1201
|
Führmann T, Anandakumaran PN, Shoichet MS. Combinatorial Therapies After Spinal Cord Injury: How Can Biomaterials Help? Adv Healthc Mater 2017; 6. [PMID: 28247563 DOI: 10.1002/adhm.201601130] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/05/2016] [Indexed: 12/31/2022]
Abstract
Traumatic spinal cord injury (SCI) results in an immediate loss of motor and sensory function below the injury site and is associated with a poor prognosis. The inhibitory environment that develops in response to the injury is mainly due to local expression of inhibitory factors, scarring and the formation of cystic cavitations, all of which limit the regenerative capacity of endogenous or transplanted cells. Strategies that demonstrate promising results induce a change in the microenvironment at- and around the lesion site to promote endogenous cell repair, including axonal regeneration or the integration of transplanted cells. To date, many of these strategies target only a single aspect of SCI; however, the multifaceted nature of SCI suggests that combinatorial strategies will likely be more effective. Biomaterials are a key component of combinatorial strategies, as they have the potential to deliver drugs locally over a prolonged period of time and aid in cell survival, integration and differentiation. Here we summarize the advantages and limitations of widely used strategies to promote recovery after injury and highlight recent research where biomaterials aided combinatorial strategies to overcome some of the barriers of spinal cord regeneration.
Collapse
Affiliation(s)
- Tobias Führmann
- The Donnelly Centre for Cellular and Biomolecular Research; 160 College Street, Room 514 Toronto ON M5S 3E1 Canada
- Department of Chemical Engineering and Applied Chemistry; 200 College Street Toronto ON M5S 3E5 Canada
| | - Priya N. Anandakumaran
- The Donnelly Centre for Cellular and Biomolecular Research; 160 College Street, Room 514 Toronto ON M5S 3E1 Canada
- Institute of Biomaterials and Biomedical Engineering; 164 College Street Toronto ON M5S 3G9 Canada
| | - Molly S. Shoichet
- The Donnelly Centre for Cellular and Biomolecular Research; 160 College Street, Room 514 Toronto ON M5S 3E1 Canada
- Department of Chemical Engineering and Applied Chemistry; 200 College Street Toronto ON M5S 3E5 Canada
- Institute of Biomaterials and Biomedical Engineering; 164 College Street Toronto ON M5S 3G9 Canada
- Department of Chemistry; University of Toronto; 80 St George St Toronto ON M5S 3H6 Canada
| |
Collapse
|
1202
|
Munoz A. Neurogenic bladder dysfunction does not correlate with astrocyte and microglia activation produced by graded force in a contusion-induced spinal cord injury. Brain Res Bull 2017; 131:18-24. [DOI: 10.1016/j.brainresbull.2017.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
|
1203
|
Transformation of Astrocytes to a Neuroprotective Phenotype by Microglia via P2Y 1 Receptor Downregulation. Cell Rep 2017; 19:1151-1164. [DOI: 10.1016/j.celrep.2017.04.047] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 03/07/2017] [Accepted: 04/14/2017] [Indexed: 11/22/2022] Open
|
1204
|
Abstract
Traumatic spinal cord injury (SCI) has devastating consequences for the physical, social and vocational well-being of patients. The demographic of SCIs is shifting such that an increasing proportion of older individuals are being affected. Pathophysiologically, the initial mechanical trauma (the primary injury) permeabilizes neurons and glia and initiates a secondary injury cascade that leads to progressive cell death and spinal cord damage over the subsequent weeks. Over time, the lesion remodels and is composed of cystic cavitations and a glial scar, both of which potently inhibit regeneration. Several animal models and complementary behavioural tests of SCI have been developed to mimic this pathological process and form the basis for the development of preclinical and translational neuroprotective and neuroregenerative strategies. Diagnosis requires a thorough patient history, standardized neurological physical examination and radiographic imaging of the spinal cord. Following diagnosis, several interventions need to be rapidly applied, including haemodynamic monitoring in the intensive care unit, early surgical decompression, blood pressure augmentation and, potentially, the administration of methylprednisolone. Managing the complications of SCI, such as bowel and bladder dysfunction, the formation of pressure sores and infections, is key to address all facets of the patient's injury experience.
Collapse
|
1205
|
Delayed histochemical alterations within the neurovascular unit due to transient focal cerebral ischemia and experimental treatment with neurotrophic factors. PLoS One 2017; 12:e0174996. [PMID: 28445478 PMCID: PMC5405989 DOI: 10.1371/journal.pone.0174996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/17/2017] [Indexed: 02/03/2023] Open
Abstract
Current stroke therapy is focused on recanalizing strategies, but neuroprotective co-treatments are still lacking. Modern concepts of the ischemia-affected neurovascular unit (NVU) and surrounding penumbra emphasize the complexity during the transition from initial damaging to regenerative processes. While early treatment with neurotrophic factors was shown to result in lesion size reduction and blood-brain barrier (BBB) stabilization, cellular consequences from these treatments are poorly understood. This study explored delayed cellular responses not only to ischemic stroke, but also to an early treatment with neurotrophic factors. Rats underwent 60 minutes of focal cerebral ischemia. Fluorescence labeling was applied to sections from brains perfused 7 days after ischemia. Analyses focused on NVU constituents including the vasculature, astrocytes and microglia in the ischemic striatum, the border zone and the contralateral hemisphere. In addition to histochemical signs of BBB breakdown, a strong up-regulation of collagen IV and microglia activation occurred within the ischemic core with simultaneous degradation of astrocytes and their endfeet. Activated astroglia were mainly depicted at the border zone in terms of a glial scar formation. Early treatment with pigment epithelium-derived factor (PEDF) resulted in an attenuation of the usually up-regulated collagen IV-immunoreactivity. However, glial activation was not influenced by treatment with PEDF or the epidermal growth factor (EGF). In conclusion, these data on ischemia-induced cellular reactions within the NVU might help to develop treatments addressing the transition from injury towards regeneration. Thereby, the integrity of the vasculature in close relation to neighboring structures like astrocytes appears as a promising target.
Collapse
|
1206
|
Cell transplantation therapy for spinal cord injury. Nat Neurosci 2017; 20:637-647. [DOI: 10.1038/nn.4541] [Citation(s) in RCA: 435] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
|
1207
|
Mokalled MH, Patra C, Dickson AL, Endo T, Stainier DYR, Poss KD. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 2017; 354:630-634. [PMID: 27811277 DOI: 10.1126/science.aaf2679] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022]
Abstract
Unlike mammals, zebrafish efficiently regenerate functional nervous system tissue after major spinal cord injury. Whereas glial scarring presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish form a bridge across severed spinal cord tissue and facilitate regeneration. We performed a genome-wide profiling screen for secreted factors that are up-regulated during zebrafish spinal cord regeneration. We found that connective tissue growth factor a (ctgfa) is induced in and around glial cells that participate in initial bridging events. Mutations in ctgfa disrupted spinal cord repair, and transgenic ctgfa overexpression or local delivery of human CTGF recombinant protein accelerated bridging and functional regeneration. Our study reveals that CTGF is necessary and sufficient to stimulate glial bridging and natural spinal cord regeneration.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Chinmoy Patra
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Amy L Dickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Toyokazu Endo
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
1208
|
Ziemba AM, Gottipati MK, Totsingan F, Hanes CM, Gross RA, Lennartz MR, Gilbert RJ. Sophorolipid Butyl Ester Diacetate Does Not Affect Macrophage Polarization but Enhances Astrocytic Glial Fibrillary Acidic Protein Expression at Micromolar Concentrations in Vitro. ACS Chem Neurosci 2017; 8:752-758. [PMID: 28140557 DOI: 10.1021/acschemneuro.6b00451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Peritoneal macrophages (PMACs) and spinal cord astrocytes were exposed to varying concentrations of soluble sophorolipid butyl ester diacetate (SLBEDA) in vitro. Macrophages and astrocytes demonstrated no decrease in viability in response to SLBEDA. Studying pro- and anti-inflammatory genes, PMACs did not show a shift toward a pro-inflammatory phenotype. However, at higher concentrations (3 and 30 μM), astrocytes showed an increase in their expression of glial acidic fibrillary protein. This novel category of compounds poses low risk to PMAC and astrocyte viability; however, the effect on PMAC polarization and astrocyte reactivity requires more elucidation.
Collapse
Affiliation(s)
| | - Manoj K. Gottipati
- Department
of Neuroscience and Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Avenue, Columbus, Ohio 43210, United States
| | | | - Cheryl M. Hanes
- Center
for Cell Biology and Cancer Research, Albany Medical College, 43 New
Scotland Avenue Albany, New
York 12208, United States
| | | | - Michelle R. Lennartz
- Center
for Cell Biology and Cancer Research, Albany Medical College, 43 New
Scotland Avenue Albany, New
York 12208, United States
| | | |
Collapse
|
1209
|
Hirt L, Price M, Mastour N, Brunet JF, Barrière G, Friscourt F, Badaut J. Increase of aquaporin 9 expression in astrocytes participates in astrogliosis. J Neurosci Res 2017; 96:194-206. [PMID: 28419510 DOI: 10.1002/jnr.24061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 01/01/2023]
Abstract
Here we assess the potential functional role of increased aquaporin 9 (APQ9) in astrocytes. Increased AQP9 expression was achieved in primary astrocyte cultures by transfection of a plasmid-containing green fluorescent protein fused to either wild-type or mutated human AQP9. Increased AQP9 expression and phosphorylation at Ser222 were associated with a significant change in astrocyte morphology, mainly with a higher number of processes. Similar phenotypic changes are observed in astrogliosis processes after injury. In parallel, we observed that in vivo, thrombin preconditioning before ischemic stroke induced an early increase in AQP9 expression in the male mouse brain. This increased AQP9 expression was also associated with astrocyte morphological changes, especially in the white matter tract. Astrocyte reactivity is debated as being either beneficial or deleterious. As thrombin preconditioning leads to a decrease in lesion size after stroke, our data suggest that the early increase in AQP9 concomitant with astrocyte reactivity leads to a beneficial effect. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lorenz Hirt
- Neurology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Melanie Price
- Neurology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Nabil Mastour
- Neurosurgery Research Group, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Jean-François Brunet
- Neurosurgery Research Group, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | - Jerome Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
| |
Collapse
|
1210
|
Sun D, Moore S, Jakobs TC. Optic nerve astrocyte reactivity protects function in experimental glaucoma and other nerve injuries. J Exp Med 2017; 214:1411-1430. [PMID: 28416649 PMCID: PMC5413323 DOI: 10.1084/jem.20160412] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/05/2016] [Accepted: 03/08/2017] [Indexed: 01/06/2023] Open
Abstract
Reactive remodeling of optic nerve head astrocytes is consistently observed in glaucoma and other optic nerve injuries. However, it is unknown whether this reactivity is beneficial or harmful for visual function. In this study, we used the Cre recombinase (Cre)-loxP system under regulation of the mouse glial fibrillary acidic protein promoter to knock out the transcription factor signal transducer and activator of transcription 3 (STAT3) from astrocytes and test the effect this has on reactive remodeling, ganglion cell survival, and visual function after experimental glaucoma and nerve crush. After injury, STAT3 knockout mice displayed attenuated astrocyte hypertrophy and reactive remodeling; astrocytes largely maintained their honeycomb organization and glial tubes. These changes were associated with increased loss of ganglion cells and visual function over a 30-day period. Thus, reactive astrocytes play a protective role, preserving visual function. STAT3 signaling is an important mediator of various aspects of the reactive phenotype within optic nerve astrocytes.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114
| | - Sara Moore
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114
| | - Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
1211
|
Batiuk MY, de Vin F, Duqué SI, Li C, Saito T, Saido T, Fiers M, Belgard TG, Holt MG. An immunoaffinity-based method for isolating ultrapure adult astrocytes based on ATP1B2 targeting by the ACSA-2 antibody. J Biol Chem 2017; 292:8874-8891. [PMID: 28373281 DOI: 10.1074/jbc.m116.765313] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/10/2017] [Indexed: 12/21/2022] Open
Abstract
Astrocytes are a major cell type in the mammalian CNS. Astrocytes are now known to play a number of essential roles in processes including synapse formation and function, as well as blood-brain barrier formation and control of cerebral blood flow. However, our understanding of the molecular mechanisms underlying astrocyte development and function is still rudimentary. This lack of knowledge is at least partly due to the lack of tools currently available for astrocyte biology. ACSA-2 is a commercially available antibody originally developed for the isolation of astrocytes from young postnatal mouse brain, using magnetic cell-sorting methods, but its utility in isolating cells from adult tissue has not yet been published. Using a modified protocol, we now show that this tool can also be used to isolate ultrapure astrocytes from the adult brain. Furthermore, using a variety of techniques (including single-cell sequencing, overexpression and knockdown assays, immunoblotting, and immunohistochemistry), we identify the ACSA-2 epitope for the first time as ATP1B2 and characterize its distribution in the CNS. Finally, we show that ATP1B2 is stably expressed in multiple models of CNS injury and disease. Hence, we show that the ACSA-2 antibody possesses the potential to be an extremely valuable tool for astrocyte research, allowing the purification and characterization of astrocytes (potentially including injury and disease models) without the need for any specialized and expensive equipment. In fact, our results suggest that ACSA-2 should be a first-choice method for astrocyte isolation and characterization.
Collapse
Affiliation(s)
- Mykhailo Y Batiuk
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research.,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| | - Filip de Vin
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research.,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| | - Sandra I Duqué
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research.,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| | - Chen Li
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research.,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| | - Takashi Saito
- the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0106, Japan, and
| | - Takaomi Saido
- the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0106, Japan, and
| | - Mark Fiers
- the VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - T Grant Belgard
- the Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, United Kingdom
| | - Matthew G Holt
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, .,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| |
Collapse
|
1212
|
Yang Z, Xie W, Ju F, khan A, Zhang S. In vivo two-photon imaging reveals a role of progesterone in reducing axonal dieback after spinal cord injury in mice. Neuropharmacology 2017; 116:30-37. [DOI: 10.1016/j.neuropharm.2016.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/29/2016] [Accepted: 12/09/2016] [Indexed: 01/10/2023]
|
1213
|
Li J, Deng J, Yuan J, Fu J, Li X, Tong A, Wang Y, Chen Y, Guo G. Zonisamide-loaded triblock copolymer nanomicelles as a novel drug delivery system for the treatment of acute spinal cord injury. Int J Nanomedicine 2017; 12:2443-2456. [PMID: 28408816 PMCID: PMC5383091 DOI: 10.2147/ijn.s128705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) commonly leads to lifelong disability due to the limited regenerative capacity of the adult central nervous system. Nanomicelles can be used as therapeutic systems to provide effective treatments for SCI. In this study, a novel triblock monomethyl poly(ethylene glycol)-poly(l-lactide)-poly(trimethylene carbonate) copolymer was successfully synthesized. Next, polymeric nanomicelles loaded with zonisamide (ZNS), a Food and Drug Administration-approved antiepileptic drug, were prepared and characterized. The ZNS-loaded micelles (ZNS-M) were further utilized for the treatment of SCI in vitro and in vivo. The obtained ZNS-M were ~50 nm in diameter with good solubility and dispersibility. Additionally, these controlled-release micelles showed significant antioxidative and neuron-protective effects in vitro. Finally, our results indicated that ZNS-M treatment could promote motor function recovery and could increase neuron and axon density in a hemisection SCI model. In summary, these results may provide an experimental basis for the use of ZNS-M as a clinically applicable therapeutic drug for the treatment of SCI in the future.
Collapse
Affiliation(s)
- JingLun Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing
| | - JiaoJiao Deng
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People’s Republic of China
| | - JinXian Yuan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing
| | - Jie Fu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing
| | - XiaoLing Li
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People’s Republic of China
| | - AiPing Tong
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People’s Republic of China
| | - YueLong Wang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People’s Republic of China
| | - YangMei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People’s Republic of China
| |
Collapse
|
1214
|
Levin LA, Miller JW, Zack DJ, Friedlander M, Smith LEH. Special Commentary: Early Clinical Development of Cell Replacement Therapy: Considerations for the National Eye Institute Audacious Goals Initiative. Ophthalmology 2017; 124:926-934. [PMID: 28365209 DOI: 10.1016/j.ophtha.2017.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 11/17/2022] Open
Abstract
The National Eye Institute launched the Audacious Goals Initiative (AGI) in 2013 with the aim "to restore vision through the regeneration of neurons and neural connections in the eye and visual system." An AGI Town Hall held at the Association for Research in Vision and Ophthalmology Annual Meeting in 2016 brought together basic, translational, and clinical scientists to address the clinical implications of the AGI, with a particular emphasis on diseases amenable to regenerative medicine and strategies to deal with barriers to progess. An example of such a barrier is that replacement of lost neurons may be insufficient because damage to other neurons and non-neuronal cells is common in retinal and optic nerve disease. Reparative processes such as gliosis and fibrosis also can make it difficult to replenish and regenerate neurons. Other issues include choice of animal models, selecting appropriate endpoints, ethics of informed consent, and regulatory issues. Another area critical to next steps in the AGI is the choice of target diseases and the stage at which early development studies should be focused. For example, an advantage of doing clinical trials in patients with early disease is that supporting cellular and structural constituents are still likely to be present. However, regenerative studies in patients with late disease make it easier to detect the effects of replacement therapy against the background of severe visual loss, whereas it may be harder to detect incremental improvement in visual function in those with early disease and considerable remaining visual function. Achieving the goals of the AGI also requires preclinical advances, new imaging techniques, and optimizing translational issues. The work of the AGI is expected to take at least 10 years but should eventually result in therapies to restore some degree of vision to the blind.
Collapse
Affiliation(s)
- Leonard A Levin
- Department of Ophthalmology, McGill University, Montreal, Canada; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Joan W Miller
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear, Massachusetts General Hospital, Boston, Massachusetts
| | - Donald J Zack
- Departments of Ophthalmology, Neuroscience, Molecular Biology and Genetics, and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin Friedlander
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California; The Lowy Medical Research Institute, La Jolla, California
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
1215
|
Kardos J, Héja L, Jemnitz K, Kovács R, Palkovits M. The nature of early astroglial protection-Fast activation and signaling. Prog Neurobiol 2017; 153:86-99. [PMID: 28342942 DOI: 10.1016/j.pneurobio.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 03/05/2017] [Indexed: 12/14/2022]
Abstract
Our present review is focusing on the uniqueness of balanced astroglial signaling. The balance of excitatory and inhibitory signaling within the CNS is mainly determined by sharp synaptic transients of excitatory glutamate (Glu) and inhibitory γ-aminobutyrate (GABA) acting on the sub-second timescale. Astroglia is involved in excitatory chemical transmission by taking up i) Glu through neurotransmitter-sodium transporters, ii) K+ released due to presynaptic action potential generation, and iii) water keeping osmotic pressure. Glu uptake-coupled Na+ influx may either ignite long-range astroglial Ca2+ transients or locally counteract over-excitation via astroglial GABA release and increased tonic inhibition. Imbalance of excitatory and inhibitory drives is associated with a number of disease conditions, including prevalent traumatic and ischaemic injuries or the emergence of epilepsy. Therefore, when addressing the potential of early therapeutic intervention, astroglial signaling functions combating progress of Glu excitotoxicity is of critical importance. We suggest, that excitotoxicity is linked primarily to over-excitation induced by the impairment of astroglial Glu uptake and/or GABA release. Within this framework, we discuss the acute alterations of Glu-cycling and metabolism and conjecture the therapeutic promise of regulation. We also confer the role played by key carrier proteins and enzymes as well as their interplay at the molecular, cellular, and organ levels. Moreover, based on our former studies, we offer potential prospect on the emerging theme of astroglial succinate sensing in course of Glu excitotoxicity.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary.
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Richárd Kovács
- Institute of Neurophysiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Miklós Palkovits
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| |
Collapse
|
1216
|
Parker K, Berretta A, Saenger S, Sivaramakrishnan M, Shirley SA, Metzger F, Clarkson AN. PEGylated insulin-like growth factor-I affords protection and facilitates recovery of lost functions post-focal ischemia. Sci Rep 2017; 7:241. [PMID: 28325900 PMCID: PMC5428211 DOI: 10.1038/s41598-017-00336-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/21/2017] [Indexed: 12/04/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) is involved in the maturation and maintenance of neurons, and impaired IGF-I signaling has been shown to play a role in various neurological diseases including stroke. The aim of the present study was to investigate the efficacy of an optimized IGF-I variant by adding a 40 kDa polyethylene glycol (PEG) chain to IGF-I to form PEG-IGF-I. We show that PEG-IGF-I has a slower clearance which allows for twice-weekly dosing to maintain steady-state serum levels in mice. Using a photothrombotic model of focal stroke, dosing from 3 hrs post-stroke dose-dependently (0.3–1 mg/kg) decreases the volume of infarction and improves motor behavioural function in both young 3-month and aged 22–24 month old mice. Further, PEG-IGF-I treatment increases GFAP expression when given early (3 hrs post-stroke), increases Synaptophysin expression and increases neurogenesis in young and aged. Finally, neurons (P5–6) cultured in vitro on reactive astrocytes in the presence of PEG-IGF-I showed an increase in neurite length, indicating that PEG-IGF-I can aid in sprouting of new connections. This data suggests a modulatory role of IGF-I in both protective and regenerative processes, and indicates that therapeutic approaches using PEG-IGF-I should be given early and where the endogenous regenerative potential is still high.
Collapse
Affiliation(s)
- Kim Parker
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand
| | - Antonio Berretta
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand
| | - Stefanie Saenger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Manaswini Sivaramakrishnan
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Simon A Shirley
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand
| | - Friedrich Metzger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Andrew N Clarkson
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand. .,Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand. .,Faculty of Pharmacy, The University of Sydney, Sydney, Australia.
| |
Collapse
|
1217
|
Moeendarbary E, Weber IP, Sheridan GK, Koser DE, Soleman S, Haenzi B, Bradbury EJ, Fawcett J, Franze K. The soft mechanical signature of glial scars in the central nervous system. Nat Commun 2017; 8:14787. [PMID: 28317912 PMCID: PMC5364386 DOI: 10.1038/ncomms14787] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/31/2017] [Indexed: 02/02/2023] Open
Abstract
Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury.
Collapse
Affiliation(s)
- Emad Moeendarbary
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave 56, Cambridge, Massachusetts 02139, USA,Department of Mechanical Engineering, University College London, London WC1E 7JE, UK,
| | - Isabell P. Weber
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Graham K. Sheridan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK,School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
| | - David E. Koser
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sara Soleman
- John van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Elizabeth J. Bradbury
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - James Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK,
| |
Collapse
|
1218
|
Abstract
After injury and in disease of the central nervous system (CNS), local cells called astrocytes respond with diverse molecular changes whose functional consequences are incompletely understood. A combined genomic and experimental analysis shows that classically-activated microglia, which are innate immune cells resident in CNS neural tissue, release molecules that drive astrocytes into a neurotoxic state, raising important questions about potential adaptive and maladaptive functions of such a mechanism.
Collapse
Affiliation(s)
- Joshua E Burda
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
1219
|
Abstract
Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke.
Collapse
|
1220
|
Donega V, Raineteau O. Postnatal Neural Stem Cells: Probing Their Competence for Cortical Repair. Neuroscientist 2017; 23:605-615. [DOI: 10.1177/1073858417697036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There is growing evidence for a tentative cellular repair in the forebrain following perinatal injuries. In this review, we present the evidences and shortcomings in this regenerative attempt. We discuss recent progress in elucidating the origin, diversity, and competence of postnatal neural stem cells/progenitor cells. Finally, we propose new strategies to recruit postnatal progenitors to generate specific subtypes of cortical neurons or oligodendrocytes, thereby allowing the development of tailor-made approaches to treat perinatal brain injuries.
Collapse
Affiliation(s)
- Vanessa Donega
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| |
Collapse
|
1221
|
Betancur MI, Mason HD, Alvarado-Velez M, Holmes PV, Bellamkonda RV, Karumbaiah L. Chondroitin Sulfate Glycosaminoglycan Matrices Promote Neural Stem Cell Maintenance and Neuroprotection Post-Traumatic Brain Injury. ACS Biomater Sci Eng 2017; 3:420-430. [PMID: 29744379 PMCID: PMC5937277 DOI: 10.1021/acsbiomaterials.6b00805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There are currently no effective treatments for moderate-to-severe traumatic brain injuries (TBIs). The paracrine functions of undifferentiated neural stem cells (NSCs) are believed to play a significant role in stimulating the repair and regeneration of injured brain tissue. We therefore hypothesized that fibroblast growth factor (FGF2) enriching chondroitin sulfate glycosaminoglycan (CS-GAG) matrices can maintain the undifferentiated state of neural stem cells (NSCs) and facilitate brain tissue repair subacutely post-TBI. Rats subjected to a controlled cortical impactor (CCI) induced TBI were intraparenchymally injected with CS-GAG matrices alone or with CS-GAG matrices containing PKH26GL labeled allogeneic NSCs. Nissl staining of brain tissue 4 weeks post-TBI demonstrated the significantly enhanced (p < 0.05) tissue protection in CS-GAG treated animals when compared to TBI only control, and NSC only treated animals. CS-GAG-NSC treated animals demonstrated significantly enhanced (p < 0.05) FGF2 retention, and maintenance of PKH26GL labeled NSCs as indicated by enhanced Sox1+ and Ki67+ cell presence over other differentiated cell types. Lastly, all treatment groups and sham controls exhibited a significantly (p < 0.05) attenuated GFAP+ reactive astrocyte presence in the lesion site when compared to TBI only controls.
Collapse
Affiliation(s)
- Martha I. Betancur
- Regenerative Bioscience Center, The University of Georgia, 425 River Road, ADS Complex, Athens, Georgia 30602, United States
| | - Hannah D. Mason
- Regenerative Bioscience Center, The University of Georgia, 425 River Road, ADS Complex, Athens, Georgia 30602, United States
| | - Melissa Alvarado-Velez
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Phillip V. Holmes
- Psychology Department, The University of Georgia, 125 Baldwin Street, Athens, Georgia 30602, United States
| | - Ravi V. Bellamkonda
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, The University of Georgia, 425 River Road, ADS Complex, Athens, Georgia 30602, United States
| |
Collapse
|
1222
|
Frago LM, Chowen JA. Involvement of Astrocytes in Mediating the Central Effects of Ghrelin. Int J Mol Sci 2017; 18:ijms18030536. [PMID: 28257088 PMCID: PMC5372552 DOI: 10.3390/ijms18030536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/16/2017] [Accepted: 02/25/2017] [Indexed: 12/31/2022] Open
Abstract
Although astrocytes are the most abundant cells in the mammalian brain, much remains to be learned about their molecular and functional features. Astrocytes express receptors for numerous hormones and metabolic factors, including the appetite-promoting hormone ghrelin. The metabolic effects of ghrelin are largely opposite to those of leptin, as it stimulates food intake and decreases energy expenditure. Ghrelin is also involved in glucose-sensing and glucose homeostasis. The widespread expression of the ghrelin receptor in the central nervous system suggests that this hormone is not only involved in metabolism, but also in other essential functions in the brain. In fact, ghrelin has been shown to promote cell survival and neuroprotection, with some studies exploring the use of ghrelin as a therapeutic agent against metabolic and neurodegenerative diseases. In this review, we highlight the possible role of glial cells as mediators of ghrelin's actions within the brain.
Collapse
Affiliation(s)
- Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28009 Madrid, Spain.
- Department of Pediatrics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28009 Madrid, Spain.
| |
Collapse
|
1223
|
Blood-brain barrier dysfunction induced by silica NPs in vitro and in vivo : Involvement of oxidative stress and Rho-kinase/JNK signaling pathways. Biomaterials 2017; 121:64-82. [DOI: 10.1016/j.biomaterials.2017.01.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 01/03/2023]
|
1224
|
Gao P, Ding X, Khan TM, Rong W, Franke H, Illes P. P2X7 receptor-sensitivity of astrocytes and neurons in the substantia gelatinosa of organotypic spinal cord slices of the mouse depends on the length of the culture period. Neuroscience 2017; 349:195-207. [PMID: 28237817 DOI: 10.1016/j.neuroscience.2017.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 02/08/2023]
Abstract
The whole-cell patch-clamp technique was used to record current responses to AMPA, N-methyl-d-aspartate (NMDA), muscimol and dibenzoyl-ATP (Bz-ATP) in superficial (reactive/gliotic) substantia gelatinosa (SG) astrocytes and neurons of spinal cord slices kept for different periods of time in organotypic culture. Currents induced by AMPA, NMDA and muscimol confirmed the existence of their specific receptors in 2-week-old neurons; astrocytes cultured for the same period of time responded to AMPA and muscimol, but not to NMDA. AMPA had a larger effect on 2-week-old astrocytes than on the 1-week-old ones, in spite of a similar sensitivity of the age-matched neurons to this amino acid. The effect of the prototypic P2X7 receptor agonist Bz-ATP on superficial astrocytes and neurons depended on the drug concentration applied and increased in parallel with the lengthening of the culture period. The amplitudes of Bz-ATP currents of deep (resting) astrocytes were age-independent. Neurons located in deep layers exhibited after 1week of culturing much larger Bz-ATP currents than the superficial ones of the same age. In conclusion, whereas resting astrocytes had culture period-independent P2X7 receptor-sensitivity, reactive/gliotic astrocytes exhibited P2X7 receptor-sensitivity increasing in parallel with the prolongation of the time spent in culture. The results with Bz-ATP agree with the facilitation of AMPA-induced currents in reactive astrocytes during development, and with the hypothesis that extracellular ATP is an ontogenetically early transmitter/signaling molecule in the CNS.
Collapse
Affiliation(s)
- Po Gao
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany; Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Xiaowei Ding
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany; Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Tahir Muhammad Khan
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Weifang Rong
- Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Heike Franke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany.
| |
Collapse
|
1225
|
Wang Q, He Y, Zhao Y, Xie H, Lin Q, He Z, Wang X, Li J, Zhang H, Wang C, Gong F, Li X, Xu H, Ye Q, Xiao J. A Thermosensitive Heparin-Poloxamer Hydrogel Bridges aFGF to Treat Spinal Cord Injury. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6725-6745. [PMID: 28181797 DOI: 10.1021/acsami.6b13155] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acidic fibroblast growth factor (aFGF) exerts a protective effect on spinal cord injury (SCI) but is limited by the lack of physicochemical stability and the ability to cross the blood spinal cord barrier (BSCB). As promising biomaterials, hydrogels contain substantial amounts of water and a three-dimensional porous structure and are commonly used to load and deliver growth factors. Heparin can not only enhance growth factor loading onto hydrogels but also can stabilize the structure and control the release behavior. Herein, a novel aFGF-loaded thermosensitive heparin-poloxamer (aFGF-HP) hydrogel was developed and applied to provide protection and regeneration after SCI. To assess the effects of the aFGF-HP hydrogel, BSCB restoration, neuron and axonal rehabilitation, glial scar inhibition, inflammatory response suppression, and motor recovery were studied both in vivo and in vitro. The aFGF-HP hydrogels exhibited sustained release of aFGF and protected the bioactivity of aFGF in vitro. Compared to groups intravenously administered either drug-free HP hydrogel or aFGF alone, the aFGF-HP hydrogel group revealed prominent and attenuated disruption of the BSCB, reduced neuronal apoptosis, reactive astrogliosis, and increased neuron and axonal rehabilitation both in vivo and in vitro. This work provides an effective approach to enhance recovery after SCI and provide a successful strategy for SCI protection.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.,WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Yan He
- WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China.,UQ-WMU Joint Research Group for Regenerative Medicine, Oral Health Centre, University of Queensland , Brisbane 4006, Australia
| | - Yingzheng Zhao
- WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, China
| | - Qian Lin
- WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Zili He
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.,WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Xiaoyan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China
| | - Jiawei Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.,WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Hongyu Zhang
- WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Chenggui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.,WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Fanghua Gong
- WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Xiaokun Li
- WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.,WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Qingsong Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.,WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China.,UQ-WMU Joint Research Group for Regenerative Medicine, Oral Health Centre, University of Queensland , Brisbane 4006, Australia
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.,WMU-JCU Joint Research Group for Stem Cell and Tissue Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, China
| |
Collapse
|
1226
|
Umezawa H, Naito Y, Tanaka K, Yoshioka K, Suzuki K, Sudo T, Hagihara M, Hatano M, Tatsumi K, Kasuya Y. Genetic and Pharmacological Inhibition of p38α Improves Locomotor Recovery after Spinal Cord Injury. Front Pharmacol 2017; 8:72. [PMID: 28261102 PMCID: PMC5313485 DOI: 10.3389/fphar.2017.00072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 01/02/2023] Open
Abstract
One of the mitogen-activated protein kinases, p38α plays a crucial role in various inflammatory diseases and apoptosis of various types of cells. In this study, we investigated the pathophysiological roles of p38α in spinal cord injury (SCI), using a mouse model. Lateral hemisection at T9 of the SC was performed in wild type (WT) and p38α+/- mice (p38α-/- showed embryonic lethality). p38α+/- mice showed a better functional recovery from SCI-associated paralyzed hindlimbs compared to WT mice at 7 days post-injury (dpi), which remained until 28 dpi (an end time point of monitoring the behavior). In histopathological analysis at 28 dpi, there was more axonal regeneration with remyelination on the caudal side of the lesion epicenter in p38α+/- mice than in WT mice. At 7 dpi, infiltration of inflammatory cells into the lesion and expression of cytokines in the lesion were reduced in p38α+/- mice compared with WT mice. At the same time point, the number of apoptotic oligodendrocytes in the white matter at the caudal boarder of the lesion of p38α+/- mice was lower than that of WT mice. At 14 dpi, more neural and oligodendrocyte precursor cells in the gray matter and white matter, respectively, were observed around the lesion epicenter of p38α+/- mice compared with the case of WT mice. At the same time point, astrocytic scar formation was less apparent in p38α+/- than in WT mice, while compaction of inflammatory immune cells associated with the wound contraction was more apparent in p38α+/- than in WT mice. Furthermore, we verified the effectiveness of oral administration of SB239063, a p38α inhibitor on the hindlimb locomotor recovery after SCI. These results suggest that p38α deeply contributes to the pathogenesis of SCI and that inhibition of p38α is a beneficial strategy to recovery from SCI.
Collapse
Affiliation(s)
- Hiroki Umezawa
- Department of Respirology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Yusuke Naito
- Department of Respirology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Kensuke Tanaka
- Department of Respirology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Kento Yoshioka
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Kenichi Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Tatsuhiko Sudo
- Chemical Biology Core Facility and Antibiotics Laboratory, RIKEN Advanced Science Institute Saitama, Japan
| | | | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University Chiba, Japan
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba UniversityChiba, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba UniversityChiba, Japan
| |
Collapse
|
1227
|
Zhao Y, Tang F, Xiao Z, Han G, Wang N, Yin N, Chen B, Jiang X, Yun C, Han W, Zhao C, Cheng S, Zhang S, Dai J. Clinical Study of NeuroRegen Scaffold Combined With Human Mesenchymal Stem Cells for the Repair of Chronic Complete Spinal Cord Injury. Cell Transplant 2017; 26:891-900. [PMID: 28185615 DOI: 10.3727/096368917x695038] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Regeneration of damaged neurons and recovery of sensation and motor function after complete spinal cord injury (SCI) are challenging. We previously developed a collagen scaffold, NeuroRegen, to promote axonal growth along collagen fibers and inhibit glial scar formation after SCI. When functionalized with multiple biomolecules, this scaffold promoted neurological regeneration and functional recovery in animals with SCI. In this study, eight patients with chronic complete SCI were enrolled to examine the safety and efficacy of implanting NeuroRegen scaffold with human umbilical cord mesenchymal stem cells (hUCB-MSCs). Using intraoperative neurophysiological monitoring, we identified and surgically resected scar tissues to eliminate the inhibitory effect of glial scarring on nerve regeneration. We then implanted NeuroRegen scaffold loaded with hUCB-MSCs into the resection sites. No adverse events (infection, fever, headache, allergic reaction, shock, perioperative complications, aggravation of neurological status, or cancer) were observed during 1 year of follow-up. Primary efficacy outcomes, including expansion of sensation level and motor-evoked potential (MEP)-responsive area, increased finger activity, enhanced trunk stability, defecation sensation, and autonomic neural function recovery, were observed in some patients. Our findings suggest that combined application of NeuroRegen scaffold and hUCB-MSCs is safe and feasible for clinical therapy in patients with chronic SCI. Our study suggests that construction of a regenerative microenvironment using a scaffold-based strategy may be a possible future approach to SCI repair.
Collapse
|
1228
|
Astrocytic Pathological Calcium Homeostasis and Impaired Vesicle Trafficking in Neurodegeneration. Int J Mol Sci 2017; 18:ijms18020358. [PMID: 28208745 PMCID: PMC5343893 DOI: 10.3390/ijms18020358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 02/08/2023] Open
Abstract
Although the central nervous system (CNS) consists of highly heterogeneous populations of neurones and glial cells, clustered into diverse anatomical regions with specific functions, there are some conditions, including alertness, awareness and attention that require simultaneous, coordinated and spatially homogeneous activity within a large area of the brain. During such events, the brain, representing only about two percent of body mass, but consuming one fifth of body glucose at rest, needs additional energy to be produced. How simultaneous energy procurement in a relatively extended area of the brain takes place is poorly understood. This mechanism is likely to be impaired in neurodegeneration, for example in Alzheimer’s disease, the hallmark of which is brain hypometabolism. Astrocytes, the main neural cell type producing and storing glycogen, a form of energy in the brain, also hold the key to metabolic and homeostatic support in the central nervous system and are impaired in neurodegeneration, contributing to the slow decline of excitation-energy coupling in the brain. Many mechanisms are affected, including cell-to-cell signalling. An important question is how changes in cellular signalling, a process taking place in a rather short time domain, contribute to the neurodegeneration that develops over decades. In this review we focus initially on the slow dynamics of Alzheimer’s disease, and on the activity of locus coeruleus, a brainstem nucleus involved in arousal. Subsequently, we overview much faster processes of vesicle traffic and cytosolic calcium dynamics, both of which shape the signalling landscape of astrocyte-neurone communication in health and neurodegeneration.
Collapse
|
1229
|
Torper O, Götz M. Brain repair from intrinsic cell sources: Turning reactive glia into neurons. PROGRESS IN BRAIN RESEARCH 2017; 230:69-97. [PMID: 28552236 DOI: 10.1016/bs.pbr.2016.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The replacement of lost neurons in the brain due to injury or disease holds great promise for the treatment of neurological disorders. However, logistical and ethical hurdles in obtaining and maintaining viable cells for transplantation have proven difficult to overcome. In vivo reprogramming offers an alternative, to bypass many of the restrictions associated with an exogenous cell source as it relies on a source of cells already present in the brain. Recent studies have demonstrated the possibility to target and reprogram glial cells into functional neurons with high efficiency in the murine brain, using virally delivered transcription factors. In this chapter, we explore the different populations of glial cells, how they react to injury and how they can be exploited for reprogramming purposes. Further, we review the most significant publications and how they have contributed to the understanding of key aspects in direct reprogramming needed to take into consideration, like timing, cell type targeted, and regional differences. Finally, we discuss future challenges and what remains to be explored in order to determine the potential of in vivo reprogramming for future brain repair.
Collapse
Affiliation(s)
- Olof Torper
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany.
| |
Collapse
|
1230
|
Destination Brain: the Past, Present, and Future of Therapeutic Gene Delivery. J Neuroimmune Pharmacol 2017; 12:51-83. [PMID: 28160121 DOI: 10.1007/s11481-016-9724-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
Neurological diseases and disorders (NDDs) present a significant societal burden and currently available drug- and biological-based therapeutic strategies have proven inadequate to alleviate it. Gene therapy is a suitable alternative to treat NDDs compared to conventional systems since it can be tailored to specifically alter select gene expression, reverse disease phenotype and restore normal function. The scope of gene therapy has broadened over the years with the advent of RNA interference and genome editing technologies. Consequently, encouraging results from central nervous system (CNS)-targeted gene delivery studies have led to their transition from preclinical to clinical trials. As we shift to an exciting gene therapy era, a retrospective of available literature on CNS-associated gene delivery is in order. This review is timely in this regard, since it analyzes key challenges and major findings from the last two decades and evaluates future prospects of brain gene delivery. We emphasize major areas consisting of physiological and pharmacological challenges in gene therapy, function-based selection of a ideal cellular target(s), available therapy modalities, and diversity of viral vectors and nanoparticles as vehicle systems. Further, we present plausible answers to key questions such as strategies to circumvent low blood-brain barrier permeability and most suitable CNS cell types for targeting. We compare and contrast pros and cons of the tested viral vectors in the context of delivery systems used in past and current clinical trials. Gene vector design challenges are also evaluated in the context of cell-specific promoters. Key challenges and findings reported for recent gene therapy clinical trials, assessing viral vectors and nanoparticles are discussed from the perspective of bench to bedside gene therapy translation. We conclude this review by tying together gene delivery challenges, available vehicle systems and comprehensive analyses of neuropathogenesis to outline future prospects of CNS-targeted gene therapies.
Collapse
|
1231
|
Tapia VS, Herrera‐Rojas M, Larrain J. JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis. REGENERATION (OXFORD, ENGLAND) 2017; 4:21-35. [PMID: 28316792 PMCID: PMC5350081 DOI: 10.1002/reg2.74] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
Xenopus laevis tadpoles can regenerate the spinal cord after injury but this capability is lost during metamorphosis. Comparative studies between pre-metamorphic and metamorphic Xenopus stages can aid towards understanding the molecular mechanisms of spinal cord regeneration. Analysis of a previous transcriptome-wide study suggests that, in response to injury, the JAK-STAT pathway is differentially activated in regenerative and non-regenerative stages. We characterized the activation of the JAK-STAT pathway and found that regenerative tadpoles have an early and transient activation. In contrast, the non-regenerative stages have a delayed and sustained activation of the pathway. We found that STAT3 is activated in response to injury mainly in Sox2/3+ ependymal cells, motoneurons and sensory neurons. Finally, to study the role of temporal activation we generated a transgenic line to express a constitutively active version of STAT3. The sustained activation of the JAK-STAT pathway in regenerative tadpoles reduced the expression of pro-neurogenic genes normally upregulated in response to spinal cord injury, suggesting that activation of the JAK-STAT pathway modulates the fate of neural progenitors.
Collapse
Affiliation(s)
- Victor S. Tapia
- Center for Aging and RegenerationMillennium Nucleus in Regenerative BiologyFacultad de Ciencias BiologicasPontificia Universidad Catolica de ChileSantiagoChile
| | - Mauricio Herrera‐Rojas
- Center for Aging and RegenerationMillennium Nucleus in Regenerative BiologyFacultad de Ciencias BiologicasPontificia Universidad Catolica de ChileSantiagoChile
| | - Juan Larrain
- Center for Aging and RegenerationMillennium Nucleus in Regenerative BiologyFacultad de Ciencias BiologicasPontificia Universidad Catolica de ChileSantiagoChile
| |
Collapse
|
1232
|
Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury. Sci Rep 2017; 7:41122. [PMID: 28117356 PMCID: PMC5259707 DOI: 10.1038/srep41122] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 01/30/2023] Open
Abstract
Ependyma have been proposed as adult neural stem cells that provide the majority of newly proliferated scar-forming astrocytes that protect tissue and function after spinal cord injury (SCI). This proposal was based on small, midline stab SCI. Here, we tested the generality of this proposal by using a genetic knock-in cell fate mapping strategy in different murine SCI models. After large crush injuries across the entire spinal cord, ependyma-derived progeny remained local, did not migrate and contributed few cells of any kind and less than 2%, if any, of the total newly proliferated and molecularly confirmed scar-forming astrocytes. Stab injuries that were near to but did not directly damage ependyma, contained no ependyma-derived cells. Our findings show that ependymal contribution of progeny after SCI is minimal, local and dependent on direct ependymal injury, indicating that ependyma are not a major source of endogenous neural stem cells or neuroprotective astrocytes after SCI.
Collapse
|
1233
|
Bohmbach K, Schwarz MK, Schoch S, Henneberger C. The structural and functional evidence for vesicular release from astrocytes in situ. Brain Res Bull 2017; 136:65-75. [PMID: 28122264 DOI: 10.1016/j.brainresbull.2017.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
The concept of the tripartite synapse states that bi-directional signalling between perisynaptic astrocyte processes, presynaptic axonal boutons and postsynaptic neuronal structures defines the properties of synaptic information processing. Ca2+-dependent vesicular release from astrocytes, as one of the mechanisms of astrocyte-neuron communication, has attracted particular attention but has also been the subject of intense debate. In neurons, regulated vesicular release is a strongly coordinated process. It requires a complex release machinery comprised of many individual components ranging from vesicular neurotransmitter transporters and soluble NSF attachment protein receptors (SNARE) proteins to Ca2+-sensors and the proteins that spatially and temporally control exocytosis of synaptic vesicles. If astrocytes employ similar mechanisms to release neurotransmitters is less well understood. The aim of this review is therefore to discuss recent experimental evidence that sheds light on the central structural components responsible for vesicular release from astrocytes in situ.
Collapse
Affiliation(s)
- Kirsten Bohmbach
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.
| | - Martin K Schwarz
- Department of Epileptology, University of Bonn Medical School, Bonn, Germany
| | - Susanne Schoch
- Institute of Neuropathology, University of Bonn Medical School, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
1234
|
The Function of FGFR1 Signalling in the Spinal Cord: Therapeutic Approaches Using FGFR1 Ligands after Spinal Cord Injury. Neural Plast 2017; 2017:2740768. [PMID: 28197342 PMCID: PMC5286530 DOI: 10.1155/2017/2740768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/25/2016] [Indexed: 11/24/2022] Open
Abstract
Extensive research is ongoing that concentrates on finding therapies to enhance CNS regeneration after spinal cord injury (SCI) and to cure paralysis. This review sheds light on the role of the FGFR pathway in the injured spinal cord and discusses various therapies that use FGFR activating ligands to promote regeneration after SCI. We discuss studies that use peripheral nerve grafts or Schwann cell grafts in combination with FGF1 or FGF2 supplementation. Most of these studies show evidence that these therapies successfully enhance axon regeneration into the graft. Further they provide evidence for partial recovery of sensory function shown by electrophysiology and motor activity evidenced by behavioural data. We also present one study that indicates that combination with additional, synergistic factors might further drive the system towards functional regeneration. In essence, this review summarises the potential of nerve and cell grafts combined with FGF1/2 supplementation to improve outcome even after severe spinal cord injury.
Collapse
|
1235
|
Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541:481-487. [PMID: 28099414 DOI: 10.1038/nature21029] [Citation(s) in RCA: 5097] [Impact Index Per Article: 637.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022]
Abstract
Reactive astrocytes are strongly induced by central nervous system (CNS) injury and disease, but their role is poorly understood. Here we show that a subtype of reactive astrocytes, which we termed A1, is induced by classically activated neuroinflammatory microglia. We show that activated microglia induce A1 astrocytes by secreting Il-1α, TNF and C1q, and that these cytokines together are necessary and sufficient to induce A1 astrocytes. A1 astrocytes lose the ability to promote neuronal survival, outgrowth, synaptogenesis and phagocytosis, and induce the death of neurons and oligodendrocytes. Death of axotomized CNS neurons in vivo is prevented when the formation of A1 astrocytes is blocked. Finally, we show that A1 astrocytes are abundant in various human neurodegenerative diseases including Alzheimer's, Huntington's and Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. Taken together these findings help to explain why CNS neurons die after axotomy, strongly suggest that A1 astrocytes contribute to the death of neurons and oligodendrocytes in neurodegenerative disorders, and provide opportunities for the development of new treatments for these diseases.
Collapse
|
1236
|
Lemarchant S, Wojciechowski S, Vivien D, Koistinaho J. ADAMTS-4 in central nervous system pathologies. J Neurosci Res 2017; 95:1703-1711. [DOI: 10.1002/jnr.24021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Sighild Lemarchant
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| | - Sara Wojciechowski
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| | - Denis Vivien
- INSERM, INSERM UMR-S 919, “Serine Proteases and Pathophysiology of the Neurovascular Unit”; University of Caen Basse-Normandie; GIP Cyceron, Bd H. Becquerel, BP 5229 14074 Caen Cedex France
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| |
Collapse
|
1237
|
Blaško J, Szekiova E, Slovinska L, Kafka J, Cizkova D. Axonal outgrowth stimulation after alginate/mesenchymal stem cell therapy in injured rat spinal cord. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
1238
|
Rauvala H, Paveliev M, Kuja-Panula J, Kulesskaya N. Inhibition and enhancement of neural regeneration by chondroitin sulfate proteoglycans. Neural Regen Res 2017; 12:687-691. [PMID: 28616017 PMCID: PMC5461598 DOI: 10.4103/1673-5374.206630] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The current dogma in neural regeneration research implies that chondroitin sulfate proteoglycans (CSPGs) inhibit plasticity and regeneration in the adult central nervous system (CNS). We argue that the role of the CSPGs can be reversed from inhibition to activation by developmentally expressed CSPG-binding factors. Heparin-binding growth-associated molecule (HB-GAM; also designated as pleiotrophin) has been studied as a candidate molecule that might modulate the role of CSPG matrices in plasticity and regeneration. Studies in vitro show that in the presence of soluble HB-GAM chondroitin sulfate (CS) chains of CSPGs display an enhancing effect on neurite outgrowth. Based on the in vitro studies, we suggest a model according to which the HB-GAM/CS complex binds to the neuron surface receptor glypican-2, which induces neurite growth. Furthermore, HB-GAM masks the CS binding sites of the neurite outgrowth inhibiting receptor protein tyrosine phosphatase sigma (PTPσ), which may contribute to the HB-GAM-induced regenerative effect. In vivo studies using two-photon imaging after local HB-GAM injection into prick-injury of the cerebral cortex reveal regeneration of dendrites that has not been previously demonstrated after injuries of the mammalian nervous system. In the spinal cord, two-photon imaging displays HB-GAM-induced axonal regeneration. Studies on the HB-GAM/CS mechanism in vitro and in vivo are expected to pave the way for drug development for injuries of brain and spinal cord.
Collapse
Affiliation(s)
- Heikki Rauvala
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | | | | | - Natalia Kulesskaya
- Neuroscience Center, University of Helsinki, Helsinki, Finland.,Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
1239
|
Abstract
Reactive astrogliosis occurs after central nervous system (CNS) injuries whereby resident astrocytes form rapid responses along a graded continuum. Following CNS lesions, naïve astrocytes are converted into reactive astrocytes and eventually into scar-forming astrocytes that block axon regeneration and neural repair. It has been known for decades that scarring development and its related extracellular matrix molecules interfere with regeneration of injured axons after CNS injury, but the cellular and molecular mechanisms for controlling astrocytic scar formation and maintenance are not well known. Recent use of various genetic tools has made tremendous progress in better understanding genesis of reactive astrogliosis. Especially, the latest experiments demonstrate environment-dependent plasticity of reactive astrogliosis because reactive astrocytes isolated from injured spinal cord form scarring astrocytes when transplanted into injured spinal cord, but revert in retrograde to naive astrocytes when transplanted into naive spinal cord. The interactions between upregulated type I collagen and its receptor integrin β1 and the N-cadherin-mediated cell adhesion appear to play major roles for local astrogliosis around the lesion. This review centers on the environment-dependent plasticity of reactive astrogliosis after spinal cord injury and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Fatima M Nathan
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
1240
|
Glial GABA Transporters as Modulators of Inhibitory Signalling in Epilepsy and Stroke. ADVANCES IN NEUROBIOLOGY 2017; 16:137-167. [PMID: 28828609 DOI: 10.1007/978-3-319-55769-4_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Imbalances in GABA-mediated tonic inhibition are involved in several pathophysiological conditions. A classical way of controlling tonic inhibition is through pharmacological intervention with extrasynaptic GABAA receptors that sense ambient GABA and mediate a persistent GABAergic conductance. An increase in tonic inhibition may, however, also be obtained indirectly by inhibiting glial GABA transporters (GATs). These are sodium-coupled membrane transport proteins that normally act to terminate GABA neurotransmitter action by taking up GABA into surrounding astrocytes. The aim of the review is to provide an overview of glial GATs in regulating tonic inhibition, especially in epilepsy and stroke. This entails a comprehensive summary of changes known to occur in GAT expression levels and signalling following epileptic and ischemic insults. Further, we discuss the accumulating pharmacological evidence for targeting GATs in these diseases.
Collapse
|
1241
|
Pehar M, Harlan BA, Killoy KM, Vargas MR. Role and Therapeutic Potential of Astrocytes in Amyotrophic Lateral Sclerosis. Curr Pharm Des 2017; 23:5010-5021. [PMID: 28641533 PMCID: PMC5740017 DOI: 10.2174/1381612823666170622095802] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/04/2017] [Accepted: 06/16/2017] [Indexed: 12/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. The molecular mechanism underlying the progressive degeneration of motor neuron remains uncertain but involves a non-cell autonomous process. In acute injury or degenerative diseases astrocytes adopt a reactive phenotype known as astrogliosis. Astrogliosis is a complex remodeling of astrocyte biology and most likely represents a continuum of potential phenotypes that affect neuronal function and survival in an injury-specific manner. In ALS patients, reactive astrocytes surround both upper and lower degenerating motor neurons and play a key role in the pathology. It has become clear that astrocytes play a major role in ALS pathology. Through loss of normal function or acquired new characteristics, astrocytes are able to influence motor neuron fate and the progression of the disease. The use of different cell culture models indicates that ALS-astrocytes are able to induce motor neuron death by secreting a soluble factor(s). Here, we discuss several pathogenic mechanisms that have been proposed to explain astrocyte-mediated motor neuron death in ALS. In addition, examples of strategies that revert astrocyte-mediated motor neuron toxicity are reviewed to illustrate the therapeutic potential of astrocytes in ALS. Due to the central role played by astrocytes in ALS pathology, therapies aimed at modulating astrocyte biology may contribute to the development of integral therapeutic approaches to halt ALS progression.
Collapse
Affiliation(s)
- Mariana Pehar
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Benjamin A. Harlan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kelby M. Killoy
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Marcelo R. Vargas
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
1242
|
Neo SH, Tang BL. Collagen 1 signaling at the central nervous system injury site and astrogliosis. Neural Regen Res 2017; 12:1600-1601. [PMID: 29171417 PMCID: PMC5696833 DOI: 10.4103/1673-5374.217323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Sin Hui Neo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Bor Luen Tang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore
| |
Collapse
|
1243
|
Lakatos A. State-of-art modelling of inflammatory astrocyte-synapse interactions in injury and amyotrophic lateral sclerosis. Neural Regen Res 2017; 12:75-76. [PMID: 28250750 PMCID: PMC5319245 DOI: 10.4103/1673-5374.198977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- András Lakatos
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Neurology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| |
Collapse
|
1244
|
Tedeschi A, Bradke F. Spatial and temporal arrangement of neuronal intrinsic and extrinsic mechanisms controlling axon regeneration. Curr Opin Neurobiol 2016; 42:118-127. [PMID: 28039763 DOI: 10.1016/j.conb.2016.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 01/30/2023]
Abstract
Axon regeneration and neuronal tissue repair varies across animal lineages as well as in the mammalian central and peripheral nervous systems. While the peripheral nervous system retains the ability to self-repair, the majority of axons in the adult mammalian central nervous system (CNS) fail to reactivate intrinsic growth programs after injury. Recent findings, however, suggest that long-distance axon regeneration, neuronal circuit assembly and recovery of functions in the adult mammalian CNS are possible. Here, we discuss our current knowledge of the cell signaling pathways and networks controlling axon regeneration. In addition, we outline a number of combinatorial strategies that include among others microtubule-based treatments to foster regeneration and functional connectivity after CNS trauma.
Collapse
Affiliation(s)
- Andrea Tedeschi
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - Frank Bradke
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| |
Collapse
|
1245
|
Martín-Aragón Baudel MAS, Poole AV, Darlison MG. Chloride co-transporters as possible therapeutic targets for stroke. J Neurochem 2016; 140:195-209. [PMID: 27861901 DOI: 10.1111/jnc.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023]
Abstract
Stroke is one of the major causes of death and disability worldwide. The major type of stroke is an ischaemic one, which is caused by a blockage that interrupts blood flow to the brain. There are currently very few pharmacological strategies to reduce the damage and social burden triggered by this pathology. The harm caused by the interruption of blood flow to the brain unfolds in the subsequent hours and days, so it is critical to identify new therapeutic targets that could reduce neuronal death associated with the spread of the damage. Here, we review some of the key molecular mechanisms involved in the progression of neuronal death, focusing on some new and promising studies. In particular, we focus on the potential of the chloride co-transporter (CCC) family of proteins, mediators of the GABAergic response, both during the early and later stages of stroke, to promote neuroprotection and recovery. Different studies of CCCs during the chronic and recovery phases post-stroke reveal the importance of timing when considering CCCs as potential neuroprotective and/or neuromodulator targets. The molecular regulatory mechanisms of the two main neuronal CCCs, NKCC1 and KCC2, are further discussed as an indirect approach for promoting neuroprotection and neurorehabilitation following an ischaemic insult. Finally, we mention the likely importance of combining different strategies in order to achieve more effective therapies.
Collapse
Affiliation(s)
| | - Amy V Poole
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| | - Mark G Darlison
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| |
Collapse
|
1246
|
Lane MA, Lepore AC, Fischer I. Improving the therapeutic efficacy of neural progenitor cell transplantation following spinal cord injury. Expert Rev Neurother 2016; 17:433-440. [PMID: 27927055 DOI: 10.1080/14737175.2017.1270206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION There have been a wide range of preclinical studies testing cellular therapies to repair the injured spinal cord, yet they remain a challenge to translate because of inconsistencies in efficacy, limited number of patients with acute/subacute SCI and the high costs of clinical trials. Area covered: This paper focusses on the therapeutic potential of neural precursor cells (NPCs) because they can provide the cellular components capable of promoting repair and enhancing functional improvement following spinal cord injury (SCI). The authors discuss the challenges of NPC transplantation with respect to different populations of NPCs of glial and neuronal lineages, the timing of treatment relative to acute and chronic injury, and the progress in ongoing clinical trials. Expert commentary: Preclinical research will continue to elucidate mechanisms of recovery associated with NPC transplants, including increasing the partnership with related fields such as spinal atrophies and multiple sclerosis. The clinical trials landscape will grow and include both acute and chronic SCI with increased partnership and strengthened communication between biotechnology, government and academia. There will also be growing effort to develop better biomarkers, imaging and outcome measures for detailed assessment of neurological function and measures of quality of life.
Collapse
Affiliation(s)
- Michael A Lane
- a Department of Neurobiology & Anatomy, Spinal Cord Research Center , Drexel University , Philadelphia , PA , USA
| | - Angelo C Lepore
- b Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Itzhak Fischer
- a Department of Neurobiology & Anatomy, Spinal Cord Research Center , Drexel University , Philadelphia , PA , USA
| |
Collapse
|
1247
|
Dell'Anno MT, Strittmatter SM. Rewiring the spinal cord: Direct and indirect strategies. Neurosci Lett 2016; 652:25-34. [PMID: 28007647 DOI: 10.1016/j.neulet.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/15/2016] [Accepted: 12/02/2016] [Indexed: 12/23/2022]
Abstract
Spinal cord injury is currently incurable. Treatment is limited to minimizing secondary complications and maximizing residual function by rehabilitation. Neurologic recovery is prevented by the poor intrinsic regenerative capacity of neurons in the adult central nervous system and by the presence of growth inhibitors in the adult brain and spinal cord. Here we identify three approaches to rewire the spinal cord after injury: axonal regeneration (direct endogenous reconnection), axonal sprouting (indirect endogenous reconnection) and neural stem cell transplantation (indirect exogenous reconnection). Regeneration and sprouting of axonal fibers can be both enhanced through the neutralization of myelin- and extracellular matrix-associated inhibitors described in the first part of this review. Alternatively, in the second part we focus on the formation of a novel circuit through the grafting of neural stem cells in the lesion site. Transplanted neural stem cells differentiate in vivo into neurons and glial cells which form an intermediate station between the rostral and caudal segment of the recipient spinal cord. In particular, here we describe how neural stem cells-derived neurons are endowed with the ability to extend long-distance axons to regain the transmission of motor and sensory information.
Collapse
Affiliation(s)
- Maria Teresa Dell'Anno
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
1248
|
Llorens-Bobadilla E, Martin-Villalba A. Adult NSC diversity and plasticity: the role of the niche. Curr Opin Neurobiol 2016; 42:68-74. [PMID: 27978480 DOI: 10.1016/j.conb.2016.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 12/20/2022]
Abstract
Adult somatic stem cells are generally defined as cells with the ability to differentiate into multiple different lineages and to self-renew during long periods of time. These features were long presumed to be represented in one single tissue-specific stem cell. Recent development of single-cell technologies reveals the existence of diversity in fate and activation state of somatic stem cells within the blood, skin and intestinal compartments [1] but also in the adult brain. Here we review how recent advances have expanded our view of neural stem cells (NSCs) as a diverse pool of cells and how the specialized microenvironment in which they reside acts to maintain this diversity. In addition, we discuss the plasticity of the system in the injured brain.
Collapse
Affiliation(s)
- Enric Llorens-Bobadilla
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), Heidelberg, Germany.
| | - Ana Martin-Villalba
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), Heidelberg, Germany.
| |
Collapse
|
1249
|
|
1250
|
|