51
|
Fatima I, Ahmad R, Barman S, Gowrikumar S, Pravoverov K, Primeaux M, Fisher KW, Singh AB, Dhawan P. Albendazole inhibits colon cancer progression and therapy resistance by targeting ubiquitin ligase RNF20. Br J Cancer 2024; 130:1046-1058. [PMID: 38278978 PMCID: PMC10951408 DOI: 10.1038/s41416-023-02570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND The repurposing of FDA-approved drugs for anti-cancer therapies is appealing due to their established safety profiles and pharmacokinetic properties and can be quickly moved into clinical trials. Cancer progression and resistance to conventional chemotherapy remain the key hurdles in improving the clinical management of colon cancer patients and associated mortality. METHODS High-throughput screening (HTS) was performed using an annotated library of 1,600 FDA-approved drugs to identify drugs with strong anti-CRC properties. The candidate drug exhibiting most promising inhibitory effects in in-vitro studies was tested for its efficacy using in-vivo models of CRC progression and chemoresistance and patient derived organoids (PTDOs). RESULTS Albendazole, an anti-helminth drug, demonstrated the strongest inhibitory effects on the tumorigenic potentials of CRC cells, xenograft tumor growth and organoids from mice. Also, albendazole sensitized the chemoresistant CRC cells to 5-fluorouracil (5-FU) and oxaliplatin suggesting potential to treat chemoresistant CRC. Mechanistically, Albendazole treatment modulated the expression of RNF20, to promote apoptosis in CRC cells by delaying the G2/M phase and suppressing anti-apoptotic-Bcl2 family transcription. CONCLUSIONS Albendazole, an FDA approved drug, carries strong therapeutic potential to treat colon cancers which are aggressive and potentially resistant to conventional chemotherapeutic agents. Our findings also lay the groundwork for further clinical testing.
Collapse
Affiliation(s)
- Iram Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Barman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kristina Pravoverov
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark Primeaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
52
|
Khalafizadeh A, Hashemizadegan SD, Shokri F, Bakhshinejad B, Jabbari K, Motavaf M, Babashah S. Competitive endogenous RNA networks: Decoding the role of long non-coding RNAs and circular RNAs in colorectal cancer chemoresistance. J Cell Mol Med 2024; 28:e18197. [PMID: 38506091 PMCID: PMC10951891 DOI: 10.1111/jcmm.18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/17/2023] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Colorectal cancer (CRC) is recognized as one of the most common gastrointestinal malignancies across the globe. Despite significant progress in designing novel treatments for CRC, there is a pressing need for more effective therapeutic approaches. Unfortunately, many patients undergoing chemotherapy develop drug resistance, posing a significant challenge for cancer treatment. Non-coding RNAs (ncRNAs) have been found to play crucial roles in CRC development and its response to chemotherapy. However, there are still gaps in our understanding of interactions among various ncRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs). These ncRNAs can act as either oncogenes or tumour suppressors, affecting numerous biological functions in different cancers including CRC. A class of ncRNA molecules known as competitive endogenous RNAs (ceRNAs) has emerged as a key player in various cellular processes. These molecules form networks through lncRNA/miRNA/mRNA and circRNA/miRNA/mRNA interactions. In CRC, dysregulation of ceRNA networks has been observed across various cellular processes, including proliferation, apoptosis and angiogenesis. These dysregulations are believed to play a significant role in the progression of CRC and, in certain instances, may contribute to the development of chemoresistance. Enriching our knowledge of these dysregulations holds promise for advancing the field of diagnostic and therapeutic modalities for CRC. In this review, we discuss lncRNA- and circRNA-associated ceRNA networks implicated in the emergence and advancement of drug resistance in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Fatemeh Shokri
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| |
Collapse
|
53
|
Manoharan JP, Palanisamy H, Vidyalakshmi S. Overcoming multi drug resistance mediated by ABC transporters by a novel acetogenin- annonacin from Annona muricata L. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117598. [PMID: 38113989 DOI: 10.1016/j.jep.2023.117598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Multi-Drug Resistance (MDR), mediated by P-glycoprotein (P-gp) is one of the barriers to successful chemotherapy in colon cancer patients. Annona muricata L. (A.muricata), commonly known as soursop/Graviola, is a medicinal plant that has been traditionally used in treating diverse diseases including cancer. Phytochemicals of A.muricata (Annonaceous Acetogenins-AGEs) have been well-reported for their anti-cancer effects on various cancers. AIM OF THE STUDY The study aimed to examine the effect of AGEs in reversing MDR in colorectal cancer cells. METHODS Based on molecular docking and molecular dynamic simulation, the stability of annonacin upon P-gp was investigated. Further in vitro studies were carried in oxaliplatin-resistant human colon cancer cells (SW480R) to study the biological effect of annonacin, in reversing drug resistance in these cells. RESULTS Molecular docking and simulation studies have indicated that annonacin stably interacted at the drug binding site of P-gp. In vitro analysis showed that annonacin was able to significantly reduce the expression of P-gp by 2.56 folds. It also induced apoptosis in the drug-resistant colon cancer cells. Moreover, the intracellular accumulation of P-gp substrate (calcein-AM) was observed to increase in resistant cells upon treatment with annonacin. CONCLUSION Our findings suggest that annonacin could inhibit the efflux of chemotherapeutic drugs mediated by P-gp and thereby help in reversing MDR in colon cancer cells. Further in vivo studies are required to decipher the underlying mechanism of annonacin in treating MDR cancers.
Collapse
Affiliation(s)
- Jeevitha Priya Manoharan
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India; Department of Biomedical Engineering, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India.
| | - Hema Palanisamy
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India.
| | | |
Collapse
|
54
|
Salek S, Moazamian E, Mohammadi Bardbori A, Shamsdin SA. The anticancer effect of potential probiotic L. fermentum and L. plantarum in combination with 5-fluorouracil on colorectal cancer cells. World J Microbiol Biotechnol 2024; 40:139. [PMID: 38514489 DOI: 10.1007/s11274-024-03929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
5-Fluorouracil (5-FU) is an effective chemotherapy drug in the treatment of colorectal cancer (CRC). However, auxiliary or alternative therapies must be sought due to its resistance and potential side effects. Certain probiotic metabolites exhibit anticancer properties. In this study evaluated the anticancer and potential therapeutic activities of cell extracts potential probiotic strains, Limosilactobacillus fermentum and Lactiplantibacillus plantarum isolated from the mule milk and the standard probiotic strain Lacticaseibacillus rhamnosus GG (LGG) against the human colon cancer cell line (HT-29) and the normal cell line (HEK-293) alone or in combination with 5-FU. In this study, L. plantarum and L. fermentum, which were isolated from mule milk, were identified using biochemical and molecular methods. Their probiotic properties were investigated in vitro and compared with the standard probiotic strain of the species L. rhamnosus GG. The MTT assay, acridine orange/ethidium bromide (AO/EB) fluorescent staining, and flow cytometry were employed to measure the viability of cell lines, cell apoptosis, and production rates of Th17 cytokines, respectively. The results demonstrated that the combination of lactobacilli cell extracts and 5-FU decreased cell viability and induced apoptosis in HT-29 cells. Furthermore, this combination protected HEK-293 cells from the cytotoxic effects of 5-FU, enhancing their viability and reducing apoptosis. Moreover, the combination treatment led to an increase in the levels of IL-17A, IFN-γ, and TNF-α, which can enhance anti-tumor immunity. In conclusion, the cell extracts of the lactobacilli strains probably can act as a potential complementary anticancer therapy.
Collapse
Affiliation(s)
- Sanaz Salek
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Elham Moazamian
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Afshin Mohammadi Bardbori
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Azra Shamsdin
- Gasteroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
55
|
Ma L, Ai F, Xiao H, Wang F, Shi L, Bai X, Zhu Y, Ma W. Lycium barbarum polysaccharide reverses drug resistance in oxaliplatin-resistant colon cancer cells by inhibiting PI3K/AKT-dependent phosphomannose isomerase. Front Pharmacol 2024; 15:1367747. [PMID: 38576495 PMCID: PMC10991850 DOI: 10.3389/fphar.2024.1367747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Objective: Here, we aimed to explore the effect of LBP in combination with Oxaliplatin (OXA) on reversing drug resistance in colon cancer cells through in vitro and in vivo experiments. We also aimed to explore the possible mechanism underlying this effect. Finally, we aimed to determine potential targets of Lycium barbarum polysaccharide (LBP) in colon cancer (CC) through network pharmacology and molecular docking. Methods: The invasion ability of colon cancer cells was assessed using the invasion assay. The migration ability of these cells was assessed using the migration assay and wound healing assay. Cell cycle analysis was carried out using flow cytometry. The expression levels of phosphomannose isomerase (PMI) and ATP-binding cassette transport protein of G2 (ABCG2) proteins were determined using immunofluorescence and western blotting. The expression levels of phosphatidylinositol3-kinase (PI3K), protein kinase B (AKT), B-cell lymphoma 2 (Bcl-2), and BCL2-Associated X (Bax) were determined using western blotting. Forty BALB/c nude mice purchased from Weitong Lihua, Beijing, for the in vivo analyses. The mice were randomly divided into eight groups. They were administered HCT116 and HCT116-OXR cells to prepare colon cancer xenograft models and then treated with PBS, LBP (50 mg/kg), OXA (10 mg/kg), or LBP + OXA (50 mg/kg + 10 mg/kg). The tumor weight and volume of treated model mice were measured, and organ toxicity was evaluated using hematoxylin and eosin staining. The expression levels of PMI, ABCG2, PI3K, and AKT proteins were then assessed using immunohistochemistry. Moreover, PMI and ABCG2 expression levels were analyzed using immunofluorescence and western blotting. The active components and possible targets of LBP in colon cancer were explored using in silico analysis. GeneCards was used to identify CC targets, and an online Venn analysis tool was used to determine intersection targets between these and LBP active components. The PPI network for intersection target protein interactions and the PPI network for interactions between the intersection target proteins and PMI was built using STRING and Cytoscape. To obtain putative targets of LBP in CC, we performed GO function enrichment and KEGG pathway enrichment analyses. Results: Compared with the HCT116-OXR blank treatment group, both invasion and migration abilities of HCT116-OXR cells were inhibited in the LBP + OXA (2.5 mg/mL LBP, 10 μΜ OXA) group (p < 0.05). Cells in the LBP + OXA (2.5 mg/mL LBP, 10 μΜ OXA) group were found to arrest in the G1 phase of the cell cycle. Knockdown of PMI was found to downregulate PI3K, AKT, and Bcl-2 (p < 0.05), while it was found to upregulate Bax (p < 0.05). After treatment with L. barbarum polysaccharide, 40 colon cancer subcutaneous tumor models showed a decrease in tumor size. There was no difference in the liver index after LBP treatment (p > 0.05). However, the spleen index decreased in the OXA and LBP + OXA groups (p < 0.05), possibly as a side effect of oxaliplatin. Immunohistochemistry, immunofluorescence, and western blotting showed that LBP + OXA treatment decreased PMI and ABCG2 expression levels (p < 0.05). Moreover, immunohistochemistry showed that LBP + OXA treatment decreased the expression levels of PI3K and AKT (p < 0.05). Network pharmacology analysis revealed 45 active LBP components, including carotenoids, phenylpropanoids, quercetin, xanthophylls, and other polyphenols. It also revealed 146 therapeutic targets of LBP, including AKT, SRC, EGFR, HRAS, STAT3, and MAPK3. KEGG pathway enrichment analysis showed that the LBP target proteins were enriched in pathways, including cancer-related signaling pathways, PI3K/AKT signaling pathway, and IL-17 signaling pathways. Finally, molecular docking experiments revealed that the active LBP components bind well with ABCG2 and PMI. conclusion: Our in vitro experiments showed that PMI knockdown downregulated PI3K, AKT, and Bcl-2 and upregulated Bax. This finding confirms that PMI plays a role in drug resistance by regulating the PI3K/AKT pathway and lays a foundation to study the mechanism underlying the reversal of colon cancer cell drug resistance by the combination of LBP and OXA. Our in vivo experiments showed that LBP combined with oxaliplatin could inhibit tumor growth. LBP showed no hepatic or splenic toxicity. LBP combined with oxaliplatin could downregulate the expression levels of PMI, ABCG2, PI3K, and AKT; it may thus have positive significance for the treatment of advanced metastatic colon cancer. Our network pharmacology analysis revealed the core targets of LBP in the treatment of CC as well as the pathways they are enriched in. It further verified the results of our in vitro and in vivo experiments, showing the involvement of multi-component, multi-target, and multi-pathway synergism in the drug-reversing effect of LBP in CC. Overall, the findings of the present study provide new avenues for the future clinical treatment of CC.
Collapse
Affiliation(s)
- Lijun Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Ethnomedicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Fangfang Ai
- Key Laboratory of Ningxia Ethnomedicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hongyan Xiao
- People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Fang Wang
- People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Lei Shi
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xuehong Bai
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yongzhao Zhu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Wenping Ma
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| |
Collapse
|
56
|
Liu W, Wang Y, Xia L, Li J. Research Progress of Plant-Derived Natural Products against Drug-Resistant Cancer. Nutrients 2024; 16:797. [PMID: 38542707 PMCID: PMC10975298 DOI: 10.3390/nu16060797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 01/04/2025] Open
Abstract
As one of the malignant diseases globally, cancer seriously endangers human physical and mental health because of its high morbidity and mortality. Conventional cancer treatment strategies, such as surgical resection and chemoradiotherapy, are effective at the early stage of cancer but have limited efficacy for advanced cancer. Along with cancer progress and treatment, resistance develops gradually within the population of tumor cells. As a consequence, drug resistance become the major cause that leads to disease progression and poor clinical prognosis in some patients. The mechanisms of cancer drug resistance are quite complex and involve various molecular and cellular mechanisms. Therefore, exploring the mechanisms and finding specific targets are becoming imperative to overcome drug resistance. In recent years, plant-derived natural products have been evaluated as potential therapeutic candidates against cancer with drug resistance due to low side effects and high anticancer efficacy. A growing number of studies have shown that natural products can achieve superior antitumor effects through multiple signaling pathways. The mechanisms include regulation of multiple drug resistance (MDR)-related genes, inhibition of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, induction of autophagy, and blockade of the cell cycle. This paper reviews the molecular and cellular mechanisms of cancer drug resistance, as well as the therapeutic effects and mechanisms of plant-derived natural products against cancer drug resistance. It provides references for developing therapeutic medication for drug-resistant cancer treatment with high efficacy and low side effects.
Collapse
Affiliation(s)
| | | | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (W.L.); (Y.W.)
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (W.L.); (Y.W.)
| |
Collapse
|
57
|
Brockmueller A, Sajeev A, Koklesova L, Samuel SM, Kubatka P, Büsselberg D, Kunnumakkara AB, Shakibaei M. Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev 2024; 43:55-85. [PMID: 37507626 PMCID: PMC11016130 DOI: 10.1007/s10555-023-10126-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany.
| |
Collapse
|
58
|
Liu Y, Chen Y, Zhang J, Ran G, Cheng Z, Wang X, Liao Y, Mao X, Peng Y, Li W, Zheng J. Dihydrotanshinone I-Induced CYP1 Enzyme Inhibition and Alteration of Estradiol Metabolism. Drug Metab Dispos 2024; 52:188-197. [PMID: 38123940 DOI: 10.1124/dmd.123.001490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Dihydrotanshinone I (DHTI) is a pharmacologically active component occurring in the roots of the herbal medicine Salvia miltiorrhiza Bunge. This study investigated DHTI-induced inhibition of CYP1A1, CYP1A2, and CYP1B1 with the aim to determine the potential effects of DHTI on the bioactivation of estradiol (E2), possibly related to preventive/therapeutic strategy for E2-associated breast cancer. Ethoxyresorufin as a specific substrate for CYP1s was incubated with human recombinant CYP1A1, CYP1A2, or CYP1B1 in the presence of DHTI at various concentrations. Enzymatic inhibition and kinetic behaviors were examined by monitoring the formation of the corresponding product. Molecular docking was further conducted to define the interactions between DHTI and the three CYP1s. The same method and procedure were employed to examine the DHTI-induced alteration of E2 metabolism. DHTI showed significant inhibition of ethoxyresorufin O-deethylation activity catalyzed by CYP1A1, CYP1A2 and CYP1B1 in a concentration-dependent manner (IC50 = 0.56, 0.44, and 0.11 μM, respectively). Kinetic analysis showed that DHTI acted as a competitive type of inhibitor of CYP1A1 and CYP1B1, whereas it noncompetitively inhibited CYP1A2. The observed enzyme inhibition was independent of NADPH and time. Molecular docking analysis revealed hydrogen bonding interactions between DHTI and Asp-326 of CYP1B1. Moreover, DHTI displayed preferential activity to inhibit 4-hydroxylation of E2 (a genotoxic pathway) mediated by CYP1B1. Exposure to DHTI could reduce the risk of genotoxicity induced by E2. SIGNIFICANCE STATEMENT: CYP1A1, CYP1A2, and CYP1B1 enzymes are involved in the conversion of estradiol (E2) into 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2) through oxidation. 2-OHE2 is negatively correlated with breast cancer risk, and 4-OHE2 may be a significant initiator and promoter of breast cancer. The present study revealed that dihydrotanshinone I (DHTI) competitively inhibits CYP1A1/CYP1B1 and noncompetitively inhibits CYP1A2. DHTI exhibits a preference for inhibiting the genotoxicity associated with E2 4-hydroxylation pathway mediated by CYP1B1, potentially reducing the risk of 4-OHE2-induced genotoxicity.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Yu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Jingyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Guangyun Ran
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Zihao Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Xin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Yufen Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Xu Mao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Ying Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| |
Collapse
|
59
|
Huang Y, Huang X, Wang Z, He F, Huang Z, Chen C, Tang B, Qin M, Wu Y, Long C, Tang W, Mo X, Liu J. Analysis of differences in intestinal flora associated with different BMI status in colorectal cancer patients. J Transl Med 2024; 22:142. [PMID: 38331839 PMCID: PMC10854193 DOI: 10.1186/s12967-024-04903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Overweight is known to be an important risk factor for colorectal cancer (CRC), and the differences in intestinal flora among CRC patients with different BMI status have not been clearly defined. The purpose of this study was to elucidate the differences in the abundance, composition and biological function of intestinal flora in CRC patients with different BMI status. METHOD A total of 170 CRC patients were included and grouped according to the BMI data of CRC patients. BMI ≥ 24 kg/m2 was defined as overweight group, and BMI within the range of 18.5-23.9 kg/m2 was defined as normal weight group. Preoperative stool collection of patients in both groups was used for 16S rRNA sequencing. Total RNA was extracted from 17 CRC tumor tissue samples for transcriptome sequencing, and then CIBERSORT algorithm was used to convert the transcriptome data into the relative content matrix of 22 kinds of immune cells, and the correlation between different intestinal flora and immune cells and immune-related genes under different BMI states was analyzed. Finally, we identified BMI-related differential functional pathways and analyzed the correlation between these pathways and differential intestinal flora. RESULT There was no significant difference in α diversity and β diversity analysis between overweight group and normal weight group. Partial least square discriminant analysis (PLS-DA) could divide the flora into two different clusters according to BMI stratification. A total of 33 BMI-related differential flora were identified by linear discriminant effect size analysis (LEfSe), among which Actinomyces, Desulfovibrio and Bacteroides were significantly enriched in overweight group. ko00514: Other types of O-glycan biosynthesis are significantly enriched in overweight group. There was a significant positive correlation between Clostridium IV and Macrophages M2 and T cells regulatory (Tregs). There was a significant negative correlation with Dendritic cells activated and T cells CD4 memory activated. CONCLUSIONS The richness and diversity of intestinal flora of CRC patients may be related to different BMI status, and the enrichment of Actinomyces, Desulphurvibrio and Bacteroides may be related to overweight status of CRC patients. The tumor microenvironment in which BMI-related differential flora resides has different immune landscapes, suggesting that some intestinal flora may affect the biological process of CRC by regulating immune cell infiltration and immune gene expression, but further experiments are needed to confirm this.
Collapse
Affiliation(s)
- Yongqi Huang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xiaoliang Huang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Zhen Wang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Fuhai He
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Zigui Huang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Chuanbin Chen
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Binzhe Tang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Mingjian Qin
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Yongzhi Wu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Chenyan Long
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Weizhong Tang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.
| | - Xianwei Mo
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.
| | - Jungang Liu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.
| |
Collapse
|
60
|
Ge S, Guo Z, Xiao T, Sun P, Yang B, Ying Y. Qingfei Tongluo Mixture Attenuates Bleomycin-Induced Pulmonary Inflammation and Fibrosis through mTOR-Dependent Autophagy in Rats. Mediators Inflamm 2024; 2024:5573353. [PMID: 38361765 PMCID: PMC10869187 DOI: 10.1155/2024/5573353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024] Open
Abstract
As an interstitial fibrosis disease characterized by diffuse alveolitis and structural alveolar disorders, idiopathic pulmonary fibrosis (IPF) has high lethality but lacks limited therapeutic drugs. A hospital preparation used for the treatment of viral pneumonia, Qingfei Tongluo mixture (QFTL), is rumored to have protective effects against inflammatory and respiratory disease. This study aims to confirm whether it has a therapeutic effect on bleomycin-induced IPF in rats and to elucidate its mechanism of action. Male SD rats were randomly divided into the following groups: control, model, CQ + QFTL (84 mg/kg chloroquine (CQ) + 3.64 g/kg QFTL), QFTL-L, M, H (3.64, 7.28, and 14.56 g/kg, respectively) and pirfenidone (PFD 420 mg/kg). After induction modeling and drug intervention, blood samples and lung tissue were collected for further detection. Body weight and lung coefficient were examined, combined with hematoxylin and eosin (H&E) and Masson staining to observe lung tissue lesions. The enzyme-linked immunosorbent assay (ELISA) and the hydroxyproline (HYP) assay kit were used to detect changes in proinflammatory factors (transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β)) and HYP. Immunohistochemistry and Western blotting were performed to observe changes in proteins related to pulmonary fibrosis (α-smooth muscle actin (α-SMA) and matrix metalloproteinase 12 (MMP12)) and autophagy (P62 and mechanistic target of rapamycin (mTOR)). Treatment with QFTL significantly improved the adverse effects of bleomycin on body weight, lung coefficient, and pathological changes. Then, QFTL reduced bleomycin-induced increases in proinflammatory mediators and HYP. The expression changes of pulmonary fibrosis and autophagy marker proteins are attenuated by QFTL. Furthermore, the autophagy inhibitor CQ significantly reversed the downward trend in HYP levels and α-SMA protein expression, which QFTL improved in BLM-induced pulmonary fibrosis rats. In conclusion, QFTL could effectively attenuate bleomycin-induced inflammation and pulmonary fibrosis through mTOR-dependent autophagy in rats. Therefore, QFTL has the potential to be an alternative treatment for IPF in clinical practice.
Collapse
Affiliation(s)
- Shuyu Ge
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhenghong Guo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ting Xiao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Pingping Sun
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Bo Yang
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yin Ying
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
61
|
Shi Y, Zhang C, Cao W, Li L, Liu K, Zhu H, Balcha F, Fang Y. Extracellular vesicles from Lacticaseibacillus paracasei PC-H1 inhibit HIF-1α-mediated glycolysis of colon cancer. Future Microbiol 2024; 19:227-239. [PMID: 38270125 DOI: 10.2217/fmb-2023-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/19/2023] [Indexed: 01/26/2024] Open
Abstract
Aims: Extracellular vesicles from Lacticaseibacillus paracasei PC-H1 have antiproliferative activity of colon cells, but the effect on glycolytic metabolism of cancer cell remains enigmatic. The authors investigated how Lacticaseibacillus paracasei extracellular vesicles (LpEVs) inhibit the growth of colon cancer cells by affecting tumor metabolism. Materials & methods: HCT116 cells were treated with LpEVs and then differentially expressed genes were analyzed by transcriptome sequencing, the sequencing results were confirmed in vivo and in vitro. Results: LpEVs entered colon cancer cells and inhibited their growth. Transcriptome sequencing revealed differentially expressed genes were related to glycolysis. Lactate production, glucose uptake and lactate dehydrogenase activity were significantly reduced after treatment. LpEVs also reduced HIF-1α, GLUT1 and LDHA expression. Conclusion: LpEVs exert their antiproliferative activity of colon cancer cells by decreasing HIF-1α-mediated glycolysis.
Collapse
Affiliation(s)
- Yangqian Shi
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Department of Microbiology, Beihua University, 132013 Jilin, China
| | - Chunliang Zhang
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Blood Centre,150056 Harbin, China
| | - Wanyu Cao
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Luyi Li
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Kaili Liu
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Hanyue Zhu
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Fikadu Balcha
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Department of Medical Laboratory Science, College of Health Science, Arsi University, POBX 193 Asella, Ethiopia
| | - Yong Fang
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Heilongjiang Province Key Laboratory of Immunity & Infection, Pathogenic Biology, 150081 Harbin, China
| |
Collapse
|
62
|
Wu Z, Zhou S, Liang D, Mu L. GPX2 acts as an oncogene and cudraflavone C has an anti-tumor effect by suppressing GPX2-dependent Wnt/β-catenin pathway in colorectal cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1115-1125. [PMID: 37610461 DOI: 10.1007/s00210-023-02668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Colorectal carcinoma (CRC) is a common cancer associated with poor prognosis, and cudraflavone C (Cud C) is a natural flavonol with reported anti-CRC capacity. However, the precise mechanisms underlying the anti-CRC effect require further demonstration. The aim of present study was to evaluate the impact of Cud C on the cell viability and apoptosis of CRC cells and to determine the underlying mechanisms. The Human Protein Atlas (THPA) and Gene Expression Profiling Interactive Analysis (GEPIA) databases were used to analyze the expression status of glutathione peroxidase 2 (GPX2) in CRC. Cell viability was examined using cell counting kit-8 (CCK-8) assay. Flow cytometry was utilized to evaluate apoptosis. The levels of gene transcription and protein expression of GPX2, caspase-3, cleaved caspase-3), β-catenin, and c-Myc were determined by RT-qPCR and Western blotting. Our results showed that GPX2 was overexpressed in CRC as compared to normal tissue and the extent of GPX2 overexpression is greatest in CRC when compared with other cancers according to GEPIA and THPA databases. GPX2 knockdown significantly suppressed the cell viability, induced apoptosis of CRC cell lines, and restrained the activity of Wnt/β-catenin pathway. Cud C treatment decreased cell viability, induced apoptosis in CRC cell lines, and diminished the expression level of GPX2-dependent activation of Wnt/β-catenin pathway, while such effects can be abolished by GPX2 overexpression. In conclusion, Cud C suppressed GPX2-dependent Wnt/β-catenin pathway to exert anti-CRC function.
Collapse
Affiliation(s)
- Zhuo Wu
- Uutpatient Department, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Su Zhou
- Department of Drug Management, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Dan Liang
- Department of Otolaryngology, the First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, People's Republic of China
| | - Lan Mu
- Department of Otolaryngology, the First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, People's Republic of China.
| |
Collapse
|
63
|
Sedky NK, Fawzy IM, Hassan A, Mahdy NK, Attia RT, Shamma SN, Alfaifi MY, Elbehairi SE, Mokhtar FA, Fahmy SA. Innovative microwave-assisted biosynthesis of copper oxide nanoparticles loaded with platinum(ii) based complex for halting colon cancer: cellular, molecular, and computational investigations. RSC Adv 2024; 14:4005-4024. [PMID: 38288146 PMCID: PMC10823359 DOI: 10.1039/d3ra08779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024] Open
Abstract
In the current study, we biosynthesized copper oxide NPs (CuO NPs) utilizing the essential oils extracted from Boswellia carterii oleogum resin, which served as a bioreductant and capping agent with the help of microwave energy. Afterwards, the platinum(ii) based anticancer drug, carboplatin (Cr), was loaded onto the CuO NPs, exploiting the electrostatic interactions forming Cr@CuO NPs. The produced biogenic NPs were then characterized using zeta potential (ZP), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), and Fourier transform infrared spectroscopy (FTIR) techniques. In addition, the entrapment efficiency and release profile of the loaded Cr were evaluated. Thereafter, SRB assay was performed, where Cr@CuO NPs demonstrated the highest cytotoxic activity against human colon cancer cells (HCT-116) with an IC50 of 5.17 μg mL-1, which was about 1.6 and 2.2 folds more than that of Cr and CuO NPs. Moreover, the greenly synthesized nanoparticles (Cr@CuO NPs) displayed a satisfactory selectivity index (SI = 6.82), which was far better than the free Cr treatment (SI = 2.23). Regarding the apoptosis assay, the advent of Cr@CuO NPs resulted in an immense increase in the cellular population percentage of HCT-116 cells undergoing both early (16.02%) and late apoptosis (35.66%), significantly surpassing free Cr and CuO NPs. A study of HCT-116 cell cycle kinetics revealed the powerful ability of Cr@CuO NPs to trap cells in the Sub-G1 and G2 phases and impede the G2/M transition. RT-qPCR was utilized for molecular investigations of the pro-apoptotic (Bax and p53) and antiapoptotic genes (Bcl-2). The novel Cr@CuO NPs treatment rose above single Cr or CuO NPs therapy in stimulating the p53-Bax mediated mitochondrial apoptosis. The cellular and molecular biology investigations presented substantial proof of the potentiated anticancer activity of Cr@CuO NPs and the extra benefits that could be obtained from their use.
Collapse
Affiliation(s)
- Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
| | - Afnan Hassan
- Biomedical Sciences Program, Zewail City of Science and Technology Giza 12578 Egypt
| | - Noha Khalil Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street 11562 Cairo Egypt
| | - Reem T Attia
- Department of Pharmacology and Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
| | - Samir N Shamma
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
| | - Serag Eldin Elbehairi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University El Saleheya El Gadida Sharkia 44813 Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt +20 1222613344
| |
Collapse
|
64
|
Yang LL, Li M, Huang W, Ren PT, Yan QH, Hao YH. ANP32B promotes colorectal cancer cell progression and reduces cell sensitivity to PRAP1 inhibitor through up-regulating HPF1. Heliyon 2024; 10:e23829. [PMID: 38192816 PMCID: PMC10772160 DOI: 10.1016/j.heliyon.2023.e23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
ANP32B, a member of the acidic leucine-rich nuclear phosphoprotein 32 family member B, is aberrantly expressed in various cancers, including colorectal cancer. However, the function and mechanism of action of ANP32B in colorectal cancer remain unclear. The present study therefore analyzed the expression of ANP32B and its activity in colorectal cancer patient samples and colorectal cancer cell lines. ANP32B expression was found to be significantly upregulated in colorectal cancer patient samples and cell lines. Upregulation of ANP32B enhanced colorectal cancer cell proliferation and migration, whereas downregulation of ANP32B suppressed colorectal cancer cell proliferation. RNA sequencing analysis of differentially expressed genes in ANP32B silenced colorectal cancer cells showed that histone PARylation factor 1 (HPF1), which protects against DNA damage by interacting with the anti-tumor target PARP1, was significantly downregulated. Luciferase promoter assays testing the regulatory association between ANP32B and HPF1 showed that ANP32B interacted with the HPF1 promoter. Analysis of colorectal cancer samples from The Cancer Genome Atlas showed that ANP32B and HPF1 expression were positively correlated, and recovery assays showed that ANP32B promoted colorectal cancer progression by up-regulating HPF1. Overexpression of ANP32B also reduced the sensitivity of colorectal cancer cells to PARP1 inhibitor, consistent with the oncogenic role of ANP32B. ANP32B may alter the sensitivity of colorectal cancer cells to PARP1 inhibitor via a mechanism associated with the HPF1 gene. In summary, these findings showed that ANP32B acted as a tumor promoter, potentiating both colorectal cancer malignancy and drug resistance. Targeting the ANP32B/HPF1 axis may have benefit for patients with colorectal cancer.
Collapse
Affiliation(s)
- Li-Li Yang
- Department of Radiology, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Meng Li
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Huang
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Peng-Tao Ren
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing-Hui Yan
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ying-Hao Hao
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
65
|
Huang J, Zhang J, Sun C, Yang R, Sheng M, Hu J, Kai G, Han B. Adjuvant role of Salvia miltiorrhiza bunge in cancer chemotherapy: A review of its bioactive components, health-promotion effect and mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117022. [PMID: 37572929 DOI: 10.1016/j.jep.2023.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chemotherapy is a common cancer treatment strategy. However, its effectiveness is constrained by toxicity and adverse effects. The Lamiaceae herb Salvia miltiorrhiza Bunge has a long history of therapeutic use in the treatment of blood stasis illnesses, which are believed by traditional Chinese medicine to be connected to cancer. AIM OF THE STUDY This review summarized the common toxicity of chemotherapy and the potential chemo-adjuvant effect and mechanisms of active ingredients from S. miltiorrhiza, hoping to provide valuable information for the development and application of S. miltiorrhiza resources. MATERIALS AND METHODS The literatures were retrieved from PubMed, Web of Science, Baidu Scholar and Google Scholar databases from 2002 to 2022. The inclusion criteria were studies reporting that S. miltiorrhiza or its constituents enhanced the efficiency of chemotherapy drugs or reduced the side effects. RESULTS Salvianolic acid A, salvianolic acid B, salvianolic acid C, rosmarinic acid, tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone I and miltirone are the primary adjuvant chemotherapy components of S. miltiorrhiza. The mechanisms mainly involve inhibiting proliferation, metastasis, and angiogenesis, inducing apoptosis, regulating autophagy and tumor microenvironment. In addition, they also improve chemotherapy drug-induced side effects. CONCLUSIONS The bioactive compounds of S. miltiorrhiza are shown to inhibit proliferation, metastasis, and angiogenesis, induce apoptosis and autophagy, regulate immunity and tumor microenvironment when combined with chemotherapy drugs. However, further clinical studies are required to validate the current studies.
Collapse
Affiliation(s)
- Jiayan Huang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Chengtao Sun
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ruiwen Yang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Miaomiao Sheng
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiangning Hu
- Zhejiang Conba Pharmaceutical Limited Company, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, 310052, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Zhejiang Conba Pharmaceutical Limited Company, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, 310052, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
66
|
Fu R, Chang R, Peng A, Feng C, Zhu W, Chen Y, Tian X, Wang R, Yan H, Jia D, Li J. Efficient treatment of colon cancer with codelivery of TRAIL and imatinib by liposomes. Pharm Dev Technol 2024; 29:52-61. [PMID: 38230653 DOI: 10.1080/10837450.2024.2301763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
To solve the problem of resistance of tumor cells to TRAIL and the inevitable side effects of imatinib during treatment, we successfully prepared a kind of multifunctional liposome that encapsulated imatinib in its internal water phase and inserted TRAIL on its membrane in this study, which named ITLPs. The liposomes appeared uniform spherical and the particle size was approximately 150 nm. ITLPs showed high accumulation in TRAIL-resistance cells and HT-29 tumor-bearing mice model. In vitro cytotoxicity assay results showed that the killing activity of HT-29 cells treated with ITLPs increased by 50% and confirmed that this killing activity was mediated by the apoptosis pathway. Through mechanism studies, it was found that ITLPs arrested up to 32.3% of cells in phase M to exert anti-tumor effects. In vivo anti-tumor study showed that ITLPs achieved 61.8% tumor suppression and little toxicity in the HT-29 tumor-bearing mice model. Overall results demonstrated that codelivery of imatinib and TRAIL via liposomes may be a prospective method in the treatment of the TRAIL-resistance tumor.
Collapse
Affiliation(s)
- Rongrong Fu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Rui Chang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Andong Peng
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Changshun Feng
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Weifan Zhu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Yi Chen
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Xue Tian
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Rui Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Hui Yan
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Jun Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
67
|
Chakraborty B, Agarwal S, Kori S, Das R, Kashaw V, Iyer AK, Kashaw SK. Multiple Protein Biomarkers and Different Treatment Strategies for Colorectal Carcinoma: A Comprehensive Prospective. Curr Med Chem 2024; 31:3286-3326. [PMID: 37151060 DOI: 10.2174/0929867330666230505165031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 05/09/2023]
Abstract
In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.
Collapse
Affiliation(s)
- Biswadip Chakraborty
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivangi Agarwal
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, ISF College of Pharmacy, Moga-Punjab, India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
68
|
Bhaskaran NA, Jitta SR, Salwa, Kumar L, Sharma P, Kulkarni OP, Hari G, Gourishetti K, Verma R, Birangal SR, Bhaskar KV. Folic acid-chitosan functionalized polymeric nanocarriers to treat colon cancer. Int J Biol Macromol 2023; 253:127142. [PMID: 37797853 DOI: 10.1016/j.ijbiomac.2023.127142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
In the present study, polymeric nanoparticles loaded with IRI and quercetin, a p-gp inhibitor, were developed to target folate receptors expressed by colon cancer cells for oral targeted delivery. This work reports the development of PNPs with an entrapment efficiency of 41.26 ± 0.56 % for IRI and 55.83 ± 4.51 for QT. PNPs were further surface modified using chitosan-folic acid conjugates for better targetability to obtain folic acid-chitosan coated nanoparticles. DLS and FeSEM revealed particles in the nanometric size range with spherical morphology, while FTIR and DSC provided details on their structure and encapsulation. In vitro drug release studies confirmed a sustained release pattern of IRI and QT, while cell line studies confirmed the superiority of C-FA-PNPs when tested on Caco2 cells. Pharmacodynamic studies in colon cancer induced rats showed similar efficacy for PNPs and C-FA-PNPs. Further examination from a bio-distribution study in healthy rats, revealed the failure of C-FA-PNPs to deliver the drugs to the colon adequately, while the PNPs improved the available concentration of IRI at the colon by almost 1.8 folds when compared to the available marketed product. Hence, the developed PNP formulation sticks out as a plausible substitute for the intravenous dosage forms of IRI which have been conventionally prevailing.
Collapse
Affiliation(s)
- Navya Ajitkumar Bhaskaran
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India; Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Gate No. 2, V.M. Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Srinivas Reddy Jitta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Salwa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, India.
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad campus, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad campus, India
| | - Gangadhar Hari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Karthik Gourishetti
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India; Biotherapeutics Laboratory, Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ruchi Verma
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - K Vijaya Bhaskar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| |
Collapse
|
69
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
70
|
Zhang Z, Zhao Y, Wang Y, Zhao Y, Guo J. Autophagy/ferroptosis in colorectal cancer: Carcinogenic view and nanoparticle-mediated cell death regulation. ENVIRONMENTAL RESEARCH 2023; 238:117006. [PMID: 37669735 DOI: 10.1016/j.envres.2023.117006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
The cell death mechanisms have a long history of being evaluated in diseases and pathological events. The ability of triggering cell death is considered to be a promising strategy in cancer therapy, but some mechanisms have dual functions in cancer, requiring more elucidation of underlying factors. Colorectal cancer (CRC) is a disease and malignant condition of colon and rectal that causes high mortality and morbidity. The autophagy targeting in CRC is therapeutic importance and this cell death mechanism can interact with apoptosis in inhibiting or increasing apoptosis. Autophagy has interaction with ferroptosis as another cell death pathway in CRC and can accelerate ferroptosis in suppressing growth and invasion. The dysregulation of autophagy affects the drug resistance in CRC and pro-survival autophagy can induce drug resistance. Therefore, inhibition of protective autophagy enhances chemosensitivity in CRC cells. Moreover, autophagy displays interaction with metastasis and EMT as a potent regulator of invasion in CRC cells. The same is true for ferroptosis, but the difference is that function of ferroptosis is determined and it can reduce viability. The lack of ferroptosis can cause development of chemoresistance in CRC cells and this cell death mechanism is regulated by various pathways and mechanisms that autophagy is among them. Therefore, current review paper provides a state-of-art analysis of autophagy, ferroptosis and their crosstalk in CRC. The nanoparticle-mediated regulation of cell death mechanisms in CRC causes changes in progression. The stimulation of ferroptosis and control of autophagy (induction or inhibition) by nanoparticles can impair CRC progression. The engineering part of nanoparticle synthesis to control autophagy and ferroptosis in CRC still requires more attention.
Collapse
Affiliation(s)
- Zhibin Zhang
- Chengde Medical College, College of Traditional Chinese Medicine, Chengde, Hebei, 067000, China.
| | - Yintao Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yuman Wang
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Jianen Guo
- Chengde Medical College, Chengde, Hebei, 067000, China
| |
Collapse
|
71
|
Primeaux M, Liu X, Gowrikumar S, Fatima I, Fisher KW, Bastola D, Vecchio AJ, Singh AB, Dhawan P. Claudin-1 interacts with EPHA2 to promote cancer stemness and chemoresistance in colorectal cancer. Cancer Lett 2023; 579:216479. [PMID: 37924938 PMCID: PMC10765961 DOI: 10.1016/j.canlet.2023.216479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Therapy resistance is the primary problem in treating late-stage colorectal cancer (CRC). Claudins are frequently dysregulated in cancer, and several are being investigated as novel therapeutic targets and biomarkers. We have previously demonstrated that Claudin-1 (CLDN1) expression in CRC promotes epithelial-mesenchymal transition, metastasis, and resistance to anoikis. Here, we hypothesize that CLDN1 promotes cancer stemness and chemoresistance in CRC. We found that high CLDN1 expression in CRC is associated with cancer stemness and chemoresistance signaling pathways in patient datasets, and it promotes chemoresistance both in vitro and in vivo. Using functional stemness assays, proteomics, biophysical binding assays, and patient-derived organoids, we found that CLDN1 promotes properties of cancer stemness including CD44 expression, tumor-initiating potential, and chemoresistance through a direct interaction with ephrin type-A receptor 2 (EPHA2) tyrosine kinase. This interaction is dependent on the CLDN1 PDZ-binding motif, increases EPHA2 protein expression by inhibiting its degradation, and enhances downstream AKT signaling and CD44 expression to promote stemness and chemoresistance. These results suggest CLDN1 is a viable target for pharmacological intervention and/or biomarker development.
Collapse
Affiliation(s)
- Mark Primeaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiangdong Liu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dhundy Bastola
- Department of Bioinformatics, University of Nebraska Omaha, Omaha, NE, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
72
|
Yang Z, Liu Z, Ablise M, Maimaiti A, Aihaiti A, Alimujiang Y. Design and Synthesis of Novel α-Methylchalcone Derivatives, Anti-Cervical Cancer Activity, and Reversal of Drug Resistance in HeLa/DDP Cells. Molecules 2023; 28:7697. [PMID: 38067428 PMCID: PMC10707934 DOI: 10.3390/molecules28237697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, a collection of newly developed α-methylchalcone derivatives were synthesized and assessed for their inhibitory potential against human cervical cancer cell lines (HeLa, SiHa, and C33A) as well as normal human cervical epithelial cells (H8). Notably, compound 3k exhibited substantial inhibitory effects on both HeLa and HeLa/DDP cells while demonstrating lower toxicity toward H8 cells. Furthermore, the compound 3k was found to induce apoptosis in both HeLa and HeLa/DDP cells while also inhibiting the G2/M phase, resulting in a decrease in the invasion and migration capabilities of these cells. When administered alongside cisplatin, 3k demonstrated a significant reduction in the resistance of HeLa/DDP cells to cisplatin, as evidenced by a decrease in the resistance index (RI) value from 7.90 to 2.10. Initial investigations into the underlying mechanism revealed that 3k did not impact the expression of P-gp but instead facilitated the accumulation of rhodamine 123 in HeLa/DDP cells. The results obtained from CADD docking analysis demonstrated that 3k exhibits stable binding to microtubule proteins and P-gp targets, forming hydrogen bonding interaction forces. Immunofluorescence analysis further revealed that 3k effectively decreased the fluorescence intensity of α and β microtubules in HeLa and HeLa/DDP cells, resulting in disruptions in cell morphology, reduction in cell numbers, nucleus coagulation, and cell rupture. Additionally, Western blot analysis indicated that 3k significantly reduced the levels of polymerized α and β microtubule proteins in both HeLa and HeLa/DDP cell lines while concurrently increasing the expression of dissociated α and β microtubule proteins. The aforementioned findings indicate a potential correlation between the inhibitory effects of 3k on HeLa and HeLa/DDP cells and its ability to inhibit tubulin and P-gp.
Collapse
Affiliation(s)
| | | | - Mourboul Ablise
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; (Z.Y.); (Z.L.); (A.M.); (A.A.); (Y.A.)
| | | | | | | |
Collapse
|
73
|
HU WEI, WARTMANN THOMAS, STRECKER MARCO, PERRAKIS ARISTOTELIS, CRONER ROLAND, SZALLASI ARPAD, SHI WENJIE, KAHLERT ULFD. Transient receptor potential channels as predictive marker and potential indicator of chemoresistance in colon cancer. Oncol Res 2023; 32:227-239. [PMID: 38188686 PMCID: PMC10767253 DOI: 10.32604/or.2023.043053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/13/2023] [Indexed: 01/09/2024] Open
Abstract
Transient receptor potential (TRP) channels are strongly associated with colon cancer development and progression. This study leveraged a multivariate Cox regression model on publicly available datasets to construct a TRP channels-associated gene signature, with further validation of signature in real world samples from our hospital treated patient samples. Kaplan-Meier (K-M) survival analysis and receiver operating characteristic (ROC) curves were employed to evaluate this gene signature's predictive accuracy and robustness in both training and testing cohorts, respectively. Additionally, the study utilized the CIBERSORT algorithm and single-sample gene set enrichment analysis to explore the signature's immune infiltration landscape and underlying functional implications. The support vector machine algorithm was applied to evaluate the signature's potential in predicting chemotherapy outcomes. The findings unveiled a novel three TRP channels-related gene signature (MCOLN1, TRPM5, and TRPV4) in colon adenocarcinoma (COAD). The ROC and K-M survival curves in the training dataset (AUC = 0.761; p = 1.58e-05) and testing dataset (AUC = 0.699; p = 0.004) showed the signature's robust predictive capability for the overall survival of COAD patients. Analysis of the immune infiltration landscape associated with the signature revealed higher immune infiltration, especially an increased presence of M2 macrophages, in high-risk group patients compared to their low-risk counterparts. High-risk score patients also exhibited potential responsiveness to immune checkpoint inhibitor therapy, evident through increased CD86 and PD-1 expression profiles. Moreover, the TRPM5 gene within the signature was highly expressed in the chemoresistance group (p = 0.00095) and associated with poor prognosis (p = 0.036) in COAD patients, highlighting its role as a hub gene of chemoresistance. Ultimately, this signature emerged as an independent prognosis factor for COAD patients (p = 6.48e-06) and expression of model gene are validated by public data and real-world patients. Overall, this bioinformatics study provides valuable insights into the prognostic implications and potential chemotherapy resistance mechanisms associated with TRPs-related genes in colon cancer.
Collapse
Affiliation(s)
- WEI HU
- The Fourth Clinical Medical College of Yangzhou University, Nantong Rich Hospital, Nantong, China
| | - THOMAS WARTMANN
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - MARCO STRECKER
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ARISTOTELIS PERRAKIS
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ROLAND CRONER
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ARPAD SZALLASI
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - WENJIE SHI
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ULF D. KAHLERT
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
74
|
Khalili E, Afgar A, Rajabpour A, Aghaee-Bakhtiari SH, Jamialahmadi K, Teimoori-Toolabi L. MiR-548c-3p through suppressing Tyms and Abcg2 increases the sensitivity of colorectal cancer cells to 5-fluorouracil. Heliyon 2023; 9:e21775. [PMID: 38045156 PMCID: PMC10692789 DOI: 10.1016/j.heliyon.2023.e21775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Background Colorectal cancer, is one of most prevalent the cancer in the world. 5-Fluorouracil is a standard chemotherapeutic drug while the acquisition of resistance to 5-Fluorouracil is one of the problems during treatment. In this study, we aimed to find the miRNAs that modulate the expression of Tyms and Abcg2 as resistance-inducing genes in the resistant cell lines to 5-Fluorouracil. Methods 5-Fluorouracil-resistant HCT116 and SW480 cell lines were generated by consecutive treatment of cells with 5-Fluorouracil. This resistance induction was validated by MTT assays. The expression of the Tyms and Abcg2 gene and miR-548c-3p were studied by quantitative real-time PCR in the cell lines. Results We hypothesized that miR-548c-3p is targeting Tyms and Abcg2 simultaneously. Increased expression Tyms gene in the two most resistant cell lines derived from HCT116 and all resistant cell lines derived from SW480 except one were seen. Increased expression of Abcg2 was observed in the most resistant HCT116-derived cell line and all resistant cell lines, derived from SW480. In all resistant cell lines, the expression of miR-548c-3p was decreased. Conclusion It can be concluded downregulation of miR548c-3p is in line with Tyms and Abcg2 overexpression in resistant cell lines to 5-Fluorouracil.
Collapse
Affiliation(s)
- Elham Khalili
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Azam Rajabpour
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| |
Collapse
|
75
|
Wei F, Nian Q, Zhao M, Wen Y, Yang Y, Wang J, He Z, Chen X, Yin X, Wang J, Ma X, Chen Y, Feng P, Zeng J. Natural products and mitochondrial allies in colorectal cancer therapy. Biomed Pharmacother 2023; 167:115473. [PMID: 37713992 DOI: 10.1016/j.biopha.2023.115473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Colorectal cancer (CRC) is a globally prevalent malignancy with a high potential for metastasis. Existing cancer treatments have limitations, including drug resistance and adverse effects. Researchers are striving to develop effective therapies to address these challenges. Impressively, contemporary research has discovered that many natural products derived from foods, plants, insects, and marine invertebrates can suppress the progression, metastasis, and invasion of CRC. In this review, we conducted a comprehensive search of the CNKI, PubMed, Embase, and Web of Science databases from inception to April 2023 to evaluate the efficacy of natural products targeting mitochondria to fight against CRC. Mitochondria are intracellular energy factories involved in cell differentiation, signal transduction, cell cycle regulation, apoptosis, and tumorigenesis. The identified natural products have been classified and summarized based on their mechanisms of action. These findings indicate that natural products can induce apoptosis in colorectal cancer cells by inhibiting the mitochondrial respiratory chain, ROS elevation, disruption of mitochondrial membrane potential, the release of pro-apoptotic factors, modulation of the Bcl-2 protein family to facilitate cytochrome c release, induction of apoptotic vesicle activity by activating the caspase protein family, and selective targeting of mitochondrial division. Furthermore, diverse apoptotic signaling pathways targeting mitochondria, such as the MAPK, p53, STAT3, JNK and AKT pathway, have been triggered by natural products. Natural products such as diosgenin, allopurinol, and clausenidin have demonstrated low toxicity, high efficacy, and multi-targeted properties. Mitochondria-targeting natural products have great potential for overcoming the challenges of CRC therapy.
Collapse
Affiliation(s)
- Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Maoyuan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Yang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jundong Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Zhelin He
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiaoyan Chen
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiang Yin
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Jian Wang
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Peimin Feng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
76
|
Ye Q, Zhou X, Ren H, Han F, Lin R, Li J. An overview of the past decade of bufalin in the treatment of refractory and drug-resistant cancers: current status, challenges, and future perspectives. Front Pharmacol 2023; 14:1274336. [PMID: 37860119 PMCID: PMC10582727 DOI: 10.3389/fphar.2023.1274336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Profound progress has been made in cancer treatment in the past three decades. However, drug resistance remains prevalent and a critical challenge. Drug resistance can be attributed to oncogenes mutations, activated defensive mechanisms, ATP-bind cassette transporters overexpression, cancer stem cells, etc. Chinese traditional medicine toad venom has been used for centuries for different diseases, including resistant cancers. Bufalin is one of the bufadienolides in toad venom that has been extensively studied for its potential in refractory and drug-resistant cancer treatments in vitro and in vivo. In this work, we would like to critically review the progress made in the past decade (2013-2022) of bufalin in overcoming drug resistance in cancers. Generally, bufalin shows high potential in killing certain refractory and resistant cancer cells via multiple mechanisms. More importantly, bufalin can work as a chemo-sensitizer that enhances the sensitivity of certain conventional and targeted therapies at low concentrations. In addition, the development of bufalin derivatives was also briefly summarized and discussed. We also analyzed the obstacles and challenges and provided possible solutions for future perspectives. We hope that the collective information may help evoke more effort for more in-depth studies and evaluation of bufalin in both lab and possible clinical trials.
Collapse
Affiliation(s)
- Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Xin Zhou
- The Fifth People’s Hospital of Hainan Province & Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Han Ren
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fangxuan Han
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Rong Lin
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Juan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
77
|
Dey DK, Gahlot H, Chang SN, Kang SC. CopA3 treatment suppressed multidrug resistivity in HCT-116 cell line by p53-induced degradation of hypoxia-inducible factor 1α. Life Sci 2023; 329:121933. [PMID: 37451396 DOI: 10.1016/j.lfs.2023.121933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
The major reason for multidrug resistance is the failure of chemotherapy in many tumors, including colon cancer. Hypoxia-inducible factor (HIF)-1α is a crucial transcription factor that simulates multiple cellular response to hypoxia. HIF-1α has been known to play a vital role towards tumor resistance; however, its mechanism of action is still not fully elucidated. N this study, we found that HIF-1α remarkably modulated drug resistance-associated proteins upon CopA3 peptide treatment against colon cancer cells. Abnormal rates of tumor growth along with high metastatic potential lacks the susceptibility towards cellular signals is a key characteristic in many tumor types. Moreover, in growing tumors, cells are exposed to insufficient nutrient supply and low oxygen availability. These stress force them to switch into adaptable and aggressive phenotypes. Our study investigated the interaction of HIF-1α and MDR gene association upon CopA3 treatment in the tumor microenvironment. We demonstrate that the multidrug resistance gene is associated with tumor resistance to chemotherapeutics, which upon CopA3 treatment promotes p53 activation and proteasomal degradation of HIF-1α, effecting the angiogenesis response to hypoxia. p53 downregulation augments HIF-1-dependent transcriptional activation of VEGF in response to oxygen deprivation.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Himanshi Gahlot
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Sukkum Ngullie Chang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
78
|
Cutshaw G, Hassan N, Uthaman S, Wen X, Singh B, Sarkar A, Bardhan R. Monitoring Metabolic Changes in Response to Chemotherapies in Cancer with Raman Spectroscopy and Metabolomics. Anal Chem 2023; 95:13172-13184. [PMID: 37605298 PMCID: PMC10845238 DOI: 10.1021/acs.analchem.3c02073] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Resistance to clinical therapies remains a major barrier in cancer management. There is a critical need for rapid and highly sensitive diagnostic tools that enable early prediction of treatment response to allow accurate clinical decisions. Here, Raman spectroscopy was employed to monitor changes in key metabolites as early predictors of response in KRAS-mutant colorectal cancer (CRC) cells, HCT116, treated with chemotherapies. We show at the single cell level that HCT116 is resistant to cetuximab (CTX), the first-line treatment in CRC, but this resistance can be overcome with pre-sensitization of cells with oxaliplatin (OX). In combination treatment of CTX + OX, sequential delivery of OX followed by CTX rather than simultaneous administration of drugs was observed to be critical for effective therapy. Our results demonstrated that metabolic changes are well aligned to cellular mechanical changes where Young's modulus decreased after effective treatment, indicating that both changes in mechanical properties and metabolism in cells are likely responsible for cancer proliferation. Raman findings were verified with mass spectrometry (MS) metabolomics, and both platforms showed changes in lipids, nucleic acids, and amino acids as predictors of resistance/response. Finally, key metabolic pathways enriched were identified when cells are resistant to CTX but downregulated with effective treatment. This study highlights that drug-induced metabolic changes both at the single cell level (Raman) and ensemble level (MS) have the potential to identify mechanisms of response to clinical cancer therapies.
Collapse
Affiliation(s)
- Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Nora Hassan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Xiaona Wen
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anwesha Sarkar
- Department of Electrical Engineering, Iowa State University, Ames, IA 50012, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
79
|
He X, Li X, Tian W, Li C, Li P, Zhao J, Yang S, Li S. The role of redox-mediated lysosomal dysfunction and therapeutic strategies. Biomed Pharmacother 2023; 165:115121. [PMID: 37418979 DOI: 10.1016/j.biopha.2023.115121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023] Open
Abstract
Redox homeostasis refers to the dynamic equilibrium between oxidant and reducing agent in the body which plays a crucial role in maintaining normal physiological activities of the body. The imbalance of redox homeostasis can lead to the development of various human diseases. Lysosomes regulate the degradation of cellular proteins and play an important role in influencing cell function and fate, and lysosomal dysfunction is closely associated with the development of various diseases. In addition, several studies have shown that redox homeostasis plays a direct or indirect role in regulating lysosomes. Therefore, this paper systematically reviews the role and mechanisms of redox homeostasis in the regulation of lysosomal function. Therapeutic strategies based on the regulation of redox exerted to disrupt or restore lysosomal function are further discussed. Uncovering the role of redox in the regulation of lysosomes helps to point new directions for the treatment of many human diseases.
Collapse
Affiliation(s)
- Xiaomeng He
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuening Li
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenyu Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengfei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
80
|
Zhang L, Lu X, Xu Y, La X, Tian J, Li A, Li H, Wu C, Xi Y, Song G, Zhou Z, Bai W, An L, Li Z. Tumor-associated macrophages confer colorectal cancer 5-fluorouracil resistance by promoting MRP1 membrane translocation via an intercellular CXCL17/CXCL22-CCR4-ATF6-GRP78 axis. Cell Death Dis 2023; 14:582. [PMID: 37658050 PMCID: PMC10474093 DOI: 10.1038/s41419-023-06108-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Chemotherapy represents a major type of clinical treatment against colorectal cancer (CRC). Aberrant drug efflux mediated by transporters acts as a key approach for tumor cells to acquire chemotherapy resistance. Increasing evidence implies that tumor-associated macrophages (TAMs) play a pivotal role in both tumorigenesis and drug resistance. Nevertheless, the specific mechanism through which TAMs regulate drug efflux remains elusive. Here, we discovered that TAMs endow CRC cells with resistance to 5-fluorouracil (5-FU) treatment via a cell-cell interaction-mediated MRP1-dependent drug efflux process. Mechanistically, TAM-secreted C-C motif chemokine ligand 17 (CCL17) and CCL22, via membrane receptor CCR4, activated the PI3K/AKT pathway in CRC tumor cells. Specifically, phosphorylation of AKT inactivated IP3R and induced calcium aggregation in the ER, resulting in the activation of ATF6 and upregulation of GRP78. Accordingly, excessive GRP78 can interact with MRP1 and promote its translocation to the cell membrane, causing TAM-induced 5-FU efflux. Taken together, our results demonstrated that TAMs promote CRC chemotherapy resistance via elevating the expression of GRP78 to promote the membrane translocation of MRP1 and drug efflux, providing direct proof for TAM-induced drug resistance.
Collapse
Affiliation(s)
- Lichao Zhang
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Xiaoqing Lu
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 200072, Shanghai, China
| | - Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Jinmiao Tian
- Institute of Biotechnology, Shanxi University, 030006, Taiyuan, China
| | - Aiping Li
- Modern Research Center for traditional Chinese medicine, Shanxi University, 030006, Taiyuan, China
| | - Hanqing Li
- School of Life Science, Shanxi University, 030006, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Yanfeng Xi
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Guisheng Song
- Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Wenqi Bai
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 200072, Shanghai, China.
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China.
- Institute of Biotechnology, Shanxi University, 030006, Taiyuan, China.
| |
Collapse
|
81
|
Oravetz K, Todea AV, Balacescu O, Cruceriu D, Rakosy-Tican E. Potential antitumor activity of garlic against colorectal cancer: focus on the molecular mechanisms of action. Eur J Nutr 2023; 62:2347-2363. [PMID: 37140645 DOI: 10.1007/s00394-023-03166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE The aim of this review is to highlight the potential of garlic phytoconstituents as antitumor agents in colorectal cancer management based on their molecular mechanisms of action, while asking if their consumption, as part of the human diet, might contribute to the prevention of colorectal cancer. METHODS To gather information on appropriate in vitro, in vivo and human observational studies on this topic, the keywords "Allium sativum", "garlic", "colorectal cancer", "antitumor effect", "in vitro", "in vivo", "garlic consumption" and "colorectal cancer risk" were searched in different combinations in the international databases ScienceDirect, PubMed and Google Scholar. After duplicate and reviews removal, 61 research articles and meta-analyses published between 2000 and 2022 in peer-reviewed journals were found and included in this review. RESULTS Garlic (Allium sativum) proves to be a rich source of compounds with antitumor potential. Garlic-derived extracts and several of its individual constituents, especially organosulfur compounds such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide, allylmethylsulfide, S-allylmercaptocysteine, Z-ajoene, thiacremonone and Se-methyl-L-selenocysteine were found to possess cytotoxic, cytostatic, antiangiogenic and antimetastatic activities in different in vitro and in vivo models of colorectal cancer. The molecular mechanisms for their antitumor effects are associated with the modulation of several well-known signaling pathways involved in cell cycle progression, especially G1-S and G2-M transitions, as well as both the intrinsic and extrinsic apoptotic pathways. However, even though in various animal models some of these compounds have chemopreventive effects, based on different human observational studies, a diet rich in garlic is not consistently associated with a lower risk of developing colorectal cancer. CONCLUSION Independent of the impact of garlic consumption on colorectal cancer initiation and promotion in humans, its constituents might be good candidates for future conventional and/or complementary therapies, based on their diverse mechanisms of action.
Collapse
Affiliation(s)
- Kinga Oravetz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, 5-7 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Adelina-Violeta Todea
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, 5-7 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Daniel Cruceriu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, 5-7 Clinicilor Street, 400006, Cluj-Napoca, Romania.
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015, Cluj-Napoca, Romania.
| | - Elena Rakosy-Tican
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, 5-7 Clinicilor Street, 400006, Cluj-Napoca, Romania
| |
Collapse
|
82
|
Siddiqui L, Hasan N, Mishra PK, Gupta N, Singh AT, Madaan A, Jaggi M, Saad S, Ekielski A, Iqbal Z, Kesharwani P, Talegaonkar S. CD44 mediated colon cancer targeting mutlifaceted lignin nanoparticles: Synthesis, in vitro characterization and in vivo efficacy studies. Int J Pharm 2023; 643:123270. [PMID: 37499773 DOI: 10.1016/j.ijpharm.2023.123270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/10/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Hyaluronic acid (HA) coated irinotecan loaded lignin nanoparticles (HDLNPs) were synthesized using ionic interaction method. Optimized nanoparticles were characterized for their active chemotherapeutic targeting potential to CD44 receptors overly-expressed on cancer cells. Blood component interaction studies supported hemocompatible nature of HDLNPs and also demonstrated their sustained plasma residence property. Cell anti-proliferation and mitochondrial depolarization studies on HT-29 cells suggest significantly (p < 0.01) improved chemotherapeutic efficacy of HDLNPs. In vitro cell based studies showed that nanoparticles have retained antioxidant activity of lignin that can prevent cancer relapse. In vivo biodistribution studies in tumor-bearing Balb/c mice confirmed improved drug localization in tumor site for longer duration. Tumor regression and histopathological studies indicated the efficacy ofligand-assisted targeting chemotherapy over the conventional therapy. Hematological and biochemical estimation suggested that irinotecan-associated myelosuppression, liver steatosis and rare kidney failure can be avoided by its encapsulation in HA-coated lignin nanoparticles. HDLNPs were found to be stable over a period of 12 months.
Collapse
Affiliation(s)
- Lubna Siddiqui
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Pawan K Mishra
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czech Republic.
| | - Neha Gupta
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Anu T Singh
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Alka Madaan
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Manu Jaggi
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Suma Saad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University of Life Sciences, Poland
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, New Delhi, India.
| |
Collapse
|
83
|
Okuno K, Pratama MY, Li J, Tokunaga M, Wang X, Kinugasa Y, Goel A. Ginseng mediates its anticancer activity by inhibiting the expression of DNMTs and reactivating methylation-silenced genes in colorectal cancer. Carcinogenesis 2023; 44:394-403. [PMID: 37137336 PMCID: PMC10414140 DOI: 10.1093/carcin/bgad025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/26/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
Developing safe and effective therapeutic modalities remains a critical challenge for improving the prognosis of patients with colorectal cancer (CRC). In this regard, targeting epigenetic regulation in cancers has recently emerged as a promising therapeutic approach. Since several natural compounds have recently been shown to be important epigenetic modulators, we hypothesized that Ginseng might exert its anticancer activity by regulating DNA methylation alterations in CRC. In this study, a series of cell culture studies were conducted, followed by their interrogation in patient-derived 3D organoid models to evaluate Ginseng's anticancer activity in CRC. Genome-wide methylation alterations were interrogated by undertaking MethylationEpic BeadChip microarrays. First, 50% inhibitory concentrations (IC50) were determined by cell viability assays, and subsequent Ginseng treatment demonstrated a significant anticancer effect on clonogenicity and cellular migration in CRC cells. Treatment with Ginseng potentiated cellular apoptosis through regulation of apoptosis-related genes in CRC cells. Furthermore, Ginseng treatment downregulated the expression of DNA methyltransferases (DNMTs) and decreased the global DNA methylation levels in CRC cells. The genome-wide methylation profiling identified Ginseng-induced hypomethylation of transcriptionally silenced tumor suppressor genes. Finally, cell culture-based findings were successfully validated in patient-derived 3D organoids. In conclusion, we demonstrate that Ginseng exerts its antitumorigenic potential by regulating cellular apoptosis via the downregulation of DNMTs and reversing the methylation status of transcriptionally silenced genes in CRC.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Muhammad Yogi Pratama
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
| | - Jiang Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR, 518057, China
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR, 518057, China
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
84
|
Bouzid YY, Chin EL, Spearman SS, Alkan Z, Stephensen CB, Lemay DG. No Associations between Dairy Intake and Markers of Gastrointestinal Inflammation in Healthy Adult Cohort. Nutrients 2023; 15:3504. [PMID: 37630694 PMCID: PMC10459578 DOI: 10.3390/nu15163504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Dairy products are a good source of essential nutrients and past reviews have shown associations of dairy consumption with decreased systemic inflammation. Links between dairy intake and gastrointestinal (GI) inflammation are under-investigated. Therefore, we examined associations between reported dairy intake and markers of GI inflammation in healthy adults in a cross-sectional observational study, hypothesizing a negative association with yogurt intake, suggesting a protective effect, and no associations with total dairy, fluid milk, and cheese intake. Participants completed 24-h dietary recalls and a food frequency questionnaire (FFQ) to assess recent and habitual intake, respectively. Those who also provided a stool sample (n = 295), and plasma sample (n = 348) were included in analysis. Inflammation markers from stool, including calprotectin, neopterin, and myeloperoxidase, were measured along with LPS-binding protein (LBP) from plasma. Regression models tested associations between dairy intake variables and inflammation markers with covariates: age, sex, and body mass index (BMI). As yogurt is episodically consumed, we examined differences in inflammation levels between consumers (>0 cup equivalents/day reported in recalls) and non-consumers. We found no significant associations between dairy intake and markers of GI inflammation. In this cohort of healthy adults, dairy intake was not associated with GI inflammation.
Collapse
Affiliation(s)
- Yasmine Y. Bouzid
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Elizabeth L. Chin
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Sarah S. Spearman
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Zeynep Alkan
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Charles B. Stephensen
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Danielle G. Lemay
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| |
Collapse
|
85
|
Manogaran P, Anandan A, Vijaya Padma V. Isoliensinine augments the therapeutic potential of paclitaxel in multidrug-resistant colon cancer stem cells and induced mitochondria-mediated cell death. J Biochem Mol Toxicol 2023; 37:e23395. [PMID: 37424111 DOI: 10.1002/jbt.23395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023]
Abstract
Previously we have reported the isoliensinine (ISO) potentates the therapeutic potential of cisplatin in cisplatin resistant colorectal cancer stem cells. The present study evaluates the chemo-sensitizing potential of the combinatorial regimen of ISO and Paclitaxcel (PTX) on multidrug-resistant (MDR)-HCT-15 cells to reduce the dose requirement of both ISO and PTX. The results of the present study suggest that treatment with the combinatorial regimen of ISO and PTX enhanced the cytotoxic effect with resultant increase in apoptosis in MDR-HCT-15 cells as evident from the altered cellular morphology, G2/M cell cycle arrest, propidium iodide uptake, Annexin V, increased intracellular Ca2+ accumulation, decreased mitochondrial membrane potential, diminished ATP production, PARP-1 cleavage, altered expression of ERK1/2, and apoptotic proteins. Treatment with combinatorial regimen of ISO and PTX also modulated the expression of the transcription factors SOX2, OCT4 which determine the stemness of cancer cells. Thus, results of the present study suggest that ISO and PTX combination regimen induces apoptosis in MDR-HCT-15 in a synergistic manner.
Collapse
Affiliation(s)
- Prasath Manogaran
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Aparna Anandan
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | |
Collapse
|
86
|
Ghosh S, Fan F, Powell RT, Roszik J, Park Y, Stephan C, Sebastian M, Tan L, Sorokin AV, Lorenzi PL, Kopetz S, Ellis LM, Bhattacharya R. Vincristine Enhances the Efficacy of MEK Inhibitors in Preclinical Models of KRAS-mutant Colorectal Cancer. Mol Cancer Ther 2023; 22:962-975. [PMID: 37310170 PMCID: PMC11991686 DOI: 10.1158/1535-7163.mct-23-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Mutations in KRAS are found in more than 50% of tumors from patients with metastatic colorectal cancer (mCRC). However, direct targeting of most KRAS mutations is difficult; even the recently developed KRASG12C inhibitors failed to show significant benefit in patients with mCRC. Single agents targeting mitogen-activated protein kinase kinase (MEK), a downstream mediator of RAS, have also been ineffective in colorectal cancer. To identify drugs that can enhance the efficacy of MEK inhibitors, we performed unbiased high-throughput screening using colorectal cancer spheroids. We used trametinib as the anchor drug and examined combinations of trametinib with the NCI-approved Oncology Library version 5. The initial screen, and following focused validation screens, identified vincristine as being strongly synergistic with trametinib. In vitro, the combination strongly inhibited cell growth, reduced clonogenic survival, and enhanced apoptosis compared with monotherapies in multiple KRAS-mutant colorectal cancer cell lines. Furthermore, this combination significantly inhibited tumor growth, reduced cell proliferation, and increased apoptosis in multiple KRAS-mutant patient-derived xenograft mouse models. In vivo studies using drug doses that reflect clinically achievable doses demonstrated that the combination was well tolerated by mice. We further determined that the mechanism underlying the synergistic effect of the combination was due to enhanced intracellular accumulation of vincristine associated with MEK inhibition. The combination also significantly decreased p-mTOR levels in vitro, indicating that it inhibits both RAS-RAF-MEK and PI3K-AKT-mTOR survival pathways. Our data thus provide strong evidence that the combination of trametinib and vincristine represents a novel therapeutic option to be studied in clinical trials for patients with KRAS-mutant mCRC. SIGNIFICANCE Our unbiased preclinical studies have identified vincristine as an effective combination partner for the MEK inhibitor trametinib and provide a novel therapeutic option to be studied in patients with KRAS-mutant colorectal cancer.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center
| | - Fan Fan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center
| | - Reid T. Powell
- Center for Translational Cancer Research, Texas A&M College of Medicine
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center
| | - Yongsung Park
- Center for Translational Cancer Research, Texas A&M College of Medicine
| | - Clifford Stephan
- Center for Translational Cancer Research, Texas A&M College of Medicine
| | - Manu Sebastian
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center
| | - Lin Tan
- Department of Metabolomics Core Facility-Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Alexey V. Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center
| | - Philip L. Lorenzi
- Department of Metabolomics Core Facility-Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center
| | - Lee M. Ellis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
87
|
Giustarini G, Teng G, Pavesi A, Adriani G. Characterization of 3D heterocellular spheroids of pancreatic ductal adenocarcinoma for the study of cell interactions in the tumor immune microenvironment. Front Oncol 2023; 13:1156769. [PMID: 37519820 PMCID: PMC10375712 DOI: 10.3389/fonc.2023.1156769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies nowadays. The available chemo- and immunotherapies are often ineffective in treating PDAC due to its immunosuppressive and highly desmoplastic tumor immune microenvironment (TIME), which is hardly reproduced in the existing preclinical models. The PDAC TIME results from a peculiar spatial organization between different cell types. For this reason, developing new human models recapitulating the tissue organization and cell heterogeneity of PDAC is highly desirable. We developed human 3D heterocellular tumor spheroids of PDAC formed by cancer cells, endothelial cells, pancreatic stellate cells (PSC), and monocytes. As a control, we formed spheroids using immortalized epithelial pancreatic ductal cells (non-cancerous spheroids) with cellular heterogeneity similar to the tumor spheroids. Normal spheroids containing endothelial cells formed a complex 3D endothelial network significantly compromised in tumor spheroids. Monocyte/macrophages within the 4-culture tumor spheroids were characterized by a higher expression of CD163, CD206, PD-L1, and CD40 than those in the non-cancerous spheroids suggesting their differentiation towards an immunosuppressive phenotype. The heterocellular tumor spheroids presented a hypoxic core populated with PSC and monocytes/macrophages. The 4-culture tumor spheroids were characterized by spatial proximity of PSC and monocytes to the endothelial cells and a cytokine signature with increased concentrations of CXCL10, CCL2, and IL-6, which have been observed in PDAC patients and associated with poor survival. Further, 4-culture tumor spheroids decreased the concentrations of T-cell chemoattracting cytokines, i.e., CCL4, CCL5, and CXCL9, when compared with the non-cancerous spheroids, revealing a critical immunosuppressive feature of the different types of cells forming the tumor spheroids. Our results showed that the 4-culture tumor spheroids better resembled some critical features of patients' PDAC TIME than monoculture tumor spheroids. Using the proposed human 3D spheroid model for therapy testing at the preclinical stage may reveal pitfalls of chemo- and immuno-therapies to help the development of better anti-tumor therapies.
Collapse
Affiliation(s)
- Giulio Giustarini
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Germaine Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
88
|
Huang CY, Wei PL, Batzorig U, Makondi PT, Lee CC, Chang YJ. Identification of Moesin (MSN) as a Potential Therapeutic Target for Colorectal Cancer via the β-Catenin-RUNX2 Axis. Int J Mol Sci 2023; 24:10951. [PMID: 37446127 DOI: 10.3390/ijms241310951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
CRC is the second leading cause of cancer-related death. The complex mechanisms of metastatic CRC limit available therapeutic choice. Thus, identifying new CRC therapeutic targets is essential. Moesin (MSN), a member of the ezrin-radixin-moesin family, connects the cell membrane to the actin-based cytoskeleton and regulates cell morphology. We investigated the role of MSN in the progression of CRC. GENT2 and oncomine were used to study MSN expression and CRC patient outcomes. MSN-specific shRNAs or MSN-overexpressed plasmid were used to establish MSN-KD and MSN overexpressed cell lines, respectively. SRB, migration, wound healing, and flow cytometry were used to test cell survival and migration. Propidium iodide and annexin V stain were used to analyze the cell cycle and apoptosis. MSN expression was found to be higher in CRC tissues than in normal tissues. Higher MSN expression is associated with poor overall survival, disease-free survival, and relapse-free survival rates in CRC patients. MSN silencing inhibits cell proliferation, adhesion, migration, and invasion in vitro, whereas MSN overexpression accelerates cell proliferation, adhesion, migration, and invasion. RNA sequencing was used to investigate differentially expressed genes, and RUNX2 was discovered as a possible downstream target for MSN. In CRC patients, RUNX2 expression was significantly correlated with MSN expression. We also found that MSN silencing decreased cytoplasmic and nuclear β-catenin levels. Additionally, pharmacological inhibition of β-catenin in MSN-overexpressed cells led to a reduction of RUNX2, and activating β-catenin signaling by inhibiting GSK3β rescued the RUNX2 downregulation in MSN-KD cells. This confirms that MSN regulates RUNX2 expression via activation of β-catenin signaling. Finally, our result further determined that RUNX2 silencing reduced the ability of MSN overexpression cells to proliferate and migrate. MSN accelerated CRC progression via the β-catenin-RUNX2 axis. As a result, MSN holds the potential to become a new target for CRC treatment.
Collapse
Affiliation(s)
- Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Uyanga Batzorig
- Department of Dermatology, University of California, San Diego, CA 92093, USA
| | | | - Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Jia Chang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| |
Collapse
|
89
|
Patel H, Palekar S, Patel A, Patel K. Ibrutinib amorphous solid dispersions with enhanced dissolution at colonic pH for the localized treatment of colorectal cancer. Int J Pharm 2023; 641:123056. [PMID: 37207861 DOI: 10.1016/j.ijpharm.2023.123056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/23/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Colorectal cancer (CRC) is the second most leading cause of cancer-related deaths worldwide. Ibrutinib (IBR), the first in class bruton tyrosine kinase (BTK) inhibitor has promising anticancer activity. In this study, we aimed to develop a hot melt extrusion based amorphous solid dispersions (ASD) of IBR with enhanced dissolution at colonic pH and assess the anticancer activity against colon cancer cell lines. Since colonic pH is higher in CRC patients compared to healthy individuals, Eudragit® FS100 was used as pH dependent polymeric matrix for colon enabled release of IBR. Poloxamer 407, TPGS and poly(2-ethyl-2-oxazoline) were screened as plasticizer and solubilizer to improve the processability and solubility. Solid state characterization and filament appearance confirmed that IBR was molecularly dispersed within FS100+TPGS matrix. In-vitro drug release of ASD showed >96% drug release within 6 h at colonic pH with no precipitation for 12 h. Contrary, crystalline IBR showed negligible release. ASD with TPGS showed significantly higher anticancer activity in 2D and multicellular 3D spheroids of colon carcinoma cell lines (HT-29 and HT-116). The outcomes of this research suggested that ASD with a pH dependent polymer is a promising strategy to improve solubility and an effective approach in colorectal cancer targeting.
Collapse
Affiliation(s)
- Henis Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Siddhant Palekar
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Akanksha Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
90
|
Hou Y, Zheng Y, Zheng X, Sun Y, Yi X, Wu Z, Lin JM. Multidimensional controllable fabrication of tumor spheroids based on a microfluidic device. LAB ON A CHIP 2023; 23:2654-2663. [PMID: 37190976 DOI: 10.1039/d3lc00251a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Multicellular tumor spheroids (MCTSs) are in vitro solid tumor models with physiological relevance. To achieve robust process control, a MCTS fabrication method that combines cell membrane engineering and droplet microfluidic techniques is designed. The fluidic control and the chemical interactions between biotin and streptavidin enable artificial cell aggregation to be accomplished in seconds. Then, spheroids with a uniform size are fabricated within alginate microcapsules. Microfluidic mixing-based cell aggregation regulates the cell aggregate size and the spheroid composition, and the microcapsules regulate the size of spheroids from 120 to 180 μm. The method shows applicability for various cancer cell lines, including HCT116, HepG2, and A549. In addition, composite colon cancer spheroids consisting of HCT116 and NIH3T3 with predetermined cell ratios and uniform distributions are produced. The generated MCTSs are assessed using the ELISA and UPLC-MS/MS techniques. The release of vascular endothelial growth factor (VEGF) and the 5-fluorouracil (5-FU) resistance differ in the monotypic and cocultured colon cancer models. Our method provides a robust way to produce consistent and customized MCTSs in cancer research and drug screening.
Collapse
Affiliation(s)
- Ying Hou
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Yajing Zheng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Xiaonan Zheng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Yucheng Sun
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Xizhen Yi
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Zengnan Wu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
91
|
Kumar S, Gahramanov V, Patel S, Yaglom J, Kaczmarczyk L, Alexandrov IA, Gerlitz G, Salmon-Divon M, Sherman MY. Evolution of Resistance to Irinotecan in Cancer Cells Involves Generation of Topoisomerase-Guided Mutations in Non-Coding Genome That Reduce the Chances of DNA Breaks. Int J Mol Sci 2023; 24:ijms24108717. [PMID: 37240063 DOI: 10.3390/ijms24108717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Resistance to chemotherapy is a leading cause of treatment failure. Drug resistance mechanisms involve mutations in specific proteins or changes in their expression levels. It is commonly understood that resistance mutations happen randomly prior to treatment and are selected during the treatment. However, the selection of drug-resistant mutants in culture could be achieved by multiple drug exposures of cloned genetically identical cells and thus cannot result from the selection of pre-existent mutations. Accordingly, adaptation must involve the generation of mutations de novo upon drug treatment. Here we explored the origin of resistance mutations to a widely used Top1 inhibitor, irinotecan, which triggers DNA breaks, causing cytotoxicity. The resistance mechanism involved the gradual accumulation of recurrent mutations in non-coding regions of DNA at Top1-cleavage sites. Surprisingly, cancer cells had a higher number of such sites than the reference genome, which may define their increased sensitivity to irinotecan. Homologous recombination repairs of DNA double-strand breaks at these sites following initial drug exposures gradually reverted cleavage-sensitive "cancer" sequences back to cleavage-resistant "normal" sequences. These mutations reduced the generation of DNA breaks upon subsequent exposures, thus gradually increasing drug resistance. Together, large target sizes for mutations and their Top1-guided generation lead to their gradual and rapid accumulation, synergistically accelerating the development of resistance.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Valid Gahramanov
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Shivani Patel
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Julia Yaglom
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Lukasz Kaczmarczyk
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Ivan A Alexandrov
- Department of Anatomy and Anthropology & Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | | | - Michael Y Sherman
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
92
|
Liu G, Wang H, Ran R, Wang Y, Li Y. FOSL1 transcriptionally regulates PHLDA2 to promote 5-FU resistance in colon cancer cells. Pathol Res Pract 2023; 246:154496. [PMID: 37178619 DOI: 10.1016/j.prp.2023.154496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/11/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Tumor drug resistance is a leading cause of tumor treatment failure. To date, the association between FOS-Like antigen-1 (FOSL1) and chemotherapy sensitivity in colon cancer is unclear. The present study investigated the molecular mechanism of FOSL1 regulating 5-Fluorouracil (5-FU) resistance in colon cancer. METHODS FOSL1 expression in colon cancer was analyzed by bioinformatics methods, and its downstream regulatory factors were predicted. Pearson correlation analyzed the expression of FOSL1 and downstream regulatory gene. Meanwhile, the expression of FOSL1 and its downstream factor Pleckstrin Homology-Like Domain Family A Member 2 (PHLDA2) in colon cancer cell lines was measured by qRT-PCR and western blot. The regulatory relationship between FOSL1 and PHLDA2 was verified by chromatin immunoprecipitation (ChIP) assay and dual-luciferase reporter assay. The effects of the FOSL1/PHLDA2 axis on the resistance in colon cancer cells to 5-FU were analyzed by cell experiments. RESULTS FOSL1 expression was evidently up-regulated in colon cancer and 5-FU resistant cells. FOSL1 was positively correlated with PHLDA2 in colon cancer. In vitro cell assays showed that low expression of FOSL1 significantly enhanced 5-FU sensitivity in colon cancer cells, significantly suppressed the proliferation of cancer cells, and induced apoptosis. Overexpression of FOSL1 presented the opposite regulatory trend. Mechanistically, FOSL1 activated PHLDA2 and up-regulated its expression. Moreover, by activating glycolysis, PHLDA2 promoted 5-Fu resistance and cell proliferation, and reduced cell apoptosis in colon cancer. CONCLUSION Down-regulated FOSL1 expression could enhance the 5-FU sensitivity of colon cancer cells, and FOSL1/PHLDA2 axis may be an effective target for overcoming chemotherapy resistance in colon cancer.
Collapse
Affiliation(s)
- Guangyi Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Huan Wang
- Department of Health Management Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Rui Ran
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yicheng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
93
|
Cherradi S, Garambois V, Marines J, Andrade AF, Fauvre A, Morand O, Fargal M, Mancouri F, Ayrolles-Torro A, Vezzo-Vié N, Jarlier M, Loussaint G, Huvelle S, Joubert N, Mazard T, Gongora C, Pourquier P, Boissière-Michot F, Rio MD. Improving the response to oxaliplatin by targeting chemotherapy-induced CLDN1 in resistant metastatic colorectal cancer cells. Cell Biosci 2023; 13:72. [PMID: 37041570 PMCID: PMC10091849 DOI: 10.1186/s13578-023-01015-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/15/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Tumor resistance is a frequent cause of therapy failure and remains a major challenge for the long-term management of colorectal cancer (CRC). The aim of this study was to determine the implication of the tight junctional protein claudin 1 (CLDN1) in the acquired resistance to chemotherapy. METHODS Immunohistochemistry was used to determine CLDN1 expression in post-chemotherapy liver metastases from 58 CRC patients. The effects of oxaliplatin on membrane CLDN1 expression were evaluated by flow cytometry, immunofluorescence and western blotting experiments in vitro and in vivo. Phosphoproteome analyses, proximity ligation and luciferase reporter assays were used to unravel the mechanism of CLDN1 induction. RNAseq experiments were performed on oxaliplatin-resistant cell lines to investigate the role of CLDN1 in chemoresistance. The "one-two punch" sequential combination of oxaliplatin followed by an anti-CLDN1 antibody-drug conjugate (ADC) was tested in both CRC cell lines and murine models. RESULTS We found a significant correlation between CLDN1 expression level and histologic response to chemotherapy, CLDN1 expression being the highest in resistant metastatic residual cells of patients showing minor responses. Moreover, in both murine xenograft model and CRC cell lines, CLDN1 expression was upregulated after exposure to conventional chemotherapies used in CRC treatment. CLDN1 overexpression was, at least in part, functionally related to the activation of the MAPKp38/GSK3β/Wnt/β-catenin pathway. Overexpression of CLDN1 was also observed in oxaliplatin-resistant CRC cell lines and was associated with resistance to apoptosis, suggesting an anti-apoptotic role for CLDN1. Finally, we demonstrated that the sequential treatment with oxaliplatin followed by an anti-CLDN1 ADC displayed a synergistic effect in vitro and in in vivo. CONCLUSION Our study identifies CLDN1 as a new biomarker of acquired resistance to chemotherapy in CRC patients and suggests that a "one-two punch" approach targeting chemotherapy-induced CLDN1 expression may represent a therapeutic opportunity to circumvent resistance and to improve the outcome of patients with advanced CRC.
Collapse
Affiliation(s)
- Sara Cherradi
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Véronique Garambois
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Johanna Marines
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Augusto Faria Andrade
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Alexandra Fauvre
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Olivia Morand
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Manon Fargal
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Ferial Mancouri
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Adeline Ayrolles-Torro
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Nadia Vezzo-Vié
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Marta Jarlier
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
- Biometry Department, ICM, Montpellier, France
| | - Gerald Loussaint
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Steve Huvelle
- GICC, Team IMT, University of Tours, Tours, 7501, F-37032, France
| | - Nicolas Joubert
- GICC, Team IMT, University of Tours, Tours, 7501, F-37032, France
| | - Thibault Mazard
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
- Department of Medical Oncology, ICM, Montpellier, France
| | - Céline Gongora
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Philippe Pourquier
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Florence Boissière-Michot
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
- Translational Research Unit, ICM, Montpellier, France
| | - Maguy Del Rio
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France.
| |
Collapse
|
94
|
Samavarchi Tehrani S, Esmaeili F, Shirzad M, Goodarzi G, Yousefi T, Maniati M, Taheri-Anganeh M, Anushiravani A. The critical role of circular RNAs in drug resistance in gastrointestinal cancers. Med Oncol 2023; 40:116. [PMID: 36917431 DOI: 10.1007/s12032-023-01980-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Nowadays, drug resistance (DR) in gastrointestinal (GI) cancers, as the main reason for cancer-related mortality worldwide, has become a serious problem in the management of patients. Several mechanisms have been proposed for resistance to anticancer drugs, including altered transport and metabolism of drugs, mutation of drug targets, altered DNA repair system, inhibited apoptosis and autophagy, cancer stem cells, tumor heterogeneity, and epithelial-mesenchymal transition. Compelling evidence has revealed that genetic and epigenetic factors are strongly linked to DR. Non-coding RNA (ncRNA) interferences are the most crucial epigenetic alterations explored so far, and among these ncRNAs, circular RNAs (circRNAs) are the most emerging members known to have unique properties. Due to the absence of 5' and 3' ends in these novel RNAs, the two ends are covalently bonded together and are generated from pre-mRNA in a process known as back-splicing, which makes them more stable than other RNAs. As far as the unique structure and function of circRNAs is concerned, they are implicated in proliferation, migration, invasion, angiogenesis, metastasis, and DR. A clear understanding of the molecular mechanisms responsible for circRNAs-mediated DR in the GI cancers will open a new window to the management of GI cancers. Hence, in the present review, we will describe briefly the biogenesis, multiple features, and different biological functions of circRNAs. Then, we will summarize current mechanisms of DR, and finally, discuss molecular mechanisms through which circRNAs regulate DR development in esophageal cancer, pancreatic cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amir Anushiravani
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
95
|
Gong J, Shi T, Liu J, Pei Z, Liu J, Ren X, Li F, Qiu F. Dual-drug codelivery nanosystems: An emerging approach for overcoming cancer multidrug resistance. Biomed Pharmacother 2023; 161:114505. [PMID: 36921532 DOI: 10.1016/j.biopha.2023.114505] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Multidrug resistance (MDR) promotes tumor recurrence and metastasis and heavily reduces anticancer efficiency, which has become a primary reason for the failure of clinical chemotherapy. The mechanisms of MDR are so complex that conventional chemotherapy usually fails to achieve an ideal therapeutic effect and even accelerates the occurrence of MDR. In contrast, the combination of chemotherapy with dual-drug has significant advantages in tumor therapy. A novel dual-drug codelivery nanosystem, which combines dual-drug administration with nanotechnology, can overcome the application limitation of free drugs. Both the characteristics of nanoparticles and the synergistic effect of dual drugs contribute to circumventing various drug-resistant mechanisms in tumor cells. Therefore, developing dual-drug codelivery nanosystems with different multidrug-resistant mechanisms has an important reference value for reversing MDR and enhancing the clinical antitumor effect. In this review, the advantages, principles, and common codelivery nanocarriers in the application of dual-drug codelivery systems are summarized. The molecular mechanisms of MDR and the dual-drug codelivery nanosystems designed based on different mechanisms are mainly introduced. Meanwhile, the development prospects and challenges of codelivery nanosystems are also discussed, which provide guidelines to exploit optimized combined chemotherapy strategies in the future.
Collapse
Affiliation(s)
- Jianing Gong
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Shi
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinfeng Liu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zerong Pei
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
96
|
Al Bitar S, El-Sabban M, Doughan S, Abou-Kheir W. Molecular mechanisms targeting drug-resistance and metastasis in colorectal cancer: Updates and beyond. World J Gastroenterol 2023; 29:1395-1426. [PMID: 36998426 PMCID: PMC10044855 DOI: 10.3748/wjg.v29.i9.1395] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 03/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and a major leading cause of cancer-related deaths worldwide. Despite advances in therapeutic regimens, the number of patients presenting with metastatic CRC (mCRC) is increasing due to resistance to therapy, conferred by a small population of cancer cells, known as cancer stem cells. Targeted therapies have been highly successful in prolonging the overall survival of patients with mCRC. Agents are being developed to target key molecules involved in drug-resistance and metastasis of CRC, and these include vascular endothelial growth factor, epidermal growth factor receptor, human epidermal growth factor receptor-2, mitogen-activated extracellular signal-regulated kinase, in addition to immune checkpoints. Currently, there are several ongoing clinical trials of newly developed targeted agents, which have shown considerable clinical efficacy and have improved the prognosis of patients who do not benefit from conventional chemotherapy. In this review, we highlight recent developments in the use of existing and novel targeted agents against drug-resistant CRC and mCRC. Furthermore, we discuss limitations and challenges associated with targeted therapy and strategies to combat intrinsic and acquired resistance to these therapies, in addition to the importance of implementing better preclinical models and the application of personalized therapy based on predictive biomarkers for treatment selection.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
97
|
Wang Y, Wang S, Xu J, Wang Y, Xiang L, He X. Total steroidal saponins from black nightshade (Solanum nigrum L.) overcome tumor multidrug resistance by inducing autophagy-mediated cell death in vivo and in vitro. Phytother Res 2023. [PMID: 36877123 DOI: 10.1002/ptr.7796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/18/2023] [Accepted: 02/11/2023] [Indexed: 03/07/2023]
Abstract
Multiple drug resistance (MDR) often occurs after prolonged chemotherapy, leading to refractory tumors and cancer recurrence. In this study, we demonstrated that the total steroidal saponins from Solanum nigrum L. (SN) had broad-spectrum cytotoxic activity against various human leukemia cancer cell lines, especially in adriamycin (ADR)-sensitive and resistant K562 cell lines. Moreover, SN could effectively inhibit the expression of ABC transporter in K562/ADR cells in vivo and in vitro. In vivo, by establishing K562/ADR xenograft tumor model, we demonstrated that SN might overcome drug resistance and inhibit the proliferation of tumors by regulating autophagy. In vitro, the increased LC3 puncta, the expression of LC3-II and Beclin-1, and the decreased expression of p62/SQSTM1 in SN-treated K562/ADR and K562 cells demonstrated autophagy induced by SN. Moreover, using the autophagy inhibitors or transfecting the ATG5 shRNA, we confirmed that autophagy induced by SN was a key factor in overcoming MDR thereby promoting cell death in K562/ADR cells. More importantly, SN-induced autophagy through the mTOR signaling pathway to overcome drug resistance and ultimately induced autophagy-mediated cell death in K562/ADR cells. Taken together, our findings suggest that SN has the potential to treat multidrug-resistant leukemia.
Collapse
Affiliation(s)
- Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Siyu Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Limin Xiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| |
Collapse
|
98
|
Zhang Y, Li H, Lv L, Lu K, Li H, Zhang W, Cui T. Autophagy: Dual roles and perspective for clinical treatment of colorectal cancer. Biochimie 2023; 206:49-60. [PMID: 36244578 DOI: 10.1016/j.biochi.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) raises concerns to people because of its high recurrence and metastasis rate, diagnosis challenges, and poor prognosis. Various studies have shown the association of altered autophagy with tumorigenesis, tumor-stroma interactions, and resistance to cancer therapy in CRC. Autophagy is a highly conserved cytosolic catabolic process in eukaryotes that plays distinct roles in CRC occurrence and progression. In early tumorigenesis, autophagy may inhibit tumor growth through diverse mechanisms, whereas it exhibits a tumor promoting function in CRC progression. This different functions of autophagy in CRC occurrence and progression make developing therapies targeting autophagy complicated. In this review, we discuss the classification and process of autophagy as well as its dual roles in CRC, functions in the tumor microenvironment, cross-talk with apoptosis, and potential usefulness as a CRC therapeutic target.
Collapse
Affiliation(s)
- Yabin Zhang
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Haiyan Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Liang Lv
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Huihui Li
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Wenli Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Tao Cui
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
99
|
Reid TR, Abrouk N, Caroen S, Oronsky B, Stirn M, Larson C, Beale K, Knox SJ, Fisher G. ROCKET: Phase II Randomized, Active-controlled, Multicenter Trial to Assess the Safety and Efficacy of RRx-001 + Irinotecan vs. Single-agent Regorafenib in Third/Fourth Line Colorectal Cancer. Clin Colorectal Cancer 2023; 22:92-99. [PMID: 36529613 DOI: 10.1016/j.clcc.2022.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION RRx-001 is a novel cysteine-targeted alkylating agent that releases nitric oxide (NO). The primary biological activities of this hybrid molecule include macrophage repolarizing and vascular normalization. The purpose of this clinical trial (ROCKET) (NCT02096354) was to compare the safety and efficacy of the combination therapy RRx-001 + irinotecan vs. regorafenib in third/fourth line colorectal cancer that previously received treatment with irinotecan. PATIENTS AND METHODS A total of 34 patients were randomized (24 to RRx-001 + irinotecan (RxI) and 10 to single-agent regorafenib (RegI)) and were the basis for the intention-to-treat analysis (ITT, comprising all 34 patients). RRx-001 treatment was administered as an up-to-2-month "primer" followed by irinotecan for patients randomized to the RRx-001 arm (24). The efficacy and safety data are presented for the 34 patients in the (ITT) efficacy analysis. Therapy consisted of intravenous administration of RRx-001 at 4 mg once weekly for up to 2 months, at which point RRx-001 was discontinued, followed by intravenous infusion of irinotecan at 180 mg/m2 on day 1 in a 21-day cycle vs. 160 mg oral regorafenib daily for 3/4 weeks followed at progression, if applicable, by irinotecan 180 mg/m2 on day 1 in a 21-day cycle. There were 3 patients (3/24 = 12.5%) with prior single agent irinotecan on the RRx-001 randomized arm and 2 (2/10 = 20%) on the regorafenib randomized arm. Numerous patients had irinotecan combination therapies prior to randomized treatment. There were 15 patients on RRx-001 arm that received irinotecan post-RRx-001 in the randomized trial. There were 5 PRs on RRx-001 plus irinotecan leading to an overall response of 20.8% (5/24). There were 37.5% (9/24) of RRx-001 randomized patients with KRAS mutant type while 60% (6/10) regorafenib randomized patients were of KRAS type mutant. There were only 4 patients with available QOL and Edmonton Symptom Assessment System, an insufficient sample size to allow for any meaningful analysis. RESULTS Median patient follow-up was approximately 14.5 months (SD 4.5 months). Median overall survival was 8.6 months for RxI and 4.7 months for RegI. Median progression free survival was 6.1 months for RxI vs. 1.7 months for RegI (a statistically significant result, 2-sided log-rank test, P = .0030). The toxicity profile of RxI was substantially improved compared with RegI. CONCLUSION The results of this trial demonstrate improved efficacy of RxI compared with RegI in patients with metastatic colorectal cancer after previous treatment with irinotecan, and late-stage clinical development in this indication is planned on the strength of the observed "signal" accompanied by a sufficient safety profile.
Collapse
|
100
|
Kazakova E, Rakina M, Sudarskikh T, Iamshchikov P, Tarasova A, Tashireva L, Afanasiev S, Dobrodeev A, Zhuikova L, Cherdyntseva N, Kzhyshkowska J, Larionova I. Angiogenesis regulators S100A4, SPARC and SPP1 correlate with macrophage infiltration and are prognostic biomarkers in colon and rectal cancers. Front Oncol 2023; 13:1058337. [PMID: 36895491 PMCID: PMC9989292 DOI: 10.3389/fonc.2023.1058337] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/11/2023] [Indexed: 02/23/2023] Open
Abstract
Introduction Increasing evidence suggests that it is necessary to find effective and robust clinically validated prognostic biomarkers that can identify "high-risk" colorectal cancer (CRC) patients. Currently, available prognostic factors largely include clinical-pathological parameters and focus on the cancer stage at the time of diagnosis. Among cells of tumor microenvironment (TME) only Immunoscore classifier based on T lymphocytes showed high predictive value. Methods In the present study, we performed the complex analysis of mRNA and protein expression of crucial regulators of tumor angiogenesis and tumor progression, expressed by tumor-associated macrophages (TAMs): S100A4, SPP1 and SPARC. Colon and rectal cancer patients were investigated independently and in a combined cohort (CRC). For mRNA expression, we analyzed RNA sequencing data obtained from TCGA (N=417) and GEO (N=92) cohorts of colorectal cancer patients. For protein expression, we performed IHC digital quantification of tumor tissues obtained from 197 patients with CRC treated in the Department of abdominal oncology in Clinics of Tomsk NRMC. Results High S100A4 mRNA expression accurately predicted poor survival for patients with CRC independently of cancer type. SPARC mRNA level was independent prognostic factors for survival in colon but not in rectal cancer. SPP1 mRNA level had significant predictive value for survival in both rectal and colon cancers. Analysis of human CRC tissues revealed that S100A4, SPP1 and SPARC are expressed by stromal compartments, in particular by TAMs, and have a strong correlation with macrophage infiltration. Finally, our results indicate that chemotherapy-based treatment can change the predictive direction of S100A4 for rectal cancer patients. We found that S100A4 stromal levels were higher in patients with better response to neoadjuvant chemotherapy/chemoradiotherapy, and S100A4 mRNA levels predicted better DFS among non-responders. Discussion These findings can help improve the prognosis of patients with CRC based on S100A4, SPP1 and SPARC expression levels.
Collapse
Affiliation(s)
- Elena Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tatiana Sudarskikh
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | - Pavel Iamshchikov
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anna Tarasova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Liubov Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sergei Afanasiev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexei Dobrodeev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Lilia Zhuikova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|