1001
|
Abstract
Treatment of acute lymphoblastic leukaemia (ALL) in adults presents a formidable challenge. While overall results have improved over the past 3 decades, the long-term survival for patients aged less than 60 years is only in the range of 30-40% and is 10-15% if between 60 and 70 years and <5% for those over 70 years. The historic lack of clear-cut biological prognostic factors has led to over- or under-treatment of some patients. Response to initial therapy is an important prognosticator of outcome based on disease biology, as well as pharmacogenetics, which include the patient's response to drugs given. The more widespread availability of allogeneic transplantation and reduced-intensity regimens for older patients have opened up this curative modality to a greater number of patients. Hopefully, those options, as well as novel cytogenetic and molecular markers, will enable a better selection of patients who undergo intensive therapies and finally break the 30-40% cure barrier for adults with ALL.
Collapse
Affiliation(s)
- Jacob M Rowe
- Rambam Health Care Campus and Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
1002
|
Ikaros and Aiolos inhibit pre-B-cell proliferation by directly suppressing c-Myc expression. Mol Cell Biol 2010; 30:4149-58. [PMID: 20566697 DOI: 10.1128/mcb.00224-10] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pre-B-cell expansion is driven by signals from the interleukin-7 receptor and the pre-B-cell receptor and is dependent on cyclin D3 and c-Myc. We have shown previously that interferon regulatory factors 4 and 8 induce the expression of Ikaros and Aiolos to suppress pre-B-cell proliferation. However, the molecular mechanisms through which Ikaros and Aiolos exert their growth inhibitory effect remain to be determined. Here, we provide evidence that Aiolos and Ikaros bind to the c-Myc promoter in vivo and directly suppress c-Myc expression in pre-B cells. We further show that downregulation of c-Myc is critical for the growth-inhibitory effect of Ikaros and Aiolos. Ikaros and Aiolos also induce expression of p27 and downregulate cyclin D3 in pre-B cells, and the growth-inhibitory effect of Ikaros and Aiolos is compromised in the absence of p27. A time course analysis further reveals that downregulation of c-Myc by Ikaros and Aiolos precedes p27 induction and cyclin D3 downregulation. Moreover, downregulation of c-Myc by Ikaros and Aiolos is necessary for the induction of p27 and downregulation of cyclin D3. Collectively, our studies identify a pre-B-cell receptor signaling induced inhibitory network, orchestrated by Ikaros and Aiolos, which functions to terminate pre-B-cell expansion.
Collapse
|
1003
|
Iacobucci I, Lonetti A, Paoloni F, Papayannidis C, Ferrari A, Storlazzi CT, Vignetti M, Cilloni D, Messa F, Guadagnuolo V, Paolini S, Elia L, Messina M, Vitale A, Meloni G, Soverini S, Pane F, Baccarani M, Foà R, Martinelli G. The PAX5 gene is frequently rearranged in BCR-ABL1-positive acute lymphoblastic leukemia but is not associated with outcome. A report on behalf of the GIMEMA Acute Leukemia Working Party. Haematologica 2010; 95:1683-90. [PMID: 20534699 DOI: 10.3324/haematol.2009.020792] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Recently, in genome-wide analyses of DNA copy number abnormalities using single nucleotide polymorphism microarrays, genetic alterations targeting PAX5 were identified in over 30% of pediatric patients with acute lymphoblastic leukemia. So far the occurrence of PAX5 alterations and their clinical correlation have not been investigated in adults with BCR-ABL1-positive acute lymphoblastic leukemia. DESIGN AND METHODS The aim of this study was to characterize the rearrangements on 9p involving PAX5 and their clinical significance in adults with BCR-ABL1-positive acute lymphoblastic leukemia. Eighty-nine adults with de novo BCR-ABL1-positive acute lymphoblastic leukemia were enrolled into institutional (n=15) or GIMEMA (Gruppo Italiano Malattie EMatologiche dell'Adulto) (n=74) clinical trials and, after obtaining informed consent, their genome was analyzed by single nucleotide polymorphism arrays (Affymetrix 250K NspI and SNP 6.0), genomic polymerase chain reaction analysis and re-sequencing. RESULTS PAX5 genomic deletions were identified in 29 patients (33%) with the extent of deletions ranging from a complete loss of chromosome 9 to the loss of a subset of exons. In contrast to BCR-ABL1-negative acute lymphoblastic leukemia, no point mutations were found, suggesting that deletions are the main mechanism of inactivation of PAX5 in BCR-ABL1-positive acute lymphoblastic leukemia. The deletions were predicted to result in PAX5 haploinsufficiency or expression of PAX5 isoforms with impaired DNA-binding. Deletions of PAX5 were not significantly correlated with overall survival, disease-free survival or cumulative incidence of relapse, suggesting that PAX5 deletions are not associated with outcome. CONCLUSIONS PAX5 deletions are frequent in adult BCR-ABL1-positive acute lymphoblastic leukemia and are not associated with a poor outcome.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Molecular Biology Unit, Department of Hematology/Oncology Seràgnoli, University of Bologna, Via Massarenti 9, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1004
|
Houlston RS. Low-penetrance susceptibility to hematological malignancy. Curr Opin Genet Dev 2010; 20:245-50. [DOI: 10.1016/j.gde.2010.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/02/2010] [Accepted: 03/15/2010] [Indexed: 01/01/2023]
|
1005
|
Chari S, Umetsu SE, Winandy S. Notch target gene deregulation and maintenance of the leukemogenic phenotype do not require RBP-J kappa in Ikaros null mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:410-7. [PMID: 20511547 DOI: 10.4049/jimmunol.0903688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ikaros and Notch are transcriptional regulators essential for normal T cell development. Aberrant activation of Notch target genes is observed in Ikaros-deficient thymocytes as well as leukemia cell lines. However, it is not known whether Notch deregulation plays a preferential or obligatory role in the leukemia that arise in Ikaros null (Ik(-/-)) mice. To answer this question, the expression of the DNA-binding Notch target gene activator RBP-Jkappa was abrogated in Ik(-/-) double-positive thymocytes. This was accomplished through conditional inactivation using CD4-Cre transgenic mice containing floxed RBP-Jkappa alleles (RBPJ(fl/fl)). Ik(-/-) x RBPJ(fl/fl) x CD4-Cre(+) transgenic mice develop clonal T cell populations in the thymus that escape to the periphery, with similar kinetics and penetrance as their CD4-Cre(-) counterparts. The clonal populations do not display increased RBP-Jkappa expression compared with nontransformed thymocytes, suggesting there is no selection for clones that have not fully deleted RBP-Jkappa. However, RBPJ-deficient clonal populations do not expand as aggressively as their RBPJ-sufficient counterparts, suggesting a qualitative role for deregulated Notch target gene activation in the leukemogenic process. Finally, these studies show that RBP-Jkappa plays no role in Notch target gene repression in double-positive thymocytes but rather that it is Ikaros that is required for the repression of these genes at this critical stage of T cell development.
Collapse
Affiliation(s)
- Sheila Chari
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
1006
|
Jäger R, Gisslinger H, Passamonti F, Rumi E, Berg T, Gisslinger B, Pietra D, Harutyunyan A, Klampfl T, Olcaydu D, Cazzola M, Kralovics R. Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia 2010; 24:1290-8. [DOI: 10.1038/leu.2010.99] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
1007
|
Usvasalo A, Ninomiya S, Räty R, Hollmén J, Saarinen-Pihkala UM, Elonen E, Knuutila S. Focal 9p instability in hematologic neoplasias revealed by comparative genomic hybridization and single-nucleotide polymorphism microarray analyses. Genes Chromosomes Cancer 2010; 49:309-18. [PMID: 20013897 DOI: 10.1002/gcc.20741] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Copy number losses in chromosome arm 9p are well-known aberrations in malignancies, including leukemias. The CDKN2A gene is suggested to play a key role in these aberrations. In this study overviewing 9p losses in hematologic neoplasias, we introduce the term focal 9p instability to indicate multiple areas of copy number loss or homozygous loss within a larger heterozygous one in 9p. We have used microarray comparative genomic hybridization to study patients with acute lymphoblastic leukemia (ALL, n = 140), acute myeloid leukemia (n = 50), chronic lymphocytic leukemia (n = 20), and myelodysplastic syndromes (n = 37). Our results show that 9p instability is restricted to ALL. In total, 58/140 (41%) patients with ALL had a loss in 9p. The 9p instability was detected in 19% of the patients with ALL and always included homozygous loss of CDKN2A along with loss of CDKN2B. Other possibly important genes included MTAP, IFN, MLLT3, JAK2, PTPLAD2, and PAX5. 13/27 (48%) patients with the instability had the BCR/ABL1 fusion gene or other oncogene-activating translocation or structural aberrations. Two patients had homozygous loss of hsa-mir -31, a microRNA known to regulate IKZF1. IKZF1 deletion at 7p12.1 was seen in 10 (37%) patients with the 9p instability. These findings suggest that, in ALL leukemogenesis, loss of CDKN2A and other target genes in the instability region is frequently associated with BCR/ABL1 and IKZF1 dysfunction. The multiple mechanisms leading to 9p instability including physical or epigenetic loss of the target genes, loss of the microRNA cluster, and the role of FRA9G fragile site are discussed.
Collapse
Affiliation(s)
- Anu Usvasalo
- Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
1008
|
Grunda JM, Fiveash J, Palmer CA, Cantor A, Fathallah-Shaykh HM, Nabors LB, Johnson MR. Rationally designed pharmacogenomic treatment using concurrent capecitabine and radiotherapy for glioblastoma; gene expression profiles associated with outcome. Clin Cancer Res 2010; 16:2890-8. [PMID: 20460474 PMCID: PMC2871063 DOI: 10.1158/1078-0432.ccr-09-3151] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Previous preclinical studies suggested that concurrent capecitabine and radiation could be an effective new treatment modality for glioblastoma (GBM). In the current study, we investigate toxicity and response to this regimen and explore associations between gene expression and patient outcome. EXPERIMENTAL DESIGN Eighteen newly diagnosed GBM patients received concurrent capecitabine at 625 mg/m2 BID (25% escalation) and irradiation (60 Gy total) for 6 weeks followed by 4 weeks of capecitabine only. Maintenance capecitabine was administered for 14 days every 3 weeks until progression or unacceptable toxicity. Expression analysis of 94 genes involved in capecitabine metabolism and radiation response was done on tissues obtained before therapy. The relationship of gene expression with time-to-progression (TTP) and overall survival (OS) was investigated using univariate Cox proportional hazards regression, semi-supervised principle component analysis, and class prediction modeling. RESULTS The maximum tolerated dose of capecitabine was 625 mg/m2 BID. Median patient TTP and OS were 247 and 367 days, respectively. Cox regression identified 24 genes significantly (P<0.025) associated with patient outcome. Semi-supervised principle component analysis identified two patient populations significantly different in both TTP (P=0.005) and OS (P=0.015). Class prediction modeling determined that eight genes (RAD54B, MTOR, DCTD, APEX2, TK1, RRM2, SLC29A1, and ERCC6) could collectively classify patients into outcome subgroups with 100% accuracy and precision. CONCLUSIONS Capecitabine and concurrent radiation for newly diagnosed GBM seems to be well tolerated and comparable to temozolomide and radiation. A gene expression profile predictive of patient outcome that may be useful in patient stratification for therapy was also elucidated.
Collapse
Affiliation(s)
- Jessica M Grunda
- Division of Clinical Pharmacology, Department of Pharmacology and Toxicology, Department of Radiation Oncology, Division of Neuropathology, Department of Pathology, Division of Preventive Medicine, Department of Medicine, and Division of Neuro-oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | | |
Collapse
|
1009
|
Szczepański T, Harrison CJ, van Dongen JJM. Genetic aberrations in paediatric acute leukaemias and implications for management of patients. Lancet Oncol 2010; 11:880-9. [PMID: 20435517 DOI: 10.1016/s1470-2045(09)70369-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The process of malignant transformation in paediatric acute leukaemias is complex, requiring at least two deleterious events resulting in DNA damage. This damage ranges from point-mutations to double-strand DNA breaks leading to various types of chromosomal rearrangements. In this review we summarise the most common genetic aberrations for the three main subtypes of paediatric acute leukaemia: B-cell-precursor acute lymphoblastic leukaemia, T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia. Several genetic aberrations are independent prognostic factors, and are now used in risk stratification for treatment. Molecular pathways activated by genetic aberrations could provide potential molecular targets for novel therapies. Some genetic aberrations represent sensitive targets for molecular detection of minimal residual disease. This provides hope for the development of targeted therapies, effective against leukaemic cells.
Collapse
Affiliation(s)
- Tomasz Szczepański
- Department of Pediatric Haematology and Oncology, Medical University of Silesia, Zabrze, Poland.
| | | | | |
Collapse
|
1010
|
Kuiper RP, Waanders E, van der Velden VHJ, van Reijmersdal SV, Venkatachalam R, Scheijen B, Sonneveld E, van Dongen JJM, Veerman AJP, van Leeuwen FN, Geurts van Kessel A, Hoogerbrugge PM. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia 2010; 24:1258-64. [DOI: 10.1038/leu.2010.87] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1011
|
High BAALC expression predicts chemoresistance in adult B-precursor acute lymphoblastic leukemia. Blood 2010; 115:3737-44. [DOI: 10.1182/blood-2009-09-241943] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AbstractOverexpression of BAALC is an adverse prognostic factor in adults with cytogenetically normal acute myeloid leukemia and T-cell acute lymphoblastic leukemia (ALL). Here, we analyzed the prognostic significance of BAALC in B-precursor ALL. BAALC MRNA expression was determined in 368 primary adult B-precursor ALL patients enrolled on the 06/99 and 07/03 GMALL trials. Patients were grouped into tertiles according to BAALC expression (T1-T3). Higher BAALC expression (T3 vs T2 vs T1) was associated with higher age (P < .001), a higher white blood cell count (P = .008), CD34 (P = .001), BCR-ABL (P < .001), and MLL-AF4 (P < .001). Higher BAALC expression predicted primary therapy resistance in the overall cohort (P = .002) and in the BCR-ABL− and MLL-AF4− subgroup (P = .01). In BCR-ABL− and MLL-AF4− patients, higher BAALC expression was associated with a shorter overall survival (OS; 5-year OS: T3, 38%; T2, 52%; T1, 70%; P = .004) and independently predicted OS in multivariate models (P = .03). Gene-expression profiling revealed an up-regulation of stem cell markers and genes involved in chemoresistance (TSPAN7 and LYN) in the high BAALC group. Thus, high BAALC expression is associated with an immature, chemoresistant leukemic phenotype and identifies patients with inferior OS. Determination of BAALC might contribute to risk assessment of molecularly undefined adult B-precursor ALL.
Collapse
|
1012
|
Okamoto R, Ogawa S, Nowak D, Kawamata N, Akagi T, Kato M, Sanada M, Weiss T, Haferlach C, Dugas M, Ruckert C, Haferlach T, Koeffler HP. Genomic profiling of adult acute lymphoblastic leukemia by single nucleotide polymorphism oligonucleotide microarray and comparison to pediatric acute lymphoblastic leukemia. Haematologica 2010; 95:1481-8. [PMID: 20435627 DOI: 10.3324/haematol.2009.011114] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Differences in survival have been reported between pediatric and adult acute lymphoblastic leukemia. The inferior prognosis in adult acute lymphoblastic leukemia is not fully understood but could be attributed, in part, to differences in genomic alterations found in adult as compared to in pediatric acute lymphoblastic leukemia. DESIGN AND METHODS We compared two different sets of high-density single nucleotide polymorphism array genotyping data from 75 new diagnostic adult and 399 previously published diagnostic pediatric acute lymphoblastic leukemia samples. The patients' samples were randomly acquired from among Caucasian and Asian populations and hybridized to either Affymetrix 50K or 250K single nucleotide polymorphism arrays. The array data were investigated with Copy Number Analysis for GeneChips (CNAG) software for allele-specific copy number analysis. RESULTS The high density single nucleotide polymorphism array analysis of 75 samples of adult acute lymphoblastic leukemia led to the identification of numerous cryptic and submicroscopic genomic lesions with a mean of 7.6 genomic alterations per sample. The patterns and frequencies of lesions detected in the adult samples largely reproduced known genomic hallmarks detected in previous single nucleotide polymorphism-array studies of pediatric acute lymphoblastic leukemia, such as common deletions of 3p14.2 (FHIT), 5q33.3 (EBF), 6q, 9p21.3 (CDKN2A/B), 9p13.2 (PAX5), 13q14.2 (RB1) and 17q11.2 (NF1). Some differences between adult and pediatric acute lymphoblastic leukemia were identified when the pediatric data set was partitioned into hyperdiploid and non-hyperdiploid cases and then compared to the nearly exclusively non-hyperdiploid adult samples. In this analysis, adult samples had a higher rate of deletions of chromosome 17p (TP53) and duplication of 17q. CONCLUSIONS Our analysis of adult acute lymphoblastic leukemia cases led to the identification of new potential target lesions relevant for the pathogenesis of acute lymphoblastic leukemia. However, no unequivocal pattern of submicroscopic genomic alterations was found to separate adult acute lymphoblastic leukemia from pediatric acute lymphoblastic leukemia. Therefore, apart from different therapy regimen, differences of prognosis between adult and pediatric acute lymphoblastic leukemia are probably based on genetic subgroups according to cytogenetically detectable lesions but not focal genomic copy number microlesions.
Collapse
Affiliation(s)
- Ryoko Okamoto
- Division of Hematology and Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, 8700, Beverly Blvd, Los Angeles, CA90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1013
|
|
1014
|
Moorman AV, Ensor HM, Richards SM, Chilton L, Schwab C, Kinsey SE, Vora A, Mitchell CD, Harrison CJ. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol 2010; 11:429-38. [PMID: 20409752 DOI: 10.1016/s1470-2045(10)70066-8] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chromosomal abnormalities in childhood acute lymphoblastic leukaemia are well established disease markers and indicators of outcomes. However, the long-term prognosis and independent prognostic effect of some abnormalities has been questioned. Also, little is known about the association between cytogenetics and the characteristics of relapse (eg, time and site of relapse) that are known to predict outcome after relapse. METHODS We analysed cytogenetic data from 1725 children with B-cell precursor acute lymphoblastic leukaemia who were included in the UK Medical Research Council ALL97/99 study and followed up for a median time of 8.2 years. Univariate and multivariate analysis were done to examine risk of relapse, event-free survival, and overall survival associated with 21 chromosomal abnormalities and three cytogenetic risk groups constructed from these data. FINDINGS Two chromosomal abnormalities were associated with a significantly better outcome (ETV6-RUNX1, hazard ratio [HR] 0.51, 95% CI 0.38-0.70 and high hyperdiploidy, 0.60, 0.47-0.78), whereas five abnormalities were associated with an increased risk of relapse (intrachromosomal amplification of chromosome 21 [iAMP21], 6.04, 3.90-9.35; t(9;22), 3.55, 2.21-5.72; MLL translocations, 2.98, 1.71-5.20; abnormal 17p, 2.09, 1.30-3.37; and loss of 13q, 1.87, 1.09-3.20). Multivariate analysis incorporating age, white-cell count, and treatment parameters showed that six cytogenetic abnormalities (ETV6-RUNX1, high hyperdiploidy, iAMP21, t(9;22), loss of 13q, and abnormal 17p) retained their significance for effect on relapse risk. Based on these data, patients were classified into good, intermediate, and poor cytogenetic risk groups. Slow early treatment response correlated with cytogenetic risk group: 34 of 460 (7%) in the good-risk group, 22 of 211 (10%) in the intermediate-risk group, and 27 of 95 (28%) in the poor-risk group had a slow response (p<0.0001). Additionally, the proportion of patients with a very early (<18 months) relapse varied by cytogenetic risk group: eight of 129 (6%) patients in the good-risk group had a very early relapse, compared with 24 of 98 (24%) in the intermediate-risk group, and 37 of 82 (45%) in the poor-risk group (p<0.0001). However, there was no difference in the site of relapse by cytogenetic risk group. INTERPRETATION Individual chromosomal abnormalities are strong independent indicators of outcome, especially risk of relapse. Diagnostic cytogenetics identifies patients with a higher rate of relapse and those who are likely to have a high-risk relapse. FUNDING Leukaemia and Lymphoma Research (LLR).
Collapse
Affiliation(s)
- Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
1015
|
Smith MA, Seibel NL, Altekruse SF, Ries LAG, Melbert DL, O'Leary M, Smith FO, Reaman GH. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 2010; 28:2625-34. [PMID: 20404250 DOI: 10.1200/jco.2009.27.0421] [Citation(s) in RCA: 747] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE This report provides an overview of current childhood cancer statistics to facilitate analysis of the impact of past research discoveries on outcome and provide essential information for prioritizing future research directions. METHODS Incidence and survival data for childhood cancers came from the Surveillance, Epidemiology, and End Results 9 (SEER 9) registries, and mortality data were based on deaths in the United States that were reported by states to the Centers for Disease Control and Prevention by underlying cause. RESULTS Childhood cancer incidence rates increased significantly from 1975 through 2006, with increasing rates for acute lymphoblastic leukemia being most notable. Childhood cancer mortality rates declined by more than 50% between 1975 and 2006. For leukemias and lymphomas, significantly decreasing mortality rates were observed throughout the 32-year period, though the rate of decline slowed somewhat after 1998. For remaining childhood cancers, significantly decreasing mortality rates were observed from 1975 to 1996, with stable rates from 1996 through 2006. Increased survival rates were observed for all categories of childhood cancers studied, with the extent and temporal pace of the increases varying by diagnosis. CONCLUSION When 1975 age-specific death rates for children are used as a baseline, approximately 38,000 childhood malignant cancer deaths were averted in the United States from 1975 through 2006 as a result of more effective treatments identified and applied during this period. Continued success in reducing childhood cancer mortality will require new treatment paradigms building on an increased understanding of the molecular processes that promote growth and survival of specific childhood cancers.
Collapse
Affiliation(s)
- Malcolm A Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1016
|
Virely C, Moulin S, Cobaleda C, Lasgi C, Alberdi A, Soulier J, Sigaux F, Chan S, Kastner P, Ghysdael J. Haploinsufficiency of the IKZF1 (IKAROS) tumor suppressor gene cooperates with BCR-ABL in a transgenic model of acute lymphoblastic leukemia. Leukemia 2010; 24:1200-4. [DOI: 10.1038/leu.2010.63] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
1017
|
Institutional Profile: Developing and evaluating new drugs for cancer treatment: perspectives from the US National Cancer Institute. Future Med Chem 2010; 2:555-9. [DOI: 10.4155/fmc.10.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
1018
|
Abstract
Rapid technical advances in DNA sequencing and genome-wide association studies are driving the discovery of the germline and somatic mutations that are present in different cancers. Mutations in genes involved in cellular signaling are common, and often shared by tumors that arise in distinct anatomical locations. Here we review the most important molecular changes in different cancers from the perspective of what should be analyzed on a routine basis in the clinic. The paradigms are EGFR mutations in adenocarcinoma of the lung that can be treated with gefitinib, KRAS mutations in colon cancer with respect to treatment with EGFR antibodies, and the use of gene-expression analysis for ER-positive, node-negative breast cancer patients with respect to chemotherapy options. Several other examples in both solid and hematological cancers are also provided. We focus on how disease subtypes can influence therapy and discuss the implications of the impending molecular diagnostic revolution from the point of view of the patients, clinicians, and the diagnostic and pharmaceutical companies. This paradigm shift is occurring first in cancer patient management and is likely to promote the application of these technologies to other diseases.
Collapse
Affiliation(s)
- Timothy J R Harris
- SAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | |
Collapse
|
1019
|
Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood 2010; 115:4657-63. [PMID: 20304809 DOI: 10.1182/blood-2009-11-253435] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minimal residual disease (MRD) at the end of remission-induction therapy predicts relapse in acute lymphoblastic leukemia (ALL). We examined the clinical significance of levels below the usual threshold value for MRD positivity (0.01%) in 455 children with B-lineage ALL, using polymerase chain reaction amplification of antigen-receptor genes capable of detecting at least 1 leukemic cell per 100 000 normal mononucleated cells (0.001%). Of the 455 clinical samples studied on day 46 of therapy, 139 (30.5%) had MRD 0.001% or more with 63 of these (45.3%) showing levels of 0.001% to less than 0.01%, whereas 316 (69.5%) had levels that were either less than 0.001% or undetectable. MRD measurements of 0.001% to less than 0.01% were not significantly related to presenting characteristics but were associated with a poorer leukemia cell clearance on day 19 of remission induction therapy. Patients with this low level of MRD had a 12.7% (+/- 5.1%; SE) cumulative risk of relapse at 5 years, compared with 5.0% (+/- 1.5%) for those with lower or undetectable MRD (P < .047). Thus, low levels of MRD (0.001%-< 0.01%) at the end of remission induction therapy have prognostic significance in childhood ALL, suggesting that patients with this finding should be monitored closely for adverse events.
Collapse
|
1020
|
Prognostic classification of patients with acute lymphoblastic leukemia by using gene copy number profiles identified from array-based comparative genomic hybridization data. Leuk Res 2010; 34:1476-82. [PMID: 20303590 DOI: 10.1016/j.leukres.2010.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/10/2010] [Accepted: 02/23/2010] [Indexed: 01/07/2023]
Abstract
The development of risk-adapted therapy has improved the treatment results of acute lymphoblastic leukemia (ALL) especially in children. However, more accurate risk classifiers are warranted. In this study we aimed at defining a prognostic classifier based on DNA copy number alterations of adolescent and young adult (AYA) (10-25 yrs) ALL patients (n=60) determined by microarray CGH and the relapse status of the patients. As a result of prognostic model identification procedure, we got a model of four genes: BAK1, CDKN2C, GSTM1, and MT1F, the copy number profile combinations of which differentiated AYA ALL patients at diagnosis depending on their risk of relapse. The performance of the model was poorer on other age groups. We suggest that this kind of approach produces models simple and accurate enough for potential use in ALL routine classification.
Collapse
|
1021
|
Relapsed childhood high hyperdiploid acute lymphoblastic leukemia: presence of preleukemic ancestral clones and the secondary nature of microdeletions and RTK-RAS mutations. Leukemia 2010; 24:924-31. [PMID: 20237506 DOI: 10.1038/leu.2010.39] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although childhood high hyperdiploid acute lymphoblastic leukemia is associated with a favorable outcome, 20% of patients still relapse. It is important to identify these patients already at diagnosis to ensure proper risk stratification. We have investigated 11 paired diagnostic and relapse samples with single nucleotide polymorphism array and mutation analyses of FLT3, KRAS, NRAS and PTPN11 in order to identify changes associated with relapse and to ascertain the genetic evolution patterns. Structural changes, mainly cryptic hemizygous deletions, were significantly more common at relapse (P<0.05). No single aberration was linked to relapse, but four deletions, involving IKZF1, PAX5, CDKN2A/B or AK3, were recurrent. On the basis of the genetic relationship between the paired samples, three groups were delineated: (1) identical genetic changes at diagnosis and relapse (2 of 11 cases), (2) clonal evolution with all changes at diagnosis being present at relapse (2 of 11) and (3) clonal evolution with some changes conserved, lost or gained (7 of 11), suggesting the presence of a preleukemic clone. This ancestral clone was characterized by numerical changes only, with structural changes and RTK-RAS mutations being secondary to the high hyperdiploid pattern.
Collapse
|
1022
|
Abstract
Although the majority of children with acute lymphoblastic leukemia (ALL) can be cured with combination chemotherapy, the challenge remains to salvage patients with resistant disease and to reduce treatment related toxicity. To meet this challenge, it will be essential to incorporate new agents targeting the biological Achilles Heels of this cancer more rapidly into currently available treatment regimen. Here we review the principles of current ALL therapy, recent advances in understanding ALL biology and discuss a selection of promising areas for drug development that may take advantage of the underlying leukemia biology. We focus particularly on strategies to interfere with common effector mechanisms that can be trigged by different individual oncogenic lesions and on new agents from drug development programs in adult oncology, as such agents will come with better chances for sustainable commercial development.
Collapse
|
1023
|
CD11b is a therapy resistance- and minimal residual disease-specific marker in precursor B-cell acute lymphoblastic leukemia. Blood 2010; 115:3763-71. [PMID: 20228269 DOI: 10.1182/blood-2009-10-247585] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A consistently increased mRNA expression of the adhesion receptor CD11b is a hallmark of the reported genomewide gene expression changes in precursor B-cell acute lymphoblastic leukemia (PBC-ALL) after 1 week of induction therapy. To investigate its clinical relevance, CD11b protein expression in leukemic blasts has been prospectively measured at diagnosis (159 patients) and during therapy (53 patients). The initially heterogeneous expression of CD11b inversely correlated with cytoreduction rates measured at clinically significant time points of induction therapy in the ALL-Berlin-Frankfurt-Münster 2000 protocol. CD11b positivity conferred a 5-fold increased risk of minimal residual disease (MRD) after induction therapy (day 33) and of high-risk group assignment after consolidation therapy (day 78). In the multivariate analysis CD11b expression was an independent prognostic factor compared with other clinically relevant parameters at diagnosis. During therapy, CD11b expression increased early in most ALL cases and remained consistently increased during induction/consolidation therapy. In more than 30% of MRD-positive cases, the CD11b expression on blast cells exceeded that of mature memory B cells and improved the discrimination of residual leukemic cells from regenerating bone marrow. Taken together, CD11b expression has considerable implications for prognosis, treatment response monitoring, and MRD detection in childhood PBC-ALL.
Collapse
|
1024
|
Faderl S, O'Brien S, Pui CH, Stock W, Wetzler M, Hoelzer D, Kantarjian HM. Adult acute lymphoblastic leukemia: concepts and strategies. Cancer 2010; 116:1165-76. [PMID: 20101737 PMCID: PMC5345568 DOI: 10.1002/cncr.24862] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute lymphoblastic leukemia (ALL), a clonal expansion of hematopoietic blasts, is a highly heterogeneous disease comprising many entities for which distinct treatment strategies are pursued. Although ALL is a success story in pediatric oncology, results in adults lag behind those in children. An expansion of new drugs, more reliable immunologic and molecular techniques for the assessment of minimal residual disease, and efforts at more precise risk stratification are generating new aspects of adult ALL therapy. For this review, the authors summarized pertinent and recent literature on ALL biology and therapy, and they discuss current strategies and potential implications of novel approaches to the management of adult ALL. Cancer 2010. (c) 2010 American Cancer Society.
Collapse
Affiliation(s)
- Stefan Faderl
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
1025
|
Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 2010; 115:5312-21. [PMID: 20139093 DOI: 10.1182/blood-2009-09-245944] [Citation(s) in RCA: 417] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Gene expression profiling of 207 uniformly treated children with high-risk B-progenitor acute lymphoblastic leukemia revealed 29 of 207 cases (14%) with markedly elevated expression of CRLF2 (cytokine receptor-like factor 2). Each of the 29 cases harbored a genomic rearrangement of CRLF2: 18 of 29 (62%) had a translocation of the immunoglobulin heavy chain gene IGH@ on 14q32 to CRLF2 in the pseudoautosomal region 1 of Xp22.3/Yp11.3, whereas 10 (34%) cases had a 320-kb interstitial deletion centromeric of CRLF2, resulting in a P2RY8-CRLF2 fusion. One case had both IGH@-CRLF2 and P2RY8-CRLF2, and another had a novel CRLF2 rearrangement. Only 2 of 29 cases were Down syndrome. CRLF2 rearrangements were significantly associated with activating mutations of JAK1 or JAK2, deletion or mutation of IKZF1, and Hispanic/Latino ethnicity (Fisher exact test, P < .001 for each). Within this cohort, patients with CRLF2 rearrangements had extremely poor treatment outcomes compared with those without CRLF2 rearrangements (35.3% vs 71.3% relapse-free survival at 4 years; P < .001). Together, these observations suggest that activation of CRLF2 expression, mutation of JAK kinases, and alterations of IKZF1 cooperate to promote B-cell leukemogenesis and identify these pathways as important therapeutic targets in this disease.
Collapse
|
1026
|
Pui CH, Pei D, Sandlund JT, Ribeiro RC, Rubnitz JE, Raimondi SC, Onciu M, Campana D, Kun LE, Jeha S, Cheng C, Howard SC, Metzger ML, Bhojwani D, Downing JR, Evans WE, Relling MV. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 2010; 24:371-82. [PMID: 20010620 PMCID: PMC2820159 DOI: 10.1038/leu.2009.252] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/06/2009] [Indexed: 02/08/2023]
Abstract
We analyzed the long-term outcome of 1011 patients treated in five successive clinical trials (Total Therapy Studies 11, 12, 13A, 13B, and 14) between 1984 and 1999. The event-free survival improved significantly (P=0.003) from the first two trials conducted in the 1980s to the three more recent trials conducted in the 1990s. Approximately 75% of patients treated in the 1980s and 80% in the 1990s were cured. Early intensive triple intrathecal therapy, together with more effective systemic therapy, including consolidation and reinduction treatment (Studies 13A and 13B) as well as dexamethasone (Study 13B), resulted in a very low rate of isolated central nervous system (CNS) relapse rate (<2%), despite the reduced use of cranial irradiation. Factors consistently associated with treatment outcome were age, leukocyte count, immunophenotype, DNA index, and minimal residual disease level after remission induction treatment. Owing to concerns about therapy-related secondary myeloid leukemia and brain tumors, in our current trials we reserve the use of etoposide for patients with refractory or relapsed leukemia undergoing hematopoietic stem cell transplantation, and cranial irradiation for those with CNS relapse. The next main challenge is to further increase cure rates while improving quality of life for all patients.
Collapse
Affiliation(s)
- C H Pui
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1027
|
Gaynon PS, Angiolillo AL, Carroll WL, Nachman JB, Trigg ME, Sather HN, Hunger SP, Devidas M. Long-term results of the children's cancer group studies for childhood acute lymphoblastic leukemia 1983-2002: a Children's Oncology Group Report. Leukemia 2010; 24:285-97. [PMID: 20016531 PMCID: PMC2906139 DOI: 10.1038/leu.2009.262] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 10/08/2009] [Indexed: 11/12/2022]
Abstract
The Children's Cancer Group enrolled 13 298 young people age <21 years on 1 of 16 protocols between 1983 and 2002. Outcomes were examined in three time periods, 1983-1988, 1989-1995, 1996-2002. Over the three intervals, 10-year event-free survival (EFS) for Rome/National Cancer Institute standard risk (SR) and higher risk (HR) B-precursor patients was 68 and 58%, 77 and 63%, and 78 and 67%, respectively, whereas for SR and HR T-cell patients, EFS was 65 and 56%, 78 and 68%, and 70 and 72%, respectively. Five-year EFS for infants was 36, 38, and 43%, respectively. Seminal randomized studies led to a number of important findings. Stronger post-induction intensification improved outcome for both SR and HR patients. With improved systemic therapy, additional intrathecal (IT) methotrexate effectively replaced cranial radiation. For SR patients receiving three-drug induction, iso-toxic substitution of dexamethasone for prednisone improved EFS. Pegylated asparaginase safely and effectively replaced native asparaginase. Thus, rational therapy modifications yielded better outcomes for both SR and HR patients. These trials provide the platforms for current Children's Oncology Group trials.
Collapse
Affiliation(s)
- P S Gaynon
- Childrens Center for Cancer and Blood Diseases, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1028
|
Bhojwani D, Howard SC, Pui CH. High-risk childhood acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2010; 9 Suppl 3:S222-30. [PMID: 19778845 DOI: 10.3816/clm.2009.s.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although most children with acute lymphoblastic leukemia (ALL) are cured, certain subsets have a high risk of relapse. Relapse risk can be predicted by early response to therapy, clinical and pharmacogenetic features of the host, and genetic characteristics of leukemic cells. Though early treatment response can be assessed by the peripheral blast cell count after 1 week of single-agent glucocorticoid treatment or percent of bone marrow blasts by morphology after 1 or 2 weeks of multiagent induction treatment, determination of minimal residual disease by polymerase chain reaction (PCR) or flow cytometry after 2 to 6 weeks of induction is the most precise and useful measure. Augmented therapy has improved outcome for the poor responders to initial treatment. Infants with mixed-lineage leukemia (MLL)-rearranged ALL comprise a very poor-risk group wherein further intensification of chemotherapy causes significant toxicity. Hybrid protocols incorporating drugs effective for acute myeloid leukemia could improve survival, a strategy being tested in international trials. Studies on the biology of MLL-induced leukemogenesis have prompted the development of novel targeted agents, currently under evaluation in clinical trials. Short-term outcomes of patients with Philadelphia chromosome (Ph)-positive ALL have improved significantly by adding tyrosine kinase inhibitors to standard chemotherapy regimens. New agents and methods to overcome resistance are under investigation, and allogeneic stem cell transplantation is recommended for certain subsets of patients, for example those with Ph+ and T-cell ALL with poor early response. Genome-wide interrogation of leukemic cell genetic abnormalities and germline genetic variations promise to identify new molecular targets for therapy.
Collapse
Affiliation(s)
- Deepa Bhojwani
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA.
| | | | | |
Collapse
|
1029
|
Jeha S, Pui CH. Risk-adapted treatment of pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2010; 23:973-90, v. [PMID: 19825448 DOI: 10.1016/j.hoc.2009.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Optimal use of antileukemic agents and stringent application of risk-directed therapy in clinical trials have resulted in steady improvement in the outcome of children with acute lymphoblastic leukemia, with current cure rates exceeding 80% in developed countries. The intensity of treatment varies substantially among subsets of patients, as therapy is designed to reduce acute and long-term toxicity in low-risk groups while improving outcomes in poor risk groups by treatment intensification. Recent advances in genome-wide screening techniques, pharmacogenomic studies, and development of molecular therapeutics are ushering in an era of more refined personalized therapy.
Collapse
Affiliation(s)
- Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | | |
Collapse
|
1030
|
Campana D. Role of minimal residual disease monitoring in adult and pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2010; 23:1083-98, vii. [PMID: 19825454 DOI: 10.1016/j.hoc.2009.07.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Assays that measure minimal residual disease (MRD) can determine the response to treatment in patients with acute lymphoblastic leukemia (ALL) much more precisely than morphologic screening of bone marrow smears. The clinical significance of MRD, detected by flow cytometry or polymerase chain reaction-based methods in childhood ALL, has been established. Hence, MRD is being used in several clinical trials to adjust treatment intensity. Similar findings have been gathered in adult patients with ALL, making MRD one of the most powerful and informative parameters to guide clinical management. This article discusses practical issues related to MRD methodologies and the evidence supporting the use of MRD for risk assignment in clinical trials.
Collapse
Affiliation(s)
- Dario Campana
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
1031
|
Yoda A, Yoda Y, Chiaretti S, Bar-Natan M, Mani K, Rodig SJ, West N, Xiao Y, Brown JR, Mitsiades C, Sattler M, Kutok JL, DeAngelo DJ, Wadleigh M, Piciocchi A, Dal Cin P, Bradner JE, Griffin JD, Anderson KC, Stone RM, Ritz J, Foà R, Aster JC, Frank DA, Weinstock DM. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 2010; 107:252-7. [PMID: 20018760 PMCID: PMC2806782 DOI: 10.1073/pnas.0911726107] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prognosis for adults with precursor B-cell acute lymphoblastic leukemia (B-ALL) remains poor, in part from a lack of therapeutic targets. We identified the type I cytokine receptor subunit CRLF2 in a functional screen for B-ALL-derived mRNA transcripts that can substitute for IL3 signaling. We demonstrate that CRLF2 is overexpressed in approximately 15% of adult and high-risk pediatric B-ALL that lack MLL, TCF3, TEL, and BCR/ABL rearrangements, but not in B-ALL with these rearrangements or other lymphoid malignancies. CRLF2 overexpression can result from translocation with the IGH locus or intrachromosomal deletion and is associated with poor outcome. CRLF2 overexpressing B-ALLs share a transcriptional signature that significantly overlaps with a BCR/ABL signature, and is enriched for genes involved in cytokine receptor and JAK-STAT signaling. In a subset of cases, CRLF2 harbors a Phe232Cys gain-of-function mutation that promotes constitutive dimerization and cytokine independent growth. A mutually exclusive subset harbors activating mutations in JAK2. In fact, all 22 B-ALLs with mutant JAK2 that we analyzed overexpress CRLF2, distinguishing CRLF2 as the key scaffold for mutant JAK2 signaling in B-ALL. Expression of WT CRLF2 with mutant JAK2 also promotes cytokine independent growth that, unlike CRLF2 Phe232Cys or ligand-induced signaling by WT CRLF2, is accompanied by JAK2 phosphorylation. Finally, cells dependent on CRLF2 signaling are sensitive to small molecule inhibitors of either JAKs or protein kinase C family kinases. Together, these findings implicate CRLF2 as an important factor in B-ALL with diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Akinori Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Yuka Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Sabina Chiaretti
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Michal Bar-Natan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Kartik Mani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Nathan West
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Yun Xiao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Jennifer R. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Constantine Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Jeffrey L. Kutok
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Daniel J. DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Martha Wadleigh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Alfonso Piciocchi
- Gruppo Malattie Ematologiche dell’Adulto Data Center, 00161 Rome, Italy
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; and
| | - James E. Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - James D. Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Kenneth C. Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Richard M. Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Robin Foà
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Jon C. Aster
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; and
| | - David A. Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
1032
|
Tremblay CS, Hoang T, Hoang T. Early T cell differentiation lessons from T-cell acute lymphoblastic leukemia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:121-56. [PMID: 20800819 DOI: 10.1016/s1877-1173(10)92006-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T cells develop from bone marrow-derived self-renewing hematopoietic stem cells (HSC). Upon entering the thymus, these cells undergo progressive commitment and differentiation driven by the thymic stroma and the pre-T cell receptor (pre-TCR). These processes are disrupted in T-cell acute lymphoblastic leukemia (T-ALL). More than 70% of recurring chromosomal rearrangements in T-ALL activate the expression of oncogenic transcription factors, belonging mostly to three families, basic helix-loop-helix (bHLH), homeobox (HOX), and c-MYB. This prevalence is indicative of their importance in the T lineage, and their dominant mechanisms of transformation. For example, bHLH oncoproteins inhibit E2A and HEB, revealing their tumor suppressor function in the thymus. The induction of T-ALL, nonetheless, requires collaboration with constitutive NOTCH1 signaling and the pre-TCR, as well as loss-of-function mutations for CDKN2A and PTEN. Significantly, NOTCH1, the pre-TCR pathway, and E2A/HEB proteins control critical checkpoints and branchpoints in early thymocyte development whereas several oncogenic transcription factors, HOXA9, c-MYB, SCL, and LYL-1 control HSC self-renewal. Together, these genetic lesions alter key regulatory processes in the cell, favoring self-renewal and subvert the normal control of thymocyte homeostasis.
Collapse
Affiliation(s)
- Cédric S Tremblay
- Institute of Research in Immunology and Cancer, University of Montreal, Montréal, Québec, Canada
| | | | | |
Collapse
|
1033
|
Bell DW. Our changing view of the genomic landscape of cancer. J Pathol 2010; 220:231-43. [PMID: 19918804 PMCID: PMC3195356 DOI: 10.1002/path.2645] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/05/2009] [Indexed: 12/24/2022]
Abstract
Sporadic tumours, which account for the majority of all human cancers, arise from the acquisition of somatic, genetic and epigenetic alterations leading to changes in gene sequence, structure, copy number and expression. Within the last decade, the availability of a complete sequence-based map of the human genome, coupled with significant technological advances, has revolutionized the search for somatic alterations in tumour genomes. Recent landmark studies, which resequenced all coding exons within breast, colorectal, brain and pancreatic cancers, have shed new light on the genomic landscape of cancer. Within a given tumour type there are many infrequently mutated genes and a few frequently mutated genes, resulting in incredible genetic heterogeneity. However, when the altered genes are placed into biological processes and biochemical pathways, this complexity is significantly reduced and shared pathways that are affected in significant numbers of tumours can be discerned. The advent of next-generation sequencing technologies has opened up the potential to resequence entire tumour genomes to interrogate protein-encoding genes, non-coding RNA genes, non-genic regions and the mitochondrial genome. During the next decade it is anticipated that the most common forms of human cancer will be systematically surveyed to identify the underlying somatic changes in gene copy number, sequence and expression. The resulting catalogues of somatic alterations will point to candidate cancer genes requiring further validation to determine whether they have a causal role in tumourigenesis. The hope is that this knowledge will fuel improvements in cancer diagnosis, prognosis and therapy, based on the specific molecular alterations that drive individual tumours. In this review, I will provide a historical perspective on the identification of somatic alterations in the pre- and post-genomic eras, with a particular emphasis on recent pioneering studies that have provided unprecedented insights into the genomic landscape of human cancer.
Collapse
Affiliation(s)
- Daphne W Bell
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
1034
|
Campana D. Minimal residual disease in acute lymphoblastic leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2010; 2010:7-12. [PMID: 21239764 DOI: 10.1182/asheducation-2010.1.7] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In patients with acute lymphoblastic leukemia (ALL), treatment response is increasingly evaluated with minimal residual disease (MRD) assays. ALL cells can be recognized by their clonal rearrangement of immunoglobulin and T-cell receptor genes, expression of gene fusions, and leukemia-associated immunophenotypes. Assays based on polymerase chain reaction or flow cytometry can detect one ALL cell among 10,000 to 100,000 normal cells in clinical samples. The vast majority of cases have antigen-receptor gene rearrangements and leukemia immunophenotypes for MRD monitoring; about half of the cases currently have suitable gene fusions. The clinical significance of MRD has been conclusively demonstrated in both childhood and adult ALL. In most studies, MRD positivity is defined by the presence of 0.01% or more ALL cells; the risk of relapse is generally proportional to the level of MRD, particularly when measured during or at the end of remission-induction therapy. The prevalence of MRD during early therapy differs among genetic and biologic ALL subtypes. However, being a measurement of drug resistance in vivo and reflecting multiple cellular, host, and treatment variables, MRD is typically an independent prognostic factor. MRD is now used in several clinical trials for risk assignment and to guide clinical management overall. The time points at which MRD testing is performed and the threshold levels that trigger treatment intensification vary according to the methodology available, the results of preclinical correlative studies, and protocol design.
Collapse
Affiliation(s)
- Dario Campana
- Department of Oncology, St. Jude Children's Research Hospital, and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38105, USA.
| |
Collapse
|
1035
|
Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood 2009; 115:1765-7. [PMID: 20042726 DOI: 10.1182/blood-2009-09-241513] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent genome-wide association data have implicated genetic variation at 7p12.2 (IKZF1), 10q21.2 (ARIDB5), and 14q11.2 (CEBPE) in the etiology of B-cell childhood acute lymphoblastic leukemia (ALL). To verify and further examine the relationship between these variants and ALL risk, we genotyped 1384 cases of precursor B-cell childhood ALL and 1877 controls from Germany and the United Kingdom. The combined data provided statistically significant support for an association between genotype at each of these loci and ALL risk; odds ratios (OR), 1.69 (P = 7.51 x10(-22)), 1.80 (P = 5.90 x 10(-28)), and 1.27 (P = 4.90 x 10(-6)), respectively. Furthermore, the risk of ALL increases with an increasing numbers of variant alleles for the 3 loci (OR(per-allele) = 1.53, 95% confidence interval, 1.44-1.62; P(trend) = 3.49 x 10(-42)), consistent with a polygenic model of disease susceptibility. These data provide unambiguous evidence for the role of these variants in defining ALL risk underscoring approximately 64% of cases.
Collapse
|
1036
|
Schully SD, Benedicto CB, Gillanders EM, Wang SS, Khoury MJ. Translational research in cancer genetics: the road less traveled. Public Health Genomics 2009; 14:1-8. [PMID: 20051673 PMCID: PMC3025883 DOI: 10.1159/000272897] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 12/22/2022] Open
Abstract
Gene discoveries in cancer have the potential for clinical and public health applications. To take advantage of such discoveries, a translational research agenda is needed to take discoveries from the bench to population health impact. To assess the current status of translational research in cancer genetics, we analyzed the extramural grant portfolio of the National Cancer Institute (NCI) from Fiscal Year 2007, as well as the cancer genetic research articles published in 2007. We classified both funded grants and publications as follows: T0 as discovery research; T1 as research to develop a candidate health application (e.g., test or therapy); T2 as research that evaluates a candidate application and develops evidence-based recommendations; T3 as research that assesses how to integrate an evidence-based recommendation into cancer care and prevention; and T4 as research that assesses health outcomes and population impact. We found that 1.8% of the grant portfolio and 0.6% of the published literature was T2 research or beyond. In addition to discovery research in cancer genetics, a translational research infrastructure is urgently needed to methodically evaluate and translate gene discoveries for cancer care and prevention.
Collapse
Affiliation(s)
- S D Schully
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
1037
|
Long-term results of Taiwan Pediatric Oncology Group studies 1997 and 2002 for childhood acute lymphoblastic leukemia. Leukemia 2009; 24:397-405. [PMID: 20016538 DOI: 10.1038/leu.2009.248] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The long-term outcome of 1390 children with acute lymphoblastic leukemia (ALL), treated in two successive clinical trials (Taiwan Pediatric Oncology Group (TPOG)-ALL-97 and TPOG-ALL-2002) between 1997 and 2007, is reported. The event-free survival improved significantly (P=0.0004) over this period, 69.3+/-1.9% in 1997-2001 to 77.4+/-1.7% in 2002-2007. A randomized trial in TPOG-97 testing L-asparaginase versus epidoxorubicin in combination with vincristine and prednisolone for remission induction in standard-risk (SR; low-risk) patients yielded similar outcomes. Another randomized trial, in TPOG-2002, showed that for SR patients, two reinduction courses did not improve long-term outcome over one course. Decreasing use of prophylactic cranial irradiation in the period 1997-2008 was not associated with increased rates of CNS relapse, prompting complete omission of prophylactic cranial irradiation from TPOG protocols, beginning in 2009. Decreased use of etoposide and cranial irradiation likely contributed to the low incidence of second cancers. High-risk B-lineage ALL, T-cell, CD10 negativity, t(9;22), infant, and higher leukocyte count were consistently adverse factors, whereas hyperdiploidy >50 was a consistently favorable factor. Higher leukocyte count and t(9;22) retained prognostic significance in both TPOG-97 and TPOG-2002 by multivariate analysis. Although long-term outcome in TPOG clinical trials is comparable with results being reported worldwide, the persistent strength of certain prognostic variables and the lower frequencies of favorable outcome predictors, such as ETV6-RUNX1 and hyperdiploidy >50, in Taiwanese children warrant renewed effort to cure a higher proportion of patients while preserving their quality of life.
Collapse
|
1038
|
|
1039
|
Abstract
Alterations in various developmental pathways are common themes in cancer. The early B-cell factors (EBF) are a family of four highly conserved DNA-binding transcription factors with an atypical zinc-finger and helix-loop-helix motif. They are involved in the differentiation and maturation of several cell lineages including B-progenitor lymphoblasts, neuronal precursors, and osteoblast progenitors. During B-cell development, EBF1 is required for the expression of Pax5, an essential factor for the production of antibody-secreting cells. Accumulating evidence indicates that genomic deletion of the EBF1 gene contributes to the pathogenesis, drug resistance, and relapse of B-progenitor acute lymphoblastic leukemia (ALL). Epigenetic silencing and genomic deletion of the EBF3 locus in chromosome 10q are very frequent in glioblastoma (GBM). Strikingly, the frequency of EBF3 loss in GBM is similar to that of the loss of Pten, a key suppressor of gliomagenesis. Cancer-specific somatic mutations were detected in EBF3 in GBM and in both EBF1 and EBF3 in pancreatic ductal adenocarcinoma. These missense mutations occur in the DNA-binding domain or the conserved IPT/TIG domain, suggesting that they might disrupt the functions of these two proteins. Functional studies revealed that EBF3 represses the expression of genes required for cell proliferation [e.g., cyclins and cyclin-dependent kinases (CDK)] and survival (e.g., Mcl-1 and Daxx) but activates those involved in cell cycle arrest (e.g., p21 and p27), leading to growth suppression and apoptosis. Therefore, EBFs represent new tumor suppressors whose inactivation blocks normal development and contributes to tumorigenesis of diverse types of human cancer.
Collapse
Affiliation(s)
- Daiqing Liao
- Department of Anatomy and Cell Biology, UF Shands Cancer Center, University of Florida, Gainesville, FL 32611-3633, USA.
| |
Collapse
|
1040
|
The Eleventh International Childhood Acute Lymphoblastic Leukemia Workshop Report: Ponte di Legno, Italy, 6-7 May 2009. Leukemia 2009; 23:2318-24. [PMID: 19890375 PMCID: PMC2818074 DOI: 10.1038/leu.2009.211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
1041
|
Dovat S, Payne KJ. Tumor suppression in T cell leukemia--the role of Ikaros. Leuk Res 2009; 34:416-7. [PMID: 19892402 DOI: 10.1016/j.leukres.2009.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 12/24/2022]
|
1042
|
Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 2009; 115:1394-405. [PMID: 19880498 DOI: 10.1182/blood-2009-05-218560] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To determine whether gene expression profiling could improve outcome prediction in children with acute lymphoblastic leukemia (ALL) at high risk for relapse, we profiled pretreatment leukemic cells in 207 uniformly treated children with high-risk B-precursor ALL. A 38-gene expression classifier predictive of relapse-free survival (RFS) could distinguish 2 groups with differing relapse risks: low (4-year RFS, 81%, n = 109) versus high (4-year RFS, 50%, n = 98; P < .001). In multivariate analysis, the gene expression classifier (P = .001) and flow cytometric measures of minimal residual disease (MRD; P = .001) each provided independent prognostic information. Together, they could be used to classify children with high-risk ALL into low- (87% RFS), intermediate- (62% RFS), or high- (29% RFS) risk groups (P < .001). A 21-gene expression classifier predictive of end-induction MRD effectively substituted for flow MRD, yielding a combined classifier that could distinguish these 3 risk groups at diagnosis (P < .001). These classifiers were further validated on an independent high-risk ALL cohort (P = .006) and retainedindependent prognostic significance (P < .001) in the presence of other recently described poor prognostic factors (IKAROS/IKZF1 deletions, JAK mutations, and kinase expression signatures). Thus, gene expression classifiers improve ALL risk classification and allow prospective identification of children who respond or fail current treatment regimens. These trials were registered at http://clinicaltrials.gov under NCT00005603.
Collapse
|
1043
|
Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet 2009; 41:1243-6. [PMID: 19838194 DOI: 10.1038/ng.469] [Citation(s) in RCA: 434] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/18/2009] [Indexed: 12/16/2022]
Abstract
Aneuploidy and translocations are hallmarks of B-progenitor acute lymphoblastic leukemia (ALL), but many individuals with this cancer lack recurring chromosomal alterations. Here we report a recurring interstitial deletion of the pseudoautosomal region 1 of chromosomes X and Y in B-progenitor ALL that juxtaposes the first, noncoding exon of P2RY8 with the coding region of CRLF2. We identified the P2RY8-CRLF2 fusion in 7% of individuals with B-progenitor ALL and 53% of individuals with ALL associated with Down syndrome. CRLF2 alteration was associated with activating JAK mutations, and expression of human P2RY8-CRLF2 together with mutated mouse Jak2 resulted in constitutive Jak-Stat activation and cytokine-independent growth of Ba/F3 cells overexpressing interleukin-7 receptor alpha. Our findings indicate that these two genetic lesions together contribute to leukemogenesis in B-progenitor ALL.
Collapse
|
1044
|
Looking Toward the Future: Novel Strategies Based on Molecular Pathogenesis of Acute Lymphoblastic Leukemia. Hematol Oncol Clin North Am 2009; 23:1099-119, vii. [DOI: 10.1016/j.hoc.2009.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
1045
|
Mrózek K, Harper DP, Aplan PD. Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2009; 23:991-1010, v. [PMID: 19825449 PMCID: PMC3607311 DOI: 10.1016/j.hoc.2009.07.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant disease that often features nonrandom numerical or structural chromosome aberrations that can be detected microscopically. The application of contemporary genome-wide molecular analyses is revealing additional genetic alterations that are not detectable cytogenetically. This article describes the cytogenetic methodology and summarizes major cytogenetic findings and their clinical relevance in ALL. The article provides a review of modern molecular techniques and their application in the research on the genetics and epigenetics of ALL.
Collapse
Affiliation(s)
- Krzysztof Mrózek
- Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - David P. Harper
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
1046
|
Abstract
Although genome-wide analyses have identified somatic alterations contributing to the pathogenesis of pediatric acute lymphoblastic leukemia (ALL), few studies have identified germline variants conferring risk of this disease. Two reports now provide the first genome-wide glimpse into the role of inherited alleles in ALL pathogenesis.
Collapse
|
1047
|
Jevremovic D, Viswanatha DS. Molecular diagnosis of hematopoietic and lymphoid neoplasms. Hematol Oncol Clin North Am 2009; 23:903-33. [PMID: 19577174 DOI: 10.1016/j.hoc.2009.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This chapter summarizes the significance and molecular diagnostic detection of genetic abnormalities commonly associated with hematolymphoid neoplasms. Methodologic aspects of laboratory diagnosis are presented, as well as discussion of multiparameter genotyping of tumors for prognosis and the role of minimal residual disease monitoring in specific neoplasms.
Collapse
Affiliation(s)
- Dragan Jevremovic
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
1048
|
Martinelli G, Iacobucci I, Storlazzi CT, Vignetti M, Paoloni F, Cilloni D, Soverini S, Vitale A, Chiaretti S, Cimino G, Papayannidis C, Paolini S, Elia L, Fazi P, Meloni G, Amadori S, Saglio G, Pane F, Baccarani M, Foà R. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol 2009; 27:5202-7. [PMID: 19770381 DOI: 10.1200/jco.2008.21.6408] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The causes of the aggressive nature of BCR-ABL1-positive adult acute lymphoblastic leukemia (ALL) are unknown. To identify, at the submicroscopic level, oncogenic lesions that cooperate with BCR-ABL1 to induce ALL, we performed an investigation of genomic copy number alterations using single nucleotide polymorphism array, genomic polymerase chain reaction, and sequencing of candidate genes. PATIENTS AND METHODS Eighty-three patients with de novo adult Philadelphia chromosome (Ph) -positive ALL were enrolled onto institutional (n = 17) or Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto Working Party delle Leucemia Acute (n = 66) clinical trials. Treatments included tyrosine kinase inhibitor (TKI) alone, conventional chemotherapy, or a combination of TKI and chemotherapy. RESULTS A 7p12 deletion of IKZF1 (Ikaros) was identified in 52 (63%) of 83 patients. The pattern of deletion varied among different patients, but the two most common deletion types were loss of exons 4 to 7 in 31 (37%) of 83 patients and loss of exons 2 to 7 in 17 (20%) of 83 patients. Disease-free survival (DFS) was shorter in patients with IKZF1 deletion versus patients with IKZF1 wild type (10 v 32 months, respectively; P = .02). Furthermore, a significantly shorter cumulative incidence of relapse was recorded in patients with IKZF1 deletion versus patients with IKZF1 wild type (10.1 v 56.1 months, respectively; P = .001). Multivariate analysis confirmed the negative prognostic impact of IKZF1 deletion on DFS (P = .04). CONCLUSION We conclude that IKZF1 deletions are likely to be a genomic alteration that significantly affects the prognosis of Ph-positive ALL in adults.
Collapse
Affiliation(s)
- Giovanni Martinelli
- Molecular Biology Unit, Department of Hematology and Oncology L. and A. Seràgnoli, University of Bologna, Via Massarenti, 9-40138 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1049
|
|
1050
|
Treviño LR, Yang W, French D, Hunger S, Carroll WL, Devidas M, Willman C, Neale G, Downing J, Raimondi S, Pui CH, Evans WE, Relling MV. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 2009; 41:1001-5. [PMID: 19684603 PMCID: PMC2762391 DOI: 10.1038/ng.432] [Citation(s) in RCA: 382] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 06/24/2009] [Indexed: 01/02/2023]
Abstract
Using the Affymetrix 500K Mapping array and publicly available genotypes, we identified 18 SNPs whose allele frequency differed significantly(P < 1 x 10(-5)) between pediatric acute lymphoblastic leukemia (ALL) cases (n = 317) and non-ALL controls (n = 17,958). Two SNPs in ARID5B not only differed between ALL and non-ALL groups (rs10821936, P = 1.4 x 10(-15), odds ratio (OR) = 1.91; rs10994982, P = 5.7 x 10(-9), OR = 1.62) but also distinguished B-hyperdiploid ALL from other subtypes (rs10821936, P = 1.62 x 10(-5), OR = 2.17; rs10994982, P = 0.003, OR 1.72). These ARID5B SNPs also distinguished B-hyperdiploid ALL from other subtypes in an independent validation cohort (n = 124 children with ALL; P = 0.003 and P = 0.0008, OR 2.45 and 2.86, respectively) and were associated with methotrexate accumulation and gene expression pattern in leukemic lymphoblasts. We conclude that germline variants affect susceptibility to, and characteristics of, specific ALL subtypes.
Collapse
MESH Headings
- Alleles
- Antimetabolites, Antineoplastic/metabolism
- Antimetabolites, Antineoplastic/therapeutic use
- Case-Control Studies
- Child
- Child, Preschool
- Chromosomes, Human, Pair 10
- Chromosomes, Human, Pair 7
- Cohort Studies
- DNA-Binding Proteins/genetics
- Dopa Decarboxylase/genetics
- Gene Dosage
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Frequency
- Genetic Predisposition to Disease
- Genetic Variation
- Genome-Wide Association Study
- Germ Cells
- Germ-Line Mutation
- Haplotypes
- Humans
- Ikaros Transcription Factor/genetics
- Linkage Disequilibrium
- Methotrexate/metabolism
- Methotrexate/therapeutic use
- Odds Ratio
- Oncogene Proteins, Fusion/genetics
- Polyglutamic Acid/metabolism
- Polymorphism, Single Nucleotide
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/classification
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Probability
- Reproducibility of Results
- Risk Factors
- Trans-Activators
- Transcription Factors/genetics
- White People/genetics
Collapse
Affiliation(s)
| | - Wenjian Yang
- St. Jude Children’s Research Hospital, Memphis TN, USA
| | | | | | | | | | | | | | - James Downing
- St. Jude Children’s Research Hospital, Memphis TN, USA
| | | | - Ching-Hon Pui
- St. Jude Children’s Research Hospital, Memphis TN, USA
| | | | | |
Collapse
|