1101
|
Ruiz-Mejias M. Outer Brain Oscillations in Down Syndrome. Front Syst Neurosci 2019; 13:17. [PMID: 31139056 PMCID: PMC6519307 DOI: 10.3389/fnsys.2019.00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
The present article reviews the relationship between sleep and oscillatory activity in Down Syndrome (DS), as well as the featuring emergent rhythmic activity across different brain states. A comprehensive discussion of the data from electroencephalographic studies in DS humans and transgenic/trisomic mouse models is provided, as well as data from signals collected from local field potentials (LFP) and intracellular recordings in DS mouse models. The first sections focus specially on the alpha phenotype consistently observed in DS subjects, as well as its description in DS childhood and aging. Subsequently, a review of the data reported in DS mouse models is presented with the aim to deepen on the mechanisms underlying altered rhythmic patterns. Further sections situate the state-of-the-art of the field, with a discussion on the possible circuit alterations that may underlie impaired alpha and gamma oscillatory activity. A further aim is to highlight the importance of studying network oscillatory activity in mouse models to infer alterations in the underlying circuits related to cognition, such as in intellectual disability. In this direction, a view of alpha and gamma rhythms generated by the cerebral cortex as a tool for evaluating an unbalance between excitation and inhibition in DS is claimed, which points out toward an over-inhibited network. A final aim is to situate oscillatory activity as a key phenomenon that may be used as a biomarker for monitoring as well the effect of novel therapeutic strategies.
Collapse
Affiliation(s)
- Marcel Ruiz-Mejias
- Systems Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
1102
|
Kizuk SAD, Vuong W, MacLean JE, Dickson CT, Mathewson KE. Electrophysiological correlates of hyperoxia during resting‐state EEG in awake human subjects. Psychophysiology 2019; 56:e13401. [DOI: 10.1111/psyp.13401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 03/29/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sayeed A. D. Kizuk
- Neuroscience and Mental Health Institute, University of Alberta Edmonton Alberta Canada
| | - Wesley Vuong
- Department of Psychology University of Alberta Edmonton Alberta Canada
| | - Joanna E. MacLean
- Department of Pediatrics University of Alberta Edmonton Alberta Canada
| | - Clayton T. Dickson
- Neuroscience and Mental Health Institute, University of Alberta Edmonton Alberta Canada
- Department of Psychology University of Alberta Edmonton Alberta Canada
- Department of Physiology University of Alberta Edmonton Alberta Canada
| | - Kyle E. Mathewson
- Neuroscience and Mental Health Institute, University of Alberta Edmonton Alberta Canada
- Department of Psychology University of Alberta Edmonton Alberta Canada
| |
Collapse
|
1103
|
EEG-correlated fMRI of human alpha (de-)synchronization. Clin Neurophysiol 2019; 130:1375-1386. [PMID: 31220698 DOI: 10.1016/j.clinph.2019.04.715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 03/31/2019] [Accepted: 04/19/2019] [Indexed: 11/20/2022]
Abstract
OBJECTIVES We investigated blood oxygenation level-dependent (BOLD) brain activity changes in wakefulness and light sleep and in relation to those associated with the posterior alpha rhythm, the most prominent feature of the clinical EEG. Studies have reported different sets of brain regions changing their oxygen consumption with waxing and waning alpha oscillations. Here, we hypothesize that these dissimilar activity patterns reflect different wakefulness-dependent brain states. METHODS We recorded BOLD signal changes and electroencephalography (EEG) simultaneously in 149 subjects at rest. Based on American Academy of Sleep Medicine criteria, we selected subjects exhibiting wakefulness or light sleep (N1). We identified brain regions in which BOLD signal changes correlated with (i) clinical sleep stages, (ii) alpha band power and (iii) a multispectral EEG index, respectively. RESULTS During light sleep, we found increased BOLD activity in parieto-occipital regions. In wakefulness compared to light sleep, we revealed BOLD signal increases in the thalamus. The multispectral EEG-index revealed hippocampal activity changes in light sleep not reported before. CONCLUSION Changes in alpha oscillations reflect different brain states associated with different levels of wakefulness and thalamic activity. We can link the previously described parieto-occipital pattern to drowsiness. Additionally, in that stage, we identify hippocampal activity fluctuations. SIGNIFICANCE Thalamic activity varies with early changes of wakefulness, which is important to consider in resting state experiments. The EEG-indexed activation of the hippocampus during light sleep suggests that memory encoding might already take place during this early stage of sleep.
Collapse
|
1104
|
Hansen NE, Harel A, Iyer N, Simpson BD, Wisniewski MG. Pre-stimulus brain state predicts auditory pattern identification accuracy. Neuroimage 2019; 199:512-520. [PMID: 31129305 DOI: 10.1016/j.neuroimage.2019.05.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/26/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies show that pre-stimulus band-specific power and phase in the electroencephalogram (EEG) can predict accuracy on tasks involving the detection of near-threshold stimuli. However, results in the auditory modality have been mixed, and few works have examined pre-stimulus features when more complex decisions are made (e.g. identifying supra-threshold sounds). Further, most auditory studies have used background sounds known to induce oscillatory EEG states, leaving it unclear whether phase predicts accuracy without such background sounds. To address this gap in knowledge, the present study examined pre-stimulus EEG as it relates to accuracy in a tone pattern identification task. On each trial, participants heard a triad of 40-ms sinusoidal tones (separated by 40-ms intervals), one of which was at a different frequency than the other two. Participants' task was to indicate the tone pattern (low-low-high, low-high-low, etc.). No background sounds were employed. Using a phase opposition measure based on inter-trial phase consistencies, pre-stimulus 7-10 Hz phase was found to differ between correct and incorrect trials ∼200 to 100 ms prior to tone-pattern onset. After sorting trials into bins based on phase, accuracy was found to be lowest at around π-+ relative to individuals' most accurate phase bin. No significant effects were found for pre-stimulus power. In the context of the literature, findings suggest an important relationship between the complexity of task demands and pre-stimulus activity within the auditory domain. Results also raise interesting questions about the role of induced oscillatory states or rhythmic processing modes in obtaining pre-stimulus effects of phase in auditory tasks.
Collapse
Affiliation(s)
- Natalie E Hansen
- U.S. Air Force Research Laboratory, 45433, USA; Wright State University, 45435, USA
| | | | | | | | | |
Collapse
|
1105
|
Shephard E, Fatori D, Mauro LR, de Medeiros Filho MV, Hoexter MQ, Chiesa AM, Fracolli LA, Brentani H, Ferraro AA, Nelson CA, Miguel EC, Polanczyk GV. Effects of Maternal Psychopathology and Education Level on Neurocognitive Development in Infants of Adolescent Mothers Living in Poverty in Brazil. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:925-934. [PMID: 31345780 PMCID: PMC6863387 DOI: 10.1016/j.bpsc.2019.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Adolescent motherhood remains common in developing countries and is associated with risk factors that adversely impact infant neurodevelopment, including poverty, low maternal education, and increased maternal psychopathology. Yet, no published work has assessed how these factors affect early brain development in developing countries. METHODS This pilot study examined effects of maternal psychopathology and education on early neurocognitive development in a sample of adolescent mothers (N = 50, final n = 31) and their infants living in poverty in São Paulo, Brazil. Maternal symptoms of anxiety, depression, and attention-deficit/hyperactivity disorder and education level were assessed during pregnancy. Infant neurocognitive development was assessed at 6 months of age, with oscillatory power and functional connectivity in the theta (4-6 Hz), alpha (6-9 Hz), and gamma (30-50 Hz) frequencies derived from resting-state electroencephalography; temperament (negative affect, attention, and regulation); and cognitive, language, and motor skills. Cluster-based permutation testing and graph-theoretical methods were used to identify alterations in oscillatory power and connectivity that were associated with maternal psychopathology and education. Correlations between power and connectivity alterations were examined in relation to infants' overt cognitive behavioral abilities. RESULTS Increased maternal anxiety and lower maternal education were associated with weaker oscillatory connectivity in alpha-range networks. Infants with the weakest connectivity in the alpha network associated with maternal anxiety also showed the lowest cognitive ability. Greater maternal anxiety and attention-deficit/hyperactivity disorder were associated with increased absolute and relative theta power. CONCLUSIONS Our findings highlight the importance of addressing maternal psychopathology and improving education in poor adolescent mothers to prevent negative effects on infant neurodevelopment.
Collapse
Affiliation(s)
- Elizabeth Shephard
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom.
| | - Daniel Fatori
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa Rezende Mauro
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Marcelo Q Hoexter
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Anna M Chiesa
- School of Nursing, Universidade de São Paulo, São Paulo, Brazil
| | | | - Helena Brentani
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre A Ferraro
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Charles A Nelson
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Graduate School of Education, Harvard University, Cambridge, Massachusetts
| | - Euripedes C Miguel
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Guilherme V Polanczyk
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
1106
|
Moyal R, Edelman S. Dynamic Computation in Visual Thalamocortical Networks. ENTROPY (BASEL, SWITZERLAND) 2019; 21:E500. [PMID: 33267214 PMCID: PMC7514988 DOI: 10.3390/e21050500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Contemporary neurodynamical frameworks, such as coordination dynamics and winnerless competition, posit that the brain approximates symbolic computation by transitioning between metastable attractive states. This article integrates these accounts with electrophysiological data suggesting that coherent, nested oscillations facilitate information representation and transmission in thalamocortical networks. We review the relationship between criticality, metastability, and representational capacity, outline existing methods for detecting metastable oscillatory patterns in neural time series data, and evaluate plausible spatiotemporal coding schemes based on phase alignment. We then survey the circuitry and the mechanisms underlying the generation of coordinated alpha and gamma rhythms in the primate visual system, with particular emphasis on the pulvinar and its role in biasing visual attention and awareness. To conclude the review, we begin to integrate this perspective with longstanding theories of consciousness and cognition.
Collapse
Affiliation(s)
- Roy Moyal
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
1107
|
Benwell CSY, London RE, Tagliabue CF, Veniero D, Gross J, Keitel C, Thut G. Frequency and power of human alpha oscillations drift systematically with time-on-task. Neuroimage 2019; 192:101-114. [PMID: 30844505 PMCID: PMC6503153 DOI: 10.1016/j.neuroimage.2019.02.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/12/2019] [Accepted: 02/27/2019] [Indexed: 11/11/2022] Open
Abstract
Oscillatory neural activity is a fundamental characteristic of the mammalian brain spanning multiple levels of spatial and temporal scale. Current theories of neural oscillations and analysis techniques employed to investigate their functional significance are based on an often implicit assumption: In the absence of experimental manipulation, the spectral content of any given EEG- or MEG-recorded neural oscillator remains approximately stationary over the course of a typical experimental session (∼1 h), spontaneously fluctuating only around its dominant frequency. Here, we examined this assumption for ongoing neural oscillations in the alpha-band (8-13 Hz). We found that alpha peak frequency systematically decreased over time, while alpha-power increased. Intriguingly, these systematic changes showed partial independence of each other: Statistical source separation (independent component analysis) revealed that while some alpha components displayed concomitant power increases and peak frequency decreases, other components showed either unique power increases or frequency decreases. Interestingly, we also found these components to differ in frequency. Components that showed mixed frequency/power changes oscillated primarily in the lower alpha-band (∼8-10 Hz), while components with unique changes oscillated primarily in the higher alpha-band (∼9-13 Hz). Our findings provide novel clues on the time-varying intrinsic properties of large-scale neural networks as measured by M/EEG, with implications for the analysis and interpretation of studies that aim at identifying functionally relevant oscillatory networks or at driving them through external stimulation.
Collapse
Affiliation(s)
- Christopher S Y Benwell
- Psychology, School of Social Sciences, University of Dundee, Dundee, UK; Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| | - Raquel E London
- Department of Experimental Psychology, Ghent University, 9000, Ghent, Belgium
| | - Chiara F Tagliabue
- CIMEC - Center for Mind/Brain Sciences, Università degli Studi di Trento, Trento, Italy
| | - Domenica Veniero
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Joachim Gross
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK; Institut für Biomagnetismus und Biosignalanalyse, Westfälische Wilhelms-Universität, Malmedyweg 15, 48149, Münster, Germany
| | - Christian Keitel
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
1108
|
Proskovec AL, Wiesman AI, Heinrichs-Graham E, Wilson TW. Load effects on spatial working memory performance are linked to distributed alpha and beta oscillations. Hum Brain Mapp 2019; 40:3682-3689. [PMID: 31077487 DOI: 10.1002/hbm.24625] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/04/2019] [Accepted: 04/30/2019] [Indexed: 11/10/2022] Open
Abstract
Increasing spatial working memory (SWM) load is generally associated with declines in behavioral performance, but the neural correlates of load-related behavioral effects remain poorly understood. Herein, we examine the alterations in oscillatory activity that accompany such performance changes in 22 healthy adults who performed a two- and four-load SWM task during magnetoencephalography (MEG). All MEG data were transformed into the time-frequency domain and significant oscillatory responses were imaged separately per load using a beamformer. Whole-brain correlation maps were computed using the load-related beamformer difference images and load-related accuracy effects on the SWM task. The results indicated that load-related differences in left inferior frontal alpha activity during encoding and maintenance were negatively correlated with load-related accuracy differences on the SWM task. That is, individuals who had more substantial decreases in prefrontal alpha during high-relative to low-load SWM trials tended to have smaller performance decrements on the high-load condition (i.e., they performed more accurately). The same pattern of neurobehavioral correlations was observed during the maintenance period for right superior temporal alpha activity and right superior parietal beta activity. Importantly, this is the first study to employ a voxel-wise whole-brain approach to significantly link load-related oscillatory differences and load-related SWM performance differences.
Collapse
Affiliation(s)
- Amy L Proskovec
- Department of Psychology, University of Nebraska, Omaha, Nebraska.,Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, Nebraska.,Department of Neurological Sciences, UNMC, Omaha, Nebraska
| | - Alex I Wiesman
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, Nebraska.,Department of Neurological Sciences, UNMC, Omaha, Nebraska
| | - Elizabeth Heinrichs-Graham
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, Nebraska.,Department of Neurological Sciences, UNMC, Omaha, Nebraska
| | - Tony W Wilson
- Department of Psychology, University of Nebraska, Omaha, Nebraska.,Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, Nebraska.,Department of Neurological Sciences, UNMC, Omaha, Nebraska
| |
Collapse
|
1109
|
Wiesman AI, Wilson TW. Alpha Frequency Entrainment Reduces the Effect of Visual Distractors. J Cogn Neurosci 2019; 31:1392-1403. [PMID: 31059352 DOI: 10.1162/jocn_a_01422] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Numerous studies have linked alpha frequency (∼10 Hz) visual entrainment to the inhibition of incoming visual information. However, although these studies have provided key evidence for the intrinsic sensitivity of the human brain to incoming alpha frequency signals, they have only examined the negative impact of alpha entrainment on target stimuli. Thus, it remains uncertain whether the perception of distracting or nonimperative stimuli can also be affected by alpha frequency entrainment. In the current study, we address this question using an adapted version of the arrow-based Erikson "flanker" paradigm that incorporates stimuli flickering at two distinct frequencies: 10 Hz (alpha) and 30 Hz. By presenting flickering stimuli in the portions of the visual field where the flanking arrows would soon appear, we aimed to determine whether the frequency of visual entrainment (i.e., 10 Hz vs. 30 Hz) significantly interacted with the congruency of the flanking arrows (representing selective attention processing) using behavioral task performance and neural oscillations as the outcome metrics. Twenty-three healthy adult participants underwent magnetoencephalography during performance of the task. Our results indicated a reduced congruency effect (i.e., a smaller difference between congruent and incongruent trials) in the alpha flicker condition, as compared with the 30-Hz flicker condition, which suggests a robust relationship between alpha entrainment and the active inhibition of distractor stimuli appearing in that portion of the visual field. Supporting this, alpha frequency (but not 30 Hz) entrainment responses in the primary visual cortex also covaried significantly with the behavioral congruency effect.
Collapse
|
1110
|
Dahl MJ, Ilg L, Li SC, Passow S, Werkle-Bergner M. Diminished pre-stimulus alpha-lateralization suggests compromised self-initiated attentional control of auditory processing in old age. Neuroimage 2019; 197:414-424. [PMID: 31054351 DOI: 10.1016/j.neuroimage.2019.04.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Older adults experience difficulties in daily situations that require flexible information selection in the presence of multiple competing sensory inputs, like for instance multi-talker situations. Modulations of rhythmic neural activity in the alpha-beta (8-30 Hz) frequency range in posterior brain areas have been established as a cross-modal neural correlate of selective attention. However, research linking compromised auditory selective attention to changes in rhythmic neural activity in aging is sparse. We tested younger (n = 25; 22-35 years) and older adults (n = 26; 63-76 years) in an attention modulated dichotic listening task. In this, two streams of highly similar auditory input were simultaneously presented to participants' both ears (i.e., dichotically) while attention had to be focused on the input to only one ear (i.e. target) and the other, distracting information had to be ignored. We here demonstrate a link between severely compromised auditory selective attention in aging and a partial reorganization of attention-related rhythmic neural responses. In particular, in old age we observed a shift from a self-initiated, preparatory modulation of lateralized alpha rhythmic activity to an externally driven response in the alpha-beta range. Critically, moment-to-moment fluctuations in the age-specific patterns of self-initiated and externally driven lateralized rhythmic activity were associated with behavioral performance. We conclude that adult age differences in spatial selective attention likely derive from a functional reorganization of rhythmic neural activity within the aging brain.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| | - Liesa Ilg
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Susanne Passow
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
1111
|
Neural variability quenching during decision-making: Neural individuality and its prestimulus complexity. Neuroimage 2019; 192:1-14. [DOI: 10.1016/j.neuroimage.2019.02.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/31/2019] [Accepted: 02/27/2019] [Indexed: 11/20/2022] Open
|
1112
|
de Vries IE, van Driel J, Olivers CN. Decoding the status of working memory representations in preparation of visual selection. Neuroimage 2019; 191:549-559. [DOI: 10.1016/j.neuroimage.2019.02.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/27/2019] [Accepted: 02/27/2019] [Indexed: 01/02/2023] Open
|
1113
|
Noguchi Y, Xia Y, Kakigi R. Desynchronizing to be faster? Perceptual- and attentional-modulation of brain rhythms at the sub-millisecond scale. Neuroimage 2019; 191:225-233. [PMID: 30772401 DOI: 10.1016/j.neuroimage.2019.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/14/2019] [Accepted: 02/11/2019] [Indexed: 01/15/2023] Open
Abstract
Neural oscillatory signals has been associated with many high-level functions (e.g. attention and working memory), because they reflect correlated behaviors of neural population that would facilitate the information transfer in the brain. On the other hand, a decreased power of oscillation (event-related desynchronization, ERD) has been associated with an irregular state in which many neurons behave in an uncorrelated manner. In contrast to this view, here we show that the human ERD is linked to the increased regularity of oscillatory signals. Using magnetoencephalography, we found that presenting a visual stimulus not only induced a decrease in power of alpha (8-12 Hz) to beta (13-30 Hz) rhythms in the contralateral visual cortex but also reduced the mean and variance of their inter-peak intervals (IPIs). This indicates that the suppressed alpha/beta rhythms became faster (reduced mean) and more regular (reduced variance) during visual stimulation. The same changes in IPIs, especially those of beta rhythm, were observed when subjects allocated their attention to a contralateral visual field. Those results revealed a new role of the event-related decrease in alpha/beta power and further suggested that our brain regulates and accelerates a clock for neural computations by actively suppressing the oscillation amplitude in task-relevant regions.
Collapse
Affiliation(s)
- Yasuki Noguchi
- Department of Psychology, Graduate School of Humanities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan.
| | - Yi Xia
- Department of Psychology, Graduate School of Humanities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| |
Collapse
|
1114
|
Schaworonkow N, Nikulin VV. Spatial neuronal synchronization and the waveform of oscillations: Implications for EEG and MEG. PLoS Comput Biol 2019; 15:e1007055. [PMID: 31086368 PMCID: PMC6534335 DOI: 10.1371/journal.pcbi.1007055] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 05/24/2019] [Accepted: 04/26/2019] [Indexed: 11/24/2022] Open
Abstract
Neuronal oscillations are ubiquitous in the human brain and are implicated in virtually all brain functions. Although they can be described by a prominent peak in the power spectrum, their waveform is not necessarily sinusoidal and shows rather complex morphology. Both frequency and temporal descriptions of such non-sinusoidal neuronal oscillations can be utilized. However, in non-invasive EEG/MEG recordings the waveform of oscillations often takes a sinusoidal shape which in turn leads to a rather oversimplified view on oscillatory processes. In this study, we show in simulations how spatial synchronization can mask non-sinusoidal features of the underlying rhythmic neuronal processes. Consequently, the degree of non-sinusoidality can serve as a measure of spatial synchronization. To confirm this empirically, we show that a mixture of EEG components is indeed associated with more sinusoidal oscillations compared to the waveform of oscillations in each constituent component. Using simulations, we also show that the spatial mixing of the non-sinusoidal neuronal signals strongly affects the amplitude ratio of the spectral harmonics constituting the waveform. Finally, our simulations show how spatial mixing can affect the strength and even the direction of the amplitude coupling between constituent neuronal harmonics at different frequencies. Validating these simulations, we also demonstrate these effects in real EEG recordings. Our findings have far reaching implications for the neurophysiological interpretation of spectral profiles, cross-frequency interactions, as well as for the unequivocal determination of oscillatory phase.
Collapse
Affiliation(s)
- Natalie Schaworonkow
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Vadim V. Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Centre for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russian Federation
- Neurophysics Group, Department of Neurology, Charité-University Medicine Berlin – Campus Benjamin Franklin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
1115
|
Li H, Zhao Q, Huang F, Cao Q, Qian Q, Johnstone SJ, Wang Y, Wang C, Sun L. Increased Beta Activity Links to Impaired Emotional Control in ADHD Adults With High IQ. J Atten Disord 2019; 23:754-764. [PMID: 29110563 DOI: 10.1177/1087054717739120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The present study investigated the neuropathology of everyday-life executive function (EF) deficits in adults with ADHD with high IQ. METHOD Forty adults with ADHD with an IQ ≥ 120 and 40 controls were recruited. Ecological EFs were measured, and eyes-closed Electroencephalograph (EEG) signals were recorded during a resting-state condition; EEG power and correlations with impaired EFs were analyzed. RESULTS Compared with controls, the ADHD group showed higher scores on all clusters of EF. The ADHD group showed globally increased theta, globally decreased alpha, and increased central beta activity. In the ADHD group, central beta power was significantly related to emotional control ratings, while no such correlation was evident in the control group. CONCLUSION The results suggest that resting-state beta activity might be involved in the neuropathology of emotional control in adults with ADHD with high IQ.
Collapse
Affiliation(s)
- Hui Li
- 1 Peking University Sixth Hospital/Institute of Mental Health, China.,2 National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), China
| | - Qihua Zhao
- 1 Peking University Sixth Hospital/Institute of Mental Health, China.,2 National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), China
| | - Fang Huang
- 1 Peking University Sixth Hospital/Institute of Mental Health, China.,2 National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), China
| | - Qingjiu Cao
- 1 Peking University Sixth Hospital/Institute of Mental Health, China.,2 National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), China
| | - Qiujin Qian
- 1 Peking University Sixth Hospital/Institute of Mental Health, China.,2 National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), China
| | - Stuart J Johnstone
- 3 Brain & Behaviour Research Institute, School of Psychology, University of Wollongong, Australia
| | - Yufeng Wang
- 1 Peking University Sixth Hospital/Institute of Mental Health, China.,2 National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), China
| | - Changming Wang
- 4 Beijing Anding Hospital, Capital Medical University/ Beijing Key Laboratory of Mental Disorders, China
| | - Li Sun
- 1 Peking University Sixth Hospital/Institute of Mental Health, China.,2 National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), China
| |
Collapse
|
1116
|
Parr JVV, Vine SJ, Wilson MR, Harrison NR, Wood G. Visual attention, EEG alpha power and T7-Fz connectivity are implicated in prosthetic hand control and can be optimized through gaze training. J Neuroeng Rehabil 2019; 16:52. [PMID: 31029174 PMCID: PMC6487034 DOI: 10.1186/s12984-019-0524-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/16/2019] [Indexed: 01/29/2023] Open
Abstract
Background Prosthetic hands impose a high cognitive burden on the user that often results in fatigue, frustration and prosthesis rejection. However, efforts to directly measure this burden are sparse and little is known about the mechanisms behind it. There is also a lack of evidence-based training interventions designed to improve prosthesis hand control and reduce the mental effort required to use them. In two experiments, we provide the first direct evaluation of this cognitive burden using measurements of EEG and eye-tracking (Experiment 1), and then explore how a novel visuomotor intervention (gaze training; GT) might alleviate it (Experiment 2). Methods In Experiment 1, able-bodied participants (n = 20) lifted and moved a jar, first using their anatomical hand and then using a myoelectric prosthetic hand simulator. In experiment 2, a GT group (n = 12) and a movement training (MT) group (n = 12) trained with the prosthetic hand simulator over three one hour sessions in a picking up coins task, before returning for retention, delayed retention and transfer tests. The GT group received instruction regarding how to use their eyes effectively, while the MT group received movement-related instruction typical in rehabilitation. Results Experiment 1 revealed that when using the prosthetic hand, participants performed worse, exhibited spatial and temporal disruptions to visual attention, and exhibited a global decrease in EEG alpha power (8-12 Hz), suggesting increased cognitive effort. Experiment 2 showed that GT was the more effective method for expediting prosthesis learning, optimising visual attention, and lowering conscious control – as indexed by reduced T7-Fz connectivity. Whilst the MT group improved performance, they did not reduce hand-focused visual attention and showed increased conscious movement control. The superior benefits of GT transferred to a more complex tea-making task. Conclusions These experiments quantify the visual and cortical mechanisms relating to the cognitive burden experienced during prosthetic hand control. They also evidence the efficacy of a GT intervention that alleviated this burden and promoted better learning and transfer, compared to typical rehabilitation instructions. These findings have theoretical and practical implications for prosthesis rehabilitation, the development of emerging prosthesis technologies and for the general understanding of human-tool interactions. Electronic supplementary material The online version of this article (10.1186/s12984-019-0524-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J V V Parr
- School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | - S J Vine
- College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - M R Wilson
- College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - N R Harrison
- Department of Psychology, Liverpool Hope University, Liverpool, UK
| | - G Wood
- Research Centre for Musculoskeletal Science and Sports Medicine Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
1117
|
Uji M, Jentzsch I, Redburn J, Vishwanath D. Dissociating neural activity associated with the subjective phenomenology of monocular stereopsis: An EEG study. Neuropsychologia 2019; 129:357-371. [PMID: 31034841 DOI: 10.1016/j.neuropsychologia.2019.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/26/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
The subjective phenomenology associated with stereopsis, of solid tangible objects separated by a palpable negative space, is conventionally thought to be a by-product of the derivation of depth from binocular disparity. However, the same qualitative impression has been reported in the absence of disparity, e.g., when viewing pictorial images monocularly through an aperture. Here we aimed to explore if we could identify dissociable neural activity associated with the qualitative impression of stereopsis in the absence of the processing of binocular disparities. We measured EEG activity while subjects viewed pictorial (non-stereoscopic) images of 2D and 3D geometric forms under four different viewing conditions (binocular, monocular, binocular aperture, monocular aperture). EEG activity was analysed by oscillatory source localization (beamformer technique) to examine power change in occipital and parietal regions across viewing and stimulus conditions in targeted frequency bands (alpha: 8-13 Hz & gamma: 60-90 Hz). We observed expected event-related gamma synchronization and alpha desynchronization in occipital cortex and predominant gamma synchronization in parietal cortex across viewing and stimulus conditions. However, only the viewing condition predicted to generate the strongest impression of stereopsis (monocular aperture) revealed significantly elevated gamma synchronization within the parietal cortex for the critical contrasts (3D vs. 2D form). These findings suggest dissociable neural processes specific to the qualitative impression of stereopsis as distinguished from disparity processing.
Collapse
Affiliation(s)
- Makoto Uji
- School of Psychology and Neuroscience, University of St Andrews, UK.
| | - Ines Jentzsch
- School of Psychology and Neuroscience, University of St Andrews, UK
| | - James Redburn
- School of Psychology and Neuroscience, University of St Andrews, UK
| | | |
Collapse
|
1118
|
Sutterer DW, Foster JJ, Adam KCS, Vogel EK, Awh E. Item-specific delay activity demonstrates concurrent storage of multiple active neural representations in working memory. PLoS Biol 2019; 17:e3000239. [PMID: 31026274 PMCID: PMC6505953 DOI: 10.1371/journal.pbio.3000239] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 05/08/2019] [Accepted: 04/04/2019] [Indexed: 11/19/2022] Open
Abstract
Persistent neural activity that encodes online mental representations plays a central role in working memory (WM). However, there has been debate regarding the number of items that can be concurrently represented in this active neural state, which is often called the “focus of attention.” Some models propose a strict single-item limit, such that just 1 item can be neurally active at once while other items are relegated to an activity-silent state. Although past studies have decoded multiple items stored in WM, these studies cannot rule out a switching account in which only a single item is actively represented at a time. Here, we directly tested whether multiple representations can be held concurrently in an active state. We tracked spatial representations in WM using alpha-band (8–12 Hz) activity, which encodes spatial positions held in WM. Human observers remembered 1 or 2 positions over a short delay while we recorded electroencephalography (EEG) data. Using a spatial encoding model, we reconstructed active stimulus-specific representations (channel-tuning functions [CTFs]) from the scalp distribution of alpha-band power. Consistent with past work, we found that the selectivity of spatial CTFs was lower when 2 items were stored than when 1 item was stored. Critically, data-driven simulations revealed that the selectivity of spatial representations in the two-item condition could not be explained by models that propose that only a single item can exist in an active state at once. Thus, our findings demonstrate that multiple items can be concurrently represented in an active neural state. An electroencephalography-based study shows that working memory delay activity concurrently represents two items, posing a challenge for models which propose that only one item can be actively represented at a time.
Collapse
Affiliation(s)
- David W. Sutterer
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, Illinois
| | - Joshua J. Foster
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, Illinois
| | - Kirsten C. S. Adam
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, Illinois
| | - Edward K. Vogel
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, Illinois
| | - Edward Awh
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, Illinois
- * E-mail:
| |
Collapse
|
1119
|
Competitive Frontoparietal Interactions Mediate Implicit Inferences. J Neurosci 2019; 39:5183-5194. [PMID: 31015338 DOI: 10.1523/jneurosci.2551-18.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 01/17/2023] Open
Abstract
Frequent experience with regularities in our environment allows us to use predictive information to guide our decision process. However, contingencies in our environment are not always explicitly present and sometimes need to be inferred. Heretofore, it remained unknown how predictive information guides decision-making when explicit knowledge is absent and how the brain shapes such implicit inferences. In the present experiment, 17 human participants (9 females) performed a discrimination task in which a target stimulus was preceded by a predictive cue. Critically, participants had no explicit knowledge that some of the cues signaled an upcoming target, allowing us to investigate how implicit inferences emerge and guide decision-making. Despite unawareness of the cue-target contingencies, participants were able to use implicit information to improve performance. Concurrent EEG recordings demonstrate that implicit inferences rely upon interactions between internally and externally oriented networks, whereby prefrontal regions inhibit parietal cortex under internal implicit control.SIGNIFICANCE STATEMENT Regularities in our environment can guide our behavior providing information about upcoming events. Interestingly, such predictive information does not need to be explicitly represented to effectively guide our decision process. Here, we show how the brain engages in such real-world "data mining" and how implicit inferences emerge. We used a contingency cueing task and demonstrated that implicit inferences influenced responses to subsequent targets despite a lack of awareness of cue-target contingencies. Further, we show that these implicit inferences emerge through interactions between internally and externally oriented neural networks. The current results highlight the importance of prefrontal processes in transforming external events into predictive internalized models of the world.
Collapse
|
1120
|
Rohe T, Ehlis AC, Noppeney U. The neural dynamics of hierarchical Bayesian causal inference in multisensory perception. Nat Commun 2019; 10:1907. [PMID: 31015423 PMCID: PMC6478901 DOI: 10.1038/s41467-019-09664-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/14/2019] [Indexed: 11/09/2022] Open
Abstract
Transforming the barrage of sensory signals into a coherent multisensory percept relies on solving the binding problem - deciding whether signals come from a common cause and should be integrated or, instead, segregated. Human observers typically arbitrate between integration and segregation consistent with Bayesian Causal Inference, but the neural mechanisms remain poorly understood. Here, we presented people with audiovisual sequences that varied in the number of flashes and beeps, then combined Bayesian modelling and EEG representational similarity analyses. Our data suggest that the brain initially represents the number of flashes and beeps independently. Later, it computes their numbers by averaging the forced-fusion and segregation estimates weighted by the probabilities of common and independent cause models (i.e. model averaging). Crucially, prestimulus oscillatory alpha power and phase correlate with observers' prior beliefs about the world's causal structure that guide their arbitration between sensory integration and segregation.
Collapse
Affiliation(s)
- Tim Rohe
- Department of Psychiatry and Psychotherapy, Calwerstr. 14, University of Tuebingen, 72076, Tuebingen, Germany.
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, Calwerstr. 14, University of Tuebingen, 72076, Tuebingen, Germany
- LEAD Graduate School & Research Network, Walter-Simon-Straße 12, University of Tuebingen, 72074, Tuebingen, Germany
| | - Uta Noppeney
- Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
1121
|
EEG rhythms lateralization patterns in children with unilateral hearing loss are different from the patterns of normal hearing controls during speech-in-noise listening. Hear Res 2019; 379:31-42. [PMID: 31042607 DOI: 10.1016/j.heares.2019.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 11/21/2022]
Abstract
Unilateral hearing loss constitutes a field of growing interest in the scientific community. In fact, this kind of patients represent a unique and physiological way to investigate how neuroplasticity overcame unilateral deafferentation by implementing particular strategies that produce apparently next- to- normal hearing behavioural performances. This explains why such patients have been underinvestigated for a long time. Thanks to the availability of techniques able to study the cerebral activity underlying the mentioned behavioural outcomes, the aim of the present research was to elucidate whether different electroencephalographic (EEG) patterns occurred in unilateral hearing loss (UHL) children in comparison to normal hearing (NH) controls during speech-in-noise listening. Given the intrinsic lateralized nature of such patients, due to the unilateral side of hearing impairment, the experimental question was to assess whether this would reflect a different EEG pattern while performing a word in noise recognition task varying the direction of the noise source. Results showed a correlation between the period of deafness and the cortical activity asymmetry toward the hearing ear side in the frontal, parietal and occipital areas in all the experimental conditions. Concerning alpha and beta activity in the frontal and central areas highlighted that in the NH group, the lateralization was always left-sided during the Quiet condition, while it was right-sided in noise conditions; this evidence was not, however, detected also in the UHL group. In addition, focusing on the theta and alpha activity in the frontal areas (Broca area) during noise conditions, while the activity was always left-lateralized in the NH group, it was ipsilateral to the direction of the background noise in the UHL group, and of a weaker extent than in NH controls. Furthermore, in noise conditions, only the UHL group showed a higher theta activity in the temporal areas ipsilateral to the side where the background noise was directed to. Finally, in the case of bilateral noise (background noise and word signal both coming from the same two sources), the theta and alpha activity in the frontal areas (Broca area) was left-lateralized in the case of the NH group and lateralized towards the side of the better hearing ear in the case of the UHL group. Taken together, this evidence supports the establishment of a particular EEG pattern occurrence in UHL children taking place in the frontal (Broca area), temporal and parietal lobes, probably physiologically established in order to deal with different sound and noise source directions.
Collapse
|
1122
|
Zomorrodi R, Loheswaran G, Pushparaj A, Lim L. Pulsed Near Infrared Transcranial and Intranasal Photobiomodulation Significantly Modulates Neural Oscillations: a pilot exploratory study. Sci Rep 2019; 9:6309. [PMID: 31004126 PMCID: PMC6474892 DOI: 10.1038/s41598-019-42693-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/05/2019] [Indexed: 01/12/2023] Open
Abstract
Transcranial photobiomodulation (tPBM) is the application of low levels of red or near-infrared (NIR) light to stimulate neural tissues. Here, we administer tPBM in the form of NIR light (810 nm wavelength) pulsed at 40 Hz to the default mode network (DMN), and examine its effects on human neural oscillations, in a randomized, sham-controlled, double-blinded trial. Using electroencephalography (EEG), we found that a single session of tPBM significantly increases the power of the higher oscillatory frequencies of alpha, beta and gamma and reduces the power of the slower frequencies of delta and theta in subjects in resting state. Furthermore, the analysis of network properties using inter-regional synchrony via weighted phase lag index (wPLI) and graph theory measures, indicate the effect of tPBM on the integration and segregation of brain networks. These changes were significantly different when compared to sham stimulation. Our preliminary findings demonstrate for the first time that tPBM can be used to non-invasively modulate neural oscillations, and encourage further confirmatory clinical investigations.
Collapse
Affiliation(s)
- Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
- Vielight Inc., Toronto, Ontario, Canada.
| | | | - Abhiram Pushparaj
- Ironstone Product Development Inc. & Qunuba Sciences Inc., Toronto, Ontario, Canada
| | - Lew Lim
- Vielight Inc., Toronto, Ontario, Canada
| |
Collapse
|
1123
|
Keitel C, Keitel A, Benwell CSY, Daube C, Thut G, Gross J. Stimulus-Driven Brain Rhythms within the Alpha Band: The Attentional-Modulation Conundrum. J Neurosci 2019; 39:3119-3129. [PMID: 30770401 PMCID: PMC6468105 DOI: 10.1523/jneurosci.1633-18.2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/16/2019] [Accepted: 02/03/2019] [Indexed: 01/23/2023] Open
Abstract
Two largely independent research lines use rhythmic sensory stimulation to study visual processing. Despite the use of strikingly similar experimental paradigms, they differ crucially in their notion of the stimulus-driven periodic brain responses: one regards them mostly as synchronized (entrained) intrinsic brain rhythms; the other assumes they are predominantly evoked responses [classically termed steady-state responses (SSRs)] that add to the ongoing brain activity. This conceptual difference can produce contradictory predictions about, and interpretations of, experimental outcomes. The effect of spatial attention on brain rhythms in the alpha band (8-13 Hz) is one such instance: alpha-range SSRs have typically been found to increase in power when participants focus their spatial attention on laterally presented stimuli, in line with a gain control of the visual evoked response. In nearly identical experiments, retinotopic decreases in entrained alpha-band power have been reported, in line with the inhibitory function of intrinsic alpha. Here we reconcile these contradictory findings by showing that they result from a small but far-reaching difference between two common approaches to EEG spectral decomposition. In a new analysis of previously published human EEG data, recorded during bilateral rhythmic visual stimulation, we find the typical SSR gain effect when emphasizing stimulus-locked neural activity and the typical retinotopic alpha suppression when focusing on ongoing rhythms. These opposite but parallel effects suggest that spatial attention may bias the neural processing of dynamic visual stimulation via two complementary neural mechanisms.SIGNIFICANCE STATEMENT Attending to a visual stimulus strengthens its representation in visual cortex and leads to a retinotopic suppression of spontaneous alpha rhythms. To further investigate this process, researchers often attempt to phase lock, or entrain, alpha through rhythmic visual stimulation under the assumption that this entrained alpha retains the characteristics of spontaneous alpha. Instead, we show that the part of the brain response that is phase locked to the visual stimulation increased with attention (as do steady-state evoked potentials), while the typical suppression was only present in non-stimulus-locked alpha activity. The opposite signs of these effects suggest that attentional modulation of dynamic visual stimulation relies on two parallel cortical mechanisms-retinotopic alpha suppression and increased temporal tracking.
Collapse
Affiliation(s)
- Christian Keitel
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK,
| | - Anne Keitel
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
- Psychology, School of Social Sciences, University of Dundee, Dundee DD1 4HN, UK, and
| | - Christopher S Y Benwell
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
- Psychology, School of Social Sciences, University of Dundee, Dundee DD1 4HN, UK, and
| | - Christoph Daube
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| | - Gregor Thut
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
- Institut für Biomagnetismus und Biosignalanalyse, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
1124
|
10 Hz transcranial alternating current stimulation over posterior parietal cortex facilitates tactile temporal order judgment. Behav Brain Res 2019; 368:111899. [PMID: 30978408 DOI: 10.1016/j.bbr.2019.111899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
The temporal order judgment (TOJ) task has been widely used to investigate spatial attentional bias and the sensitivity of temporal discrimination during the processing of bilateral tactile information. Previous studies have shown that TOJ is impaired in patients who are suffering from chronic pain, stroke, and Parkinson's disease. In addition, studies have indicated that the posterior parietal cortex (PPC) is involved in the TOJ task. However, the neural basis of the TOJ task has not been fully elucidated. To investigate the causal relationship between cortical oscillation and certain behaviors, transcranial alternating current stimulation (tACS) has been used. tACS can entrain an oscillation in the cortex to the applying frequency. In previous studies, increased alpha-band (around 10 Hz) oscillation in the PPC is associated with attentional inhibition of the contralateral side. Therefore, we hypothesized that 10 Hz tACS over PPC would inhibit tactile processing in the contralateral side, leading to ipsilateral spatial attentional bias and impaired temporal discrimination. However, we found that 10 Hz tACS over either side of the PPC facilitated temporal discrimination, with 10 Hz tACS over the right PPC leading to a rightward shift of attentional bias. These findings indicated that 10 Hz tACS over the PPC has a facilitative effect in the processing of bilateral tactile information, and may be useful for modulating or treating spatial bias or temporal discrimination during the integration of bilateral stimulation, at least in the somatosensory domain.
Collapse
|
1125
|
Long-range functional coupling predicts performance: Oscillatory EEG networks in multisensory processing. Neuroimage 2019; 196:114-125. [PMID: 30959196 DOI: 10.1016/j.neuroimage.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/25/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
The integration of sensory signals from different modalities requires flexible interaction of remote brain areas. One candidate mechanism to establish communication in the brain is transient synchronization of oscillatory neural signals. Although there is abundant evidence for the involvement of cortical oscillations in brain functions based on the analysis of local power, assessment of the phase dynamics among spatially distributed neuronal populations and their relevance for behavior is still sparse. In the present study, we investigated the interaction between remote brain areas by analyzing high-density electroencephalogram (EEG) data obtained from human participants engaged in a visuotactile pattern matching task. We deployed an approach for purely data-driven clustering of neuronal phase coupling in source space, which allowed imaging of large-scale functional networks in space, time and frequency without defining a priori constraints. Based on the phase coupling results, we further explored how brain areas interacted across frequencies by computing phase-amplitude coupling. Several networks of interacting sources were identified with our approach, synchronizing their activity within and across the theta (∼5 Hz), alpha (∼10 Hz), and beta (∼20 Hz) frequency bands and involving multiple brain areas that have previously been associated with attention and motor control. We demonstrate the functional relevance of these networks by showing that phase delays - in contrast to spectral power - were predictive of task performance. The data-driven analysis approach employed in the current study allowed an unbiased examination of functional brain networks based on EEG source level connectivity data. Showcased for multisensory processing, our results provide evidence that large-scale neuronal coupling is vital to long-range communication in the human brain and relevant for the behavioral outcome in a cognitive task.
Collapse
|
1126
|
Wittenberg MA, Morr M, Schnitzler A, Lange J. 10 Hz tACS Over Somatosensory Cortex Does Not Modulate Supra-Threshold Tactile Temporal Discrimination in Humans. Front Neurosci 2019; 13:311. [PMID: 31001078 PMCID: PMC6456678 DOI: 10.3389/fnins.2019.00311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022] Open
Abstract
Perception of physical identical stimuli can differ over time depending on the brain state. One marker of this brain state can be neuronal oscillations in the alpha band (8–12 Hz). A previous study showed that the power of prestimulus alpha oscillations in the contralateral somatosensory area negatively correlate with the ability to temporally discriminate between two subsequent tactile suprathreshold stimuli. That is, with high alpha power subjects were impaired in discriminating two stimuli and more frequently reported to perceive only one stimulus. While this previous study found correlative evidence for a role of alpha oscillations on tactile temporal discrimination, here, we aimed to study the causal influence of alpha power on tactile temporal discrimination by using transcranial alternating current stimulation (tACS). We hypothesized that tACS in the alpha frequency should entrain alpha oscillations and thus modulate alpha power. This modulated alpha power should alter temporal discrimination ability compared to a control frequency or sham. To this end, 17 subjects received one or two electrical stimuli to their left index finger with different stimulus onset asynchronies (SOAs). They reported whether they perceived one or two stimuli. Subjects performed the paradigm before (pre), during (peri), and 25 min after tACS (post). tACS was applied to the contralateral somatosensory-parietal area with either 10, 5 Hz or sham on three different days. We found no significant difference in discrimination abilities between 10 Hz tACS and the control conditions, independent of SOAs. In addition to choosing all SOAs as the independent variable, we chose individually different SOAs, for which we expected the strongest effects of tACS. Again, we found no significant effects of 10 Hz tACS on temporal discrimination abilities. We discuss potential reasons for the inability to modulate tactile temporal discrimination abilities with tACS.
Collapse
Affiliation(s)
- Marc A Wittenberg
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Mitjan Morr
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.,Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Joachim Lange
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
1127
|
Tisseyre J, Marquet-Doléac J, Barral J, Amarantini D, Tallet J. Lateralized inhibition of symmetric contractions is associated with motor, attentional and executive processes. Behav Brain Res 2019; 361:65-73. [DOI: 10.1016/j.bbr.2018.12.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
1128
|
Dornbierer DA, Kometer M, Von Rotz R, Studerus E, Gertsch J, Gachet MS, Vollenweider FX, Seifritz E, Bosch OG, Quednow BB. Effects of gamma-hydroxybutyrate on neurophysiological correlates of performance and conflict monitoring. Eur Neuropsychopharmacol 2019; 29:539-548. [PMID: 30824339 DOI: 10.1016/j.euroneuro.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 10/27/2022]
Abstract
Performance and conflict monitoring (PM and CM) represent two essential cognitive abilities, required to respond appropriately to demanding tasks. PM and CM can be investigated using event-related brain potentials (ERP) and associated neural oscillations. Namely, the error-related negativity (ERN) represents a correlate of PM, whereas the N2 component reflects the process of CM. Both ERPs originate in the anterior cingulate cortex (ACC) and PM specifically has been shown to be susceptible to gamma-aminobutyric acid (GABA) A receptor activation. Contrarily, the specific effects of GABAB receptor (GABABR) stimulation on PM and CM are unknown. Thus, the effects of gamma-hydroxybutyrate (GHB; 20 and 35 mg/kg), a predominant GABABR agonist, on behavioral and electrophysiological correlates of PM and CM were here assessed in 15 healthy male volunteers, using the Eriksen-Flanker paradigm in a randomized, double-blind, placebo-controlled, cross-over study. Electroencephalographic (EEG) data were analyzed in the time and time-frequency domains. GHB prolonged reaction times, without affecting error rates or post-error slowing. Moreover, GHB decreased ERN amplitudes and associated neural oscillations in the theta/alpha1 range. Similarly, neural oscillations associated with the N2 were reduced in the theta/alpha1 range, while N2 amplitude was conversely increased. Hence, GHB shows a dissociating effect on electrophysiological correlates of PM and CM. Reduced ERN likely derives from a GABABR-mediated increase in dopaminergic signaling, disrupting the generation of prediction errors, whereas an enhanced N2 suggests an increased susceptibility towards external stimuli. Conclusively, GHB is the first drug reported, thus far, to have opposite effects on PM and CM, underlined by its unique electrophysiological signature.
Collapse
Affiliation(s)
- Dario A Dornbierer
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, CH-8032 Zurich, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Michael Kometer
- Neuropsychopharmacology and Brain Imaging Research Unit, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| | - Robin Von Rotz
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, CH-8032 Zurich, Switzerland
| | - Erich Studerus
- Center for Gender Research and Early Detection, Kornhausgasse 7, 4051 Basel, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - M Salomé Gachet
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Franz X Vollenweider
- Neuropsychopharmacology and Brain Imaging Research Unit, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, CH-8032 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Oliver G Bosch
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, CH-8032 Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, CH-8032 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
1129
|
Wianda E, Ross B. The roles of alpha oscillation in working memory retention. Brain Behav 2019; 9:e01263. [PMID: 30887701 PMCID: PMC6456781 DOI: 10.1002/brb3.1263] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/20/2019] [Accepted: 02/12/2019] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Brain processes of working memory involve oscillatory activities at multiple frequencies in local and long-range neural networks. The current study addressed the specific roles of alpha oscillations during memory encoding and retention, supporting the hypothesis that multiple functional mechanisms of alpha oscillations exist in parallel. METHOD We recorded magnetoencephalography (MEG) in 25 healthy young adults, who performed a variant of a Sternberg working memory task. A sequential list of five consonant letters was visually presented and was followed after a 2.0 s retention interval by a probe of a pair of two letters from the study list. Participants responded whether the probe pair was in same or reversed order in the list. RESULT Reaction time (RT) was shortest for the first letters in the list, increased with increasing serial position, and shorter for the last position. RT was substantially longer for the probe in reversed order. Time-frequency analysis of the MEG revealed event-related desynchronization (ERD) of alpha oscillations during the encoding interval and an alpha power increase (ERS) during memory retention. Alpha ERD during encoding occurred at 10 Hz and ERS during retention at 12 Hz, suggesting different alpha mechanisms. Analysis of alpha coherence and alpha-gamma cross-spectral coupling, applied to MEG beamformer source activity, revealed connectivity across brain areas. Additionally, alpha-gamma coupling identified centers of local computation. The connectivity between occipital and frontotemporal areas was correlated with alpha ERS during memory retention. Cross-frequency coupling between alpha phase and gamma amplitude depicted a hierarchy of information flow from frontal to temporal and occipital brain areas. CONCLUSION Alpha decrease during encoding indicates an active state of visual processing, while subsequent ERS indicates inhibition of further visual input for protecting the memory, and phasic timing of temporal and occipital gamma oscillations is related to a long-range working memory networks.
Collapse
Affiliation(s)
- Elvis Wianda
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Bernhard Ross
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
1130
|
Goodman MS, Zomorrodi R, Kumar S, Barr MS, Daskalakis ZJ, Blumberger DM, Fischer CE, Flint A, Mah L, Herrmann N, Pollock BG, Bowie CR, Mulsant BH, Rajji TK. Changes in Theta but not Alpha Modulation Are Associated with Impairment in Working Memory in Alzheimer's Disease and Mild Cognitive Impairment. J Alzheimers Dis 2019; 68:1085-1094. [PMID: 30909240 DOI: 10.3233/jad-181195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While several studies have found that neural oscillations play a key role in the functioning of working memory, the nature of aberrant oscillatory activity underlying working memory impairments in Alzheimer's disease (AD) and mild cognitive impairment (MCI) remains largely unexplored. These individuals often display structural alterations in brain regions and pathways involved in working memory processes and therefore may also display altered oscillatory activity during memory activation. Electroencephalographic (EEG) activity was recorded during the N-back working memory task in three groups: AD (n = 29), MCI (n = 100), and healthy controls (HCs; n = 40). Theta (4-7 Hz) and alpha (7.5-12 Hz) modulation was measured in response to the stimulus presentation during correct and incorrect responses. This modulation represents the change in EEG activity associated with the stimulus onset and was measured as a ratio of post stimulus power to pre stimulus power. We also assessed the relationship between change in oscillatory power and working memory performance. Compared to HCs, the AD group demonstrated the lowest working memory accuracy and a smaller theta ratio for correct responses on the 2-back condition; the MCI group demonstrated a smaller theta ratio for correct responses on the 3-back condition. Finally, we observed that the theta ratio, but not the alpha ratio, was a significant predictor of working memory performance in the three groups for all conditions. Taken together, these behavioral and electrophysiological results suggest that in addition to impairments in working memory performance, modulation of theta, but not alpha power, may be impaired in MCI and AD.
Collapse
Affiliation(s)
- Michelle S Goodman
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada
| | - Reza Zomorrodi
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada
| | - Sanjeev Kumar
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Canada.,Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Mera S Barr
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Zafiris J Daskalakis
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Daniel M Blumberger
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada.,Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Corinne E Fischer
- Department of Psychiatry, University of Toronto, Toronto, Canada.,Keenan Research Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada
| | - Alastair Flint
- Department of Psychiatry, University of Toronto, Toronto, Canada.,Centre for Mental Health, University Health Network, Toronto, Canada
| | - Linda Mah
- Department of Psychiatry, University of Toronto, Toronto, Canada.,Rotman Research Institute, Baycrest Health Sciences Centre, Toronto, Canada
| | - Nathan Herrmann
- Department of Psychiatry, University of Toronto, Toronto, Canada.,Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Canada.,Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Christopher R Bowie
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Canada.,Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada
| | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Canada.,Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada.,Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | | |
Collapse
|
1131
|
Ro T. Alpha Oscillations and Feedback Processing in Visual Cortex for Conscious Perception. J Cogn Neurosci 2019; 31:948-960. [PMID: 30912724 DOI: 10.1162/jocn_a_01397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Variability in perception between individuals may be a consequence of different inherent neural processing speeds. To assess whether alpha oscillations systematically reflect a feedback pacing mechanism for cortical processing during visual perception, comparisons were made between alpha oscillations, visual suppression from TMS, visual evoked responses, and metacontrast masking. Peak alpha oscillation frequencies, measured through scalp EEG recordings, significantly correlated with the optimum latencies for visual suppression from TMS of early visual cortex. Individuals with shorter alpha periods (i.e., higher peak alpha frequencies) processed visual information faster than those with longer alpha periods (i.e., lower peak alpha frequencies). Moreover, peak alpha oscillation periods and optimum TMS visual suppression latencies predicted the latencies of late but not early visual evoked responses. Together, these findings demonstrate an important role of alpha oscillatory and late feedback activity in visual cortex for conscious perception. They also show that the timing for visual awareness varies across individuals, depending on the pace of one's endogenous oscillatory cycling frequency.
Collapse
Affiliation(s)
- Tony Ro
- The Graduate Center, City University of New York
| |
Collapse
|
1132
|
Atypical somatosensory-motor cortical response during vowel vocalization in spasmodic dysphonia. Clin Neurophysiol 2019; 130:1033-1040. [PMID: 30930193 DOI: 10.1016/j.clinph.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/31/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Spasmodic dysphonia (SD) is a debilitating voice/speech disorder without an effective cure. To obtain a better understanding of the underlying cortical neural mechanism of the disease we analyzed electroencephalographic (EEG) signals of people with SD during voice production. METHOD Ten SD individuals and 10 healthy volunteers produced 50 vowel vocalization epochs of 2500 ms duration. Two EEG features were derived: (1) event-related change in spectral power during vocalization relative to rest, (2) inter-regional spectral coherence. RESULTS During early vocalization (500-1000 ms) the SD group showed significantly larger alpha band spectral power over the left motor cortex. During late vocalization (1000-2500 ms) SD patients showed a significantly larger gamma band coherence between left somatosensory and premotor cortical areas. CONCLUSIONS Two atypical patterns of cortical activity characterize the pathophysiology of spasmodic dysphonia during voice production: (1) a reduced movement-related desynchronization of motor cortical networks, (2) an excessively large synchronization between left somatosensory and premotor cortical areas. SIGNIFICANCE The pathophysiology of SD is characterized by an abnormally high synchronous activity within and across cortical neural networks involved in voice production that is mainly lateralized in the left hemisphere.
Collapse
|
1133
|
The Hemispheric Distribution of α-Band EEG Activity During Orienting of Attention in Patients with Reduced Awareness of the Left Side of Space (Spatial Neglect). J Neurosci 2019; 39:4332-4343. [PMID: 30902872 DOI: 10.1523/jneurosci.2206-18.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/02/2019] [Accepted: 01/19/2019] [Indexed: 11/21/2022] Open
Abstract
EEG studies in healthy humans have highlighted that alpha-band activity is relatively reduced over the occipital-parietal areas of the hemisphere contralateral to the direction of spatial attention. Here, we investigated the hemispheric distribution of alpha during orienting of attention in male and female right brain-damaged patients with left spatial neglect. Temporal spectral evolution showed that in patients with neglect alpha oscillations over the damaged hemisphere were pathologically enhanced both during the baseline-fixation period that preceded cued orienting (capturing tonic alpha changes) and during orienting with leftward, rightward, or neutral-bilateral spatial cues (reflecting phasic alpha changes). Patients without neglect showed a similar though significantly less enhanced hemispheric asymmetry. Healthy control subjects displayed a conventional decrease of alpha activity over the hemisphere contralateral to the direction of orienting. In right-brain-damaged patients, neglect severity in the line bisection task was significantly correlated both with tonic alpha asymmetry during the baseline period and with phasic asymmetries during orienting of attention with neutral-bilateral and leftward cues. Asymmetries with neutral-bilateral and leftward cues were correlated with lesion of white matter tracts linking frontal with parietal-occipital areas. These findings show that disruption of rostrocaudal white matter connectivity in the right hemisphere interferes with the maintenance of optimal baseline tonic levels of alpha and the phasic modulation of alpha activity during shifts of attention. The hemispheric distribution of alpha activity can be used as a diagnostic tool for acquired pathological biases of spatial attention due to unilateral brain damage.SIGNIFICANCE STATEMENT Alpha desynchronization over the hemisphere contralateral to the attended side of space is a reliable marker of attentional orienting in the healthy human brain: can the same marker be used to spot and quantify acquired disturbances of spatial attention after unilateral brain injuries? Are pathological modifications in the hemispheric distribution of alpha specifically linked to attentional neglect for one side of space? We show that in patients with right brain damage the pathological enhancement of alpha oscillations over the parietal and occipital areas of the injured hemisphere is correlated with reduced awareness for the left side of space and with the lesion of white matter pathways that subserve frontal modulation of alpha activity in posterior brain areas.
Collapse
|
1134
|
Frontal and parietal alpha oscillations reflect attentional modulation of cross-modal matching. Sci Rep 2019; 9:5030. [PMID: 30903012 PMCID: PMC6430816 DOI: 10.1038/s41598-019-41636-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/14/2019] [Indexed: 11/08/2022] Open
Abstract
Multisensory perception is shaped by both attentional selection of relevant sensory inputs and exploitation of stimulus-driven factors that promote cross-modal binding. Underlying mechanisms of both top-down and bottom-up modulations have been linked to changes in alpha/gamma dynamics in primary sensory cortices and temporoparietal cortex. Accordingly, it has been proposed that alpha oscillations provide pulsed inhibition for gamma activity and thereby dynamically route cortical information flow. In this study, we employed a recently introduced multisensory paradigm incorporating both bottom-up and top-down aspects of cross-modal attention in an EEG study. The same trimodal stimuli were presented in two distinct attentional conditions, focused on visual-tactile or audio-visual components, for which cross-modal congruence of amplitude changes had to be evaluated. Neither top-down nor bottom-up cross-modal attention modulated alpha or gamma power in primary sensory cortices. Instead, we found alpha band effects in bilateral frontal and right parietal cortex. We propose that frontal alpha oscillations reflect the origin of top-down control regulating perceptual gains and that modulations of parietal alpha oscillations relates to intersensory re-orienting. Taken together, we suggest that the idea of selective cortical routing via alpha oscillations can be extended from sensory cortices to the frontoparietal attention network.
Collapse
|
1135
|
Fassnidge C, Ball D, Kazaz Z, Knudsen S, Spicer A, Tipple A, Freeman E. Hearing through Your Eyes: Neural Basis of Audiovisual Cross-activation, Revealed by Transcranial Alternating Current Stimulation. J Cogn Neurosci 2019; 31:922-935. [PMID: 30883286 DOI: 10.1162/jocn_a_01395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Some people experience auditory sensations when seeing visual flashes or movements. This prevalent synaesthesia-like visually evoked auditory response (vEAR) could result either from overexuberant cross-activation between brain areas and/or reduced inhibition of normally occurring cross-activation. We have used transcranial alternating current stimulation (tACS) to test these theories. We applied tACS at 10 Hz (alpha band frequency) or 40 Hz (gamma band), bilaterally either to temporal or occipital sites, while measuring same/different discrimination of paired auditory (A) versus visual (V) Morse code sequences. At debriefing, participants were classified as vEAR or non-vEAR, depending on whether they reported "hearing" the silent flashes. In non-vEAR participants, temporal 10-Hz tACS caused impairment of A performance, which correlated with improved V; conversely under occipital tACS, poorer V performance correlated with improved A. This reciprocal pattern suggests that sensory cortices are normally mutually inhibitory and that alpha-frequency tACS may bias the balance of competition between them. vEAR participants showed no tACS effects, consistent with reduced inhibition, or enhanced cooperation between modalities. In addition, temporal 40-Hz tACS impaired V performance, specifically in individuals who showed a performance advantage for V (relative to A). Gamma-frequency tACS may therefore modulate the ability of these individuals to benefit from recoding flashes into the auditory modality, possibly by disrupting cross-activation of auditory areas by visual stimulation. Our results support both theories, suggesting that vEAR may depend on disinhibition of normally occurring sensory cross-activation, which may be expressed more strongly in some individuals. Furthermore, endogenous alpha- and gamma-frequency oscillations may function respectively to inhibit or promote this cross-activation.
Collapse
Affiliation(s)
| | - Danny Ball
- City University London.,University College London
| | | | | | | | | | | |
Collapse
|
1136
|
Lohani M, Payne BR, Strayer DL. A Review of Psychophysiological Measures to Assess Cognitive States in Real-World Driving. Front Hum Neurosci 2019; 13:57. [PMID: 30941023 PMCID: PMC6434408 DOI: 10.3389/fnhum.2019.00057] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/01/2019] [Indexed: 11/13/2022] Open
Abstract
As driving functions become increasingly automated, motorists run the risk of becoming cognitively removed from the driving process. Psychophysiological measures may provide added value not captured through behavioral or self-report measures alone. This paper provides a selective review of the psychophysiological measures that can be utilized to assess cognitive states in real-world driving environments. First, the importance of psychophysiological measures within the context of traffic safety is discussed. Next, the most commonly used physiology-based indices of cognitive states are considered as potential candidates relevant for driving research. These include: electroencephalography and event-related potentials, optical imaging, heart rate and heart rate variability, blood pressure, skin conductance, electromyography, thermal imaging, and pupillometry. For each of these measures, an overview is provided, followed by a discussion of the methods for measuring it in a driving context. Drawing from recent empirical driving and psychophysiology research, the relative strengths and limitations of each measure are discussed to highlight each measures' unique value. Challenges and recommendations for valid and reliable quantification from lab to (less predictable) real-world driving settings are considered. Finally, we discuss measures that may be better candidates for a near real-time assessment of motorists' cognitive states that can be utilized in applied settings outside the lab. This review synthesizes the literature on in-vehicle psychophysiological measures to advance the development of effective human-machine driving interfaces and driver support systems.
Collapse
Affiliation(s)
- Monika Lohani
- Department of Educational Psychology, University of Utah, Salt Lake City, UT, United States
| | - Brennan R. Payne
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
| | - David L. Strayer
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
1137
|
Wolff A, Gomez-Pilar J, Nakao T, Northoff G. Interindividual neural differences in moral decision-making are mediated by alpha power and delta/theta phase coherence. Sci Rep 2019; 9:4432. [PMID: 30872647 PMCID: PMC6418194 DOI: 10.1038/s41598-019-40743-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/21/2019] [Indexed: 01/08/2023] Open
Abstract
As technology in Artificial Intelligence has developed, the question of how to program driverless cars to respond to an emergency has arisen. It was recently shown that approval of the consequential behavior of driverless cars varied with the number of lives saved and showed interindividual differences, with approval increasing alongside the number of lives saved. In the present study, interindividual differences in individualized moral decision-making at both the behavioral and neural level were investigated using EEG. It was found that alpha event-related spectral perturbation (ERSP) and delta/theta phase-locking - intertrial coherence (ITC) and phase-locking value (PLV) - play a central role in mediating interindividual differences in Moral decision-making. In addition, very late alpha activity differences between individualized and shared stimuli, and delta/theta ITC, where shown to be closely related to reaction time and subjectively perceived emotional distress. This demonstrates that interindividual differences in Moral decision-making are mediated neuronally by various markers - late alpha ERSP, and delta/theta ITC - as well as psychologically by reaction time and perceived emotional distress. Our data show, for the first time, how and according to which neuronal and behavioral measures interindividual differences in Moral dilemmas can be measured.
Collapse
Affiliation(s)
- Annemarie Wolff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid, Spain
| | - Takashi Nakao
- Department of Psychology, Graduate School of Education, Hiroshima University, Hiroshima, Japan
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| |
Collapse
|
1138
|
Abstract
Altered power of resting-state neurophysiological activity has been associated with autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which commonly co-occur. We compared resting-state neurophysiological power in children with ASD, ADHD, co-occurring ASD + ADHD, and typically developing controls. Children with ASD (ASD/ASD + ADHD) showed reduced theta and alpha power compared to children without ASD (controls/ADHD). Children with ADHD (ADHD/ASD + ADHD) displayed decreased delta power compared to children without ADHD (ASD/controls). Children with ASD + ADHD largely presented as an additive co-occurrence with deficits of both disorders, although reduced theta compared to ADHD-only and reduced delta compared to controls suggested some unique markers. Identifying specific neurophysiological profiles in ASD and ADHD may assist in characterising more homogeneous subgroups to inform treatment approaches and aetiological investigations.
Collapse
|
1139
|
Alexander ML, Alagapan S, Lugo CE, Mellin JM, Lustenberger C, Rubinow DR, Fröhlich F. Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl Psychiatry 2019; 9:106. [PMID: 30837453 PMCID: PMC6401041 DOI: 10.1038/s41398-019-0439-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most common psychiatric disorders, but pharmacological treatments are ineffective in a substantial fraction of patients and are accompanied by unwanted side effects. Here we evaluated the feasibility and efficacy of transcranial alternating current stimulation (tACS) at 10 Hz, which we hypothesized would improve clinical symptoms by renormalizing alpha oscillations in the left dorsolateral prefrontal cortex (dlPFC). To this end, 32 participants with MDD were randomized to 1 of 3 arms and received daily 40 min sessions of either 10 Hz-tACS, 40 Hz-tACS, or active sham stimulation for 5 consecutive days. Symptom improvement was assessed using the Montgomery-Åsberg Depression Rating Scale (MADRS) as the primary outcome. High-density electroencephalograms (hdEEGs) were recorded to measure changes in alpha oscillations as the secondary outcome. For the primary outcome, we did not observe a significant interaction between treatment condition (10 Hz-tACS, 40 Hz-tACS, sham) and session (baseline to 4 weeks after completion of treatment); however, exploratory analyses show that 2 weeks after completion of the intervention, the 10 Hz-tACS group had more responders (MADRS and HDRS) compared with 40 Hz-tACS and sham groups (n = 30, p = 0.026). Concurrently, we found a significant reduction in alpha power over the left frontal regions in EEG after completion of the intervention for the group that received per-protocol 10 Hz-tACS (n = 26, p < 0.05). Our data suggest that targeting oscillations with tACS has potential as a therapeutic intervention for treatment of MDD.
Collapse
Affiliation(s)
- Morgan L. Alexander
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,0000000122483208grid.10698.36Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Sankaraleengam Alagapan
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,0000000122483208grid.10698.36Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Courtney E. Lugo
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Juliann M. Mellin
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,0000000122483208grid.10698.36Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Caroline Lustenberger
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,0000 0001 2156 2780grid.5801.cNeural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092 Switzerland
| | - David R. Rubinow
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
1140
|
Magosso E, Ricci G, Ursino M. Modulation of brain alpha rhythm and heart rate variability by attention-related mechanisms. AIMS Neurosci 2019; 6:1-24. [PMID: 32341965 PMCID: PMC7179347 DOI: 10.3934/neuroscience.2019.1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/12/2019] [Indexed: 12/04/2022] Open
Abstract
According to recent evidence, oscillations in the alpha-band (8–14 Hz) play an active role in attention via allocation of cortical resources: decrease in alpha activity enhances neural processes in task-relevant regions, while increase in alpha activity reduces processing in task-irrelevant regions. Here, we analyzed changes in alpha-band power of 13-channel electroencephalogram (EEG) acquired from 30 subjects while performing four tasks that differently engaged visual, computational and motor attentional components. The complete (visual + computational + motor) task required to read and solve an arithmetical operation and provide a motor response; three simplified tasks involved a subset of these components (visual + computational task, visual task, motor task). Task-related changes in alpha power were quantified by aggregating electrodes into two main regions (fronto-central and parieto-occipital), to test regional specificity of alpha modulation depending on the involved attentional aspects. Independent Component Analysis (ICA) was applied to discover the main independent processes accounting for alpha power over the two scalp regions. Furthermore, we performed analysis of Heart Rate Variability (HRV) from one electrocardiogram signal acquired simultaneously with EEG, to test autonomic reaction to attentional loads. Results showed that alpha power modulation over the two scalp regions not only reflected the number of involved attentional components (the larger their number the larger the alpha power suppression) but was also fine-tuned by the nature of the recruited mechanisms (visual, computational, motor) relative to the functional specification of the regions. ICA revealed topologically dissimilar and differently attention-regulated processes of alpha power over the two regions. HRV indexes were less sensitive to different attentional aspects compared to alpha power, with vagal activity index presenting larger changes. This study contributes to improve our understanding of the electroencephalographic and autonomic correlates of attention and may have practical implications in neurofeedback, brain-computer interfaces, neuroergonomics as well as in clinical practice and neuroscience research exploring attention-deficit disorders.
Collapse
Affiliation(s)
- Elisa Magosso
- Department of Electrical, Electronic and Information Engineering, Campus of Cesena, University of Bologna, Cesena (FC), Italy
| | - Giulia Ricci
- Department of Electrical, Electronic and Information Engineering, Campus of Cesena, University of Bologna, Cesena (FC), Italy
| | - Mauro Ursino
- Department of Electrical, Electronic and Information Engineering, Campus of Cesena, University of Bologna, Cesena (FC), Italy
| |
Collapse
|
1141
|
Gallicchio G, Ring C. Don't look, don't think, just do it! Toward an understanding of alpha gating in a discrete aiming task. Psychophysiology 2019; 56:e13298. [PMID: 30362125 PMCID: PMC6849619 DOI: 10.1111/psyp.13298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 12/31/2022]
Abstract
Prior to and during movement, oscillatory alpha activity gates cognitive resources toward motor areas of the cortex by inhibiting neuronal excitability in nonmotor areas. The present study examined the effect of manipulating target variability on this alpha gating phenomenon. Using a baseline-test-retention design, we measured EEG alpha power, performance accuracy, and task difficulty in 32 recreational golfers as they putted golf balls (20 per target) to one central target (baseline, retention) and four targets of different directions and extents (manipulation). For participants in the random group (n = 16), target location varied with each repetition in a random fashion, whereas for participants in the blocked group (n = 16), it was kept constant within blocks. Regional analyses revealed a focal pattern of lower central alpha and higher occipital and temporal alpha. This topography was specific to preparation for movement and was associated with performance: smallest performance errors were preceded by decreased central combined with increased occipital alpha. The random group performed worse than the blocked group and found the task more difficult. Importantly, left temporal alpha prior to movement onset was lower for the random group than the blocked group. No group differences were found at baseline or retention. Our study proved that alpha gating can be altered by manipulating intertrial variability and thereby demonstrated the utility of the alpha gating model. Our findings underscore the importance of inhibiting occipital and left temporal areas when performing movements and provide further evidence that alpha gating reflects neural efficiency during motor tasks.
Collapse
Affiliation(s)
- Germano Gallicchio
- School of Sport, Exercise & Rehabilitation SciencesUniversity of BirminghamEdgbastonUK
| | - Christopher Ring
- School of Sport, Exercise & Rehabilitation SciencesUniversity of BirminghamEdgbastonUK
| |
Collapse
|
1142
|
D'Andrea A, Chella F, Marshall TR, Pizzella V, Romani GL, Jensen O, Marzetti L. Alpha and alpha-beta phase synchronization mediate the recruitment of the visuospatial attention network through the Superior Longitudinal Fasciculus. Neuroimage 2019; 188:722-732. [DOI: 10.1016/j.neuroimage.2018.12.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
|
1143
|
Seo NJ, Lakshminarayanan K, Lauer AW, Ramakrishnan V, Schmit BD, Hanlon CA, George MS, Bonilha L, Downey RJ, DeVries W, Nagy T. Use of imperceptible wrist vibration to modulate sensorimotor cortical activity. Exp Brain Res 2019; 237:805-816. [PMID: 30607471 PMCID: PMC6613561 DOI: 10.1007/s00221-018-05465-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
Abstract
Peripheral sensory stimulation has been used as a method to stimulate the sensorimotor cortex, with applications in neurorehabilitation. To improve delivery modality and usability, a new stimulation method has been developed in which imperceptible random-frequency vibration is applied to the wrist concurrently during hand activity. The objective of this study was to investigate effects of this new sensory stimulation on the sensorimotor cortex. Healthy adults were studied. In a transcranial magnetic stimulation (TMS) study, resting motor threshold, short-interval intracortical inhibition, and intracortical facilitation for the abductor pollicis brevis muscle were compared between vibration on vs. off, while subjects were at rest. In an electroencephalogram (EEG) study, alpha and beta power during rest and event-related desynchronization (ERD) for hand grip were compared between vibration on vs. off. Results showed that vibration decreased EEG power and decreased TMS short-interval intracortical inhibition (i.e., disinhibition) compared with no vibration at rest. Grip-related ERD was also greater during vibration, compared to no vibration. In conclusion, subthreshold random-frequency wrist vibration affected the release of intracortical inhibition and both resting and grip-related sensorimotor cortical activity. Such effects may have implications in rehabilitation.
Collapse
Affiliation(s)
- Na Jin Seo
- Department of Health Professions, Medical University of South Carolina, 151B Rutledge Ave., Charleston, SC, 29425, USA.
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Kishor Lakshminarayanan
- Department of Industrial and Manufacturing Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | - Abigail W Lauer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Viswanathan Ramakrishnan
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA
| | - Colleen A Hanlon
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ryan J Downey
- Department of Health Professions, Medical University of South Carolina, 151B Rutledge Ave., Charleston, SC, 29425, USA
| | - Will DeVries
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Tibor Nagy
- Department of Chemistry, Appalachian State University, Boone, NC, 28608, USA
| |
Collapse
|
1144
|
Köster M, Martens U, Gruber T. Memory entrainment by visually evoked theta-gamma coupling. Neuroimage 2019; 188:181-187. [DOI: 10.1016/j.neuroimage.2018.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/10/2018] [Accepted: 12/01/2018] [Indexed: 11/26/2022] Open
|
1145
|
Vianney-Rodrigues P, Auerbach BD, Salvi R. Aberrant thalamocortical coherence in an animal model of tinnitus. J Neurophysiol 2019; 121:893-907. [PMID: 30625004 PMCID: PMC6520628 DOI: 10.1152/jn.00053.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 12/14/2018] [Accepted: 01/07/2019] [Indexed: 11/22/2022] Open
Abstract
Electrophysiological and imaging studies from humans suggest that the phantom sound of tinnitus is associated with abnormal thalamocortical neural oscillations (dysrhythmia) and enhanced gamma band activity in the auditory cortex. However, these models have seldom been tested in animal models where it is possible to simultaneously assess the neural oscillatory activity within and between the thalamus and auditory cortex. To explore this issue, we used multichannel electrodes to examine the oscillatory behavior of local field potentials recorded in the rat medial geniculate body (MBG) and primary auditory cortex (A1) before and after administering a dose of sodium salicylate (SS) that reliably induces tinnitus. In the MGB, SS reduced theta, alpha, and beta oscillations and decreased coherence (synchrony) between electrode pairs in theta, alpha, and beta bands but increased coherence in the gamma band. Within A1, SS significantly increased gamma oscillations, decreased theta power, and decreased coherence between electrode pairs in theta and alpha bands but increased coherence in the gamma band. When coherence was measured between one electrode in the MGB and another in A1, SS decreased coherence in beta, alpha, and theta bands but increased coherence in the gamma band. SS also increased cross-frequency coupling between the phase of theta oscillations in the MGB and amplitude of gamma oscillations in A1. Altogether, our results suggest that SS treatment fundamentally alters the manner in which thalamocortical circuits communicate, leading to excessive cortical gamma power and synchronization, neurophysiological changes implicated in tinnitus. Our data provide support for elements of both the thalamocortical dysrhythmia (TD) and synchronization by loss of inhibition (SLIM) models of tinnitus, demonstrating that increased cortical gamma band activity is associated with both enhanced theta-gamma coupling as well as decreases alpha power/coherence between the MGB and A1. NEW & NOTEWORTHY There are no effective drugs to alleviate the phantom sound of tinnitus because the physiological mechanisms leading to its generation are poorly understood. Neural models of tinnitus suggest that it arises from abnormal thalamocortical oscillations, but these models have not been extensively tested. This article identifies abnormal thalamocortical oscillations in a drug-induced tinnitus model. Our findings open up new avenues of research to investigate whether cellular mechanisms underlying thalamocortical oscillations are causally linked to tinnitus.
Collapse
Affiliation(s)
| | | | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo , Buffalo, New York
| |
Collapse
|
1146
|
The Strength of Alpha-Beta Oscillatory Coupling Predicts Motor Timing Precision. J Neurosci 2019; 39:3277-3291. [PMID: 30792271 DOI: 10.1523/jneurosci.2473-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/23/2018] [Accepted: 12/16/2018] [Indexed: 11/21/2022] Open
Abstract
Precise timing makes the difference between harmony and cacophony, but how the brain achieves precision during timing is unknown. In this study, human participants (7 females, 5 males) generated a time interval while being recorded with magnetoencephalography. Building on the proposal that the coupling of neural oscillations provides a temporal code for information processing in the brain, we tested whether the strength of oscillatory coupling was sensitive to self-generated temporal precision. On a per individual basis, we show the presence of alpha-beta phase-amplitude coupling whose strength was associated with the temporal precision of self-generated time intervals, not with their absolute duration. Our results provide evidence that active oscillatory coupling engages α oscillations in maintaining the precision of an endogenous temporal motor goal encoded in β power; the when of self-timed actions. We propose that oscillatory coupling indexes the variance of neuronal computations, which translates into the precision of an individual's behavioral performance.SIGNIFICANCE STATEMENT Which neural mechanisms enable precise volitional timing in the brain is unknown, yet accurate and precise timing is essential in every realm of life. In this study, we build on the hypothesis that neural oscillations, and their coupling across time scales, are essential for the coding and for the transmission of information in the brain. We show the presence of alpha-beta phase-amplitude coupling (α-β PAC) whose strength was associated with the temporal precision of self-generated time intervals, not with their absolute duration. α-β PAC indexes the temporal precision with which information is represented in an individual's brain. Our results link large-scale neuronal variability on the one hand, and individuals' timing precision, on the other.
Collapse
|
1147
|
Mapelli I, Özkurt TE. Brain Oscillatory Correlates of Visual Short-Term Memory Errors. Front Hum Neurosci 2019; 13:33. [PMID: 30814942 PMCID: PMC6381075 DOI: 10.3389/fnhum.2019.00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/22/2019] [Indexed: 11/13/2022] Open
Abstract
Brain dynamics of memory formation were explored during encoding and retention intervals of a visual working memory task. EEG data were acquired while subjects were exposed to grayscale images of widely known object categories (e.g., "luggage," "chair," and "car"). Following a short delay, two probes were shown to test memory accuracy. Oscillatory portraits of successful and erroneous memories were contrasted. Where significant differences were identified, oscillatory traits of false memories (i.e., when a novel probe item of the same category is recognized as familiar) were compared with those of successful and erroneous memories. Spectral analysis revealed theta (6-8 Hz) power over occipital channels for encoding of successful and false memories that was smaller when compared to other types of memory errors. The reduced theta power indicates successful encoding and reflects the efficient activation of the underlying neural assemblies. Prominent alpha-beta (10-26 Hz) activity belonging to the right parieto-occipital channels was identified during the retention interval. It was found to be larger for false memories and errors than that of correctly answered trials. High levels of alpha-beta oscillatory activity for errors correspond to poor maintenance leading to inefficient allocation of WM resources. In case of false memories, this would imply necessary cognitive effort to manage the extra semantic and perceptual load induced by the encoded stimuli.
Collapse
Affiliation(s)
- Igor Mapelli
- Neurosignal Laboratory, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Tolga Esat Özkurt
- Neurosignal Laboratory, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
1148
|
Buchholz VN, David N, Sengelmann M, Engel AK. Belief of agency changes dynamics in sensorimotor networks. Sci Rep 2019; 9:1995. [PMID: 30760743 PMCID: PMC6374441 DOI: 10.1038/s41598-018-37912-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/14/2018] [Indexed: 01/15/2023] Open
Abstract
Controlling an event through one's own action usually induces a sense of agency, a feeling that arises when an expected outcome matches the intention. The neural correlates of this feeling remain controversial however, as experimental manipulation of the action-outcome chain often introduces mismatch or prediction errors that strongly correlate with the sense of agency. Here, we took a different approach and manipulated the causal belief (self-attribution vs. computer-attribution) by external cues during matched visuo-motor tapping conditions. With magneto-encephalography, we studied the sense of agency from a network perspective, investigating in source space the modulation of local population activity and changes in functional connectivity with motor cortex. Our results show that during the belief of agency primary motor cortex (M1) shows stronger functional connectivity (mediated by the beta band) to inferior parietal lobe and right middle temporal gyrus (MTG). Furthermore, the local feed-forward activity (gamma band power) in extrastriate body area and MTG disappears with that belief. After changes in action context, left M1 shows stronger connectivity in the alpha band with right premotor cortex and left insular-temporal cortex a network that might support active inference in social action context. Finally, a better tapping performance in this rhythmic task was related to alpha power modulations in the bilateral cerebellum and bilateral fusiform body-area, with power suppression during a more precise performance. These findings highlight the role of multiple networks supporting the sense of agency by changing their relative contribution for different causal beliefs.
Collapse
Affiliation(s)
- Verena N Buchholz
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. .,Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Nicole David
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Malte Sengelmann
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| |
Collapse
|
1149
|
Xiao Y, Wu J, Tang W, Sun C, Ma F, Guo L. Cognition Impairment Prior to Errors of Working Memory Based on Event-Related Potential. Front Behav Neurosci 2019; 13:13. [PMID: 30809135 PMCID: PMC6379263 DOI: 10.3389/fnbeh.2019.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022] Open
Abstract
Cognitive impairment contributes to errors in different tasks. Poor attention and poor cognitive control are the two neural mechanisms for performance errors. A few studies have been conducted on the error mechanism of working memory. It is unclear whether the changes in memory updating, attention, and cognitive control can cause errors and, if so, whether they can be probed at the same time in one single task. Therefore, this study analyzed event-related potentials in a two-back working memory task. A total of 40 male participants finished the task. The differences between the error and the correct trials in amplitudes and latencies of N1, P2, N2, and P3 were analyzed. The P2 and P3 amplitudes decreased significantly in the error trials, while the N2 amplitude increased. The results showed that impaired attention, poor memory updating, and impaired cognitive control were consistently associated with the error in working memory. Furthermore, the results suggested that monitoring the neurophysiological characteristics associated with attention and cognitive control was important for studying the error mechanism and error prediction. The results also suggested that the P3 and N2 amplitudes could be used as indexes for error foreshadowing.
Collapse
Affiliation(s)
- Yi Xiao
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Jintao Wu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Weicai Tang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Chenhui Sun
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Feng Ma
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China.,School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Lingling Guo
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China.,Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
1150
|
Doherty BR, van Ede F, Fraser A, Patai EZ, Nobre AC, Scerif G. The Functional Consequences of Social Attention for Memory-guided Attention Orienting and Anticipatory Neural Dynamics. J Cogn Neurosci 2019; 31:686-698. [PMID: 30726182 DOI: 10.1162/jocn_a_01379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Social attention when viewing natural social (compared with nonsocial) images has functional consequences on contextual memory in healthy human adults. In addition to attention affecting memory performance, strong evidence suggests that memory, in turn, affects attentional orienting. Here, we ask whether the effects of social processing on memory alter subsequent memory-guided attention orienting and corresponding anticipatory dynamics of 8-12 Hz alpha-band oscillations as measured with EEG. Eighteen young adults searched for targets in scenes that contained either social or nonsocial distracters and their memory precision tested. Subsequently, RT was measured as participants oriented to targets appearing in those scenes at either valid (previously learned) locations or invalid (different) locations. Memory precision was poorer for target locations in social scenes. In addition, distractor type moderated the validity effect during memory-guided attentional orienting, with a larger cost in RT when targets appeared at invalid (different) locations within scenes with social distractors. The poorer memory performance was also marked by reduced anticipatory dynamics of spatially lateralized 8-12 Hz alpha-band oscillations for scenes with social distractors. The functional consequences of a social attention bias therefore extend from memory to memory-guided attention orienting, a bidirectional chain that may further reinforce attentional biases.
Collapse
|