammals. Although a set of factors involved in this process has recently been identified, no common factor that can function in both vertebrates and invertebrates has yet been reported. Here, we first demonstrate that the evolutionarily conserved factors dendrocyte expressed seven transmembrane protein domain-containing 1 (DCST1) and dendrocyte expressed seven transmembrane protein domain-containing 2 (DCST2) are essential for sperm–egg fusion in mice, as proven by gene disruption and complementation experiments. We also found that the protein stability of another gamete fusion-related sperm factor, SPACA6, is differently regulated by DCST1/2 and IZUMO1. Thus, we suggest that spermatozoa ensure proper fertilization in mammals by integrating various molecular pathways, including an evolutionarily conserved system that has developed as a result of nearly one billion years of evolution.
Collapse
Affiliation(s)
- Naokazu Inoue
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
68
|
Gahlay GK, Rajput N. The enigmatic sperm proteins in mammalian fertilization: an overview†. Biol Reprod 2020; 103:1171-1185. [PMID: 32761117 DOI: 10.1093/biolre/ioaa140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 11/14/2022] Open
Abstract
Mammalian fertilization involves a physical interaction between a sperm and an egg followed by molecular interactions amongst their various cell surface molecules. These interactions are initially mediated on the egg's outermost matrix, zona pellucida (ZP), and then its plasma membrane. To better understand this process, it is pertinent to find the corresponding molecules on sperm that interact with ZP or the egg's plasma membrane. Although currently, we have some knowledge about the binding partners for egg's plasma membrane on sperm, yet the ones involved in an interaction with ZP have remained remarkably elusive. This review provides comprehensive knowledge about the various sperm proteins participating in mammalian fertilization and discusses the possible reasons for not being able to identify the strong sperm surface candidate (s) for ZP adhesion. It also hypothesizes the existence of a multi-protein complex(s), members of which participate in oviduct transport, cumulus penetration, zona adhesion, and adhesion/fusion with the egg's plasma membrane; with some protein(s) having multiple roles during this process. Identification of these proteins is crucial as it improves our understanding of the process and allows us to successfully treat infertility, develop contraceptives, and improve artificial reproductive technologies.
Collapse
Affiliation(s)
- Gagandeep Kaur Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Neha Rajput
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
69
|
Abstract
Sexual reproduction is such a successful way of creating progeny with subtle genetic variations that the vast majority of eukaryotic species use it. In mammals, it involves the formation of highly specialised cells: the sperm in males and the egg in females, each carrying the genetic inheritance of an individual. The interaction of sperm and egg culminates with the fusion of their cell membranes, triggering the molecular events that result in the formation of a new genetically distinct organism. Although we have a good cellular description of fertilisation in mammals, many of the molecules involved remain unknown, and especially the identity and role of cell surface proteins that are responsible for sperm–egg recognition, binding, and fusion. Here, we will highlight and discuss these gaps in our knowledge and how the role of some recently discovered sperm cell surface and secreted proteins contribute to our understanding of this fundamental process. Fertilisation is the challenging process whereby cells from two individuals fuse to generate a new, genetically distinct organism of the same species. This Unsolved Mystery article explores the molecular mechanisms underlying sperm–egg interaction and fusion, a fascinating topic that is under increasing investigation.
Collapse
Affiliation(s)
- Enrica Bianchi
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- * E-mail:
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| |
Collapse
|
70
|
Mei X, Singson AW. The molecular underpinnings of fertility: Genetic approaches in Caenorhabditis elegans. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 2:e10034. [PMID: 34322672 PMCID: PMC8315475 DOI: 10.1002/ggn2.10034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The study of mutations that impact fertility has a catch-22. Fertility mutants are often lost since they cannot simply be propagated and maintained. This has hindered progress in understanding the genetics of fertility. In mice, several molecules are found to be required for the interactions between the sperm and egg, with JUNO and IZUMO1 being the only known receptor pair on the egg and sperm surface, respectively. In Caenorhabditis elegans, a total of 12 proteins on the sperm or oocyte have been identified to mediate gamete interactions. Majority of these genes were identified through mutants isolated from genetic screens. In this review, we summarize the several key screening strategies that led to the identification of fertility mutants in C. elegans and provide a perspective about future research using genetic approaches. Recently, advancements in new technologies such as high-throughput sequencing and Crispr-based genome editing tools have accelerated the molecular, cell biological, and mechanistic analysis of fertility genes. We review how these valuable tools advance our understanding of the molecular underpinnings of fertilization. We draw parallels of the molecular mechanisms of fertilization between worms and mammals and argue that our work in C. elegans complements fertility research in humans and other species.
Collapse
Affiliation(s)
- Xue Mei
- Department of GeneticsWaksman Institute, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Andrew W. Singson
- Department of GeneticsWaksman Institute, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|