1101
|
Draft genome sequence of the quality control strain Enterococcus faecalis ATCC 29212. J Bacteriol 2013; 194:6006-7. [PMID: 23045510 DOI: 10.1128/jb.01423-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis ATCC 29212, a vancomycin-sensitive strain, has been extensively used as a representative control strain for clinical and laboratory experiments. Here we report the draft genome and annotation of this strain, containing 3,027,060 bp, with a G+C content of 37.2% in 126 contigs (≥ 500 bp).
Collapse
|
1102
|
Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce? J Antimicrob Chemother 2012. [DOI: 10.1093/jac/dks469] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
1103
|
Molecular characterization of vancomycin-resistant Enterococcus spp. clinical isolates recovered from hospitalized patients among several medical institutions in China. Diagn Microbiol Infect Dis 2012; 74:399-403. [DOI: 10.1016/j.diagmicrobio.2012.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 01/20/2023]
|
1104
|
Liu Y, Liu K, Lai J, Wu C, Shen J, Wang Y. Prevalence and antimicrobial resistance of Enterococcus species of food animal origin from Beijing and Shandong Province, China. J Appl Microbiol 2012; 114:555-63. [PMID: 23110411 DOI: 10.1111/jam.12054] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/13/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022]
Abstract
AIMS To evaluate the prevalence and antimicrobial resistance of Enterococcus species from chickens and pigs in Beijing and Shandong Province, China. METHODS AND RESULTS Swab samples were collected from four farms in Beijing and two in Shandong Province in 2009 and tested for Enterococcus. Minimum inhibitory concentrations of antimicrobial agents were determined using broth microdilution or agar screening methods. A total of 453 Enterococcus isolates were recovered, belonging to six different Enterococcus species. All isolates were sensitive to vancomycin. Resistance to tetracycline (92.5%), amikacin (89.4%), erythromycin (72.8%) and rifampin (58.1%), and high-level streptomycin resistance (HLSR, 50.3%) were prevalent, while resistance to penicillins (7.9% to penicillin and 4.2% to ampicillin) was rare. The resistance rates to phenicols (chloramphenicol and florfenicol) and enrofloxacin, and high-level gentamicin resistance (HLGR) were approximately 30%. The vast majority of the Enterococcus isolates were classified as multidrug-resistant organisms. CONCLUSIONS Resistance of Enterococcus sp. to most antimicrobials was more prevalent in China than in European or other Asian countries. SIGNIFICANCE AND IMPACT OF THE STUDY Our findings reveal a high level of antimicrobial resistance in Enterococcus isolates from food animals in China and underline the need for prudent use of antibiotics in chicken and pig production to minimize the spread of antibiotic-resistant enterococci.
Collapse
Affiliation(s)
- Y Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
1105
|
Enterococcus faecalis internalization in human umbilical vein endothelial cells (HUVEC). Microb Pathog 2012; 57:62-9. [PMID: 23174630 DOI: 10.1016/j.micpath.2012.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 11/22/2022]
Abstract
Initial Enterococcus faecalis-endothelial cell molecular interactions which lead to enterococci associating in the host endothelial tissue, colonizing it and proliferating there can be assessed using in vitro models. Cultured human umbilical vein endothelial cells (HUVEC) have been used to study other Gram-positive bacteria-cell interactions; however, few studies have been aimed at establishing the relationship of E. faecalis with endothelial cells. The aggregation substance (AS) family of adhesins represents an E. faecalis virulence factor which has been implicated in endocarditis severity and bacterial persistence. The Asc10 protein (a member of this family) promotes bacterium-bacterium aggregation and bacterium-host cell binding. Evaluating Asc10 role in bacterial internalization by cultured enterocytes has shown that this adhesin facilitates E. faecalis endocytosis by HT-29 cells. A few eukaryotic cell structural components, such as cytoskeletal proteins, have been involved in E. faecalis entry into cell-lines; it is thus relevant to determine whether Asc10, as well as microtubules and actin microfilaments, play a role in E. faecalis internalization by cultured endothelial cells. The role of Asc10 and cytoskeleton proteins in E. faecalis ability to enter HUVEC was assessed in the present study, as well as cell apoptosis induction by enterococcal internalization by HUVEC; the data indicated increased cell apoptosis and that cytoskeleton components were partially involved in E. faecalis entry to endothelial cells, thereby suggesting that E. faecalis Asc10 protein would not be a critical factor for bacterial entry to cultured HUVEC.
Collapse
|
1106
|
Kuźma L, Wysokińska H, Różalski M, Budzyńska A, Więckowska-Szakiel M, Sadowska B, Paszkiewicz M, Kisiel W, Różalska B. Antimicrobial and anti-biofilm properties of new taxodione derivative from hairy roots of Salvia austriaca. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:1285-1287. [PMID: 22951394 DOI: 10.1016/j.phymed.2012.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/15/2012] [Accepted: 07/15/2012] [Indexed: 06/01/2023]
Abstract
The aim of the present report was to evaluate antimicrobial/anti-biofilm activity of 7-(2-oxohexyl)-taxodione, a novel taxodione derivative isolated from n-hexane extract of Salvia austriaca hairy roots. Antimicrobial assays showed that 7-(2-oxohexyl)-taxodione was at least 4 times more active than taxodione against methicillin-susceptible as well against methicillin-resistant staphylococci with MIC of 1.25-2.5 μgml(-1). This compound was less active against vancomycin-resistant enterococci (VRE), on the same level as taxodione (MIC ranged 10.0-20.0 μgml(-1)). The presence of 7-(2-oxohexyl)-taxodione in the culture medium (at MIC, ½ MIC or ¼ MIC) decreased adhesion of staphylococci to abiotic surfaces, which in turn caused a reduction in biofilm formation during 24h, by approximately 25-30%. Also, the extent of established biofilm eradication was found to be significant, although it required an increased concentration of the compound. This is the first report on the antimicrobial activity of this, up to now not known compound, isolated from transformed roots of S. austriaca.
Collapse
Affiliation(s)
- L Kuźma
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Łódź, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
1107
|
Biochemical characterization of cardiolipin synthase mutations associated with daptomycin resistance in enterococci. Antimicrob Agents Chemother 2012; 57:289-96. [PMID: 23114777 DOI: 10.1128/aac.01743-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Daptomycin (DAP) resistance in enterococci has been linked to mutations in genes that alter the cell envelope stress response (CESR) (liaFSR) and changes in enzymes that directly affect phospholipid homeostasis, and these changes may alter membrane composition, such as that of cardiolipin synthase (Cls). While Cls substitutions are observed in response to DAP therapy, the effect of these mutations on Cls activity remains obscure. We have expressed, purified, and characterized Cls enzymes from both Enterococcus faecium S447 (residues 52 to 482; Cls447a) and Enterococcus faecalis S613 (residues 53 to 483; Cls613a) as well as Cls variants harboring a single-amino-acid change derived from DAP-resistant isolates of E. faecium. E. faecium Cls447a and E. faecalis Cls613a are tightly associated with the membrane and copurify with their substrate, phosphatidylglycerol (PG), and product, cardiolipin (CL). The amount of PG that copurifies with Cls is in molar excess to protein, suggesting that the enzyme localizes to PG-rich membrane regions. Both Cls447a(H215R) and Cls447a(R218Q) showed an increase in V(max) (μM CL/min/μM protein) from 0.16 ± 0.01 to 0.26 ± 0.02 and 0.26 ± 0.04, respectively, indicating that mutations associated with adaptation to DAP increase Cls activity. Modeling of Cls447a to Streptomyces sp. phospholipase D indicates that the adaptive mutations Cls447a(H215R) and Cls447a(R218Q) are proximal to the phospholipase domain 1 (PLD1) active site and near the putative nucleophile H217. As mutations to Cls are part of a larger genomic adaptation process, increased Cls activity is likely to be highly epistatic with other changes to facilitate DAP resistance.
Collapse
|
1108
|
Mishra RPN, Oviedo-Orta E, Prachi P, Rappuoli R, Bagnoli F. Vaccines and antibiotic resistance. Curr Opin Microbiol 2012; 15:596-602. [PMID: 22981392 DOI: 10.1016/j.mib.2012.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 12/29/2022]
Abstract
Vaccines and antibiotics have significantly contributed to improve health and also to increase the longevity of human beings. The fast-acting effect of antibiotics makes them indispensable to treat infected patients. Likewise, when the causative agent of the infection is unknown and in cases of superinfections with different species of bacteria, antibiotics appear to be the only therapeutic option. On the contrary, vaccines are usually not efficacious in people already infected and their action is generally limited to a much narrowed range of pathogens. However, vaccines have contributed to the eradication of some of the most deadly infectious agents worldwide, can generate immunity to infections lasting for several years or life-long, and are able to induce herd immunity. Nonetheless, infectious diseases are still among the leading causes of morbidity and mortality worldwide. This is mainly owing to the emergence of bacterial resistance to antibiotics and the lack of efficacious medications to treat several other infectious diseases. Development of new vaccines appears to be a promising solution to these issues. Indeed, with the advent of new discovery approaches and adjuvants, today is possible to make vaccines virtually against every pathogen. In addition, while vaccine-resistant bacteria have never been reported, accumulating literature is providing evidence that vaccination can reduce the raise of antibiotic resistant strains by decreasing their use.
Collapse
Affiliation(s)
- Ravi P N Mishra
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100, Siena, Italy
| | | | | | | | | |
Collapse
|
1109
|
Meziane-Cherif D, Saul FA, Haouz A, Courvalin P. Structural and functional characterization of VanG D-Ala:D-Ser ligase associated with vancomycin resistance in Enterococcus faecalis. J Biol Chem 2012; 287:37583-92. [PMID: 22969085 DOI: 10.1074/jbc.m112.405522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
d-Alanyl:d-lactate (d-Ala:d-Lac) and d-alanyl:d-serine ligases are key enzymes in vancomycin resistance of Gram-positive cocci. They catalyze a critical step in the synthesis of modified peptidoglycan precursors that are low binding affinity targets for vancomycin. The structure of the d-Ala:d-Lac ligase VanA led to the understanding of the molecular basis for its specificity, but that of d-Ala:d-Ser ligases had not been determined. We have investigated the enzymatic kinetics of the d-Ala:d-Ser ligase VanG from Enterococcus faecalis and solved its crystal structure in complex with ADP. The overall structure of VanG is similar to that of VanA but has significant differences mainly in the N-terminal and central domains. Based on reported mutagenesis data and comparison of the VanG and VanA structures, we show that residues Asp-243, Phe-252, and Arg-324 are molecular determinants for d-Ser selectivity. These residues are conserved in both enzymes and explain why VanA also displays d-Ala:d-Ser ligase activity, albeit with low catalytic efficiency in comparison with VanG. These observations suggest that d-Ala:d-Lac and d-Ala:d-Ser enzymes have evolved from a common ancestral d-Ala:d-X ligase. The crystal structure of VanG showed an unusual interaction between two dimers involving residues of the omega loop that are deeply anchored in the active site. We constructed an octapeptide mimicking the omega loop and found that it selectively inhibits VanG and VanA but not Staphylococcus aureus d-Ala:d-Ala ligase. This study provides additional insight into the molecular evolution of d-Ala:d-X ligases and could contribute to the development of new structure-based inhibitors of vancomycin resistance enzymes.
Collapse
|
1110
|
Pouladfar G. Introducing new laboratory-developed molecular methods in the clinical microbiology laboratories. IRANIAN JOURNAL OF MEDICAL SCIENCES 2012; 37:200-1. [PMID: 23115453 PMCID: PMC3470078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/28/2012] [Accepted: 07/01/2012] [Indexed: 11/30/2022]
|
1111
|
Abstract
Treatment of enterococcal infections has long been recognized as an important clinical challenge, particularly in the setting of infective endocarditis (IE). Furthermore, the increase prevalence of isolates exhibiting multidrug resistance (MDR) to traditional anti-enterococcal antibiotics such as ampicillin, vancomycin and aminoglycosides (high-level resistance) poses immense therapeutic dilemmas in hospitals around the world. Unlike IE caused by most isolates of Enterococcus faecalis, which still retain susceptibility to ampicillin and vancomycin, the emergence and dissemination of a hospital-associated genetic clade of multidrug resistant Enterococcus faecium, markedly limits the therapeutic options. The best treatment of IE MDR enterococcal endocarditis is unknown and the paucity of antibiotics with bactericidal activity against these organisms is a cause of serious concern. Although it appears that we are winning the war against E. faecalis, the battle rages on against isolates of multidrug-resistant E. faecium.
Collapse
Affiliation(s)
- Jose M. Munita
- Laboratory for Antimicrobial Research, University of Texas Medical School at Houston, Houston, TX, USA. Clínica Alemana – Universidad del Desarrollo School of Medicine, Santiago, Chile
| | - Cesar A. Arias
- Department of Internal Medicine, Division of Infectious Diseases, Center for the Study of Emerging and Reemerging Pathogens, Houston, TX, USA. Laboratory for Antimicrobial Research, University of Texas Medical School at Houston, Houston, TX, USA. Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá, Colombia. University of Texas Medical School, 6431 Fannin St, Room 2.112 MSB, Houston, TX 77030, USA
| | - Barbara E. Murray
- Department of Internal Medicine, Division of Infectious Diseases, Center for the Study of Emerging and Reemerging Pathogens, Houston, TX, USA. Laboratory of Enterococcal Research, University of Texas Medical School at Houston, Houston, TX, USA. Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX, USA. University of Texas Medical School, 6431 Fannin St, Room 2.112 MSB, Houston, TX 77030, USA
| |
Collapse
|
1112
|
The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection. mBio 2012; 3:e00177-12. [PMID: 22829678 PMCID: PMC3419518 DOI: 10.1128/mbio.00177-12] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Though the bacterial opportunist Enterococcus faecalis causes a myriad of hospital-acquired infections (HAIs), including catheter-associated urinary tract infections (CAUTIs), little is known about the virulence mechanisms that it employs. However, the endocarditis- and biofilm-associated pilus (Ebp), a member of the sortase-assembled pilus family, was shown to play a role in a mouse model of E. faecalis ascending UTI. The Ebp pilus comprises the major EbpC shaft subunit and the EbpA and EbpB minor subunits. We investigated the biogenesis and function of Ebp pili in an experimental model of CAUTI using a panel of chromosomal pilin deletion mutants. A nonpiliated pilus knockout mutant (EbpABC(-) strain) was severely attenuated compared to its isogenic parent OG1RF in experimental CAUTI. In contrast, a nonpiliated ebpC deletion mutant (EbpC(-) strain) behaved similarly to OG1RF in vivo because it expressed EbpA and EbpB. Deletion of the minor pilin gene ebpA or ebpB perturbed pilus biogenesis and led to defects in experimental CAUTI. We discovered that the function of Ebp pili in vivo depended on a predicted metal ion-dependent adhesion site (MIDAS) motif in EbpA's von Willebrand factor A domain, a common protein domain among the tip subunits of sortase-assembled pili. Thus, this study identified the Ebp pilus as a virulence factor in E. faecalis CAUTI and also defined the molecular basis of this function, critical knowledge for the rational development of targeted therapeutics. IMPORTANCE Catheter-associated urinary tract infections (CAUTIs), one of the most common hospital-acquired infections (HAIs), present considerable treatment challenges for physicians. Inherently resistant to several classes of antibiotics and with a propensity to acquire vancomycin resistance, enterococci are particularly worrisome etiologic agents of CAUTI. A detailed understanding of the molecular basis of Enterococcus faecalis pathogenesis in CAUTI is necessary for the development of preventative and therapeutic strategies. Our results elucidated the importance of the E. faecalis Ebp pilus and its subunits for enterococcal virulence in a mouse model of CAUTI. We further showed that the metal ion-dependent adhesion site (MIDAS) motif in EbpA is necessary for Ebp function in vivo. As this motif occurs in other sortase-assembled pili, our results have implications for the molecular basis of virulence not only in E. faecalis CAUTI but also in additional infections caused by enterococci and other Gram-positive pathogens.
Collapse
|
1113
|
Bloes DA, Otto M, Peschel A, Kretschmer D. Enterococcus faecium stimulates human neutrophils via the formyl-peptide receptor 2. PLoS One 2012; 7:e39910. [PMID: 22768166 PMCID: PMC3386911 DOI: 10.1371/journal.pone.0039910] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/02/2012] [Indexed: 01/23/2023] Open
Abstract
The human formyl-peptide receptor 2 (FPR2/ALX) senses phenol-soluble modulin (PSM) peptide toxins produced by pathogenic staphylococcal species and plays a crucial role in directing neutrophil influx during staphylococcal infection. However, it has remained unclear if FPR2 responds also to molecules from other bacterial pathogens. Here we analyzed a variety of Gram-positive and Gram-negative pathogens and found that apart from staphylococci only certain enterococcal strains have the capacity to stimulate FPR2/ALX. Most of the analyzed Enterococcus faecium but only sporadic Enterococcus faecalis strains released FPR2/ALX-stimulating molecules leading to neutrophil calcium ion fluxes, chemotaxis, and complement receptor upregulation. Among ten test strains vancomycin-resistant E. faecium had a significantly higher capacity to stimulate FPR2/ALX than vancomycin-susceptible strains, suggesting an association of strong FPR2/ALX activation with health-care associated strains. The enterococcal FPR2/ALX agonists were found to be peptides or proteins, which appear, however, to be unrelated to staphylococcal PSMs in sequence and physicochemical properties. Enterococci are among the most frequent invasive bacterial pathogens but the basis of enterococcal virulence and immune activation has remained incompletely understood. Our study indicates that previously unrecognized proteinaceous agonists contribute to Enterococcus-host interaction and underscores the importance of FPR2/ALX in host defense against major endogenous bacterial pathogens.
Collapse
Affiliation(s)
- Dominik Alexander Bloes
- Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology Section, University of Tübingen, Tübingen, Germany
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology Section, University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Dorothee Kretschmer
- Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology Section, University of Tübingen, Tübingen, Germany
| |
Collapse
|
1114
|
Gaca AO, Abranches J, Kajfasz JK, Lemos JA. Global transcriptional analysis of the stringent response in Enterococcus faecalis. MICROBIOLOGY-SGM 2012; 158:1994-2004. [PMID: 22653948 DOI: 10.1099/mic.0.060236-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In Enterococcus faecalis, production of guanosine tetraphosphate/guanosine pentaphosphate [(p)ppGpp], the effector molecule of the stringent response, is controlled by the bifunctional synthetase/hydrolase RelA and the monofunctional synthetase RelQ. Previously, the (p)ppGpp profiles of strains lacking relA, relQ or both genes indicated that RelA is the primary enzyme responsible for (p)ppGpp synthesis under stress conditions, while the contributions of RelQ to the stringent response and cell homeostasis remained elusive. Here, survival within the mouse-derived macrophage cell line J774A.1 and killing of Galleria mellonella supported initial evidence that virulence was attenuated in the (p)ppGpp(0) ΔrelAΔrelQ strain but not in the ΔrelA or ΔrelQ strains. We performed, for the first time to our knowledge, global transcriptome analysis in a documented (p)ppGpp(0) Gram-positive bacterium and provided the first insights into the role of a Gram-positive monofunctional (p)ppGpp synthetase in transcriptional regulation. Transcription profiling after mupirocin treatment confirmed that RelA is the major enzyme responsible for the (p)ppGpp-mediated transcriptional repression of genes associated with macromolecular biosynthesis, but also revealed that RelQ is required for full and timely stringent response induction. The delayed transcriptional response of ΔrelQ could not be correlated with reduced or slower production of (p)ppGpp, in part because RelA-dependent (p)ppGpp accumulation occurred very rapidly. Comparisons of the transcriptional responses of ΔrelA or ΔrelAΔrelQ strains with the parent strain under starvation conditions revealed upregulation of operons involved in energy metabolism in the (p)ppGpp(0) strain. Thus, while ΔrelA and ΔrelAΔrelQ cannot use (p)ppGpp to sense and respond to stresses, fitness of ΔrelAΔrelQ may be further impaired due to an unbalanced metabolism.
Collapse
Affiliation(s)
- Anthony O Gaca
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacqueline Abranches
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jessica K Kajfasz
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - José A Lemos
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|