1201
|
Graewert MA, Franke D, Jeffries CM, Blanchet CE, Ruskule D, Kuhle K, Flieger A, Schäfer B, Tartsch B, Meijers R, Svergun DI. Automated pipeline for purification, biophysical and x-ray analysis of biomacromolecular solutions. Sci Rep 2015; 5:10734. [PMID: 26030009 PMCID: PMC5377070 DOI: 10.1038/srep10734] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/22/2015] [Indexed: 01/16/2023] Open
Abstract
Small angle X-ray scattering (SAXS), an increasingly popular method for structural analysis of biological macromolecules in solution, is often hampered by inherent sample polydispersity. We developed an all-in-one system combining in-line sample component separation with parallel biophysical and SAXS characterization of the separated components. The system coupled to an automated data analysis pipeline provides a novel tool to study difficult samples at the P12 synchrotron beamline (PETRA-3, EMBL/DESY, Hamburg).
Collapse
Affiliation(s)
- Melissa A. Graewert
- European Molecular Biology Laboratory (EMBL) Hamburg, 22607 Hamburg, Germany
| | - Daniel Franke
- European Molecular Biology Laboratory (EMBL) Hamburg, 22607 Hamburg, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg, 22607 Hamburg, Germany
| | - Clement E. Blanchet
- European Molecular Biology Laboratory (EMBL) Hamburg, 22607 Hamburg, Germany
| | - Darja Ruskule
- European Molecular Biology Laboratory (EMBL) Hamburg, 22607 Hamburg, Germany
| | - Katja Kuhle
- Robert Koch-Institut, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany
| | - Antje Flieger
- Robert Koch-Institut, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany
| | - Bernd Schäfer
- Malvern Instruments GmbH, Rigipsstr. 19, 71083 Herrenberg, Germany
| | - Bernd Tartsch
- Malvern Instruments GmbH, Rigipsstr. 19, 71083 Herrenberg, Germany
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL) Hamburg, 22607 Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg, 22607 Hamburg, Germany
| |
Collapse
|
1202
|
Healey EG, Bishop B, Elegheert J, Bell CH, Padilla-Parra S, Siebold C. Repulsive guidance molecule is a structural bridge between neogenin and bone morphogenetic protein. Nat Struct Mol Biol 2015; 22:458-65. [PMID: 25938661 PMCID: PMC4456160 DOI: 10.1038/nsmb.3016] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
Repulsive guidance molecules (RGMs) control crucial processes including cell motility, adhesion, immune-cell regulation and systemic iron metabolism. RGMs signal via the neogenin (NEO1) and the bone morphogenetic protein (BMP) pathways. Here, we report crystal structures of the N-terminal domains of all human RGM family members in complex with the BMP ligand BMP2, revealing a new protein fold and a conserved BMP-binding mode. Our structural and functional data suggest a pH-linked mechanism for RGM-activated BMP signaling and offer a rationale for RGM mutations causing juvenile hemochromatosis. We also determined the crystal structure of the ternary BMP2-RGM-NEO1 complex, which, along with solution scattering and live-cell super-resolution fluorescence microscopy, indicates BMP-induced clustering of the RGM-NEO1 complex. Our results show how RGM acts as the central hub that links BMP and NEO1 and physically connects these fundamental signaling pathways.
Collapse
Affiliation(s)
- Eleanor G Healey
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jonathan Elegheert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christian H Bell
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sergi Padilla-Parra
- 1] Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Cellular Imaging Core, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
1203
|
Structural and kinetic characterization of recombinant 2-hydroxymuconate semialdehyde dehydrogenase from Pseudomonas putida G7. Arch Biochem Biophys 2015; 579:8-17. [PMID: 26032336 DOI: 10.1016/j.abb.2015.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 11/22/2022]
Abstract
The first enzyme in the oxalocrotonate branch of the naphthalene-degradation lower pathway in Pseudomonas putida G7 is NahI, a 2-hydroxymuconate semialdehyde dehydrogenase which converts 2-hydroxymuconate semialdehyde to 2-hydroxymuconate in the presence of NAD(+). NahI is in family 8 (ALDH8) of the NAD(P)(+)-dependent aldehyde dehydrogenase superfamily. In this work, we report the cloning, expression, purification and preliminary structural and kinetic characterization of the recombinant NahI. The nahI gene was subcloned into a T7 expression vector and the enzyme was overexpressed in Escherichia coli ArcticExpress as a hexa-histidine-tagged fusion protein. After purification by affinity and size-exclusion chromatography, dynamic light scattering and small-angle X-ray scattering experiments were conducted to analyze the oligomeric state and the overall shape of the enzyme in solution. The protein is a tetramer in solution and has nearly perfect 222 point group symmetry. Protein stability and secondary structure content were evaluated by a circular dichroism spectroscopy assay under different thermal conditions. Furthermore, kinetic assays were conducted and, for the first time, KM (1.3±0.3μM) and kcat (0.9s(-1)) values were determined at presumed NAD(+) saturation. NahI is highly specific for its biological substrate and has no activity with salicylaldehyde, another intermediate in the naphthalene-degradation pathway.
Collapse
|
1204
|
Balakrishna AM, Manimekalai MSS, Grüber G. Protein-protein interactions within the ensemble, eukaryotic V-ATPase, and its concerted interactions with cellular machineries. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:84-93. [PMID: 26033199 DOI: 10.1016/j.pbiomolbio.2015.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/27/2022]
Abstract
The V1VO-ATPase (V-ATPase) is the important proton-pump in eukaryotic cells, responsible for pH-homeostasis, pH-sensing and amino acid sensing, and therefore essential for cell growths and metabolism. ATP-cleavage in the catalytic A3B3-hexamer of V1 has to be communicated via several so-called central and peripheral stalk units to the proton-pumping VO-part, which is membrane-embedded. A unique feature of V1VO-ATPase regulation is its reversible disassembly of the V1 and VO domain. Actin provides a network to hold the V1 in proximity to the VO, enabling effective V1VO-assembly to occur. Besides binding to actin, the 14-subunit V-ATPase interacts with multi-subunit machineries to form cellular sensors, which regulate the pH in cellular compartments or amino acid signaling in lysosomes. Here we describe a variety of subunit-subunit interactions within the V-ATPase enzyme during catalysis and its protein-protein assembling with key cellular machineries, essential for cellular function.
Collapse
Affiliation(s)
- Asha Manikkoth Balakrishna
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Malathy Sony Subramanian Manimekalai
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Gerhard Grüber
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
1205
|
Nors Perdersen M, Foderà V, Horvath I, van Maarschalkerweerd A, Nørgaard Toft K, Weise C, Almqvist F, Wolf-Watz M, Wittung-Stafshede P, Vestergaard B. Direct Correlation Between Ligand-Induced α-Synuclein Oligomers and Amyloid-like Fibril Growth. Sci Rep 2015; 5:10422. [PMID: 26020724 PMCID: PMC4603703 DOI: 10.1038/srep10422] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/13/2015] [Indexed: 01/22/2023] Open
Abstract
Aggregation of proteins into amyloid deposits is the hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The suggestion that intermediate oligomeric species may be cytotoxic has led to intensified investigations of pre-fibrillar oligomers, which are complicated by their transient nature and low population. Here we investigate alpha-synuclein oligomers, enriched by a 2-pyridone molecule (FN075), and the conversion of oligomers into fibrils. As probed by leakage assays, the FN075 induced oligomers potently disrupt vesicles in vitro, suggesting a potential link to disease related degenerative activity. Fibrils formed in the presence and absence of FN075 are indistinguishable on microscopic and macroscopic levels. Using small angle X-ray scattering, we reveal that FN075 induced oligomers are similar, but not identical, to oligomers previously observed during alpha-synuclein fibrillation. Since the levels of FN075 induced oligomers correlate with the amounts of fibrils among different FN075:protein ratios, the oligomers appear to be on-pathway and modeling supports an 'oligomer stacking model' for alpha-synuclein fibril elongation.
Collapse
Affiliation(s)
- Martin Nors Perdersen
- Department of Drug Design and Pharmacology, University of Copenhagen Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Vito Foderà
- Department of Drug Design and Pharmacology, University of Copenhagen Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Istvan Horvath
- Department of Chemistry, Umeå University, S-901 87 Umeå, Sweden
| | - Andreas van Maarschalkerweerd
- Department of Drug Design and Pharmacology, University of Copenhagen Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Katrine Nørgaard Toft
- Department of Drug Design and Pharmacology, University of Copenhagen Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christoph Weise
- Department of Chemistry, Umeå University, S-901 87 Umeå, Sweden
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, S-901 87 Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå Sweden
| | | | | | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
1206
|
Structural analysis of the diadenylate cyclase reaction of DNA-integrity scanning protein A (DisA) and its inhibition by 3'-dATP. Biochem J 2015; 469:367-74. [PMID: 26014055 DOI: 10.1042/bj20150373] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/27/2015] [Indexed: 11/17/2022]
Abstract
The identification of the essential bacterial second messenger cyclic-di-AMP (c-di-AMP) synthesized by the DNA-integrity scanning protein A (DisA) has opened up a new and emerging field in bacterial signalling. To further analyse the diadenylate cyclase (DAC) reaction catalysed by the DAC domains of DisA, we crystallized Thermotoga maritima DisA in the presence of different ATP analogues and metal ions to identify the metal-binding site and trap the enzyme in pre- and post-reaction states. Through structural and biochemical assays we identified important residues essential for the reaction in the active site of the DAC domains. Our structures resolve the metal-binding site and thus explain the activation of ATP for the DAC reaction. Moreover, we were able to identify a potent inhibitor of the DAC domain. Based on the available structures and homology to annotated DAC domains we propose a common mechanism for c-di-AMP synthesis by DAC domains in c-di-AMP-producing species and a possible approach for its effective inhibition.
Collapse
|
1207
|
Shkumatov AV, Strelkov SV. DATASW, a tool for HPLC-SAXS data analysis. ACTA ACUST UNITED AC 2015; 71:1347-50. [PMID: 26057674 DOI: 10.1107/s1399004715007154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/09/2015] [Indexed: 11/10/2022]
Abstract
Small-angle X-ray scattering (SAXS) in solution is a common low-resolution method which can efficiently complement the high-resolution information obtained by crystallography or NMR. Sample monodispersity is key to reliable SAXS data interpretation and model building. Beamline setups with inline high-performance liquid chromatography (HPLC) are particularly useful for accurate profiling of heterogeneous samples. The program DATASW performs averaging of individual data frames from HPLC-SAXS experiments using a sliding window of a user-specified size, calculates overall parameters [I(0), Rg, Dmax and molecular weight] and predicts the folding state (folded/unfolded) of the sample. Applications of DATASW are illustrated for several proteins with various oligomerization behaviours recorded on different beamlines. DATASW binaries for major operating systems can be downloaded from http://datasw.sourceforge.net/.
Collapse
Affiliation(s)
- Alexander V Shkumatov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Sergei V Strelkov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
1208
|
Rathore YS, Dhoke RR, Badmalia M, Sagar A, Ashish. SAXS data based global shape analysis of trigger factor (TF) proteins from E. coli, V. cholerae, and P. frigidicola: resolving the debate on the nature of monomeric and dimeric forms. J Phys Chem B 2015; 119:6101-12. [PMID: 25950744 DOI: 10.1021/acs.jpcb.5b00759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dimerization of bacterial chaperone trigger factor (TF) is an inherent protein concentration based property which available biophysical characterization and crystal structures have kept debatable. We acquired small-angle X-ray scattering (SAXS) intensity data from different TF homologues from Escherichia coli (ECTF), Vibrio cholerae (VCTF), and Psychrobacter frigidicola (PFTF) while varying each protein concentration. We found that ECTF and VCTF adopt a compact dimeric shape at higher concentrations which did not resemble the "back-to-back" conformation reported earlier for ECTF from crystallography (PDB ID: 1W26 ). In contrast, PFTF remained monomeric throughout the concentration range 2-90 μM displaying a multimodal open extended conformation. OLIGOMER analysis showed that both the ECTF and VCTF remained completely monomeric at lower concentrations (2-11 μM), while, at higher concentrations (60-90 μM), they adopted a dimeric form. Interestingly, the equilibrium existed in the medium concentration range (>11 and <60 μM), which correlates with the physiological concentration (40-50 μM) of TF in cell cytoplasm. Additionally, circular dichroism data revealed that solution structures of ECTF and VCTF contain predominantly α-helical content, while PFTF contains 310-helical content.
Collapse
Affiliation(s)
| | - Reema R Dhoke
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Amin Sagar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ashish
- CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
1209
|
Chukhlieb M, Raasakka A, Ruskamo S, Kursula P. The N-terminal cytoplasmic domain of neuregulin 1 type III is intrinsically disordered. Amino Acids 2015; 47:1567-77. [PMID: 25944317 DOI: 10.1007/s00726-015-1998-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
Abstract
Axonally expressed neuregulin 1 (NRG1) type III is a transmembrane protein involved in various neurodevelopmental processes, including myelination and Schwann cell migration. NRG1 type III has one transmembrane domain and a C-terminal extracellular segment, which contains an epidermal growth factor homology domain. Little is known, however, about the intracellular N terminus of NRG1 type III, and the structure-function relationships of this cytoplasmic domain have remained uncharacterized. In the current study, we carried out the first structural and functional studies on the NRG1 type III cytoplasmic domain. Based on sequence analyses, the domain is predicted to be largely disordered, while a strictly conserved region close to the transmembrane segment may contain helical structure and bind metal ions. As shown by synchrotron radiation circular dichroism spectroscopy, the recombinant NRG1 type III cytoplasmic domain was disordered in solution, but it was able to fold partially into a helical structure, especially when both metals and membrane-mimicking compounds were present. NRG1 cytoplasmic tail binding to metals was further confirmed by calorimetry. These results suggest that the juxtamembrane segment of the NRG1 type III cytoplasmic domain may fold onto the membrane surface upon metal binding. Using synchrotron small-angle X-ray scattering, we further proved that the NRG1 cytoplasmic domain is intrinsically disordered, highly elongated, and behaves like a random polymer. Our work provides the first biochemical and biophysical data on the previously unexplored cytoplasmic domain of NRG1 type III, which will help elucidate the detailed structure-function relationships of this domain.
Collapse
Affiliation(s)
- Maryna Chukhlieb
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
1210
|
Konarev PV, Svergun DI. A posteriori determination of the useful data range for small-angle scattering experiments on dilute monodisperse systems. IUCRJ 2015; 2:352-360. [PMID: 25995844 PMCID: PMC4420545 DOI: 10.1107/s2052252515005163] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/13/2015] [Indexed: 05/29/2023]
Abstract
Small-angle X-ray and neutron scattering (SAXS and SANS) experiments on solutions provide rapidly decaying scattering curves, often with a poor signal-to-noise ratio, especially at higher angles. On modern instruments, the noise is partially compensated for by oversampling, thanks to the fact that the angular increment in the data is small compared with that needed to describe adequately the local behaviour and features of the scattering curve. Given a (noisy) experimental data set, an important question arises as to which part of the data still contains useful information and should be taken into account for the interpretation and model building. Here, it is demonstrated that, for monodisperse systems, the useful experimental data range is defined by the number of meaningful Shannon channels that can be determined from the data set. An algorithm to determine this number and thus the data range is developed, and it is tested on a number of simulated data sets with various noise levels and with different degrees of oversampling, corresponding to typical SAXS/SANS experiments. The method is implemented in a computer program and examples of its application to analyse the experimental data recorded under various conditions are presented. The program can be employed to discard experimental data containing no useful information in automated pipelines, in modelling procedures, and for data deposition or publication. The software is freely accessible to academic users.
Collapse
Affiliation(s)
- Petr V. Konarev
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, Hamburg 22607, Germany
- Laboratory of Reflectometry and Small-angle Scattering, Institute of Crystallography of the Russian Academy of Sciences, Leninsky prospekt 59, Moscow 119333, Russian Federation
| | - Dmitri I. Svergun
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, Hamburg 22607, Germany
| |
Collapse
|
1211
|
Fernández-Millán P, Lázaro M, Cansız-Arda Ş, Gerhold JM, Rajala N, Schmitz CA, Silva-Espiña C, Gil D, Bernadó P, Valle M, Spelbrink JN, Solà M. The hexameric structure of the human mitochondrial replicative helicase Twinkle. Nucleic Acids Res 2015; 43:4284-95. [PMID: 25824949 PMCID: PMC4417153 DOI: 10.1093/nar/gkv189] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 12/21/2014] [Accepted: 02/23/2015] [Indexed: 01/28/2023] Open
Abstract
The mitochondrial replicative helicase Twinkle is involved in strand separation at the replication fork of mitochondrial DNA (mtDNA). Twinkle malfunction is associated with rare diseases that include late onset mitochondrial myopathies, neuromuscular disorders and fatal infantile mtDNA depletion syndrome. We examined its 3D structure by electron microscopy (EM) and small angle X-ray scattering (SAXS) and built the corresponding atomic models, which gave insight into the first molecular architecture of a full-length SF4 helicase that includes an N-terminal zinc-binding domain (ZBD), an intermediate RNA polymerase domain (RPD) and a RecA-like hexamerization C-terminal domain (CTD). The EM model of Twinkle reveals a hexameric two-layered ring comprising the ZBDs and RPDs in one layer and the CTDs in another. In the hexamer, contacts in trans with adjacent subunits occur between ZBDs and RPDs, and between RPDs and CTDs. The ZBDs show important structural heterogeneity. In solution, the scattering data are compatible with a mixture of extended hexa- and heptameric models in variable conformations. Overall, our structural data show a complex network of dynamic interactions that reconciles with the structural flexibility required for helicase activity.
Collapse
Affiliation(s)
- Pablo Fernández-Millán
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| | - Melisa Lázaro
- Structural Biology Unit. Centre for Cooperative Research in Biosciences, CICbioGUNE, Derio, E-48160, Spain
| | - Şirin Cansız-Arda
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, 6525 GA, The Netherlands
| | - Joachim M Gerhold
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, 6525 GA, The Netherlands
| | - Nina Rajala
- Mitochondrial DNA Maintenance Group, BioMediTech, University of Tampere, Tampere, FI-33014, Finland
| | - Claus-A Schmitz
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| | - Cristina Silva-Espiña
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| | - David Gil
- Structural Biology Unit. Centre for Cooperative Research in Biosciences, CICbioGUNE, Derio, E-48160, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM-U1054, CNRS UMR-5048, Université de Montpellier I&II. Montpellier, F-34090, France
| | - Mikel Valle
- Structural Biology Unit. Centre for Cooperative Research in Biosciences, CICbioGUNE, Derio, E-48160, Spain
| | - Johannes N Spelbrink
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, 6525 GA, The Netherlands Mitochondrial DNA Maintenance Group, BioMediTech, University of Tampere, Tampere, FI-33014, Finland
| | - Maria Solà
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| |
Collapse
|
1212
|
Petoukhov MV, Svergun DI. Ambiguity assessment of small-angle scattering curves from monodisperse systems. ACTA ACUST UNITED AC 2015; 71:1051-8. [PMID: 25945570 DOI: 10.1107/s1399004715002576] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/06/2015] [Indexed: 01/09/2023]
Abstract
A novel approach is presented for an a priori assessment of the ambiguity associated with spherically averaged single-particle scattering. The approach is of broad interest to the structural biology community, allowing the rapid and model-independent assessment of the inherent non-uniqueness of three-dimensional shape reconstruction from scattering experiments on solutions of biological macromolecules. One-dimensional scattering curves recorded from monodisperse systems are nowadays routinely utilized to generate low-resolution particle shapes, but the potential ambiguity of such reconstructions remains a major issue. At present, the (non)uniqueness can only be assessed by a posteriori comparison and averaging of repetitive Monte Carlo-based shape-determination runs. The new a priori ambiguity measure is based on the number of distinct shape categories compatible with a given data set. For this purpose, a comprehensive library of over 14,000 shape topologies has been generated containing up to seven beads closely packed on a hexagonal grid. The computed scattering curves rescaled to keep only the shape topology rather than the overall size information provide a `scattering map' of this set of shapes. For a given scattering data set, one rapidly obtains the number of neighbours in the map and the associated shape topologies such that in addition to providing a quantitative ambiguity measure the algorithm may also serve as an alternative shape-analysis tool. The approach has been validated in model calculations on geometrical bodies and its usefulness is further demonstrated on a number of experimental X-ray scattering data sets from proteins in solution. A quantitative ambiguity score (a-score) is introduced to provide immediate and convenient guidance to the user on the uniqueness of the ab initio shape reconstruction from the given data set.
Collapse
Affiliation(s)
- Maxim V Petoukhov
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| |
Collapse
|
1213
|
Wen B, Peng J, Zuo X, Gong Q, Zhang Z. Characterization of protein flexibility using small-angle x-ray scattering and amplified collective motion simulations. Biophys J 2015; 107:956-64. [PMID: 25140431 DOI: 10.1016/j.bpj.2014.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/08/2014] [Accepted: 07/01/2014] [Indexed: 01/12/2023] Open
Abstract
Large-scale flexibility within a multidomain protein often plays an important role in its biological function. Despite its inherent low resolution, small-angle x-ray scattering (SAXS) is well suited to investigate protein flexibility and determine, with the help of computational modeling, what kinds of protein conformations would coexist in solution. In this article, we develop a tool that combines SAXS data with a previously developed sampling technique called amplified collective motions (ACM) to elucidate structures of highly dynamic multidomain proteins in solution. We demonstrate the use of this tool in two proteins, bacteriophage T4 lysozyme and tandem WW domains of the formin-binding protein 21. The ACM simulations can sample the conformational space of proteins much more extensively than standard molecular dynamics (MD) simulations. Therefore, conformations generated by ACM are significantly better at reproducing the SAXS data than are those from MD simulations.
Collapse
Affiliation(s)
- Bin Wen
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Junhui Peng
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xiaobing Zuo
- Advanced Photon Source, Argonne National Laboratory, Chicago, Illinois
| | - Qingguo Gong
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
1214
|
Pronker MF, Bos TGAA, Sharp TH, Thies-Weesie DME, Janssen BJC. Olfactomedin-1 Has a V-shaped Disulfide-linked Tetrameric Structure. J Biol Chem 2015; 290:15092-101. [PMID: 25903135 PMCID: PMC4463452 DOI: 10.1074/jbc.m115.653485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 11/06/2022] Open
Abstract
Olfactomedin-1 (Olfm1; also known as noelin and pancortin) is a member of the olfactomedin domain-containing superfamily and a highly expressed neuronal glycoprotein important for nervous system development. It binds a number of secreted proteins and cell surface-bound receptors to induce cell signaling processes. Using a combined approach of x-ray crystallography, solution scattering, analytical ultracentrifugation, and electron microscopy we determined that full-length Olfm1 forms disulfide-linked tetramers with a distinctive V-shaped architecture. The base of the “V” is formed by two disulfide-linked dimeric N-terminal domains. Each of the two V legs consists of a parallel dimeric disulfide-linked coiled coil with a C-terminal β-propeller dimer at the tips. This agrees with our crystal structure of a C-terminal coiled-coil segment and β-propeller combination (Olfm1coil-Olf) that reveals a disulfide-linked dimeric arrangement with the β-propeller top faces in an outward exposed orientation. Similar to its family member myocilin, Olfm1 is stabilized by calcium. The dimer-of-dimers architecture suggests a role for Olfm1 in clustering receptors to regulate signaling and sheds light on the conformation of several other olfactomedin domain family members.
Collapse
Affiliation(s)
- Matti F Pronker
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| | - Trusanne G A A Bos
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| | - Thomas H Sharp
- Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Dominique M E Thies-Weesie
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute of Nanomaterials Science, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands and
| | - Bert J C Janssen
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| |
Collapse
|
1215
|
Clairfeuille T, Norwood SJ, Qi X, Teasdale RD, Collins BM. Structure and Membrane Binding Properties of the Endosomal Tetratricopeptide Repeat (TPR) Domain-containing Sorting Nexins SNX20 and SNX21. J Biol Chem 2015; 290:14504-17. [PMID: 25882846 DOI: 10.1074/jbc.m115.650598] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 01/08/2023] Open
Abstract
Sorting nexins (SNX) orchestrate membrane trafficking and signaling events required for the proper distribution of proteins within the endosomal network. Their phox homology (PX) domain acts as a phosphoinositide (PI) recognition module that targets them to specific endocytic membrane domains. The modularity of SNX proteins confers a wide variety of functions from signaling to membrane deformation and cargo binding, and many SNXs are crucial modulators of endosome dynamics and are involved in a myriad of physiological and pathological processes such as neurodegenerative diseases, cancer, and inflammation. Here, we have studied the poorly characterized SNX20 and its paralogue SNX21, which contain an N-terminal PX domain and a C-terminal PX-associated B (PXB) domain of unknown function. The two proteins share similar PI-binding properties and are recruited to early endosomal compartments by their PX domain. The crystal structure of the SNX21 PXB domain reveals a tetratricopeptide repeat (TPR)-fold, a module that typically binds short peptide motifs, with three TPR α-helical repeats. However, the C-terminal capping helix adopts a highly unusual and potentially self-inhibitory topology. SAXS solution structures of SNX20 and SNX21 show that these proteins adopt a compact globular architecture, and membrane interaction analyses indicate the presence of overlapping PI-binding sites that may regulate their intracellular localization. This study provides the first structural analysis of this poorly characterized subfamily of SNX proteins, highlighting a likely role as endosome-associated scaffolds.
Collapse
Affiliation(s)
- Thomas Clairfeuille
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Suzanne J Norwood
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xiaying Qi
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rohan D Teasdale
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Brett M Collins
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
1216
|
Stabilization of nontoxic Aβ-oligomers: insights into the mechanism of action of hydroxyquinolines in Alzheimer's disease. J Neurosci 2015; 35:2871-84. [PMID: 25698727 DOI: 10.1523/jneurosci.2912-14.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The extracellular accumulation of amyloid β (Aβ) peptides is characteristic of Alzheimer's disease (AD). However, formation of diffusible, oligomeric forms of Aβ, both on and off pathways to amyloid fibrils, is thought to include neurotoxic species responsible for synaptic loss and neurodegeneration, rather than polymeric amyloid aggregates. The 8-hydroxyquinolines (8-HQ) clioquinol (CQ) and PBT2 were developed for their ability to inhibit metal-mediated generation of reactive oxygen species from Aβ:Cu complexes and have both undergone preclinical and Phase II clinical development for the treatment of AD. Their respective modes of action are not fully understood and may include both inhibition of Aβ fibrillar polymerization and direct depolymerization of existing Aβ fibrils. In the present study, we find that CQ and PBT2 can interact directly with Aβ and affect its propensity to aggregate. Using a combination of biophysical techniques, we demonstrate that, in the presence of these 8-HQs and in the absence of metal ions, Aβ associates with two 8-HQ molecules and forms a dimer. Furthermore, 8-HQ bind Aβ with an affinity of 1-10 μm and suppress the formation of large (>30 kDa) oligomers. The stabilized low molecular weight species are nontoxic. Treatment with 8-HQs also reduces the levels of in vivo soluble oligomers in a Caenorhabditis elegans model of Aβ toxicity. We propose that 8-HQs possess an additional mechanism of action that neutralizes neurotoxic Aβ oligomer formation through stabilization of small (dimeric) nontoxic Aβ conformers.
Collapse
|
1217
|
Fyfe AC, Dunten PW, Martick MM, Scott WG. Structural Variations and Solvent Structure of r(UGGGGU) Quadruplexes Stabilized by Sr(2+) Ions. J Mol Biol 2015; 427:2205-19. [PMID: 25861762 DOI: 10.1016/j.jmb.2015.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 11/18/2022]
Abstract
Guanine-rich sequences can, under appropriate conditions, adopt a distinctive, four-stranded, helical fold known as a G-quadruplex. Interest in quadruplex folds has grown in recent years as evidence of their biological relevance has accumulated from both sequence analysis and function-specific assays. The folds are unusually stable and their formation appears to require close management to maintain cell health; regulatory failure correlates with genomic instability and a number of cancer phenotypes. Biologically relevant quadruplex folds are anticipated to form transiently in mRNA and in single-stranded, unwound DNA. To elucidate factors, including bound solvent, that contribute to the stability of RNA quadruplexes, we examine, by X-ray crystallography and small-angle X-ray scattering, the structure of a previously reported tetramolecular quadruplex, UGGGGU stabilized by Sr(2+) ions. Crystal forms of the octameric assembly formed by this sequence exhibit unusually strong diffraction and anomalous signal enabling the construction of reliable models to a resolution of 0.88Å. The solvent structure confirms hydration patterns reported for other nucleic acid helical conformations and provides support for the greater stability of RNA quadruplexes relative to DNA. Novel features detected in the octameric RNA assembly include a new crystal form, evidence of multiple conformations and structural variations in the 3' U tetrad, including one that leads to the formation of a hydrated internal cavity.
Collapse
Affiliation(s)
- Alastair C Fyfe
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Pete W Dunten
- Stanford Synchrotron Radiation Lightsource, CA 94025, USA
| | - Monika M Martick
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - William G Scott
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
1218
|
Franke D, Jeffries CM, Svergun DI. Correlation Map, a goodness-of-fit test for one-dimensional X-ray scattering spectra. Nat Methods 2015; 12:419-22. [PMID: 25849637 DOI: 10.1038/nmeth.3358] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/18/2015] [Indexed: 01/10/2023]
Abstract
Assessing similarity between data sets with the reduced χ(2) test requires the estimation of experimental errors, which, if incorrect, may render statistical comparisons invalid. We report a goodness-of-fit test, Correlation Map (CorMap), for assessing differences between one-dimensional spectra independently of explicit error estimates, using only data point correlations. Using small-angle X-ray scattering data, we demonstrate that CorMap maintains the power of the reduced χ(2) test; moreover, CorMap is also applicable to other physical experiments.
Collapse
Affiliation(s)
- Daniel Franke
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| |
Collapse
|
1219
|
Alonso-García N, García-Rubio I, Manso JA, Buey RM, Urien H, Sonnenberg A, Jeschke G, de Pereda JM. Combination of X-ray crystallography, SAXS and DEER to obtain the structure of the FnIII-3,4 domains of integrin α6β4. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:969-85. [PMID: 25849406 PMCID: PMC4388270 DOI: 10.1107/s1399004715002485] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/05/2015] [Indexed: 03/24/2024]
Abstract
Integrin α6β4 is a major component of hemidesmosomes that mediate the stable anchorage of epithelial cells to the underlying basement membrane. Integrin α6β4 has also been implicated in cell proliferation and migration and in carcinoma progression. The third and fourth fibronectin type III domains (FnIII-3,4) of integrin β4 mediate binding to the hemidesmosomal proteins BPAG1e and BPAG2, and participate in signalling. Here, it is demonstrated that X-ray crystallography, small-angle X-ray scattering and double electron-electron resonance (DEER) complement each other to solve the structure of the FnIII-3,4 region. The crystal structures of the individual FnIII-3 and FnIII-4 domains were solved and the relative arrangement of the FnIII domains was elucidated by combining DEER with site-directed spin labelling. Multiple structures of the interdomain linker were modelled by Monte Carlo methods complying with DEER constraints, and the final structures were selected against experimental scattering data. FnIII-3,4 has a compact and cambered flat structure with an evolutionary conserved surface that is likely to correspond to a protein-interaction site. Finally, this hybrid method is of general application for the study of other macromolecules and complexes.
Collapse
Affiliation(s)
- Noelia Alonso-García
- Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Inés García-Rubio
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
- Centro Universitario de la Defensa, Academia General Militar, Carretera de Huesca s/n, 50090 Zaragoza, Spain
| | - José A. Manso
- Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Rubén M. Buey
- Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Hector Urien
- Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Arnoud Sonnenberg
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - José M. de Pereda
- Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
1220
|
Thomsen M, Tuukkanen A, Dickerhoff J, Palm GJ, Kratzat H, Svergun DI, Weisz K, Bornscheuer UT, Hinrichs W. Structure and catalytic mechanism of the evolutionarily unique bacterial chalcone isomerase. ACTA ACUST UNITED AC 2015; 71:907-17. [PMID: 25849401 DOI: 10.1107/s1399004715001935] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022]
Abstract
Flavonoids represent a large class of secondary metabolites produced by plants. These polyphenolic compounds are well known for their antioxidative abilities, are antimicrobial phytoalexins responsible for flower pigmentation to attract pollinators and, in addition to other properties, are also specific bacterial regulators governing the expression of Rhizobium genes involved in root nodulation (Firmin et al., 1986). The bacterial chalcone isomerase (CHI) from Eubacterium ramulus catalyses the first step in a flavanone-degradation pathway by ring opening of (2S)-naringenin to form naringenin chalcone. The structural biology and enzymology of plant CHIs have been well documented, whereas the existence of bacterial CHIs has only recently been elucidated. This first determination of the structure of a bacterial CHI provides detailed structural insights into the key step of the flavonoid-degradation pathway. The active site could be confirmed by co-crystallization with the substrate (2S)-naringenin. The stereochemistry of the proposed mechanism of the isomerase reaction was verified by specific (1)H/(2)H isotope exchange observed by (1)H NMR experiments and was further supported by mutagenesis studies. The active site is shielded by a flexible lid, the varying structure of which could be modelled in different states of the catalytic cycle using small-angle X-ray scattering data together with the crystallographic structures. Comparison of bacterial CHI with the plant enzyme from Medicago sativa reveals that they have unrelated folds, suggesting that the enzyme activity evolved convergently from different ancestor proteins. Despite the lack of any functional relationship, the tertiary structure of the bacterial CHI shows similarities to the ferredoxin-like fold of a chlorite dismutase and the stress-related protein SP1.
Collapse
Affiliation(s)
- Maren Thomsen
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17489 Greifswald, Germany
| | - Anne Tuukkanen
- EMBL, c/o DESY, Notkestrasse 85, Gebäude 25A, 22603 Hamburg, Germany
| | - Jonathan Dickerhoff
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17489 Greifswald, Germany
| | - Gottfried J Palm
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17489 Greifswald, Germany
| | - Hanna Kratzat
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17489 Greifswald, Germany
| | - Dmitri I Svergun
- EMBL, c/o DESY, Notkestrasse 85, Gebäude 25A, 22603 Hamburg, Germany
| | - Klaus Weisz
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17489 Greifswald, Germany
| | - Uwe T Bornscheuer
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17489 Greifswald, Germany
| | - Winfried Hinrichs
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17489 Greifswald, Germany
| |
Collapse
|
1221
|
Ithychanda SS, Fang X, Mohan ML, Zhu L, Tirupula KC, Naga Prasad SV, Wang YX, Karnik SS, Qin J. A mechanism of global shape-dependent recognition and phosphorylation of filamin by protein kinase A. J Biol Chem 2015; 290:8527-38. [PMID: 25666618 PMCID: PMC4375502 DOI: 10.1074/jbc.m114.633446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/27/2015] [Indexed: 12/23/2022] Open
Abstract
Protein phosphorylation mediates essentially all aspects of cellular life. In humans, this is achieved by ∼500 kinases, each recognizing a specific consensus motif (CM) in the substrates. The majority of CMs are surface-exposed and are thought to be accessible to kinases for phosphorylation. Here we investigated the archetypical protein kinase A (PKA)-mediated phosphorylation of filamin, a major cytoskeletal protein that can adopt an autoinhibited conformation. Surprisingly, autoinhibited filamin is refractory to phosphorylation by PKA on a known Ser(2152) site despite its CM being exposed and the corresponding isolated peptide being readily phosphorylated. Structural analysis revealed that although the CM fits into the PKA active site its surrounding regions sterically clash with the kinase. However, upon ligand binding, filamin undergoes a conformational adjustment, allowing rapid phosphorylation on Ser(2152). These data uncover a novel ligand-induced conformational switch to trigger filamin phosphorylation. They further suggest a substrate shape-dependent filtering mechanism that channels specific exposed CM/kinase recognition in diverse signaling responses.
Collapse
Affiliation(s)
- Sujay Subbayya Ithychanda
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Xianyang Fang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, NCI, National Institutes of Health, Frederick, Maryland 21702, and
| | - Maradumane L Mohan
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Liang Zhu
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Kalyan C Tirupula
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sathyamangla V Naga Prasad
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, NCI, National Institutes of Health, Frederick, Maryland 21702, and
| | - Sadashiva S Karnik
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jun Qin
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
1222
|
Cork AJ, Ericsson DJ, Law RHP, Casey LW, Valkov E, Bertozzi C, Stamp A, Jovcevski B, Aquilina JA, Whisstock JC, Walker MJ, Kobe B. Stability of the octameric structure affects plasminogen-binding capacity of streptococcal enolase. PLoS One 2015; 10:e0121764. [PMID: 25807546 PMCID: PMC4373793 DOI: 10.1371/journal.pone.0121764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
Group A Streptococcus (GAS) is a human pathogen that has the potential to cause invasive disease by binding and activating human plasmin(ogen). Streptococcal surface enolase (SEN) is an octameric α-enolase that is localized at the GAS cell surface. In addition to its glycolytic role inside the cell, SEN functions as a receptor for plasmin(ogen) on the bacterial surface, but the understanding of the molecular basis of plasmin(ogen) binding is limited. In this study, we determined the crystal and solution structures of GAS SEN and characterized the increased plasminogen binding by two SEN mutants. The plasminogen binding ability of SENK312A and SENK362A is ~2- and ~3.4-fold greater than for the wild-type protein. A combination of thermal stability assays, native mass spectrometry and X-ray crystallography approaches shows that increased plasminogen binding ability correlates with decreased stability of the octamer. We propose that decreased stability of the octameric structure facilitates the access of plasmin(ogen) to its binding sites, leading to more efficient plasmin(ogen) binding and activation.
Collapse
Affiliation(s)
- Amanda J. Cork
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Daniel J. Ericsson
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ruby H. P. Law
- Department of Biochemistry and Molecular Biology and the ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Melbourne, VIC, 3800, Australia
| | - Lachlan W. Casey
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Eugene Valkov
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Carlo Bertozzi
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Anna Stamp
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Blagojce Jovcevski
- School of Biological Sciences and Illawarra Health and Medical Research, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - J. Andrew Aquilina
- School of Biological Sciences and Illawarra Health and Medical Research, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - James C. Whisstock
- Department of Biochemistry and Molecular Biology and the ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Melbourne, VIC, 3800, Australia
| | - Mark J. Walker
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
- * E-mail: (BK); (MJW)
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
- * E-mail: (BK); (MJW)
| |
Collapse
|
1223
|
Mukaiyama A, Osako M, Hikima T, Kondo T, Akiyama S. A protocol for preparing nucleotide-free KaiC monomer. Biophysics (Nagoya-shi) 2015; 11:79-84. [PMID: 27493519 PMCID: PMC4736791 DOI: 10.2142/biophysics.11.79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/12/2015] [Indexed: 12/01/2022] Open
Abstract
The hexameric form of the KaiC protein is a core of the cyanobacterial biological clock, and its enzymatic activities exhibit circadian periodicity. The instability of the monomeric form of nucleotide-free KaiC has precluded its storage and detailed analyses of the activities of the reassembled hexamer. Here, we provide a protocol for preparing nucleotide-free KaiC monomer that is stable in solution and for triggering its reassembly into intact KaiC hexamer by the addition of ATP. A phosphate buffer containing glutamic acid and arginine enhanced the stability of KaiC monomer considerably. In addition, we found that reassembled KaiC hexamer was functionally active as the intact hexamer. This protocol provides a methodological basis for further analyses of first-turnover events of the ATPase/autokinase/autophosphatase activities of the KaiC hexamer.
Collapse
Affiliation(s)
- Atsushi Mukaiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Masato Osako
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Takao Kondo
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shuji Akiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
1224
|
Lee M, Sadowska A, Bekere I, Ho D, Gully BS, Lu Y, Iyer KS, Trewhella J, Fox AH, Bond CS. The structure of human SFPQ reveals a coiled-coil mediated polymer essential for functional aggregation in gene regulation. Nucleic Acids Res 2015; 43:3826-40. [PMID: 25765647 PMCID: PMC4402515 DOI: 10.1093/nar/gkv156] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/18/2015] [Indexed: 12/14/2022] Open
Abstract
SFPQ, (a.k.a. PSF), is a human tumor suppressor protein that regulates many important functions in the cell nucleus including coordination of long non-coding RNA molecules into nuclear bodies. Here we describe the first crystal structures of Splicing Factor Proline and Glutamine Rich (SFPQ), revealing structural similarity to the related PSPC1/NONO heterodimer and a strikingly extended structure (over 265 Å long) formed by an unusual anti-parallel coiled-coil that results in an infinite linear polymer of SFPQ dimers within the crystals. Small-angle X-ray scattering and transmission electron microscopy experiments show that polymerization is reversible in solution and can be templated by DNA. We demonstrate that the ability to polymerize is essential for the cellular functions of SFPQ: disruptive mutation of the coiled-coil interaction motif results in SFPQ mislocalization, reduced formation of nuclear bodies, abrogated molecular interactions and deficient transcriptional regulation. The coiled-coil interaction motif thus provides a molecular explanation for the functional aggregation of SFPQ that directs its role in regulating many aspects of cellular nucleic acid metabolism.
Collapse
Affiliation(s)
- Mihwa Lee
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Agata Sadowska
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia Harry Perkins Institute for Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Indra Bekere
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Diwei Ho
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Benjamin S Gully
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Yanling Lu
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | - K Swaminathan Iyer
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Jill Trewhella
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | - Archa H Fox
- Harry Perkins Institute for Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Charles S Bond
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
1225
|
Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures. Curr Opin Struct Biol 2015; 30:147-160. [PMID: 25765781 DOI: 10.1016/j.sbi.2015.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 11/20/2022]
Abstract
Whereas the structures of small to medium-sized well folded RNA molecules often can be determined by either X-ray crystallography or NMR spectroscopy, obtaining structural information for large RNAs using experimental, computational, or combined approaches remains a major interest and challenge. RNA is very sensitive to small-angle X-ray scattering (SAXS) due to high electron density along phosphate-sugar backbones, whose scattering contribution dominates SAXS intensity. For this reason, SAXS is particularly useful in obtaining global RNA structural information that outlines backbone topologies and, therefore, molecular envelopes. Such information is extremely valuable in bridging the gap between the secondary structures and three-dimensional topological structures of RNA molecules, particularly those that have proven difficult to study using other structure-determination methods. Here we review published results of RNA topological structures derived from SAXS data or in combination with other experimental data, as well as details on RNA sample preparation for SAXS experiments.
Collapse
|
1226
|
Bacterial killing via a type IV secretion system. Nat Commun 2015; 6:6453. [PMID: 25743609 DOI: 10.1038/ncomms7453] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/29/2015] [Indexed: 12/24/2022] Open
Abstract
Type IV secretion systems (T4SSs) are multiprotein complexes that transport effector proteins and protein-DNA complexes through bacterial membranes to the extracellular milieu or directly into the cytoplasm of other cells. Many bacteria of the family Xanthomonadaceae, which occupy diverse environmental niches, carry a T4SS with unknown function but with several characteristics that distinguishes it from other T4SSs. Here we show that the Xanthomonas citri T4SS provides these cells the capacity to kill other Gram-negative bacterial species in a contact-dependent manner. The secretion of one type IV bacterial effector protein is shown to require a conserved C-terminal domain and its bacteriolytic activity is neutralized by a cognate immunity protein whose 3D structure is similar to peptidoglycan hydrolase inhibitors. This is the first demonstration of the involvement of a T4SS in bacterial killing and points to this special class of T4SS as a mediator of both antagonistic and cooperative interbacterial interactions.
Collapse
|
1227
|
Sluchanko NN, Uversky VN. Hidden disorder propensity of the N-terminal segment of universal adapter protein 14-3-3 is manifested in its monomeric form: Novel insights into protein dimerization and multifunctionality. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:492-504. [PMID: 25747569 DOI: 10.1016/j.bbapap.2015.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/17/2015] [Accepted: 02/24/2015] [Indexed: 11/30/2022]
Abstract
The multiplicity of functions of 14-3-3 proteins, integrated into many cellular interactions and signaling networks, is primarily based upon their dimeric α-helical structure that is capable of binding phosphorylated protein partners as well as displaying a "moonlighting" chaperone-like activity. The structure and functions of 14-3-3 proteins are regulated in different ways, including Ser58 phosphorylation in the interface, which shifts equilibrium towards the formation of protein monomers whose role is poorly understood. While modification of Ser58 induced only partial dissociation, the engineered triple mutation of human 14-3-3ζ located in the first α-helix deeply monomerized the protein, allowing for a structural analysis of the monomeric form. Dimer-incapable 14-3-3 proteins retained binding capacity and specificity towards some phosphopartners, and also demonstrated increased chaperone-like activity on various substrates. Here, we found a substantial propensity of the N-terminal segment (~40 residues) of 14-3-3 proteins to intrinsic disorder, showing remarkable conservation across different isoforms and organisms. We hypothesized that this intrinsic disorder propensity, hidden in the α-helical 14-3-3 dimer, can be manifested upon its dissociation and interrogated novel monomeric 14-3-3ζ carrying both monomerizing and S58E mutations (14-3-3ζmS58E). CD spectroscopy showed that, at physiological temperatures, this protein has ~10-15% reduced helicity relative to the wild type protein, corresponding to roughly 40 residues. Along with the known flexibility of C-terminus, SAXS-based modeling of the 14-3-3ζmS58E structure strongly suggested pliability of its N-terminus. The unraveled disorder propensity of the N-terminal tails of 14-3-3 proteins provides new clues for better understanding of the molecular mechanisms of dimerization and multifunctionality of these universal adapter proteins.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky prospect 33, Moscow 119071, Russian Federation.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation; Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation.
| |
Collapse
|
1228
|
Song JG, Kostan J, Drepper F, Knapp B, de Almeida Ribeiro E, Konarev PV, Grishkovskaya I, Wiche G, Gregor M, Svergun DI, Warscheid B, Djinović-Carugo K. Structural insights into Ca2+-calmodulin regulation of Plectin 1a-integrin β4 interaction in hemidesmosomes. Structure 2015; 23:558-570. [PMID: 25703379 PMCID: PMC4353693 DOI: 10.1016/j.str.2015.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 02/02/2023]
Abstract
The mechanical stability of epithelial cells, which protect organisms from harmful external factors, is maintained by hemidesmosomes via the interaction between plectin 1a (P1a) and integrin α6β4. Binding of calcium-calmodulin (Ca(2+)-CaM) to P1a together with phosphorylation of integrin β4 disrupts this complex, resulting in disassembly of hemidesmosomes. We present structures of the P1a actin binding domain either in complex with the N-ter lobe of Ca(2+)-CaM or with the first pair of integrin β4 fibronectin domains. Ca(2+)-CaM binds to the N-ter isoform-specific tail of P1a in a unique manner, via its N-ter lobe in an extended conformation. Structural, cell biology, and biochemical studies suggest the following model: binding of Ca(2+)-CaM to an intrinsically disordered N-ter segment of plectin converts it to an α helix, which repositions calmodulin to displace integrin β4 by steric repulsion. This model could serve as a blueprint for studies aimed at understanding how Ca(2+)-CaM or EF-hand motifs regulate F-actin-based cytoskeleton.
Collapse
Affiliation(s)
- Jae-Geun Song
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Julius Kostan
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Friedel Drepper
- Department of Functional Proteomics and Biochemistry, Institute of Biology II and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Bettina Knapp
- Department of Functional Proteomics and Biochemistry, Institute of Biology II and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Euripedes de Almeida Ribeiro
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Petr V Konarev
- EMBL-Hamburg c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Martin Gregor
- Department of Integrative Biology, Institute of Molecular Genetics of the ASCR, Vídeňská 1083, Prague 4 CZ-14220, Czech Republic
| | - Dmitri I Svergun
- EMBL-Hamburg c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Bettina Warscheid
- Department of Functional Proteomics and Biochemistry, Institute of Biology II and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, A-1030 Vienna, Austria; Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
1229
|
Garman EF, Weik M. Radiation damage to macromolecules: kill or cure? JOURNAL OF SYNCHROTRON RADIATION 2015; 22:195-200. [PMID: 25723921 DOI: 10.1107/s160057751500380x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 05/07/2023]
Abstract
Radiation damage induced by X-ray beams during macromolecular diffraction experiments remains an issue of concern in structural biology. While advances in our understanding of this phenomenon, driven in part by a series of workshops in this area, undoubtedly have been and are still being made, there are still questions to be answered. Eight papers in this volume give a flavour of ongoing investigations, addressing various issues. These range over: a proposed new metric derived from atomic B-factors for identifying potentially damaged amino acid residues, a study of the relative damage susceptibility of protein and DNA in a DNA/protein complex, a report of an indication of specific radiation damage to a protein determined from data collected using an X-ray free-electron laser (FEL), an account of the challenges in FEL raw diffraction data analysis, an exploration of the possibilities of using radiation damage induced phasing to solve structures using FELs, simulations of radiation damage as a function of FEL temporal pulse profiles, results on the influence of radiation damage during scanning X-ray diffraction measurements and, lastly, consideration of strategies for minimizing radiation damage during SAXS experiments. In this short introduction, these contributions are briefly placed in the context of other current work on radiation damage in the field.
Collapse
Affiliation(s)
- Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin Weik
- Université Grenoble Alpes, IBS, F-38044 Grenoble, France
| |
Collapse
|
1230
|
Jeffries CM, Graewert MA, Svergun DI, Blanchet CE. Limiting radiation damage for high-brilliance biological solution scattering: practical experience at the EMBL P12 beamline PETRAIII. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:273-279. [PMID: 25723929 DOI: 10.1107/s1600577515000375] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
Radiation damage is the general curse of structural biologists who use synchrotron small-angle X-ray scattering (SAXS) to investigate biological macromolecules in solution. The EMBL-P12 biological SAXS beamline located at the PETRAIII storage ring (DESY, Hamburg, Germany) caters to an extensive user community who integrate SAXS into their diverse structural biology programs. The high brilliance of the beamline [5.1 × 10(12) photons s(-1), 10 keV, 500 (H) µm × 250 (V) µm beam size at the sample position], combined with automated sample handling and data acquisition protocols, enable the high-throughput structural characterization of macromolecules in solution. However, considering the often-significant resources users invest to prepare samples, it is crucial that simple and effective protocols are in place to limit the effects of radiation damage once it has been detected. Here various practical approaches are evaluated that users can implement to limit radiation damage at the P12 beamline to maximize the chances of collecting quality data from radiation sensitive samples.
Collapse
Affiliation(s)
- Cy M Jeffries
- European Molecular Biology Laboratory Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg 22603, Germany
| | - Melissa A Graewert
- European Molecular Biology Laboratory Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg 22603, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg 22603, Germany
| | - Clément E Blanchet
- European Molecular Biology Laboratory Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg 22603, Germany
| |
Collapse
|
1231
|
Tria G, Mertens HDT, Kachala M, Svergun DI. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCRJ 2015; 2:207-17. [PMID: 25866658 PMCID: PMC4392415 DOI: 10.1107/s205225251500202x] [Citation(s) in RCA: 465] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/30/2015] [Indexed: 05/19/2023]
Abstract
Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of 'unstructured' and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-ray scattering (SAXS) is an established method for structural characterization of biological macromolecules in solution, and is directly applicable to the study of flexible systems such as intrinsically disordered proteins and multi-domain proteins with unstructured regions. The Ensemble Optimization Method (EOM) [Bernadó et al. (2007 ▶). J. Am. Chem. Soc. 129, 5656-5664] was the first approach introducing the concept of ensemble fitting of the SAXS data from flexible systems. In this approach, a large pool of macromolecules covering the available conformational space is generated and a sub-ensemble of conformers coexisting in solution is selected guided by the fit to the experimental SAXS data. This paper presents a series of new developments and advancements to the method, including significantly enhanced functionality and also quantitative metrics for the characterization of the results. Building on the original concept of ensemble optimization, the algorithms for pool generation have been redesigned to allow for the construction of partially or completely symmetric oligomeric models, and the selection procedure was improved to refine the size of the ensemble. Quantitative measures of the flexibility of the system studied, based on the characteristic integral parameters of the selected ensemble, are introduced. These improvements are implemented in the new EOM version 2.0, and the capabilities as well as inherent limitations of the ensemble approach in SAXS, and of EOM 2.0 in particular, are discussed.
Collapse
Affiliation(s)
- Giancarlo Tria
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg, 22603, Germany
| | - Haydyn D. T. Mertens
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg, 22603, Germany
| | - Michael Kachala
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg, 22603, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg, 22603, Germany
| |
Collapse
|
1232
|
Wong JEMM, Midtgaard SR, Gysel K, Thygesen MB, Sørensen KK, Jensen KJ, Stougaard J, Thirup S, Blaise M. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:592-605. [PMID: 25760608 PMCID: PMC4356369 DOI: 10.1107/s139900471402793x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/22/2014] [Indexed: 11/10/2022]
Abstract
LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.
Collapse
Affiliation(s)
- Jaslyn E. M. M. Wong
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Søren Roi Midtgaard
- Niels Bohr Institute, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Kira Gysel
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Mikkel B. Thygesen
- Centre for Carbohydrate Recognition and Signalling, Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Kasper K. Sørensen
- Centre for Carbohydrate Recognition and Signalling, Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Knud J. Jensen
- Centre for Carbohydrate Recognition and Signalling, Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Søren Thirup
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Mickaël Blaise
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| |
Collapse
|
1233
|
Chaudhuri BN. Emerging applications of small angle solution scattering in structural biology. Protein Sci 2015; 24:267-76. [PMID: 25516491 PMCID: PMC4353354 DOI: 10.1002/pro.2624] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/05/2014] [Indexed: 12/12/2022]
Abstract
Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assembly. Time-resolved small and wide-angle solution scattering to study biological processes in real time, and the use of localized heavy-atom labeling and anomalous solution scattering for applications as FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu.
Collapse
Affiliation(s)
- Barnali N Chaudhuri
- Faculty of Life Sciences and Biotechnology, South Asian UniversityAkbar Bhawan, Chanakyapuri, New Delhi, India
| |
Collapse
|
1234
|
Rosti K, Goldman A, Kajander T. Solution structure and biophysical characterization of the multifaceted signalling effector protein growth arrest specific-1. BMC BIOCHEMISTRY 2015; 16:8. [PMID: 25888394 PMCID: PMC4349606 DOI: 10.1186/s12858-015-0037-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/06/2015] [Indexed: 11/10/2022]
Abstract
Background The protein growth arrest specific-1 (GAS1) was discovered based on its ability to stop the cell cycle. During development it is involved in embryonic patterning, inhibits cell proliferation and mediates cell death, and has therefore been considered as a tumor suppressor. GAS1 is known to signal through two different cell membrane receptors: Rearranged during transformation (RET), and the sonic hedgehog receptor Patched-1. Sonic Hedgehog signalling is important in stem cell renewal and RET mediated signalling in neuronal survival. Disorders in both sonic hedgehog and RET signalling are connected to cancer progression. The neuroprotective effect of RET is controlled by glial cell-derived neurotrophic factor family ligands and glial cell-derived neurotrophic factor receptor alphas (GFRαs). Human Growth arrest specific-1 is a distant homolog of the GFRαs. Results We have produced and purified recombinant human GAS1 protein, and confirmed that GAS1 is a monomer in solution by static light scattering and small angle X-ray scattering analysis. The low resolution solution structure reveals that GAS1 is more elongated and flexible than the GFRαs, and the homology modelling of the individual domains show that they differ from GFRαs by lacking the amino acids for neurotrophic factor binding. In addition, GAS1 has an extended loop in the N-terminal domain that is conserved in vertebrates after the divergence of fishes and amphibians. Conclusions We conclude that GAS1 most likely differs from GFRαs functionally, based on comparative structural analysis, while it is able to bind the extracellular part of RET in a neurotrophic factor independent manner, although with low affinity in solution. Our structural characterization indicates that GAS1 differs from GFRα’s significantly also in its conformation, which probably reflects the functional differences between GAS1 and the GFRαs.
Collapse
Affiliation(s)
- Katja Rosti
- Institute of Biotechnology, Structural Biology and Biophysics, University of Helsinki, Helsinki, Finland.
| | - Adrian Goldman
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, UK. .,Department of Biosciences, Division of Biochemistry, University of Helsinki, Helsinki, Finland.
| | - Tommi Kajander
- Institute of Biotechnology, Structural Biology and Biophysics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
1235
|
Characterization of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase activase isoforms reveals hexameric assemblies with increased thermal stability. Biochem J 2015; 464:413-23. [PMID: 25247706 DOI: 10.1042/bj20140676] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most plants contain two isoforms of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (Rca), a chloroplast protein that maintains the activity of Rubisco during photosynthesis. The longer (α-) Rca isoform has previously been shown to regulate the activity of Rubisco in response to both the ADP:ATP ratio and redox potential via thioredoxin-f. We have characterized the arrangement of the different spinach (Spinacia oleracea) isoforms in solution, and show how the presence of nucleotides changes the oligomeric state. Although the shorter (β-) isoform from both tobacco (Nicotiana tabacum) and spinach tend to form a range of oligomers in solution, the size of which are relatively unaffected by the addition of nucleotide, the spinach α-isoform assembles as a hexamer in the presence of adenosine 5'-[γ-thio]triphosphate (ATPγS). These hexamers have significantly higher heat stability, and may play a role in optimizing photosynthesis at higher temperatures. Hexamers were also observed for mixtures of the two isoforms, suggesting that the α-isoform can act as a structural scaffold for hexamer formation by the β-isoform. Additionally, it is shown that a variant of the tobacco β-isoform acts in a similar fashion to the α-isoform of spinach, forming thermally stable hexamers in the presence of ATPγS. Both isoforms had similar rates of ATP hydrolysis, suggesting that a propensity for hexamer formation may not necessarily be correlated with activity. Modelling of the hexameric structures suggests that although the N-terminus of Rca forms a highly dynamic, extended structure, the C-terminus is located adjacent to the intersubunit interface.
Collapse
|
1236
|
Endres S, Granzin J, Circolone F, Stadler A, Krauss U, Drepper T, Svensson V, Knieps-Grünhagen E, Wirtz A, Cousin A, Tielen P, Willbold D, Jaeger KE, Batra-Safferling R. Structure and function of a short LOV protein from the marine phototrophic bacterium Dinoroseobacter shibae. BMC Microbiol 2015; 15:30. [PMID: 25887755 PMCID: PMC4335406 DOI: 10.1186/s12866-015-0365-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Background Light, oxygen, voltage (LOV) domains are widely distributed in plants, algae, fungi, bacteria, and represent the photo-responsive domains of various blue-light photoreceptor proteins. Their photocycle involves the blue-light triggered adduct formation between the C(4a) atom of a non-covalently bound flavin chromophore and the sulfur atom of a conserved cysteine in the LOV sensor domain. LOV proteins show considerable variation in the structure of N- and C-terminal elements which flank the LOV core domain, as well as in the lifetime of the adduct state. Results Here, we report the photochemical, structural and functional characterization of DsLOV, a LOV protein from the photoheterotrophic marine α-proteobacterium Dinoroseobacter shibae which exhibits an average adduct state lifetime of 9.6 s at 20°C, and thus represents the fastest reverting bacterial LOV protein reported so far. Mutational analysis in D. shibae revealed a unique role of DsLOV in controlling the induction of photopigment synthesis in the absence of blue-light. The dark state crystal structure of DsLOV determined at 1.5 Å resolution reveals a conserved core domain with an extended N-terminal cap. The dimer interface in the crystal structure forms a unique network of hydrogen bonds involving residues of the N-terminus and the β-scaffold of the core domain. The structure of photoexcited DsLOV suggests increased flexibility in the N-cap region and a significant shift in the Cα backbone of β strands in the N- and C-terminal ends of the LOV core domain. Conclusions The results presented here cover the characterization of the unusual short LOV protein DsLOV from Dinoroseobacter shibae including its regulatory function, extremely fast dark recovery and an N-terminus mediated dimer interface. Due to its unique photophysical, structural and regulatory properties, DsLOV might thus serve as an alternative model system for studying light perception by LOV proteins and physiological responses in bacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0365-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephan Endres
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Joachim Granzin
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Franco Circolone
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Andreas Stadler
- Juelich Centre for Neutron Science JCNS (JCNS-1) & Institute for Complex Systems (ICS-1), Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Vera Svensson
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Esther Knieps-Grünhagen
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Astrid Wirtz
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Anneliese Cousin
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Petra Tielen
- Institute for Microbiology, Technische Universität Braunschweig, D-38106, Braunschweig, Germany.
| | - Dieter Willbold
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, D-52425, Jülich, Germany. .,Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany.
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany. .,Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Renu Batra-Safferling
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| |
Collapse
|
1237
|
Balakrishna AM, Basak S, Manimekalai MSS, Grüber G. Crystal structure of subunits D and F in complex gives insight into energy transmission of the eukaryotic V-ATPase from Saccharomyces cerevisiae. J Biol Chem 2015; 290:3183-96. [PMID: 25505269 PMCID: PMC4318993 DOI: 10.1074/jbc.m114.622688] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/26/2014] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic V1VO-ATPases hydrolyze ATP in the V1 domain coupled to ion pumping in VO. A unique mode of regulation of V-ATPases is the reversible disassembly of V1 and VO, which reduces ATPase activity and causes silencing of ion conduction. The subunits D and F are proposed to be key in these enzymatic processes. Here, we describe the structures of two conformations of the subunit DF assembly of Saccharomyces cerevisiae (ScDF) V-ATPase at 3.1 Å resolution. Subunit D (ScD) consists of a long pair of α-helices connected by a short helix ((79)IGYQVQE(85)) as well as a β-hairpin region, which is flanked by two flexible loops. The long pair of helices is composed of the N-terminal α-helix and the C-terminal helix, showing structural alterations in the two ScDF structures. The entire subunit F (ScF) consists of an N-terminal domain of four β-strands (β1-β4) connected by four α-helices (α1-α4). α1 and β2 are connected via the loop (26)GQITPETQEK(35), which is unique in eukaryotic V-ATPases. Adjacent to the N-terminal domain is a flexible loop, followed by a C-terminal α-helix (α5). A perpendicular and extended conformation of helix α5 was observed in the two crystal structures and in solution x-ray scattering experiments, respectively. Fitted into the nucleotide-bound A3B3 structure of the related A-ATP synthase from Enterococcus hirae, the arrangements of the ScDF molecules reflect their central function in ATPase-coupled ion conduction. Furthermore, the flexibility of the terminal helices of both subunits as well as the loop (26)GQITPETQEK(35) provides information about the regulatory step of reversible V1VO disassembly.
Collapse
Affiliation(s)
- Asha Manikkoth Balakrishna
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Sandip Basak
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | | | - Gerhard Grüber
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
1238
|
Lakomek K, Stoehr G, Tosi A, Schmailzl M, Hopfner KP. Structural basis for dodecameric assembly states and conformational plasticity of the full-length AAA+ ATPases Rvb1 · Rvb2. Structure 2015; 23:483-495. [PMID: 25661652 DOI: 10.1016/j.str.2014.12.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/14/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
As building blocks of diverse macromolecular complexes, the AAA+ ATPases Rvb1 and Rvb2 are crucial for many cellular activities including cancer-related processes. Their oligomeric structure and function remain unclear. We report the crystal structures of full-length heteromeric Rvb1·Rvb2 complexes in distinct nucleotide binding states. Chaetomium thermophilum Rvb1·Rvb2 assemble into hexameric rings of alternating molecules and into stable dodecamers. Intriguingly, the characteristic oligonucleotide-binding (OB) fold domains (DIIs) of Rvb1 and Rvb2 occupy unequal places relative to the compact AAA+ core ring. While Rvb1's DII forms contacts between hexamers, Rvb2's DII is rotated 100° outward, occupying lateral positions. ATP was retained bound to Rvb1 but not Rvb2 throughout purification, suggesting nonconcerted ATPase activities and nucleotide binding. Significant conformational differences between nucleotide-free and ATP-/ADP-bound states in the crystal structures and in solution suggest that the functional role of Rvb1·Rvb2 is mediated by highly interconnected structural switches. Our structures provide an atomic framework for dodecameric states and Rvb1·Rvb2's conformational plasticity.
Collapse
Affiliation(s)
- Kristina Lakomek
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Gabriele Stoehr
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Alessandro Tosi
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Monika Schmailzl
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Karl-Peter Hopfner
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany; Center for Integrated Protein Sciences, Ludwig-Maximilians University Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany.
| |
Collapse
|
1239
|
Mayerhofer H, Panneerselvam S, Kaljunen H, Tuukkanen A, Mertens HDT, Mueller-Dieckmann J. Structural model of the cytosolic domain of the plant ethylene receptor 1 (ETR1). J Biol Chem 2015; 290:2644-58. [PMID: 25451923 PMCID: PMC4317023 DOI: 10.1074/jbc.m114.587667] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/24/2014] [Indexed: 11/06/2022] Open
Abstract
Ethylene initiates important aspects of plant growth and development through disulfide-linked receptor dimers located in the endoplasmic reticulum. The receptors feature a small transmembrane, ethylene binding domain followed by a large cytosolic domain, which serves as a scaffold for the assembly of large molecular weight complexes of different ethylene receptors and other cellular participants of the ethylene signaling pathway. Here we report the crystallographic structures of the ethylene receptor 1 (ETR1) catalytic ATP-binding and the ethylene response sensor 1 dimerization histidine phosphotransfer (DHp) domains and the solution structure of the entire cytosolic domain of ETR1, all from Arabidopsis thaliana. The isolated dimeric ethylene response sensor 1 DHp domain is asymmetric, the result of different helical bending angles close to the conserved His residue. The structures of the catalytic ATP-binding, DHp, and receiver domains of ethylene receptors and of a homologous, but dissimilar, GAF domain were refined against experimental small angle x-ray scattering data, leading to a structural model of the entire cytosolic domain of the ethylene receptor 1. The model illustrates that the cytosolic domain is shaped like a dumbbell and that the receiver domain is flexible and assumes a position different from those observed in prokaryotic histidine kinases. Furthermore the cytosolic domain of ETR1 plays a key role, interacting with all other receptors and several participants of the ethylene signaling pathway. Our model, therefore, provides the first step toward a detailed understanding of the molecular mechanics of this important signal transduction process in plants.
Collapse
Affiliation(s)
- Hubert Mayerhofer
- From the European Molecular Biology Laboratory (EMBL) Hamburg, c/o Deutsches Elektronen-Synchrotron (DESY), Building 25A, Notkestrasse 85, 22603 Hamburg, Germany
| | - Saravanan Panneerselvam
- From the European Molecular Biology Laboratory (EMBL) Hamburg, c/o Deutsches Elektronen-Synchrotron (DESY), Building 25A, Notkestrasse 85, 22603 Hamburg, Germany
| | - Heidi Kaljunen
- From the European Molecular Biology Laboratory (EMBL) Hamburg, c/o Deutsches Elektronen-Synchrotron (DESY), Building 25A, Notkestrasse 85, 22603 Hamburg, Germany
| | - Anne Tuukkanen
- From the European Molecular Biology Laboratory (EMBL) Hamburg, c/o Deutsches Elektronen-Synchrotron (DESY), Building 25A, Notkestrasse 85, 22603 Hamburg, Germany
| | - Haydyn D T Mertens
- From the European Molecular Biology Laboratory (EMBL) Hamburg, c/o Deutsches Elektronen-Synchrotron (DESY), Building 25A, Notkestrasse 85, 22603 Hamburg, Germany
| | - Jochen Mueller-Dieckmann
- From the European Molecular Biology Laboratory (EMBL) Hamburg, c/o Deutsches Elektronen-Synchrotron (DESY), Building 25A, Notkestrasse 85, 22603 Hamburg, Germany
| |
Collapse
|
1240
|
Liang WG, Ren M, Zhao F, Tang WJ. Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 2015; 427:1345-1358. [PMID: 25636406 PMCID: PMC4355285 DOI: 10.1016/j.jmb.2015.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 11/23/2022]
Abstract
CC chemokine ligands (CCL) are 8-14 kDa signaling proteins involved in diverse immune functions. While CCLs share similar tertiary structures, oligomerization produces highly diverse quaternary structures that protect chemokines from proteolytic degradation and modulate their functions. CCL18 is closely related to CCL3 and CCL4 with respect to both protein sequence and genomic location, yet CCL18 has distinct biochemical and biophysical properties. Here, we report a crystal structure of human CCL18 and its oligomerization states in solution based on crystallographic and small angle X-ray scattering (SAXS) analyses. Our data shows that CCL18 adopts an α-helical conformation at its N-terminus that weakens its dimerization, explaining CCL18’s preference for the monomeric state. Multiple contacts between monomers allow CCL18 to reversibly form a unique open-ended oligomer different from those of CCL3, CCL4, and CCL5. Furthermore, these differences hinge on proline 8, which is conserved in CCL3 and CCL4, but is replaced by lysine in human CCL18. Our structural analyses suggest that a proline 8 to alanine mutation stabilizes a type I β-turn at the N-terminus of CCL4 to prevent dimerization but prevents dimers from making key contacts with each other in CCL3. Thus, the P8A mutation induces depolymerization of CCL3 and CCL4 by distinct mechanisms. Finally, we used structural, biochemical, and functional analyses to unravel why insulin-degrading enzyme (IDE) degrades CCL3 and CCL4 but not CCL18. Our results elucidate the molecular basis for the oligomerization of three closely related CC chemokines and suggest how oligomerization shapes CCL chemokine function.
Collapse
Affiliation(s)
- Wenguang G Liang
- Ben May Department for Cancer Research, The University of Chicago, IL 60637, USA
| | - Min Ren
- Ben May Department for Cancer Research, The University of Chicago, IL 60637, USA
| | - Fan Zhao
- Ben May Department for Cancer Research, The University of Chicago, IL 60637, USA
| | - Wei-Jen Tang
- Ben May Department for Cancer Research, The University of Chicago, IL 60637, USA.
| |
Collapse
|
1241
|
Gully BS, Cowieson N, Stanley WA, Shearston K, Small ID, Barkan A, Bond CS. The solution structure of the pentatricopeptide repeat protein PPR10 upon binding atpH RNA. Nucleic Acids Res 2015; 43:1918-26. [PMID: 25609698 PMCID: PMC4330388 DOI: 10.1093/nar/gkv027] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The pentatricopeptide repeat (PPR) protein family is a large family of RNA-binding proteins that is characterized by tandem arrays of a degenerate 35-amino-acid motif which form an α-solenoid structure. PPR proteins influence the editing, splicing, translation and stability of specific RNAs in mitochondria and chloroplasts ZEA MAYS: PPR10 is amongst the best studied PPR proteins, where sequence-specific binding to two RNA transcripts, ATPH: and PSAJ, HAS BEEN DEMONSTRATED TO FOLLOW: a recognition code where the identity of two amino acids per repeat determines the base-specificity. A recently solved ZmPPR10: PSAJ: complex crystal structure suggested a homodimeric complex with considerably fewer sequence-specific protein-RNA contacts than inferred PREVIOUSLY: Here we describe the solution structure of the ZmPPR10: ATPH: complex using size-exclusion chromatography-coupled synchrotron small-angle X-ray scattering (SEC-SY-SAXS). Our results support prior evidence that PPR10 binds RNA as a monomer, and that it does so in a manner that is commensurate with a canonical and predictable RNA-binding mode across much of the RNA-protein interface.
Collapse
Affiliation(s)
- Benjamin S Gully
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nathan Cowieson
- SAXSWAXS beamline, Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, Australia
| | - Will A Stanley
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kate Shearston
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian D Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Charles S Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
1242
|
Onwukwe GU, Kursula P, Koski MK, Schmitz W, Wierenga RK. Human Δ3,Δ2-enoyl-CoA isomerase, type 2: a structural enzymology study on the catalytic role of its ACBP domain and helix-10. FEBS J 2015; 282:746-68. [DOI: 10.1111/febs.13179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Goodluck U. Onwukwe
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine; University of Oulu; Finland
| | - Petri Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine; University of Oulu; Finland
- Department of Biomedicine; University of Bergen; Norway
| | - M. Kristian Koski
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine; University of Oulu; Finland
| | - Werner Schmitz
- Theodor Boveri Institute of Biosciences (Biocenter); University of Würzburg; Germany
| | - Rik K. Wierenga
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine; University of Oulu; Finland
| |
Collapse
|
1243
|
Biochemical and structural characterization of the apicoplast dihydrolipoamide dehydrogenase of Plasmodium falciparum. Biosci Rep 2015; 35:BSR20140150. [PMID: 25387830 PMCID: PMC4293902 DOI: 10.1042/bsr20140150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
PDC (pyruvate dehydrogenase complex) is a multi-enzyme complex comprising an E1 (pyruvate decarboxylase), an E2 (dihydrolipomide acetyltransferase) and an E3 (dihydrolipoamide dehydrogenase). PDC catalyses the decarboxylation of pyruvate and forms acetyl-CoA and NADH. In the human malaria parasite Plasmodium falciparum, the single PDC is located exclusively in the apicoplast. Plasmodium PDC is essential for parasite survival in the mosquito vector and for late liver stage development in the human host, suggesting its suitability as a target for intervention strategies against malaria. Here, PfaE3 (P. falciparum apicoplast E3) was recombinantly expressed and characterized. Biochemical parameters were comparable with those determined for E3 from other organisms. A homology model for PfaE3 reveals an extra anti-parallel β-strand at the position where human E3BP (E3-binding protein) interacts with E3; a parasite-specific feature that may be exploitable for drug discovery against PDC. To assess the biological role of Pfae3, it was deleted from P. falciparum and although the mutants are viable, they displayed a highly synchronous growth phenotype during intra-erythrocytic development. The mutants also showed changes in the expression of some mitochondrial and antioxidant proteins suggesting that deletion of Pfae3 impacts on the parasite's metabolic function with downstream effects on the parasite's redox homoeostasis and cell cycle. The malaria parasite dihydrolipoamide dehydrogenase is active as a dimer and has specific structural features which could be exploitable for drug discovery. The enzyme is not essential for blood stage development but loss of function affects redox homoeostasis and cell cycle.
Collapse
|
1244
|
Kjaer TR, Le LTM, Pedersen JS, Sander B, Golas MM, Jensenius JC, Andersen GR, Thiel S. Structural insights into the initiating complex of the lectin pathway of complement activation. Structure 2015; 23:342-51. [PMID: 25579818 DOI: 10.1016/j.str.2014.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
The proteolytic cascade of the complement system is initiated when pattern-recognition molecules (PRMs) bind to ligands, resulting in the activation of associated proteases. In the lectin pathway of complement, the complex of mannan-binding lectin (MBL) and MBL-associated serine protease-1 (MASP-1) initiates the pathway by activating a second protease, MASP-2. Here we present a structural study of a PRM/MASP complex and derive the overall architecture of the 450 kDa MBL/MASP-1 complex using small-angle X-ray scattering and electron microscopy. The serine protease (SP) domains from the zymogen MASP-1 dimer protrude from the cone-like MBL tetramer and are separated by at least 20 nm. This suggests that intracomplex activation within a single MASP-1 dimer is unlikely and instead supports intercomplex activation, whereby the MASP SP domains are accessible to nearby PRM-bound MASPs. This activation mechanism differs fundamentally from the intracomplex initiation models previously proposed for both the lectin and the classical pathway.
Collapse
Affiliation(s)
- Troels R Kjaer
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Le T M Le
- Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Bjoern Sander
- Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark; Center for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark; Center for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Jens Christian Jensenius
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| |
Collapse
|
1245
|
Calçada EO, Korsak M, Kozyreva T. Recombinant Intrinsically Disordered Proteins for NMR: Tips and Tricks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:187-213. [PMID: 26387103 DOI: 10.1007/978-3-319-20164-1_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The growing recognition of the several roles that intrinsically disordered proteins play in biology places an increasing importance on protein sample availability to allow the characterization of their structural and dynamic properties. The sample preparation is therefore the limiting step to allow any biophysical method being able to characterize the properties of an intrinsically disordered protein and to clarify the links between these properties and the associated biological functions. An increasing array of tools has been recruited to help prepare and characterize the structural and dynamic properties of disordered proteins. This chapter describes their sample preparation, covering the most common drawbacks/barriers usually found working in the laboratory bench. We want this chapter to be the bedside book of any scientist interested in preparing intrinsically disordered protein samples for further biophysical analysis.
Collapse
Affiliation(s)
- Eduardo O Calçada
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
| | - Magdalena Korsak
- Giotto Biotech, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy.
| | - Tatiana Kozyreva
- Giotto Biotech, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
1246
|
Resolving Individual Components in Protein–RNA Complexes Using Small-Angle X-ray Scattering Experiments. Methods Enzymol 2015; 558:363-390. [DOI: 10.1016/bs.mie.2015.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
1247
|
Grant TD, Luft JR, Carter LG, Matsui T, Weiss TM, Martel A, Snell EH. The accurate assessment of small-angle X-ray scattering data. ACTA ACUST UNITED AC 2015; 71:45-56. [PMID: 25615859 PMCID: PMC4304685 DOI: 10.1107/s1399004714010876] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/12/2014] [Indexed: 12/05/2022]
Abstract
A set of quantitative techniques is suggested for assessing SAXS data quality. These are applied in the form of a script, SAXStats, to a test set of 27 proteins, showing that these techniques are more sensitive than manual assessment of data quality. Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.
Collapse
Affiliation(s)
- Thomas D Grant
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Joseph R Luft
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Lester G Carter
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, MS69, Menlo Park, CA 94025, USA
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, MS69, Menlo Park, CA 94025, USA
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, MS69, Menlo Park, CA 94025, USA
| | - Anne Martel
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, MS69, Menlo Park, CA 94025, USA
| | - Edward H Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
1248
|
Jeffries CM, Svergun DI. High-throughput studies of protein shapes and interactions by synchrotron small-angle X-ray scattering. Methods Mol Biol 2015; 1261:277-301. [PMID: 25502205 DOI: 10.1007/978-1-4939-2230-7_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Solution-based small angle X-ray scattering (SAXS) affords the opportunity to extract accurate structural parameters and global shape information from diverse biological macromolecular systems. SAXS is an ideal complementary technique to other structural and biophysical methods but it can also be applied alone to access structural information that is otherwise unobtainable using high-resolution methods. Macromolecular structures ranging from kilodaltons to gigadaltons can be analyzed, which encompasses the size of most proteins and functional cellular complexes. The SAXS analysis is performed using only a few microliters of solution containing microgram quantities of purified material in sample environments that can be tailored to mimic physiological conditions or altered to suit a particular question. High-brilliance synchrotron X-ray sources and parallel advances in hardware and computing have reduced data acquisition times to the millisecond range and the application of automated methods have allowed data processing and low resolution shape modelling to be completed within minutes. These developments have paved the way for high-throughput studies that generate significant quantities of structural information over a short period of time. Here, we briefly consider the basics of SAXS and describe major methods and protocols employed in high-throughput SAXS studies.
Collapse
Affiliation(s)
- Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestraße 85, 22603, Hamburg, Germany
| | | |
Collapse
|
1249
|
Acerbo AS, Cook MJ, Gillilan RE. Upgrade of MacCHESS facility for X-ray scattering of biological macromolecules in solution. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:180-6. [PMID: 25537607 PMCID: PMC4294029 DOI: 10.1107/s1600577514020360] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/10/2014] [Indexed: 05/20/2023]
Abstract
X-ray scattering of biological macromolecules in solution is an increasingly popular tool for structural biology and benefits greatly from modern high-brightness synchrotron sources. The upgraded MacCHESS BioSAXS station is now located at the 49-pole wiggler beamline G1. The 20-fold improved flux over the previous beamline F2 provides higher sample throughput and autonomous X-ray scattering data collection using a unique SAXS/WAXS dual detectors configuration. This setup achieves a combined q-range from 0.007 to 0.7 Å(-1), enabling better characterization of smaller molecules, while opening opportunities for emerging wide-angle scattering methods. In addition, a facility upgrade of the positron storage ring to continuous top-up mode has improved beam stability and eliminated beam drift over the course of typical BioSAXS experiments. Single exposure times have been reduced to 2 s for 3.560 mg ml(-1) lysozyme with an average quality factor I/σ of 20 in the Guinier region. A novel disposable plastic sample cell design that incorporates lower background X-ray window material provides users with a more pristine sample environment than previously available. Systematic comparisons of common X-ray window materials bonded to the cell have also been extended to the wide-angle regime, offering new insight into best choices for various q-space ranges. In addition, a quantitative assessment of signal-to-noise levels has been performed on the station to allow users to estimate necessary exposure times for obtaining usable signals in the Guinier regime. Users also have access to a new BioSAXS sample preparation laboratory which houses essential wet-chemistry equipment and biophysical instrumentation. User experiments at the upgraded BioSAXS station have been on-going since commissioning of the beamline in Summer 2013. A planned upgrade of the G1 insertion device to an undulator for the Winter 2014 cycle is expected to further improve flux by an order of magnitude.
Collapse
Affiliation(s)
- Alvin Samuel Acerbo
- Macromolecular Diffraction Facility of the Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Michael J. Cook
- Macromolecular Diffraction Facility of the Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Richard Edward Gillilan
- Macromolecular Diffraction Facility of the Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853, USA
- Correspondence e-mail:
| |
Collapse
|
1250
|
Curtain CC, Kirby NM, Mertens HDT, Barnham KJ, Knott RB, Masters CL, Cappai R, Rekas A, Kenche VB, Ryan T. Alpha-synuclein oligomers and fibrils originate in two distinct conformer pools: a small angle X-ray scattering and ensemble optimisation modelling study. MOLECULAR BIOSYSTEMS 2015; 11:190-6. [DOI: 10.1039/c4mb00356j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Size exclusion chromatography with small angle X-ray scattering and ensemble optimisation modelling reveals conformers in random pool of α-synuclein.
Collapse
Affiliation(s)
- Cyril C. Curtain
- Department of Pathology and Bio21 Molecular Science and Technology Institute
- The University of Melbourne
- Victoria 3010
- Australia
- The University of Melbourne
| | - Nigel M. Kirby
- SAXS/WAXS Beamline
- The Australian Synchrotron
- Clayton
- Australia
| | | | - Kevin J. Barnham
- Department of Pathology and Bio21 Molecular Science and Technology Institute
- The University of Melbourne
- Victoria 3010
- Australia
- The University of Melbourne
| | - Robert B. Knott
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Kirrawee
- Australia
| | - Colin L. Masters
- The University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010
- Australia
| | - Roberto Cappai
- Department of Pathology and Bio21 Molecular Science and Technology Institute
- The University of Melbourne
- Victoria 3010
- Australia
| | - Agata Rekas
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Kirrawee
- Australia
| | - Vijaya B. Kenche
- The University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010
- Australia
| | - Timothy Ryan
- The University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010
- Australia
| |
Collapse
|