1151
|
Age- and brain region-specific effects of dietary vitamin K on myelin sulfatides. J Nutr Biochem 2010; 21:1083-8. [PMID: 20092997 DOI: 10.1016/j.jnutbio.2009.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/13/2009] [Accepted: 09/17/2009] [Indexed: 02/06/2023]
Abstract
Dysregulation of myelin sulfatides is a risk factor for cognitive decline with age. Vitamin K is present in high concentrations in the brain and has been implicated in the regulation of sulfatide metabolism. Our objective was to investigate the age-related interrelation between dietary vitamin K and sulfatides in myelin fractions isolated from the brain regions of Fischer 344 male rats fed one of two dietary forms of vitamin K: phylloquinone or its hydrogenated form, 2',3'-dihydrophylloquinone (dK), for 28 days. Both dietary forms of vitamin K were converted to menaquinone-4 (MK-4) in the brain. The efficiency of dietary dK conversion to MK-4 compared to dietary phylloquinone was lower in the striatum and cortex, and was similar to that in the hippocampus. There were significant positive correlations between sulfatides and MK-4 in the hippocampus (phylloquinone-supplemented diet, 12 and 24 months; dK-supplemented diet, 12 months) and cortex (phylloquinone-supplemented diet, 12 and 24 months). No significant correlations were observed in the striatum. Furthermore, sulfatides in the hippocampus were significantly positively correlated with MK-4 in serum. This is the first attempt to establish and characterize a novel animal model that exploits the inability of dietary dK to convert to brain MK-4 to study the dietary effects of vitamin K on brain sulfatide in brain regions controlling motor and cognitive functions. Our findings suggest that this animal model may be useful for investigation of the effect of the dietary vitamin K on sulfatide metabolism, myelin structure and behavior functions.
Collapse
|
1152
|
Wang L, Li Y, Metzak P, He Y, Woodward TS. Age-related changes in topological patterns of large-scale brain functional networks during memory encoding and recognition. Neuroimage 2010; 50:862-72. [PMID: 20093190 DOI: 10.1016/j.neuroimage.2010.01.044] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 12/18/2009] [Accepted: 01/13/2010] [Indexed: 11/26/2022] Open
Abstract
In this study we used functional magnetic resonance imaging to investigate age-related changes in large-scale brain functional networks during memory encoding and recognition in 12 younger and 16 older adults. For each participant, functional brain networks were constructed by computing temporal correlation matrices of 90 brain regions and analyzed using graph theoretical approaches. We found the age-related changes mainly in the long-range connections with widespread reductions associated with aging in the fronto-temporal and temporo-parietal regions, and a few age-related increases in the posterior parietal regions. Graph theoretical analysis revealed that the older adults had longer path lengths linking different regions in the functional brain networks as compared to the younger adults. Further analysis indicated that the increases in shortest path length in the networks were combined with the loss of long-range connections. Finally, we showed that for older adults, frontal areas played reduced roles in the network (reduced regional centrality), whereas several default-mode regions played increased roles relative to younger subjects (increased regional centrality). Together, our results suggest that normal aging is associated with disruption of large-scale brain systems during the performance of memory tasks, which provides novel insights into the understanding of age-related decline in multiple cognitive functions.
Collapse
Affiliation(s)
- Liang Wang
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
1153
|
Park DC, Polk TA, Hebrank AC, Jenkins LJ. Age differences in default mode activity on easy and difficult spatial judgment tasks. Front Hum Neurosci 2010; 3:75. [PMID: 20126437 PMCID: PMC2814559 DOI: 10.3389/neuro.09.075.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/22/2009] [Indexed: 11/13/2022] Open
Abstract
The default network is a system of brain areas that are engaged when the mind is not involved in goal-directed activity. Most previous studies of age-related changes in default mode processing have used verbal tasks. We studied non-verbal spatial tasks that vary in difficulty. We presented old and young participants with two spatial judgment tasks: an easy categorical judgment and a more demanding coordinate judgment. We report that (a) Older adults show markedly less default network modulation than young on the demanding spatial task, but there is age equivalence on the easy task; (b) This Age × Task interaction is restricted to the default network: Brain areas that are deactivated by the tasks, but that are outside the default network, show no interaction; (c) Young adults exhibit significantly stronger functional connectivity among posterior regions of the default network compared with older adults, whereas older adults exhibit stronger connectivity between medial prefrontal cortex and other sites; and (d) The relationship of default activity to reaction time performance on the spatial tasks is mediated by age: in old adults, those who deactivate the default network most also perform best, whereas the opposite is true in younger adults. These results extend the findings of age-related changes in default mode processing and connectivity to visuo-spatial tasks and demonstrate that the results are specific to the default network.
Collapse
Affiliation(s)
- Denise C Park
- Center for Vital Longevity, University of Texas at Dallas Dallas, TX, USA
| | | | | | | |
Collapse
|
1154
|
Mennes M, Kelly C, Zuo XN, Di Martino A, Biswal BB, Castellanos FX, Milham MP. Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. Neuroimage 2010; 50:1690-701. [PMID: 20079856 DOI: 10.1016/j.neuroimage.2010.01.002] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 12/29/2009] [Accepted: 01/03/2010] [Indexed: 11/28/2022] Open
Abstract
The resting brain exhibits coherent patterns of spontaneous low-frequency BOLD fluctuations. These so-called resting-state functional connectivity (RSFC) networks are posited to reflect intrinsic representations of functional systems commonly implicated in cognitive function. Yet, the direct relationship between RSFC and the BOLD response induced by task performance remains unclear. Here we examine the relationship between a region's pattern of RSFC across participants and that same region's level of BOLD activation during an Eriksen Flanker task. To achieve this goal we employed a voxel-matched regression method, which assessed whether the magnitude of task-induced activity at each brain voxel could be predicted by measures of RSFC strength for the same voxel, across 26 healthy adults. We examined relationships between task-induced activation and RSFC strength for six different seed regions [Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E., 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 102, 9673-9678.], as well as the "default mode" and "task-positive" resting-state networks in their entirety. Our results indicate that, for a number of brain regions, inter-individual differences in task-induced BOLD activity were predicted by one of two resting-state properties: (1) the region's positive connectivity strength with the task-positive network, or (2) its negative connectivity with the default mode network. Strikingly, most of the regions exhibiting a significant relationship between their RSFC properties and task-induced BOLD activity were located in transition zones between the default mode and task-positive networks. These results suggest that a common mechanism governs many brain regions' neural activity during rest and its neural activity during task performance.
Collapse
Affiliation(s)
- Maarten Mennes
- Phyllis Green and Randolph Cōwen Institute for Pediatric Neuroscience at the NYU Child Study Center, 215 Lexington Avenue 14th Floor, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
1155
|
Cekic M, Stein DG. Traumatic brain injury and aging: is a combination of progesterone and vitamin D hormone a simple solution to a complex problem? Neurotherapeutics 2010; 7:81-90. [PMID: 20129500 PMCID: PMC2834197 DOI: 10.1016/j.nurt.2009.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/27/2009] [Indexed: 12/19/2022] Open
Abstract
Although progress is being made in the development of new clinical treatments for traumatic brain injury (TBI), little is known about whether such treatments are effective in older patients, in whom frailty, prior medical conditions, altered metabolism, and changing sensitivity to medications all can affect outcomes following a brain injury. In this review we consider TBI to be a complex, highly variable, and systemic disorder that may require a new pharmacotherapeutic approach, one using combinations or cocktails of drugs to treat the many components of the injury cascade. We review some recent research on the role of vitamin D hormone and vitamin D deficiency in older subjects, and on the interactions of these factors with progesterone, the only treatment for TBI that has shown clinical effectiveness. Progesterone is now in phase III multicenter trial testing in the United States. We also discuss some of the potential mechanisms and pathways through which the combination of hormones may work, singly and in synergy, to enhance survival and recovery after TBI.
Collapse
Affiliation(s)
- Milos Cekic
- grid.189967.80000000419367398Department of Emergency Medicine, Emory University School of Medicine, 30322 Atlanta, Georgia
| | - Donald G. Stein
- grid.189967.80000000419367398Department of Emergency Medicine, Emory University School of Medicine, 30322 Atlanta, Georgia
| |
Collapse
|
1156
|
Van Dijk KRA, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 2010; 103:297-321. [PMID: 19889849 PMCID: PMC2807224 DOI: 10.1152/jn.00783.2009] [Citation(s) in RCA: 1457] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resting state functional connectivity MRI (fcMRI) is widely used to investigate brain networks that exhibit correlated fluctuations. While fcMRI does not provide direct measurement of anatomic connectivity, accumulating evidence suggests it is sufficiently constrained by anatomy to allow the architecture of distinct brain systems to be characterized. fcMRI is particularly useful for characterizing large-scale systems that span distributed areas (e.g., polysynaptic cortical pathways, cerebro-cerebellar circuits, cortical-thalamic circuits) and has complementary strengths when contrasted with the other major tool available for human connectomics-high angular resolution diffusion imaging (HARDI). We review what is known about fcMRI and then explore fcMRI data reliability, effects of preprocessing, analysis procedures, and effects of different acquisition parameters across six studies (n = 98) to provide recommendations for optimization. Run length (2-12 min), run structure (1 12-min run or 2 6-min runs), temporal resolution (2.5 or 5.0 s), spatial resolution (2 or 3 mm), and the task (fixation, eyes closed rest, eyes open rest, continuous word-classification) were varied. Results revealed moderate to high test-retest reliability. Run structure, temporal resolution, and spatial resolution minimally influenced fcMRI results while fixation and eyes open rest yielded stronger correlations as contrasted to other task conditions. Commonly used preprocessing steps involving regression of nuisance signals minimized nonspecific (noise) correlations including those associated with respiration. The most surprising finding was that estimates of correlation strengths stabilized with acquisition times as brief as 5 min. The brevity and robustness of fcMRI positions it as a powerful tool for large-scale explorations of genetic influences on brain architecture. We conclude by discussing the strengths and limitations of fcMRI and how it can be combined with HARDI techniques to support the emerging field of human connectomics.
Collapse
Affiliation(s)
- Koene R A Van Dijk
- Harvard University-Center for Brain Science, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
1157
|
|
1158
|
Jackson J, Balota DA, Head D. Exploring the relationship between personality and regional brain volume in healthy aging. Neurobiol Aging 2009; 32:2162-71. [PMID: 20036035 DOI: 10.1016/j.neurobiolaging.2009.12.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 12/05/2009] [Accepted: 12/11/2009] [Indexed: 11/15/2022]
Abstract
Aging is characterized by a reduction in regional brain volumes, particularly in prefrontal and medial temporal regions. Recent evidence suggests that personality may be related to neuroanatomical integrity. The present investigation explored whether the three targeted personality traits of neuroticism, conscientiousness, and extraversion moderated cross-sectional age-related decline in measures of neural integrity. Estimates of the personality traits and volumes of cerebral gray and white matter, prefrontal and medial temporal regions were obtained in a sample of 79 healthy adults aged 44-88. Higher neuroticism was associated with smaller regional volumes and greater decreases in volume with increasing age. Higher conscientiousness was related to larger regional volumes and less decline with advancing age. These results suggest that personality may not only relate to, but may also moderate age-related cross-sectional decline in prefrontal and medial temporal regions.
Collapse
Affiliation(s)
- Jonathan Jackson
- Department of Psychology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
1159
|
Exploring the brain in pain: activations, deactivations and their relation. Pain 2009; 148:257-267. [PMID: 20005043 DOI: 10.1016/j.pain.2009.11.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 09/25/2009] [Accepted: 11/06/2009] [Indexed: 10/20/2022]
Abstract
The majority of neuroimaging studies on pain focuses on the study of BOLD activations, and more rarely on deactivations. In this study, in a relatively large cohort of subjects (N=61), we assess (a) the extent of brain activation and deactivation during the application of two different heat pain levels (HIGH and LOW) and (b) the relations between these two directions of fMRI signal change. Furthermore, in a subset of our subjects (N=12), we assess (c) the functional connectivity of pain-activated or -deactivated regions during resting states. As previously observed, we find that pain stimuli induce intensity dependent (HIGH pain>LOW pain) fMRI signal increases across the pain matrix. Simultaneously, the noxious stimuli induce activity decreases in several brain regions, including some of the 'core structures' of the default network (DMN). In contrast to what we observe with the signal increases, the extent of deactivations is greater for LOW than HIGH pain stimuli. The functional dissociation between activated and deactivated networks is further supported by correlational and functional connectivity analyses. Our results illustrate the absence of a linear relationship between pain activations and deactivations, and therefore suggest that these brain signal changes underlie different aspects of the pain experience.
Collapse
|
1160
|
Delamillieure P, Doucet G, Mazoyer B, Turbelin MR, Delcroix N, Mellet E, Zago L, Crivello F, Petit L, Tzourio-Mazoyer N, Joliot M. The resting state questionnaire: An introspective questionnaire for evaluation of inner experience during the conscious resting state. Brain Res Bull 2009; 81:565-73. [PMID: 20003916 DOI: 10.1016/j.brainresbull.2009.11.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/27/2009] [Accepted: 11/29/2009] [Indexed: 11/15/2022]
Abstract
We designed a semi-structured questionnaire for the introspective evaluation of inner experience of participants undergoing functional magnetic resonance imaging (fMRI) in the resting state. This resting state questionnaire (ReSQ) consists of 62 items organized by five main types of mental activity: visual mental imagery (IMAG); inner language (LANG), split into two subtypes, inner speech (SPEE) and auditory mental imagery (AUDI); somatosensory awareness (SOMA); inner musical experience (MUSI); and mental manipulation of numbers (NUMB). For IMAG and LANG, additional questions estimated association of such activities with ongoing learning, retrospective memories, or prospective thoughts. Using a 0-100% scale, the participant quantitatively rated the proportion of time spent in each mental activity during the resting state fMRI acquisition. A total of 180 healthy volunteers completed the ReSQ immediately after being scanned with fMRI while at rest. Of these, 66% exhibited dominance of a type of mental activity at rest (IMAG: 35%; LANG: 17%; SOMA: 7%; MUSI: 6%; NUMB: 1%). A majority of participants reported either retrospective memories (82%) or prospective thoughts (78%), with 58% of participants reporting both in at least one type of mental activity. Thoughts related to ongoing learning were low (37% of participants). The present results are consistent with those of previous studies investigating inner experience in a natural environment. In conclusion, we provide a robust and easy-to-implement tool for the exploration of mental activities during rest of healthy participants undergoing fMRI. This tool relies on normative data acquired from a 180-participant sample balanced for sex and handedness.
Collapse
Affiliation(s)
- Pascal Delamillieure
- Centre d'Imagerie-Neurosciences et Applications aux Pathologies, UMR6232 CNRS, CEA, Universités de Caen et Paris Descartes, GIP-Cyceron, Bd Henri Becquerel, BP5229, 14074 Caen, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1161
|
Rodrigue KM, Kennedy KM, Park DC. Beta-amyloid deposition and the aging brain. Neuropsychol Rev 2009; 19:436-50. [PMID: 19908146 PMCID: PMC2844114 DOI: 10.1007/s11065-009-9118-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 10/06/2009] [Indexed: 10/20/2022]
Abstract
A central issue in cognitive neuroscience of aging research is pinpointing precise neural mechanisms that determine cognitive outcome in late adulthood as well as identifying early markers of less successful cognitive aging. One promising biomarker is beta amyloid (Abeta) deposition. Several new radiotracers have been developed that bind to fibrillar Abeta providing sensitive estimates of amyloid deposition in various brain regions. Abeta imaging has been primarily used to study patients with Alzheimer's Disease (AD) and individuals with Mild Cognitive Impairment (MCI); however, there is now building data on Abeta deposition in healthy controls that suggest at least 20% and perhaps as much as a third of healthy older adults show significant deposition. Considerable evidence suggests amyloid deposition precedes declines in cognition and may be the initiator in a cascade of events that indirectly leads to age-related cognitive decline. We review studies of Abeta deposition imaging in AD, MCI, and normal adults, its cognitive consequences, and the role of genetic risk and cognitive reserve.
Collapse
Affiliation(s)
- Karen M. Rodrigue
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 2200 W. Mockingbird Ln, Dallas, TX 75235, USA
| | - Kristen M. Kennedy
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 2200 W. Mockingbird Ln, Dallas, TX 75235, USA
| | - Denise C. Park
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 2200 W. Mockingbird Ln, Dallas, TX 75235, USA
| |
Collapse
|
1162
|
van den Heuvel MP, Mandl RCW, Kahn RS, Hulshoff Pol HE. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009; 30:3127-41. [PMID: 19235882 DOI: 10.1002/hbm.20737] [Citation(s) in RCA: 771] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During rest, multiple cortical brain regions are functionally linked forming resting-state networks. This high level of functional connectivity within resting-state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of our brain, enabling information to travel quickly from one brain region to another region. In this study, we examined both the functional and structural connections of the human brain in a group of 26 healthy subjects, combining 3 Tesla resting-state functional magnetic resonance imaging time-series with diffusion tensor imaging scans. Nine consistently found functionally linked resting-state networks were retrieved from the resting-state data. The diffusion tensor imaging scans were used to reconstruct the white matter pathways between the functionally linked brain areas of these resting-state networks. Our results show that well-known anatomical white matter tracts interconnect at least eight of the nine commonly found resting-state networks, including the default mode network, the core network, primary motor and visual network, and two lateralized parietal-frontal networks. Our results suggest that the functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain.
Collapse
|
1163
|
Hedden T, Van Dijk KRA, Becker JA, Mehta A, Sperling RA, Johnson KA, Buckner RL. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci 2009; 29:12686-94. [PMID: 19812343 PMCID: PMC2808119 DOI: 10.1523/jneurosci.3189-09.2009] [Citation(s) in RCA: 459] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 11/21/2022] Open
Abstract
Amyloid deposition is present in 20-50% of nondemented older adults yet the functional consequences remain unclear. The current study found that amyloid accumulation is correlated with functional disruption of the default network as measured by intrinsic activity correlations. Clinically normal participants (n = 38, aged 60-88 years) were characterized using (11)C-labeled Pittsburgh Compound B positron emission tomography imaging to estimate fibrillar amyloid burden and, separately, underwent functional magnetic resonance imaging (fMRI). The integrity of the default network was estimated by correlating rest-state fMRI time courses extracted from a priori regions including the posterior cingulate, lateral parietal, and medial prefrontal cortices. Clinically normal participants with high amyloid burden displayed significantly reduced functional correlations within the default network relative to participants with low amyloid burden. These reductions were also observed when amyloid burden was treated as a continuous, rather than a dichotomous, measure and when controlling for age and structural atrophy. Whole-brain analyses initiated by seeding the posterior cingulate cortex, a region of high amyloid burden in Alzheimer's disease, revealed significant disruption in the default network including functional disconnection of the hippocampal formation.
Collapse
Affiliation(s)
- Trey Hedden
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
1164
|
Fleisher AS, Sherzai A, Taylor C, Langbaum JBS, Chen K, Buxton RB. Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer's disease risk groups. Neuroimage 2009; 47:1678-90. [PMID: 19539034 PMCID: PMC2722694 DOI: 10.1016/j.neuroimage.2009.06.021] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/13/2009] [Accepted: 06/08/2009] [Indexed: 11/27/2022] Open
Abstract
To assess the ability of resting-state functional magnetic resonance imaging to distinguish known risk factors for AD, we evaluated 17 cognitively normal individuals with a family history of AD and at least one copy of the apolipoprotein e4 allele compared to 12 individuals who were not carriers of the APOE4 gene and did not have a family history of AD. Blood oxygen level dependent fMRI was performed evaluating encoding-associated signal and resting-state default mode network signal differences between the two risk groups. Neurocognitive testing revealed that the high risk group performed worse on category fluency testing, but the groups were equivalent on all other cognitive measures. During encoding of novel face-name pairs, there were no regions of encoding-associated BOLD activations that were different in the high risk group. Encoding-associated deactivations were greater in magnitude in the low risk group in the medial and right lateral parietal cortex, similar to findings in AD studies. The resting-state DMN analysis demonstrated nine regions in the prefrontal, orbital frontal, temporal and parietal lobes that distinguished the two risk groups. Resting-state DMN analysis could distinguish risk groups with an effect size of 3.35, compared to an effect size of 1.39 using encoding-associated fMRI techniques. Imaging of the resting state avoids performance related variability seen in activation fMRI, is less complicated to acquire and standardize, does not require radio-isotopes, and may be more effective at identifying functional pathology associated with AD risk compared to non-resting fMRI techniques.
Collapse
|
1165
|
Addis DR, Sacchetti DC, Ally BA, Budson AE, Schacter DL. Episodic simulation of future events is impaired in mild Alzheimer's disease. Neuropsychologia 2009; 47:2660-71. [PMID: 19497331 PMCID: PMC2734895 DOI: 10.1016/j.neuropsychologia.2009.05.018] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 05/17/2009] [Accepted: 05/26/2009] [Indexed: 11/29/2022]
Abstract
Recent neuroimaging studies have demonstrated that both remembering the past and simulating the future activate a core neural network including the medial temporal lobes. Regions of this network, in particular the medial temporal lobes, are prime sites for amyloid deposition and are structurally and functionally compromised in Alzheimer's disease (AD). While we know some functions of this core network, specifically episodic autobiographical memory, are impaired in AD, no study has examined whether future episodic simulation is similarly impaired. We tested the ability of sixteen AD patients and sixteen age-matched controls to generate past and future autobiographical events using an adapted version of the Autobiographical Interview. Participants also generated five remote autobiographical memories from across the lifespan. Event transcriptions were segmented into distinct details, classified as either internal (episodic) or external (non-episodic). AD patients exhibited deficits in both remembering past events and simulating future events, generating fewer internal and external episodic details than healthy older controls. The internal and external detail scores were strongly correlated across past and future events, providing further evidence of the close linkages between the mental representations of past and future.
Collapse
Affiliation(s)
- Donna Rose Addis
- Department of Psychology, The University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
1166
|
Grady CL, Protzner AB, Kovacevic N, Strother SC, Afshin-Pour B, Wojtowicz M, Anderson JAE, Churchill N, McIntosh AR. A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. ACTA ACUST UNITED AC 2009; 20:1432-47. [PMID: 19789183 DOI: 10.1093/cercor/bhp207] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We explored the effects of aging on 2 large-scale brain networks, the default mode network (DMN) and the task-positive network (TPN). During functional magnetic resonance imaging scanning, young and older participants carried out 4 visual tasks: detection, perceptual matching, attentional cueing, and working memory. Accuracy of performance was roughly matched at 80% across tasks and groups. Modulations of activity across conditions were assessed, as well as functional connectivity of both networks. Younger adults showed a broader engagement of the DMN and older adults a more extensive engagement of the TPN. Functional connectivity in the DMN was reduced in older adults, whereas the main pattern of TPN connectivity was equivalent in the 2 groups. Age-specific connectivity also was seen in TPN regions. Increased activity in TPN areas predicted worse accuracy on the tasks, but greater expression of a connectivity pattern associated with a right dorsolateral prefrontal TPN region, seen only in older adults, predicted better performance. These results provide further evidence for age-related differences in the DMN and new evidence of age differences in the TPN. Increased use of the TPN may reflect greater demand on cognitive control processes in older individuals that may be partially offset by alterations in prefrontal functional connectivity.
Collapse
Affiliation(s)
- Cheryl L Grady
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
1167
|
Kaplan RF, Cohen RA, Moscufo N, Guttmann C, Chasman J, Buttaro M, Hall CH, Wolfson L. Demographic and biological influences on cognitive reserve. J Clin Exp Neuropsychol 2009; 31:868-76. [DOI: 10.1080/13803390802635174] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Richard F. Kaplan
- a Department of Psychiatry , University of Connecticut School of Medicine , Farmington, CT, USA
- f Department of Neurology , University of Connecticut School of Medicine , Farmington, CT, USA
| | - Ronald A. Cohen
- b Department of Psychiatry and Human Behavior , Brown Medical School , Providence, RI, USA
| | - Nicola Moscufo
- c Department of Radiology , Brigham and Women's Hospital, Harvard Medical School , Boston, MA, USA
- f Department of Neurology , University of Connecticut School of Medicine , Farmington, CT, USA
| | - Charles Guttmann
- c Department of Radiology , Brigham and Women's Hospital, Harvard Medical School , Boston, MA, USA
- d Department of Neurology , Brigham and Women's Hospital, Harvard Medical School , Boston, MA, USA
| | - Jesse Chasman
- a Department of Psychiatry , University of Connecticut School of Medicine , Farmington, CT, USA
| | - Melissa Buttaro
- b Department of Psychiatry and Human Behavior , Brown Medical School , Providence, RI, USA
| | - Charles H. Hall
- e Einstein Aging Study , Albert Einstein College of Medicine , Bronx, NY, USA
| | - Leslie Wolfson
- f Department of Neurology , University of Connecticut School of Medicine , Farmington, CT, USA
| |
Collapse
|
1168
|
Chen NK, Chou YH, Song AW, Madden DJ. Measurement of spontaneous signal fluctuations in fMRI: adult age differences in intrinsic functional connectivity. Brain Struct Funct 2009; 213:571-85. [PMID: 19727810 DOI: 10.1007/s00429-009-0218-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 08/13/2009] [Indexed: 11/30/2022]
Abstract
Functional connectivity (FC) reflects the coherence of spontaneous, low-frequency fluctuations in functional magnetic resonance imaging (fMRI) data. We report a behavior-based connectivity analysis method, in which whole-brain data are used to identify behaviorally relevant, intrinsic FC networks. Nineteen younger adults (20-28 years) and 19 healthy, older adults (63-78 years) were assessed with fMRI and diffusion tensor imaging (DTI). Results indicated that FC involving a distributed network of brain regions, particularly the inferior frontal gyri, exhibited age-related change in the correlation with perceptual-motor speed (choice reaction time; RT). No relation between FC and RT was evident for younger adults, whereas older adults exhibited a significant age-related slowing of perceptual-motor speed, which was mediated by decreasing FC. Older adults' FC values were in turn associated positively with white matter integrity (from DTI) within the genu of the corpus callosum. The developed FC analysis illustrates the value of identifying connectivity by combining structural, functional, and behavioral data.
Collapse
Affiliation(s)
- Nan-kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
1169
|
Asllani I, Habeck C, Borogovac A, Brown TR, Brickman AM, Stern Y. Separating function from structure in perfusion imaging of the aging brain. Hum Brain Mapp 2009; 30:2927-35. [PMID: 19172645 PMCID: PMC2733928 DOI: 10.1002/hbm.20719] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 11/10/2022] Open
Abstract
The accuracy of cerebral blood flow (CBF) imaging in humans has been impeded by the partial volume effects (PVE), which are a consequence of the limited spatial resolution. Because of brain atrophy, PVE can be particularly problematic in imaging the elderly and can considerably overestimate the CBF difference with the young. The primary goal of this study was to separate the structural decline from the true CBF reduction in elderly. To this end, a PVE-correction algorithm was applied on the CBF images acquired with spin-echo EPI continuous arterial spin labeling MRI (voxel size = 3.4 x 3.4 x 8 mm(3)). Tissue-specific CBF images that were independent of voxels' tissue fractional volume were obtained in elderly (N = 30) and young (N = 26); mean age difference was 43 years. Globally, PVE-corrected gray matter CBF was 88.2 +/- 16.1 and 107.3 +/- 17.5 mL/100 g min(-1) in elderly and young, respectively. The largest PVE contribution was found in the frontal lobe and accounted for an additional 10% and 12% increase in the age-related CBF difference between men and women, respectively. The GM-to-WM CBF ratios were found to be on average 3.5 in elderly and 3.9 in young. Whole brain voxelwise comparisons showed marked CBF decrease in anterior cingulate (bilateral), caudate (bilateral), cingulate gyrus (bilateral), cuneus (left), inferior frontal gyrus (left), insula (left), middle frontal gyrus (left), precuneus (bilateral), prefrontal cortex (bilateral), and superior frontal gyrus (bilateral) in men and amygdala (bilateral), hypothalamus (left), hippocampus (bilateral), and middle frontal gyrus (right) in women.
Collapse
Affiliation(s)
- Iris Asllani
- Program for Imaging and Cognitive Sciences in the Department of Radiology, Columbia University, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
1170
|
Madden DJ, Bennett IJ, Song AW. Cerebral white matter integrity and cognitive aging: contributions from diffusion tensor imaging. Neuropsychol Rev 2009; 19:415-35. [PMID: 19705281 DOI: 10.1007/s11065-009-9113-2] [Citation(s) in RCA: 332] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 08/05/2009] [Indexed: 01/27/2023]
Abstract
The integrity of cerebral white matter is critical for efficient cognitive functioning, but little is known regarding the role of white matter integrity in age-related differences in cognition. Diffusion tensor imaging (DTI) measures the directional displacement of molecular water and as a result can characterize the properties of white matter that combine to restrict diffusivity in a spatially coherent manner. This review considers DTI studies of aging and their implications for understanding adult age differences in cognitive performance. Decline in white matter integrity contributes to a disconnection among distributed neural systems, with a consistent effect on perceptual speed and executive functioning. The relation between white matter integrity and cognition varies across brain regions, with some evidence suggesting that age-related effects exhibit an anterior-posterior gradient. With continued improvements in spatial resolution and integration with functional brain imaging, DTI holds considerable promise, both for theories of cognitive aging and for translational application.
Collapse
Affiliation(s)
- David J Madden
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
1171
|
Monk CS, Peltier SJ, Wiggins JL, Weng SJ, Carrasco M, Risi S, Lord C. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage 2009; 47:764-72. [PMID: 19409498 PMCID: PMC2731579 DOI: 10.1016/j.neuroimage.2009.04.069] [Citation(s) in RCA: 398] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022] Open
Abstract
Autism spectrum disorders (ASD) impact social functioning and communication, and individuals with these disorders often have restrictive and repetitive behaviors. Accumulating data indicate that ASD is associated with alterations of neural circuitry. Functional MRI (FMRI) studies have focused on connectivity in the context of psychological tasks. However, even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic or resting connectivity. Notably, the default network, which includes the posterior cingulate cortex, retro-splenial, lateral parietal cortex/angular gyrus, medial prefrontal cortex, superior frontal gyrus, temporal lobe, and parahippocampal gyrus, is strongly active when there is no task. Altered intrinsic connectivity within the default network may underlie offline processing that may actuate ASD impairments. Using FMRI, we sought to evaluate intrinsic connectivity within the default network in ASD. Relative to controls, the ASD group showed weaker connectivity between the posterior cingulate cortex and superior frontal gyrus and stronger connectivity between the posterior cingulate cortex and both the right temporal lobe and right parahippocampal gyrus. Moreover, poorer social functioning in the ASD group was correlated with weaker connectivity between the posterior cingulate cortex and the superior frontal gyrus. In addition, more severe restricted and repetitive behaviors in ASD were correlated with stronger connectivity between the posterior cingulate cortex and right parahippocampal gyrus. These findings indicate that ASD subjects show altered intrinsic connectivity within the default network, and connectivity between these structures is associated with specific ASD symptoms.
Collapse
Affiliation(s)
- Christopher S Monk
- Department of Psychology, University of Michigan, 530 Church St., Ann Arbor MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
1172
|
Peelle JE, Troiani V, Wingfield A, Grossman M. Neural processing during older adults' comprehension of spoken sentences: age differences in resource allocation and connectivity. Cereb Cortex 2009; 20:773-82. [PMID: 19666829 DOI: 10.1093/cercor/bhp142] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Speech comprehension remains largely preserved in older adults despite significant age-related neurophysiological change. However, older adults' performance declines more rapidly than that of young adults when listening conditions are challenging. We investigated the cortical network underlying speech comprehension in healthy aging using short sentences differing in syntactic complexity, with processing demands further manipulated through speech rate. Neural activity was monitored using blood oxygen level-dependent functional magnetic resonance imaging. Comprehension of syntactically complex sentences activated components of a core sentence-processing network in both young and older adults, including the left inferior and middle frontal gyri, left inferior parietal cortex, and left middle temporal gyrus. However, older adults showed reduced recruitment of inferior frontal regions relative to young adults; the individual degree of recruitment predicted accuracy at the more difficult fast speech rate. Older adults also showed increased activity in frontal regions outside the core sentence-processing network, which may have played a compensatory role. Finally, a functional connectivity analysis demonstrated reduced coherence between activated regions in older adults. We conclude that decreased activation of specialized processing regions, and limited ability to coordinate activity between regions, contribute to older adults' difficulty with sentence comprehension under difficult listening conditions.
Collapse
Affiliation(s)
- Jonathan E Peelle
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
1173
|
Di Martino A, Shehzad Z, Kelly C, Roy AK, Gee DG, Uddin LQ, Gotimer K, Klein DF, Castellanos FX, Milham MP. Relationship between cingulo-insular functional connectivity and autistic traits in neurotypical adults. Am J Psychiatry 2009; 166:891-9. [PMID: 19605539 PMCID: PMC3075727 DOI: 10.1176/appi.ajp.2009.08121894] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The Social Responsiveness Scale-Adult Version (SRS-A) measures autistic traits that are continuously distributed in the general population. Based on increased recognition of the dimensional nature of autistic traits, the authors examined the neural correlates of these traits in neurotypical individuals using the SRS-A and established a novel approach to assessing the neural basis of autistic characteristics, attempting to directly relate SRS-A scores to patterns of functional connectivity observed in the pregenual anterior cingulate cortex, a region commonly implicated in social cognition. METHOD Resting state functional magnetic resonance imaging scans were collected for 25 neurotypical adults. All participants provided SRS-A ratings completed by an informant who had observed them in natural social settings. Whole brain-corrected connectivity analyses were then conducted using SRS-A scores as a covariate of interest. RESULTS Across participants, a significant negative relationship between SRS-A scores and the functional connectivity of the pregenual anterior cingulate cortex with the anterior portion of the mid-insula was found. Specifically, low levels of autistic traits were observed when a substantial portion of the anterior mid-insula showed positive connectivity with the pregenual anterior cingulate cortex. In contrast, elevated levels of autistic traits were associated with negative connectivity between these two regions. CONCLUSIONS Resting state functional connectivity of the pregenual anterior cingulate cortex-insula social network was related to autistic traits in neurotypical adults. Application of this approach in samples with autism spectrum disorders is needed to confirm whether this circuit is dimensionally related to the severity of autistic traits in clinical populations.
Collapse
Affiliation(s)
- Adriana Di Martino
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, New York University Child Study Center, 215 Lexington Ave., New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1174
|
Ming Song, Yong Liu, Yuan Zhou, Kun Wang, Chunshui Yu, Tianzi Jiang. Default Network and Intelligence Difference. ACTA ACUST UNITED AC 2009. [DOI: 10.1109/tamd.2009.2029312] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1175
|
Jacobson MW, Delis DC, Peavy GM, Wetter SR, Bigler ED, Abildskov TJ, Bondi MW, Salmon DP. The emergence of cognitive discrepancies in preclinical Alzheimer's disease: a six-year case study. Neurocase 2009; 15:278-93. [PMID: 19382039 PMCID: PMC2875065 DOI: 10.1080/13554790902729465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We present neuropsychological data from an 81-year-old individual who was followed over a six-year period, initially as a healthy control participant. She performed above age-adjusted cutoff scores for impairment on most neuropsychological tests, including learning and memory measures, until the final assessment when she received a diagnosis of probable Alzheimer's disease (AD). Despite generally normal scores on individual cognitive tests, her cognitive profile revealed increasingly large cognitive discrepancies when contrasting verbal versus visuospatial tasks, and complex versus basic-level tasks. The present case provides intriguing evidence that cognitive-discrepancy measures could improve our ability to detect subtle changes in cognition at the earliest, preclinical stages of AD.
Collapse
Affiliation(s)
- Mark W Jacobson
- Veterans Affairs San Diego Healthcare System, Department. 151B, 3350 La Jolla Village Dr., San Diego, CA 92151, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1176
|
Sperling RA, Laviolette PS, O'Keefe K, O'Brien J, Rentz DM, Pihlajamaki M, Marshall G, Hyman BT, Selkoe DJ, Hedden T, Buckner RL, Becker JA, Johnson KA. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 2009; 63:178-88. [PMID: 19640477 PMCID: PMC2738994 DOI: 10.1016/j.neuron.2009.07.003] [Citation(s) in RCA: 774] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/13/2009] [Accepted: 07/02/2009] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) has been associated with functional alterations in a distributed network of brain regions linked to memory function, with a recent focus on the cortical regions collectively known as the default network. Posterior components of the default network, including the precuneus and posterior cingulate, are particularly vulnerable to early deposition of amyloid beta-protein, one of the hallmark pathologies of AD. In this study, we use in vivo amyloid imaging to demonstrate that high levels of amyloid deposition are associated with aberrant default network functional magnetic resonance imaging (fMRI) activity in asymptomatic and minimally impaired older individuals, similar to the pattern of dysfunction reported in AD patients. These findings suggest that amyloid pathology is linked to neural dysfunction in brain regions supporting memory function and provide support for the hypothesis that cognitively intact older individuals with evidence of amyloid pathology may be in early stages of AD.
Collapse
Affiliation(s)
- Reisa A Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1177
|
Mazoyer B, Houdé O, Joliot M, Mellet E, Tzourio-Mazoyer N. Regional cerebral blood flow increases during wakeful rest following cognitive training. Brain Res Bull 2009; 80:133-8. [PMID: 19589374 DOI: 10.1016/j.brainresbull.2009.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 06/28/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
Abstract
Positron tomography was used to investigate modulations of brain activity during the so-called resting state that may occur due to a concurrent cognitive training. Twelve subjects were repeatedly scanned during resting periods and while solving logical problems containing a bias causing them to make reasoning errors. At experiment mid-time, eight subjects were trained to inhibit the reasoning bias so that their performance in solving logical problems dramatically increased afterwards, while the other four subjects were trained to logical reasoning only which did not help improving their performance. In the subgroup of subjects who increased their performance after training, we found that during the post-training resting periods, as compared to pre-training resting periods, brain activity increases in areas not belonging to the classical resting network, namely the midbrain, thalamus, peristriate, inferior frontal, and ventromedial prefrontal cortices. Strikingly, in this subgroup of subjects, these same areas were found to be also more active during post-training successful execution of the logical task, as compared to pre-training erroneous execution of the task. Such findings were not observed in the subgroup of subjects who did not improve their performance after training to logic only. These results indicate that the brain default mode is a dynamic state during which context dependent local increases of cerebral blood flow may occur on a short-term, likely for the consolidation of newly acquired knowledge.
Collapse
Affiliation(s)
- Bernard Mazoyer
- Centre d'Imagerie-Neurosciences et Applications aux Pathologies, CI-NAPS UMR6232, CNRS, CEA I2BM, GIP Cyceron, France.
| | | | | | | | | |
Collapse
|
1178
|
Engelhardt E, Moreira DM, Laks J. The brain subcortical white matter and aging: A quantitative fractional anisotropy analysis. Dement Neuropsychol 2009; 3:228-233. [PMID: 29213633 PMCID: PMC5618978 DOI: 10.1590/s1980-57642009dn30300009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To study the integrity of hemispheric subcortical white matter by comparing normal young and elderly subjects using quantitative fractional anisotropy (DTI-FA). METHODS Subjects of two different age groups (young=12, elderly=12) were included. MR - GE Signa Horizon - 1.5T scans were performed. Cases with Fazekas scores =3 were assessed on FLAIR sequence. Standard parameters for DTI-FA were used. ROIs were placed at various sites of the subcortical white matter, and the genu and splenium of the midline corpus callosum. Analysis was performed using Functool. Statistics for anterior and posterior white matter, as well as the genu and splenium were compared between the groups. The study was approved by the Ethics Committee of IPUB-UFRJ and informed consent obtained. RESULTS DTI-FA showed lower anisotropy values in the anterior region (subcortical white matter and genu), but not in the posterior region (subcortical white matter and splenium), in elderly normal subjects compared to young subjects. CONCLUSION The results may represent loss of integrity of anterior (frontal) white matter fibers in the elderly subjects. These fibers constitute important intra- and inter-hemispheric tracts, components of neural networks that provide cognitive, behavioral, motor and sensory integration. The loss of integrity of the anterior segments of the studied fiber systems with ageing, represents a disconnection process that may underlie clinical manifestations found in elderly subjects such as executive dysfunction.
Collapse
Affiliation(s)
- Eliasz Engelhardt
- Coordinator, Cognitive and Behavioral Neurology Unit - INDC/UFRJ, Rio de Janeiro RJ, Brazil
| | - Denise Madeira Moreira
- Coordinator, Neuroimaging Unit - INDC/UFRJ, Rio de Janeiro RJ, Brazil
- Radiologist, Pró-Cardíaco Hospital/RJ
| | - Jerson Laks
- Coordinator, Center for Alzheimer's Disease - CDA-IPUB/UFRJ
- Medical Sciences Faculty, UERJ, Rio de Janeiro RJ, Brazil
| |
Collapse
|
1179
|
Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 2009; 213:525-33. [PMID: 19565262 DOI: 10.1007/s00429-009-0208-6] [Citation(s) in RCA: 647] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
|
1180
|
Hasson U, Nusbaum HC, Small SL. Task-dependent organization of brain regions active during rest. Proc Natl Acad Sci U S A 2009; 106:10841-6. [PMID: 19541656 PMCID: PMC2705532 DOI: 10.1073/pnas.0903253106] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Indexed: 11/18/2022] Open
Abstract
The human brain demonstrates complex yet systematic patterns of neural activity at rest. We examined whether functional connectivity among those brain regions typically active during rest depends on ongoing and recent task demands and individual differences. We probed the temporal coordination among these regions during periods of language comprehension and during the rest periods that followed comprehension. Our findings show that the topography of this "rest network" varies with exogenous processing demands. The network encompassed more highly interconnected regions during rest than during listening, but also when listening to unsurprising vs. surprising information. Furthermore, connectivity patterns during rest varied as a function of recent listening experience. Individual variability in connectivity strength was associated with cognitive function: more attentive comprehenders demonstrated weaker connectivity during language comprehension, and a greater differentiation between connectivity during comprehension and rest. The regions we examined have generally been thought to form an invariant physiological and functional network whose activity reflects spontaneous cognitive processes. Our findings suggest that their function extends beyond the mediation of unconstrained thought, and that they play an important role in higher-level cognitive function.
Collapse
Affiliation(s)
- Uri Hasson
- Center for Mind/Brain Sciences and Faculty of Cognitive Sciences, University of Trento, 38060 Mattarello, TN, Italy.
| | | | | |
Collapse
|
1181
|
Kelly C, de Zubicaray G, Di Martino A, Copland DA, Reiss PT, Klein DF, Castellanos FX, Milham MP, McMahon K. L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J Neurosci 2009; 29:7364-78. [PMID: 19494158 PMCID: PMC2928147 DOI: 10.1523/jneurosci.0810-09.2009] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/30/2009] [Accepted: 04/02/2009] [Indexed: 11/21/2022] Open
Abstract
Functional connectivity (FC) analyses of resting-state fMRI data allow for the mapping of large-scale functional networks, and provide a novel means of examining the impact of dopaminergic challenge. Here, using a double-blind, placebo-controlled design, we examined the effect of L-dopa, a dopamine precursor, on striatal resting-state FC in 19 healthy young adults. We examined the FC of 6 striatal regions of interest (ROIs) previously shown to elicit networks known to be associated with motivational, cognitive and motor subdivisions of the caudate and putamen (Di Martino et al., 2008). In addition to replicating the previously demonstrated patterns of striatal FC, we observed robust effects of L-dopa. Specifically, L-dopa increased FC in motor pathways connecting the putamen ROIs with the cerebellum and brainstem. Although L-dopa also increased FC between the inferior ventral striatum and ventrolateral prefrontal cortex, it disrupted ventral striatal and dorsal caudate FC with the default mode network. These alterations in FC are consistent with studies that have demonstrated dopaminergic modulation of cognitive and motor striatal networks in healthy participants. Recent studies have demonstrated altered resting state FC in several conditions believed to be characterized by abnormal dopaminergic neurotransmission. Our findings suggest that the application of similar experimental pharmacological manipulations in such populations may further our understanding of the role of dopaminergic neurotransmission in those conditions.
Collapse
Affiliation(s)
- Clare Kelly
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, and
| | | | - Adriana Di Martino
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, and
- Division of Child and Adolescent Neuropsychiatry, Department of Neuroscience, University of Cagliari, 09126 Cagliari, Italy
| | - David A. Copland
- Centre for Clinical Research and School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Philip T. Reiss
- Division of Biostatistics, New York University Child Study Center, New York, New York 10016
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962, and
| | - Donald F. Klein
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, and
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962, and
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - F. Xavier Castellanos
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, and
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962, and
| | - Michael P. Milham
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, and
| | | |
Collapse
|
1182
|
Mitchell KJ, Raye CL, Ebner NC, Tubridy SM, Frankel H, Johnson MK. Age-group differences in medial cortex activity associated with thinking about self-relevant agendas. Psychol Aging 2009; 24:438-449. [PMID: 19485660 PMCID: PMC2859896 DOI: 10.1037/a0015181] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this functional magnetic resonance imaging (fMRI) study, we compared young and older adults' brain activity as they thought about motivationally self-relevant agendas (hopes and aspirations, duties and obligations) and concrete control items (e.g., shape of USA). Young adults' activity replicated a double dissociation (M. K. Johnson et al., 2006): An area of medial frontal gyrus/anterior cingulate cortex was most active during hopes and aspirations trials, and an area of medial posterior cortex-primarily posterior cingulate-was most active during duties and obligations trials. Compared with young adults, older adults showed attenuated responses in medial cortex, especially in medial prefrontal cortex, with both less activity during self-relevant trials and less deactivation during control trials. The fMRI data, together with post-scan reports and the behavioral literature on age-group differences in motivational orientation, suggest that the differences in medial cortex seen in this study reflect young and older adults' focus on different information during motivationally self-relevant thought. Differences also may be related to an age-associated deficit in controlled cognitive processes that are engaged by complex self-reflection and mediated by prefrontal cortex.
Collapse
|
1183
|
Bosch B, Bartrés-Faz D, Rami L, Arenaza-Urquijo EM, Fernández-Espejo D, Junqué C, Solé-Padullés C, Sánchez-Valle R, Bargalló N, Falcón C, Molinuevo JL. Cognitive reserve modulates task-induced activations and deactivations in healthy elders, amnestic mild cognitive impairment and mild Alzheimer's disease. Cortex 2009; 46:451-61. [PMID: 19560134 DOI: 10.1016/j.cortex.2009.05.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 04/20/2009] [Accepted: 05/06/2009] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Cognitive reserve (CR) reflects the capacity of the brain to endure neuropathology in order to minimize clinical manifestations. Previous studies showed that CR modulates the patterns of brain activity in both healthy and clinical populations. In the present study we sought to determine whether reorganizations of functional brain resources linked to CR could already be observed in amnestic mild cognitive impairment (a-MCI) and mild Alzheimer's disease (AD) patients when performing a task corresponding to an unaffected cognitive domain. We further investigated if activity in regions showing task-induced deactivations, usually identified as pertaining to the default-mode network (DMN), was also influenced by CR. METHODS Fifteen healthy elders, 15 a-MCI and 15 AD patients underwent functional magnetic resonance imaging (fMRI) during a speech comprehension task. Differences in the regression of slopes between CR proxies and blood-oxygen-level dependent (BOLD) signals across clinical groups were investigated for activation and deactivation areas. Correlations between significant fMRI results and a language comprehension test were also computed. RESULTS Among a-MCI and AD we observed positive correlations between CR measures and BOLD signals in task-induced activation areas directly processing speech, as well as greater deactivations in regions of the DMN. These relationships were inverted in healthy elders. We found no evidence that these results were mediated by gray matter volumes. Increased activity in left frontal areas and decreased activity in the anterior cingulate were related to better language comprehension in clinical evaluations. CONCLUSIONS The present findings provide evidence that the neurofunctional reorganizations related to CR among a-MCI and AD patients can be seen even when considering a preserved cognitive domain, being independent of gray matter atrophy. Areas showing both task-induced activations and deactivations are modulated by CR in an opposite manner when considering healthy elders versus patients. Brain reorganizations facilitated by CR may reflect behavioral compensatory mechanisms.
Collapse
Affiliation(s)
- Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1184
|
Brickman AM, Zahra A, Muraskin J, Steffener J, Holland CM, Habeck C, Borogovac A, Ramos MA, Brown TR, Asllani I, Stern Y. Reduction in cerebral blood flow in areas appearing as white matter hyperintensities on magnetic resonance imaging. Psychiatry Res 2009; 172:117-20. [PMID: 19324534 PMCID: PMC2763417 DOI: 10.1016/j.pscychresns.2008.11.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/10/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to examine cerebral blood flow (CBF) as measured by arterial spin labeling (ASL) in tissue classified as white matter hyperintensities (WMH), normal appearing white matter, and grey matter. Seventeen healthy older adults received structural and ASL MRI. Cerebral blood flow was derived for three tissue types: WMH, normal appearing white matter, and grey matter. Cerebral blood flow was lower in WMH areas relative to normal appearing white matter, which in turn, was lower than grey matter. Regions with consistently lower CBF across individuals were more likely to appear as WMH. Results are consistent with an emerging literature linking diminished regional perfusion with the risk of developing WMH.
Collapse
Affiliation(s)
- Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1185
|
Fair DA, Cohen AL, Power JD, Dosenbach NUF, Church JA, Miezin FM, Schlaggar BL, Petersen SE. Functional brain networks develop from a "local to distributed" organization. PLoS Comput Biol 2009; 5:e1000381. [PMID: 19412534 PMCID: PMC2671306 DOI: 10.1371/journal.pcbi.1000381] [Citation(s) in RCA: 1136] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 04/01/2009] [Indexed: 12/15/2022] Open
Abstract
The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength) between regions close in anatomical space and 'integration' (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have relatively efficient systems that may solve similar information processing problems in divergent ways.
Collapse
Affiliation(s)
- Damien A. Fair
- Behavioral Neuroscience Department, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Alexander L. Cohen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jonathan D. Power
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nico U. F. Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jessica A. Church
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Francis M. Miezin
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bradley L. Schlaggar
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Steven E. Petersen
- McDonnell Center for Higher Brain Functions, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
1186
|
Roy AK, Shehzad Z, Margulies DS, Kelly AMC, Uddin LQ, Gotimer K, Biswal BB, Castellanos FX, Milham MP. Functional connectivity of the human amygdala using resting state fMRI. Neuroimage 2009; 45:614-26. [PMID: 19110061 PMCID: PMC2735022 DOI: 10.1016/j.neuroimage.2008.11.030] [Citation(s) in RCA: 625] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/28/2008] [Accepted: 11/12/2008] [Indexed: 01/19/2023] Open
Abstract
The amygdala is composed of structurally and functionally distinct nuclei that contribute to the processing of emotion through interactions with other subcortical and cortical structures. While these circuits have been studied extensively in animals, human neuroimaging investigations of amygdala-based networks have typically considered the amygdala as a single structure, which likely masks contributions of individual amygdala subdivisions. The present study uses resting state functional magnetic resonance imaging (fMRI) to test whether distinct functional connectivity patterns, like those observed in animal studies, can be detected across three amygdala subdivisions: laterobasal, centromedial, and superficial. In a sample of 65 healthy adults, voxelwise regression analyses demonstrated positively-predicted ventral and negatively-predicted dorsal networks associated with the total amygdala, consistent with previous animal and human studies. Investigation of individual amygdala subdivisions revealed distinct differences in connectivity patterns within the amygdala and throughout the brain. Spontaneous activity in the laterobasal subdivision predicted activity in temporal and frontal regions, while activity in the centromedial nuclei predicted activity primarily in striatum. Activity in the superficial subdivision positively predicted activity throughout the limbic lobe. These findings suggest that resting state fMRI can be used to investigate human amygdala networks at a greater level of detail than previously appreciated, allowing for the further advancement of translational models.
Collapse
Affiliation(s)
- Amy Krain Roy
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, NYU Child Study Center, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1187
|
Wang TH, Kruggel F, Rugg MD. Effects of advanced aging on the neural correlates of successful recognition memory. Neuropsychologia 2009; 47:1352-61. [PMID: 19428399 PMCID: PMC2680799 DOI: 10.1016/j.neuropsychologia.2009.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/10/2009] [Accepted: 01/25/2009] [Indexed: 10/21/2022]
Abstract
Functional neuroimaging studies have reported that the neural correlates of retrieval success (old>new effects) are larger and more widespread in older than in young adults. In the present study we investigated whether this pattern of age-related 'over-recruitment' continues into advanced age. Using functional magnetic resonance imaging (fMRI), retrieval-related activity from two groups (N=18 per group) of older adults aged 84-96 years ('old-old') and 64-77 years ('young-old') was contrasted. Subjects studied a series of pictures, half of which were presented once, and half twice. At test, subjects indicated whether each presented picture was old or new. Recognition performance of the old-old subjects for twice-studied items was equivalent to that of the young-old subjects for once-studied items. Old>new effects common to the two groups were identified in several cortical regions, including medial and lateral parietal and prefrontal cortex. There were no regions where these effects were of greater magnitude in the old-old group, and thus no evidence of over-recruitment in this group relative to the young-old individuals. In one region of medial parietal cortex, effects were greater (and only significant) in the young-old group. The failure to find evidence of over-recruitment in the old-old subjects relative to the young-old group, despite their markedly poorer cognitive performance, suggests that age-related over-recruitment effects plateau in advanced age. The findings for the medial parietal cortex underscore the sensitivity of this cortical region to increasing age.
Collapse
Affiliation(s)
- Tracy H Wang
- Center for the Neurobiology of Learning and Memory, and Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-3800, United States.
| | | | | |
Collapse
|
1188
|
Abstract
Although several studies have examined the neural basis for age-related changes in objective memory performance, less is known about how the process of memory monitoring changes with aging. The authors used functional magnetic resonance imaging to examine retrospective confidence in memory performance in aging. During low confidence, both younger and older adults showed behavioral evidence that they were guessing during recognition and that they were aware they were guessing when making confidence judgments. Similarly, both younger and older adults showed increased neural activity during low- compared to high-confidence responses in the lateral prefrontal cortex, anterior cingulate cortex, and left intraparietal sulcus. In contrast, older adults showed more high-confidence errors than younger adults. Younger adults showed greater activity for high compared to low confidence in medial temporal lobe structures, but older adults did not show this pattern. Taken together, these findings may suggest that impairments in the confidence-accuracy relationship for memory in older adults, which are often driven by high-confidence errors, may be primarily related to altered neural signals associated with greater activity for high-confidence responses.
Collapse
Affiliation(s)
- Elizabeth F Chua
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
1189
|
Shehzad Z, Kelly AMC, Reiss PT, Gee DG, Gotimer K, Uddin LQ, Lee SH, Margulies DS, Roy AK, Biswal BB, Petkova E, Castellanos FX, Milham MP. The resting brain: unconstrained yet reliable. ACTA ACUST UNITED AC 2009; 19:2209-29. [PMID: 19221144 DOI: 10.1093/cercor/bhn256] [Citation(s) in RCA: 705] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Recent years have witnessed an upsurge in the usage of resting-state functional magnetic resonance imaging (fMRI) to examine functional connectivity (fcMRI), both in normal and pathological populations. Despite this increasing popularity, concerns about the psychologically unconstrained nature of the "resting-state" remain. Across studies, the patterns of functional connectivity detected are remarkably consistent. However, the test-retest reliability for measures of resting state fcMRI measures has not been determined. Here, we quantify the test-retest reliability, using resting scans from 26 participants at 3 different time points. Specifically, we assessed intersession (>5 months apart), intrasession (<1 h apart), and multiscan (across all 3 scans) reliability and consistency for both region-of-interest and voxel-wise analyses. For both approaches, we observed modest to high reliability across connections, dependent upon 3 predictive factors: 1) correlation significance (significantly nonzero > nonsignificant), 2) correlation valence (positive > negative), and 3) network membership (default mode > task positive network). Short- and long-term measures of the consistency of global connectivity patterns were highly robust. Finally, hierarchical clustering solutions were highly reproducible, both across participants and sessions. Our findings provide a solid foundation for continued examination of resting state fcMRI in typical and atypical populations.
Collapse
Affiliation(s)
- Zarrar Shehzad
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, NYU Child Study Center, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1190
|
Salat DH, Greve DN, Pacheco JL, Quinn BT, Helmer KG, Buckner RL, Fischl B. Regional white matter volume differences in nondemented aging and Alzheimer's disease. Neuroimage 2009; 44:1247-58. [PMID: 19027860 PMCID: PMC2810540 DOI: 10.1016/j.neuroimage.2008.10.030] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 10/15/2008] [Accepted: 10/16/2008] [Indexed: 11/15/2022] Open
Abstract
Accumulating evidence suggests that altered cerebral white matter (WM) influences normal aging, and further that WM degeneration may modulate the clinical expression of Alzheimer's disease (AD). Here we conducted a study of differences in WM volume across the adult age span and in AD employing a newly developed, automated method for regional parcellation of the subcortical WM that uses curvature landmarks and gray matter (GM)/WM surface boundary information. This procedure measures the volume of gyral WM, utilizing a distance constraint to limit the measurements from extending into the centrum semiovale. Regional estimates were first established to be reliable across two scan sessions in 20 young healthy individuals. Next, the method was applied to a large clinically-characterized sample of 299 individuals including 73 normal older adults and 91 age-matched participants with very mild to mild AD. The majority of measured regions showed a decline in volume with increasing age, with strong effects found in bilateral fusiform, lateral orbitofrontal, superior frontal, medial orbital frontal, inferior temporal, and middle temporal WM. The association between WM volume and age was quadratic in many regions suggesting that WM volume loss accelerates in advanced aging. A number of WM regions were further reduced in AD with parahippocampal, entorhinal, inferior parietal and rostral middle frontal WM showing the strongest AD-associated reductions. There were minimal sex effects after correction for intracranial volume, and there were associations between ventricular volume and regional WM volumes in the older adults and AD that were not apparent in the younger adults. Certain results, such as the loss of WM in the fusiform region with aging, were unexpected and provide novel insight into patterns of age associated neural and cognitive decline. Overall, these results demonstrate the utility of automated regional WM measures in revealing the distinct patterns of age and AD associated volume loss that may contribute to cognitive decline.
Collapse
Affiliation(s)
- David H Salat
- Department of Radiology, Massachusetts General Hospital, Boston MA, USA.
| | | | | | | | | | | | | |
Collapse
|
1191
|
Madden DJ, Spaniol J, Costello MC, Bucur B, White LE, Cabeza R, Davis SW, Dennis NA, Provenzale JM, Huettel SA. Cerebral white matter integrity mediates adult age differences in cognitive performance. J Cogn Neurosci 2009; 21:289-302. [PMID: 18564054 PMCID: PMC2676336 DOI: 10.1162/jocn.2009.21047] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Previous research has established that age-related decline occurs in measures of cerebral white matter integrity, but the role of this decline in age-related cognitive changes is not clear. To conclude that white matter integrity has a mediating (causal) contribution, it is necessary to demonstrate that statistical control of the white matter-cognition relation reduces the magnitude of age-cognition relation. In this research, we tested the mediating role of white matter integrity, in the context of a task-switching paradigm involving word categorization. Participants were 20 healthy, community-dwelling older adults (60-85 years), and 20 younger adults (18-27 years). From diffusion tensor imaging tractography, we obtained fractional anisotropy (FA) as an index of white matter integrity in the genu and splenium of the corpus callosum and the superior longitudinal fasciculus (SLF). Mean FA values exhibited age-related decline consistent with a decrease in white matter integrity. From a model of reaction time distributions, we obtained independent estimates of the decisional and nondecisional (perceptual-motor) components of task performance. Age-related decline was evident in both components. Critically, age differences in task performance were mediated by FA in two regions: the central portion of the genu, and splenium-parietal fibers in the right hemisphere. This relation held only for the decisional component and was not evident in the nondecisional component. This result is the first demonstration that the integrity of specific white matter tracts is a mediator of age-related changes in cognitive performance.
Collapse
|
1192
|
Meunier D, Achard S, Morcom A, Bullmore E. Age-related changes in modular organization of human brain functional networks. Neuroimage 2009; 44:715-23. [PMID: 19027073 DOI: 10.1016/j.neuroimage.2008.09.062] [Citation(s) in RCA: 558] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 09/04/2008] [Accepted: 09/30/2008] [Indexed: 02/04/2023] Open
Abstract
Graph theory allows us to quantify any complex system, e.g., in social sciences, biology or technology, that can be abstractly described as a set of nodes and links. Here we derived human brain functional networks from fMRI measurements of endogenous, low frequency, correlated oscillations in 90 cortical and subcortical regions for two groups of healthy (young and older) participants. We investigated the modular structure of these networks and tested the hypothesis that normal brain aging might be associated with changes in modularity of sparse networks. Newman's modularity metric was maximised and topological roles were assigned to brain regions depending on their specific contributions to intra- and inter-modular connectivity. Both young and older brain networks demonstrated significantly non-random modularity. The young brain network was decomposed into 3 major modules: central and posterior modules, which comprised mainly nodes with few inter-modular connections, and a dorsal fronto-cingulo-parietal module, which comprised mainly nodes with extensive inter-modular connections. The mean network in the older group also included posterior, superior central and dorsal fronto-striato-thalamic modules but the number of intermodular connections to frontal modular regions was significantly reduced, whereas the number of connector nodes in posterior and central modules was increased.
Collapse
Affiliation(s)
- David Meunier
- Brain Mapping Unit, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
1193
|
Abstract
Activity attributed to the default-mode occurs during the resting state and is thought to represent self-referential and other intrinsic processes. Although activity in default-associated regions changes across the lifespan, little is known about the stability of default-mode activity in the healthy aging brain. We investigated changes in rest-specific activity across an 8 year period in older participants in the Baltimore Longitudinal Study of Aging (BLSA) neuroimaging study. Comparison of resting-state and recognition memory PET regional cerebral blood flow conditions from baseline and 8-year follow-up shows relative stability of rest-specific activity over time in medial frontal/anterior cingulate, hippocampal and posterior cingulate regions commonly associated with the default-mode. In contrast, prefrontal, parahippocampal and occipital cortical regions, which are not typically associated with default-mode activity, show changes over time Overall, activity in the major components of the default-mode network remains stable in healthy older individuals, a finding which may assist in identifying factors that discriminate between normal and pathological aging.
Collapse
Affiliation(s)
- L L Beason-Held
- Laboratory of Personality and Cognition, National Institute on Aging, NIH
| | | | | |
Collapse
|
1194
|
MRI of neuronal network structure, function, and plasticity. PROGRESS IN BRAIN RESEARCH 2009; 175:483-96. [DOI: 10.1016/s0079-6123(09)17532-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
1195
|
Kong J, Gollub RL, Polich G, Kirsch I, LaViolette P, Vangel M, Rosen B, Kaptchuk TJ. A functional magnetic resonance imaging study on the neural mechanisms of hyperalgesic nocebo effect. J Neurosci 2008; 28:13354-62. [PMID: 19052227 PMCID: PMC2649754 DOI: 10.1523/jneurosci.2944-08.2008] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 10/22/2008] [Accepted: 10/27/2008] [Indexed: 01/30/2023] Open
Abstract
Previous studies suggest that nocebo effects, sometimes termed "negative placebo effects," can contribute appreciably to a variety of medical symptoms and adverse events in clinical trials and medical care. In this study, using a within-subject design, we combined functional magnetic resonance imaging (fMRI) and an expectation/conditioning manipulation model to investigate the neural substrates of nocebo hyperalgesia using heat pain on the right forearm. Thirteen subjects completed the study. Results showed that, after administering inert treatment, subjective pain intensity ratings increased significantly more on nocebo regions compared with the control regions in which no expectancy/conditioning manipulation was performed. fMRI analysis of hyperalgesic nocebo responses to identical calibrated noxious stimuli showed signal increases in brain regions including bilateral dorsal anterior cingulate cortex (ACC), insula, superior temporal gyrus; left frontal and parietal operculum, medial frontal gyrus, orbital prefrontal cortex, superior parietal lobule, and hippocampus; right claustrum/putamen, lateral prefrontal gyrus, and middle temporal gyrus. Functional connectivity analysis of spontaneous resting-state fMRI data from the same cohort of subjects showed a correlation between two seed regions (left frontal operculum and hippocampus) and pain network including bilateral insula, operculum, ACC, and left S1/M1. In conclusion, we found evidence that nocebo hyperalgesia may be predominantly produced through an affective-cognitive pain pathway (medial pain system), and the left hippocampus may play an important role in this process.
Collapse
Affiliation(s)
- Jian Kong
- Department of Psychiatry, Massachusetts General Hospital
- Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School Athinoula A. Martinos Center for Biomedical Imaging, and
| | - Randy L. Gollub
- Department of Psychiatry, Massachusetts General Hospital
- Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School Athinoula A. Martinos Center for Biomedical Imaging, and
- Massachusetts General Hospital Clinical Research Center Biomedical Imaging Core, Charlestown, Massachusetts 02129
| | - Ginger Polich
- Department of Psychiatry, Massachusetts General Hospital
| | - Irving Kirsch
- Department of Psychology, University of Hull, Hull HU6 7RX, United Kingdom, and
| | - Peter LaViolette
- Department of Psychiatry, Massachusetts General Hospital
- Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School Athinoula A. Martinos Center for Biomedical Imaging, and
| | - Mark Vangel
- Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School Athinoula A. Martinos Center for Biomedical Imaging, and
- Massachusetts General Hospital Clinical Research Center Biomedical Imaging Core, Charlestown, Massachusetts 02129
| | - Bruce Rosen
- Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School Athinoula A. Martinos Center for Biomedical Imaging, and
| | - Ted J. Kaptchuk
- Osher Institute, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
1196
|
Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci 2008; 28:10844-51. [PMID: 18945892 DOI: 10.1523/jneurosci.2964-08.2008] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The default mode network is a functionally connected network of brain regions that show highly synchronized intrinsic neuronal activation during rest. However, less is known about the structural connections of this network, which could play an important role in the observed functional connectivity patterns. In this study, we examined the microstructural organization of the cingulum tract in relation to the level of resting-state default mode functional synchronization. Resting-state functional magnetic resonance imaging and diffusion tensor imaging data of 45 healthy subjects were acquired on a 3 tesla scanner. Both structural and functional connectivity of the default mode network were examined. In all subjects, the cingulum tract was identified from the total collection of reconstructed tracts to interconnect the precuneus/posterior cingulate cortex and medial frontal cortex, key regions of the default mode network. A significant positive correlation was found between the average fractional anisotropy value of the cingulum tract and the level of functional connectivity between the precuneus/posterior cingulate cortex and medial frontal cortex. Our results suggest a direct relationship between the structural and functional connectivity measures of the default mode network and contribute to the understanding of default mode network connectivity.
Collapse
|
1197
|
Skudlarski P, Jagannathan K, Calhoun VD, Hampson M, Skudlarska BA, Pearlson G. Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage 2008; 43:554-61. [PMID: 18771736 PMCID: PMC4361080 DOI: 10.1016/j.neuroimage.2008.07.063] [Citation(s) in RCA: 325] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/25/2008] [Accepted: 07/28/2008] [Indexed: 11/24/2022] Open
Abstract
Diffusion tensor imaging (DTI) and resting state temporal correlations (RSTC) are two leading techniques for investigating the connectivity of the human brain. They have been widely used to investigate the strength of anatomical and functional connections between distant brain regions in healthy subjects, and in clinical populations. Though they are both based on magnetic resonance imaging (MRI) they have not yet been compared directly. In this work both techniques were employed to create global connectivity matrices covering the whole brain gray matter. This allowed for direct comparisons between functional connectivity measured by RSTC with anatomical connectivity quantified using DTI tractography. We found that connectivity matrices obtained using both techniques showed significant agreement. Connectivity maps created for a priori defined anatomical regions showed significant correlation, and furthermore agreement was especially high in regions showing strong overall connectivity, such as those belonging to the default mode network. Direct comparison between functional RSTC and anatomical DTI connectivity, presented here for the first time, links two powerful approaches for investigating brain connectivity and shows their strong agreement. It provides a crucial multi-modal validation for resting state correlations as representing neuronal connectivity. The combination of both techniques presented here allows for further combining them to provide richer representation of brain connectivity both in the healthy brain and in clinical conditions.
Collapse
Affiliation(s)
- Pawel Skudlarski
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, 06106 CT, USA.
| | | | | | | | | | | |
Collapse
|
1198
|
Hertzog C, Kramer AF, Wilson RS, Lindenberger U. Enrichment Effects on Adult Cognitive Development: Can the Functional Capacity of Older Adults Be Preserved and Enhanced? Psychol Sci Public Interest 2008; 9:1-65. [PMID: 26162004 DOI: 10.1111/j.1539-6053.2009.01034.x] [Citation(s) in RCA: 767] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this monograph, we ask whether various kinds of intellectual, physical, and social activities produce cognitive enrichment effects-that is, whether they improve cognitive performance at different points of the adult life span, with a particular emphasis on old age. We begin with a theoretical framework that emphasizes the potential of behavior to influence levels of cognitive functioning. According to this framework, the undeniable presence of age-related decline in cognition does not invalidate the view that behavior can enhance cognitive functioning. Instead, the course of normal aging shapes a zone of possible functioning, which reflects person-specific endowments and age-related constraints. Individuals influence whether they function in the higher or lower ranges of this zone by engaging in or refraining from beneficial intellectual, physical, and social activities. From this point of view, the potential for positive change, or plasticity, is maintained in adult cognition. It is an argument that is supported by newer research in neuroscience showing neural plasticity in various aspects of central nervous system functioning, neurochemistry, and architecture. This view of human potential contrasts with static conceptions of cognition in old age, according to which decline in abilities is fixed and individuals cannot slow its course. Furthermore, any understanding of cognition as it occurs in everyday life must make a distinction between basic cognitive mechanisms and skills (such as working-memory capacity) and the functional use of cognition to achieve goals in specific situations. In practice, knowledge and expertise are critical for effective functioning, and the available evidence suggests that older adults effectively employ specific knowledge and expertise and can gain new knowledge when it is required. We conclude that, on balance, the available evidence favors the hypothesis that maintaining an intellectually engaged and physically active lifestyle promotes successful cognitive aging. First, cognitive-training studies have demonstrated that older adults can improve cognitive functioning when provided with intensive training in strategies that promote thinking and remembering. The early training literature suggested little transfer of function from specifically trained skills to new cognitive tasks; learning was highly specific to the cognitive processes targeted by training. Recently, however, a new generation of studies suggests that providing structured experience in situations demanding executive coordination of skills-such as complex video games, task-switching paradigms, and divided attention tasks-train strategic control over cognition that does show transfer to different task environments. These studies suggest that there is considerable reserve potential in older adults' cognition that can be enhanced through training. Second, a considerable number of studies indicate that maintaining a lifestyle that is intellectually stimulating predicts better maintenance of cognitive skills and is associated with a reduced risk of developing Alzheimer's disease in late life. Our review focuses on longitudinal evidence of a connection between an active lifestyle and enhanced cognition, because such evidence admits fewer rival explanations of observed effects (or lack of effects) than does cross-sectional evidence. The longitudinal evidence consistently shows that engaging in intellectually stimulating activities is associated with better cognitive functioning at later points in time. Other studies show that meaningful social engagement is also predictive of better maintenance of cognitive functioning in old age. These longitudinal findings are also open to important rival explanations, but overall, the available evidence suggests that activities can postpone decline, attenuate decline, or provide prosthetic benefit in the face of normative cognitive decline, while at the same time indicating that late-life cognitive changes can result in curtailment of activities. Given the complexity of the dynamic reciprocal relationships between stimulating activities and cognitive function in old age, additional research will be needed to address the extent to which observed effects validate a causal influence of an intellectually engaged lifestyle on cognition. Nevertheless, the hypothesis that an active lifestyle that requires cognitive effort has long-term benefits for older adults' cognition is at least consistent with the available data. Furthermore, new intervention research that involves multimodal interventions focusing on goal-directed action requiring cognition (such as reading to children) and social interaction will help to address whether an active lifestyle enhances cognitive function. Third, there is a parallel literature suggesting that physical activity, and aerobic exercise in particular, enhances older adults' cognitive function. Unlike the literature on an active lifestyle, there is already an impressive array of work with humans and animal populations showing that exercise interventions have substantial benefits for cognitive function, particularly for aspects of fluid intelligence and executive function. Recent neuroscience research on this topic indicates that exercise has substantial effects on brain morphology and function, representing a plausible brain substrate for the observed effects of aerobic exercise and other activities on cognition. Our review identifies a number of areas where additional research is needed to address critical questions. For example, there is considerable epidemiological evidence that stress and chronic psychological distress are negatively associated with changes in cognition. In contrast, less is known about how positive attributes, such as self-efficacy, a sense of control, and a sense of meaning in life, might contribute to preservation of cognitive function in old age. It is well known that certain personality characteristics such as conscientiousness predict adherence to an exercise regimen, but we do not know whether these attributes are also relevant to predicting maintenance of cognitive function or effective compensation for cognitive decline when it occurs. Likewise, more information is needed on the factors that encourage maintenance of an active lifestyle in old age in the face of elevated risk for physiological decline, mechanical wear and tear on the body, and incidence of diseases with disabling consequences, and whether efforts to maintain an active lifestyle are associated with successful aging, both in terms of cognitive function and psychological and emotional well-being. We also discuss briefly some interesting issues for society and public policy regarding cognitive-enrichment effects. For example, should efforts to enhance cognitive function be included as part of a general prevention model for enhancing health and vitality in old age? We also comment on the recent trend of business marketing interventions claimed to build brain power and prevent age-related cognitive decline, and the desirability of direct research evidence to back claims of effectiveness for specific products.
Collapse
|
1199
|
Catheline G, Periot O, Amirault M, Braun M, Dartigues JF, Auriacombe S, Allard M. Distinctive alterations of the cingulum bundle during aging and Alzheimer's disease. Neurobiol Aging 2008; 31:1582-92. [PMID: 18829135 DOI: 10.1016/j.neurobiolaging.2008.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 08/12/2008] [Accepted: 08/19/2008] [Indexed: 11/15/2022]
Abstract
Brain imaging studies have revealed frontal disruption during aging and parieto-temporal disruption during Alzheimer's disease (AD). The present study aims at developing a specific method based on precise anatomical landmarks for assessing the integrity all along the course of the cingulum bundle, so as to determine if it presents the classical aging and AD dissociation. Five regions of interest (ROIs) were placed on fractional anisotropy (FA) maps all along the cingulum in 15 young (Gyoung), 15 70-year-old (Gold), and 15 AD subjects (Galz). An age-related decrease of FA occurred in the anterior part of the bundle. Moreover, a specific alteration of the supero-posterior region of the cingulum during AD was observed since mean FA values as well as mean number of fibers were significantly decreased in Galz compared to Gold and Gyoung. This multiple ROIs placement allows for revealing distinctive alterations of the cingulum bundle during aging and AD, which could constitute the anatomical basis for the distinctive functional disconnection recently described in the literature using functional connectivity at rest.
Collapse
|
1200
|
Imaging structural and functional connectivity: towards a unified definition of human brain organization? Curr Opin Neurol 2008; 21:393-403. [PMID: 18607198 DOI: 10.1097/wco.0b013e3283065cfb] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Diffusion tractography and functional/effective connectivity MRI provide a better understanding of the structural and functional human brain connectivity. This review will underline the major recent methodological developments and their exceptional respective contributions to physiological and pathophysiological studies in vivo. We will also emphasize the benefits provided by computational models of complex networks such as graph theory. RECENT FINDINGS Imaging structural and functional brain connectivity has revealed the complex brain organization into large-scale networks. Such an organization not only permits the complex information segregation and integration during high cognitive processes but also determines the clinical consequences of alterations encountered in development, ageing, or neurological diseases. Recently, it has also been demonstrated that human brain networks shared topological properties with the so-called 'small-world' mathematical model, allowing a maximal efficiency with a minimal energy and wiring cost. SUMMARY Separately, magnetic resonance tractography and functional MRI connectivity have both brought new insights into brain organization and the impact of injuries. The small-world topology of structural and functional human brain networks offers a common framework to merge structural and functional imaging as well as dynamical data from electrophysiology that might allow a comprehensive definition of the brain organization and plasticity.
Collapse
|