1201
|
Lertpanyasampatha M, Gao L, Kongsawadworakul P, Viboonjun U, Chrestin H, Liu R, Chen X, Narangajavana J. Genome-wide analysis of microRNAs in rubber tree (Hevea brasiliensis L.) using high-throughput sequencing. PLANTA 2012; 236:437-45. [PMID: 22407387 PMCID: PMC3405184 DOI: 10.1007/s00425-012-1622-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/26/2012] [Indexed: 05/09/2023]
Abstract
MicroRNAs (miRNAs) are short RNAs with essential roles in gene regulation in various organisms including higher plants. In contrast to the vast information on miRNAs from many economically important plants, almost nothing has been reported on the identification or analysis of miRNAs from rubber tree (Hevea brasiliensis L.), the most important natural rubber-producing crop. To identify miRNAs and their target genes in rubber tree, high-throughput sequencing combined with a computational approach was performed. Four small RNA libraries were constructed for deep sequencing from mature and young leaves of two rubber tree clones, PB 260 and PB 217, which provide high and low latex yield, respectively. 115 miRNAs belonging to 56 known miRNA families were identified, and northern hybridization validated miRNA expression and revealed developmental stage-dependent and clone-specific expression for some miRNAs. We took advantage of the newly released rubber tree genome assembly and predicted 20 novel miRNAs. Further, computational analysis uncovered potential targets of the known and novel miRNAs. Predicted target genes included not only transcription factors but also genes involved in various biological processes including stress responses, primary and secondary metabolism, and signal transduction. In particular, genes with roles in rubber biosynthesis are predicted targets of miRNAs. This study provides a basic catalog of miRNAs and their targets in rubber tree to facilitate future improvement and exploitation of rubber tree.
Collapse
Affiliation(s)
- Manassawe Lertpanyasampatha
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd., Rajthewee, Bangkok 10400, Thailand
| | - Lei Gao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | | | - Unchera Viboonjun
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Hervé Chrestin
- Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Renyi Liu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Jarunya Narangajavana
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd., Rajthewee, Bangkok 10400, Thailand
| |
Collapse
|
1202
|
Gao ZH, Wei JH, Yang Y, Zhang Z, Xiong HY, Zhao WT. Identification of conserved and novel microRNAs in Aquilaria sinensis based on small RNA sequencing and transcriptome sequence data. Gene 2012; 505:167-75. [DOI: 10.1016/j.gene.2012.03.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 12/20/2022]
|
1203
|
Abstract
The recent discovery of microRNAs (miRNAs) in unicellular eukaryotes, including miRNAs known previously only from animals or plants, implies that miRNAs have a deep evolutionary history among eukaryotes. This contrasts with the prevailing view that miRNAs evolved convergently in animals and plants. We re-evaluate the evidence and find that none of the 73 plant and animal miRNAs described from protists meet the required criteria for miRNA annotation and, by implication, animals and plants did not acquire any of their respective miRNA genes from the crown ancestor of eukaryotes. Furthermore, of the 159 novel miRNAs previously identified among the seven species of unicellular protists examined, only 28 from the algae Ectocarpus and Chlamydomonas, meet the criteria for miRNA annotation. Therefore, at present only five groups of eukaryotes are known to possess miRNAs, indicating that miRNAs have evolved independently within eukaryotes through exaptation of their shared inherited RNAi machinery.
Collapse
Affiliation(s)
- James E Tarver
- School of Earth Sciences, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
1204
|
Jagadeeswaran G, Nimmakayala P, Zheng Y, Gowdu K, Reddy UK, Sunkar R. Characterization of the small RNA component of leaves and fruits from four different cucurbit species. BMC Genomics 2012; 13:329. [PMID: 22823569 PMCID: PMC3431224 DOI: 10.1186/1471-2164-13-329] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 06/29/2012] [Indexed: 12/31/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of non-coding small RNAs involved in post-transcriptional regulation of gene expression critical for plant growth and development, stress responses and other diverse biological processes in plants. The Cucurbitaceae or cucurbit family represents some of economically important species, particularly those with edible and medicinal fruits. Genomic tools for the molecular analysis of members of this family are just emerging. Partial draft genome sequence became available recently for cucumber and watermelon facilitating investigation of the small RNA component of the transcriptomes in cucurbits. Results We generated four small RNA libraries from bottle gourd (Lagenaria siceraria), Cucurbita moschata, Cucurbita pepo, and, watermelon (Citrullus lanatus var. lanatus) in order to identify conserved and novel lineage specific miRNAs in these cucurbits. Deep sequencing of small RNA libraries from these species resulted in 1,597,263, 532,948, 601,388, and 493,384 unique sRNA reads from bottle gourd, moschata, pepo and watermelon, respectively. Sequence analysis of these four libraries resulted in identification of 21 miRNA families that are highly conserved and 8 miRNA families that are moderately conserved in diverse dicots. We also identified 4 putative novel miRNAs in these plant species. Furthermore, the tasiRNAs were identified and their biogenesis was determined in these cucurbits. Small RNA blot analysis or q-PCR analyses of leaf and fruit tissues of these cucurbits showed differential expression of several conserved miRNAs. Interestingly, the abundance of several miRNAs in leaves and fruits of closely related C. moschata and C. pepo was also distinctly different. Target genes for the most conserved miRNAs are also predicted. Conclusion High-throughput sequencing of small RNA libraries from four cucurbit species has provided a glimpse of small RNA component in their transcriptomes. The analysis also showed considerable variation within four cucurbit species with regards to expression of individual miRNAs.
Collapse
Affiliation(s)
- Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
1205
|
Shao C, Chen M, Meng Y. A reversed framework for the identification of microRNA-target pairs in plants. Brief Bioinform 2012; 14:293-301. [PMID: 22811545 DOI: 10.1093/bib/bbs040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most plant microRNAs (miRNAs) perform their repressive regulation through target cleavages. The resulting slicing sites on the target transcripts could be mapped by sequencing of the 3'-cleavage remnants, called degradome sequencing. The high sequence complementarity between miRNAs and their targets has greatly facilitated the development of the target prediction tools for plant miRNAs. The prediction results were then subjected to degradome sequencing data-based validation, through which numerous miRNA-target interactions have been extracted. However, some drawbacks are unavoidable when using this forward approach. Essentially, a known list of plant miRNAs should be obtained in advance of target prediction and validation. This becomes an obstacle to discover novel miRNAs and their targets. Here, after reviewing the current available algorithms for reverse identification of miRNA-target pairs in plants, a case study was performed by using a newly established framework with adjustable parameters. In this workflow, integration of degradome and ARGONAUTE 1-enriched small RNA sequencing data was recommended to do a relatively comprehensive and reliable search. Besides, several computational algorithms such as BLAST, target plots and RNA secondary structure prediction were used. The results demonstrated the prevalent utility of the reversed approach for uncovering miRNA-target interactions in plants.
Collapse
|
1206
|
Lucas SJ, Budak H. Sorting the wheat from the chaff: identifying miRNAs in genomic survey sequences of Triticum aestivum chromosome 1AL. PLoS One 2012; 7:e40859. [PMID: 22815845 PMCID: PMC3398953 DOI: 10.1371/journal.pone.0040859] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/14/2012] [Indexed: 11/26/2022] Open
Abstract
Individual chromosome-based studies of bread wheat are beginning to provide valuable structural and functional information about one of the world's most important crops. As new genome sequences become available, identifying miRNA coding sequences is arguably as important a task as annotating protein coding sequences, but one that is not as well developed. We compared conservation-based identification of conserved miRNAs in 1.5× coverage survey sequences of wheat chromosome 1AL with a predictive method based on pre-miRNA hairpin structure alone. In total, 42 sequences expected to encode conserved miRNAs were identified on chromosome 1AL, including members of several miRNA families that have not previously been reported to be expressed in T. aestivum. In addition, we demonstrate that a number of sequences previously annotated as novel wheat miRNAs are closely related to transposable elements, particularly Miniature Inverted Terminal repeat Elements (MITEs). Some of these TE-miRNAs may well have a functional role, but separating true miRNA coding sequences from TEs in genomic sequences is far from straightforward. We propose a strategy for annotation to minimize the risk of mis-identifying TE sequences as miRNAs.
Collapse
Affiliation(s)
- Stuart J. Lucas
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Istanbul, Turkey
| | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Istanbul, Turkey
| |
Collapse
|
1207
|
Bülow L, Bolívar JC, Ruhe J, Brill Y, Hehl R. 'MicroRNA Targets', a new AthaMap web-tool for genome-wide identification of miRNA targets in Arabidopsis thaliana. BioData Min 2012; 5:7. [PMID: 22800758 PMCID: PMC3410767 DOI: 10.1186/1756-0381-5-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/16/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The AthaMap database generates a genome-wide map for putative transcription factor binding sites for A. thaliana. When analyzing transcriptional regulation using AthaMap it may be important to learn which genes are also post-transcriptionally regulated by inhibitory RNAs. Therefore, a unified database for transcriptional and post-transcriptional regulation will be highly useful for the analysis of gene expression regulation. METHODS To identify putative microRNA target sites in the genome of A. thaliana, processed mature miRNAs from 243 annotated miRNA genes were used for screening with the psRNATarget web server. Positional information, target genes and the psRNATarget score for each target site were annotated to the AthaMap database. Furthermore, putative target sites for small RNAs from seven small RNA transcriptome datasets were used to determine small RNA target sites within the A. thaliana genome. RESULTS Putative 41,965 genome wide miRNA target sites and 10,442 miRNA target genes were identified in the A. thaliana genome. Taken together with genes targeted by small RNAs from small RNA transcriptome datasets, a total of 16,600 A. thaliana genes are putatively regulated by inhibitory RNAs. A novel web-tool, 'MicroRNA Targets', was integrated into AthaMap which permits the identification of genes predicted to be regulated by selected miRNAs. The predicted target genes are displayed with positional information and the psRNATarget score of the target site. Furthermore, putative target sites of small RNAs from selected tissue datasets can be identified with the new 'Small RNA Targets' web-tool. CONCLUSIONS The integration of predicted miRNA and small RNA target sites with transcription factor binding sites will be useful for AthaMap-assisted gene expression analysis. URL: http://www.athamap.de/
Collapse
Affiliation(s)
- Lorenz Bülow
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr, 38106, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
1208
|
Shamimuzzaman M, Vodkin L. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics 2012; 13:310. [PMID: 22799740 PMCID: PMC3410764 DOI: 10.1186/1471-2164-13-310] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 07/16/2012] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) regulate the expression of target genes by mediating gene silencing in both plants and animals. The miRNA targets have been extensively investigated in Arabidopsis and rice using computational prediction, experimental validation by overexpression in transgenic plants, and by degradome or PARE (parallel analysis of RNA ends) sequencing. However, miRNA targets mostly remain unknown in soybean (Glycine max). More specifically miRNA mediated gene regulation at different seed developmental stages in soybean is largely unexplored. In order to dissect miRNA guided gene regulation in soybean developing seeds, we performed a transcriptome-wide experimental method using degradome sequencing to directly detect cleaved miRNA targets. RESULTS In this study, degradome libraries were separately prepared from immature soybean cotyledons representing three stages of development and from seed coats of two stages. Sequencing and analysis of 10 to 40 million reads from each library resulted in identification of 183 different targets for 53 known soybean miRNAs. Among these, some were found only in the cotyledons representing cleavage by 25 miRNAs and others were found only in the seed coats reflecting cleavage by 12 miRNAs. A large number of targets for 16 miRNAs families were identified in both tissues irrespective of the stage. Interestingly, we identified more miRNA targets in the desiccating cotyledons of late seed maturation than in immature seed. We validated four different auxin response factor genes as targets for gma-miR160 via RNA ligase mediated 5' rapid amplification of cDNA ends (RLM-5'RACE). Gene Ontology (GO) analysis indicated the involvement of miRNA target genes in various cellular processes during seed development. CONCLUSIONS The miRNA targets in both the cotyledons and seed coats of several stages of soybean seed development have been elucidated by experimental evidence from comprehensive, high throughput sequencing of the enriched fragments resulting from miRNA-guided cleavage of messenger RNAs. Nearly 50% of the miRNA targets were transcription factors in pathways that are likely important in setting or maintaining the developmental program leading to high quality soybean seeds that are one of the dominant sources of protein and oil in world markets.
Collapse
Affiliation(s)
- Md Shamimuzzaman
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Lila Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
1209
|
Song JB, Huang SQ, Dalmay T, Yang ZM. Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS. PLANT & CELL PHYSIOLOGY 2012; 53:1283-94. [PMID: 22619471 DOI: 10.1093/pcp/pcs080] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The present study identified Arabidopsis miR394 and its target, an F-box (SKP1-Cullin/CDC53-F-box) gene At1g27340 (here referred to as LEAF CURLING RESPONSIVENESS, LCR), for regulation of leaf curling-related morphology. The loss-of-function lcr mutants exhibit pleiotropic defects with semi-dwarfism, altered leaf shape and a shorter stem. Overexpression of an miR394-resistant version of LCR under the 35S promoter (35S:m5LCR) and target mimicry MIM394 resulted in a curled-down leaf defect. Conversely, transgenic plants overexpressing 35S:MIR394a/b display a curled-up leaf phenotype. Detailed analyses show that there is a certain level of LCR that is optimal for leaf morphology, but lower or higher levels lead to abnormal leaf development, indicating that expression of miR394 in the leaf lamina is necessary for proper leaf morphology. Because the phytohormone auxin plays a crucial role in leaf morphogenesis and patterning, the DR5-GUS reporter gene was used to monitor the auxin response. We show that DR5 expression patterns in lcr and 35S::m5LCR plants were significantly different from those in the wild type. Also, overexpression of LCR in 35S::m5LCR plants drastically decreased the expression of the auxin-responsive genes IAA3, AXR3 and IAMT1, whereas increased expression of the genes was found in 35S::MIR394a plants. These results indicate that miR394 and its target LCR are involved in the regulation of leaf development.
Collapse
MESH Headings
- Agrobacterium tumefaciens/genetics
- Agrobacterium tumefaciens/metabolism
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Cloning, Molecular
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Indoleacetic Acids/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Data
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Plant Leaves/genetics
- Plant Leaves/physiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Promoter Regions, Genetic
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Transcription Factors
- Transformation, Genetic
Collapse
Affiliation(s)
- Jian Bo Song
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | |
Collapse
|
1210
|
Zhou ZS, Song JB, Yang ZM. Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4597-613. [PMID: 22760473 PMCID: PMC3421990 DOI: 10.1093/jxb/ers136] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are a distinct class of small RNAs in plants that not only regulate biological processes but also regulate response to environmental stresses. The toxic heavy metal cadmium (Cd) induces expression of several miRNAs in rapeseed (Brassica napus), but it is not known on a genome-wide scale how the expression of miRNAs and their target genes, is regulated by Cd. In this study, four small RNA libraries and four degradome libraries were constructed from Cd-treated and non-Cd-treated roots and shoots of B. napus seedlings. Using high-throughput sequencing, the study identified 84 conserved and non-conserved miRNAs (belonging to 37 miRNA families) from Cd-treated and non-treated B. napus, including 19 miRNA members that were not identified before. Some of the miRNAs were validated by RNA gel blotting. Most of the identified miRNAs were found to be differentially expressed in roots/shoots or regulated by Cd exposure. The study simultaneously identified 802 targets for the 37 (24 conserved and 13 non-conserved) miRNA families, from which there are 200, 537, and 65 targets, belonging to categories I, II, and III, respectively. In category I alone, many novel targets for miRNAs were identified and shown to be involved in plant response to Cd.
Collapse
MESH Headings
- Brassica napus/drug effects
- Brassica napus/genetics
- Brassica napus/physiology
- Cadmium/pharmacology
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Gene Library
- Genome, Plant/drug effects
- Genome, Plant/genetics
- High-Throughput Nucleotide Sequencing
- MicroRNAs/drug effects
- MicroRNAs/genetics
- MicroRNAs/isolation & purification
- MicroRNAs/metabolism
- Organ Specificity
- Plant Roots/drug effects
- Plant Roots/genetics
- Plant Roots/physiology
- Plant Shoots/drug effects
- Plant Shoots/genetics
- Plant Shoots/physiology
- RNA Stability/drug effects
- RNA, Plant/drug effects
- RNA, Plant/genetics
- RNA, Plant/isolation & purification
- RNA, Plant/metabolism
- Sequence Analysis, RNA
- Stress, Physiological
Collapse
Affiliation(s)
- Zhao Sheng Zhou
- Jiangsu Province Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, China
- These authors contributed equally to the manuscript
| | - Jian Bo Song
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing,China
- These authors contributed equally to the manuscript
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing,China
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
1211
|
Csukasi F, Donaire L, Casañal A, Martínez-Priego L, Botella MA, Medina-Escobar N, Llave C, Valpuesta V. Two strawberry miR159 family members display developmental-specific expression patterns in the fruit receptacle and cooperatively regulate Fa-GAMYB. THE NEW PHYTOLOGIST 2012; 195:47-57. [PMID: 22494113 DOI: 10.1111/j.1469-8137.2012.04134.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
• We have reported previously that the gibberellin (GA) content in strawberry receptacle is high, peaking at specific stages, pointing to a role of this hormone in fruit development. In Arabidopsis, miR159 levels are dependent on GA concentration. This prompted us to investigate the role of two members of the miR159 family and their putative strawberry target gene, GAMYB, in relation to changes in GA content during the course of fruit development. • The highest expression level of the two Fa-MIR159 genes was in the fruit's receptacle tissue, with dramatic changes observed throughout development. The lowest levels of total mature miR159 (a and b) were observed during the white stage of receptacle development, which was concurrent with the highest expression of Fa-GAMYB. A functional interaction between miR159 and Fa-GAMYB has been demonstrated in receptacle tissue. • The application of bioactive GA (i.e. GA(3) ) to strawberry plants caused the down-regulated expression of Fa-MIR159a, but the expression of Fa-MIR159b was not affected significantly. Clear discrepancies between Fa-MIR159b and mature Fa-miR159b levels were indicative of post-transcriptional regulation of Fa-MIR159b gene expression. • We propose that Fa-miR159a and Fa-miR159b interact with Fa-GAMYB during the course of strawberry receptacle development, and that they act in a cooperative fashion to respond, in part, to changes in GA endogenous levels.
Collapse
Affiliation(s)
- Fabiana Csukasi
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
1212
|
Qiao M, Zhao Z, Song Y, Liu Z, Cao L, Yu Y, Li S, Xiang F. Proper regeneration from in vitro cultured Arabidopsis thaliana requires the microRNA-directed action of an auxin response factor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:14-22. [PMID: 22335436 DOI: 10.1111/j.1365-313x.2012.04944.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
MicroRNAs (miRNAs) are important for the regulation of gene expression, and are involved in many developmental processes. A set of miRNAs which were differentially expressed between cells of totipotent (C1) and non-totipotent (C2) Arabidopsis thaliana calli was identified, some of which were affected during callus formation or shoot regeneration. One of those down-regulated after 10 days' incubation in shoot induction medium (SIM) was MIR160a, for which transcript abundance was lower in C1 than in C2. Over-expression of MIR160 compromised shoot regeneration from in vitro cultured A. thaliana cells, while the transgenic expression of a miR160-resistant form of ARF10 was associated with a high level of shoot regeneration. The latter transgenic line also showed an elevated expression level of shoot meristem-specific genes CLAVATA3, CUP-SHAPEDCOTYLEDON1 and -2, and WUSCHEL. ARF10 expression was concentrated at the initiation sites of shoots or leaves, while during the early phase of shoot regeneration, the accumulation of the ARF10 mRNA was lower in the wild type than in the mARF10 transgenics, in contrast to the pattern of miR160 expression. Thus, miR160 and ARF10 both appear to be components of the regulation of shoot regeneration in vitro.
Collapse
Affiliation(s)
- Meng Qiao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
1213
|
Abstract
RNA interference (RNAi) is a conserved eukaryotic gene regulatory mechanism that uses small noncoding RNAs to mediate posttranscriptional/transcriptional gene silencing. The fission yeast Schizosaccharomyces pombe and the filamentous fungus Neurospora crassa have served as important model systems for RNAi research. Studies on these two organisms and other fungi have contributed significantly to our understanding of the mechanisms and functions of RNAi in eukaryotes. In addition, surprisingly diverse RNAi-mediated processes and small RNA biogenesis pathways have been discovered in fungi. In this review, we give an overview of different fungal RNAi pathways with a focus on their mechanisms and functions.
Collapse
Affiliation(s)
- Shwu-Shin Chang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | | | |
Collapse
|
1214
|
Lan Y, Su N, Shen Y, Zhang R, Wu F, Cheng Z, Wang J, Zhang X, Guo X, Lei C, Wang J, Jiang L, Mao L, Wan J. Identification of novel MiRNAs and MiRNA expression profiling during grain development in indica rice. BMC Genomics 2012; 13:264. [PMID: 22721355 PMCID: PMC3505464 DOI: 10.1186/1471-2164-13-264] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 04/03/2012] [Indexed: 12/31/2022] Open
Abstract
Background MicroRNAs (miRNAs) modulate gene expression in different tissues and at diverse developmental stages, including grain development in japonica rice. To identify novel miRNAs in indica rice and to study their expression patterns during the entire grain filling process, small RNAs from all stages of grain development were sequenced and their expression patterns were studied using customized miRNA chips. Results A total of 21 conserved and 91 non-conserved miRNA families were found in developing indica grains. We also discovered 11 potential novel miRNAs based on the presence of their miRNA*s. Expression patterns of these identified miRNAs were analyzed using customized miRNA chips. The results showed that during the filling phase about half of the detected miRNAs were up-regulated, whereas the remainder were down-regulated. Predicted targets of differentially expressed miRNAs may participate in carbohydrate metabolism, hormone signaling and pathways associated with seed maturity, suggesting potentially important roles in rice grain development. Conclusions This study is the first genome-wide investigation of miRNAs during the grain-filling phase of an indica variety of rice. The novel miRNAs identified might be involved in new miRNA regulatory pathways for grain development. The complexity of these miRNAs and their targets and interactions require further study to obtain a better understanding of the molecular mechanisms underlying grain development.
Collapse
Affiliation(s)
- Ying Lan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1215
|
MicroRNAs in Acute Myeloid Leukemia and Other Blood Disorders. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:603830. [PMID: 23259069 PMCID: PMC3505936 DOI: 10.1155/2012/603830] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/17/2012] [Indexed: 12/12/2022]
Abstract
Common blood disorders include hematopoietic cell malignancies or leukemias and plasma cell dyscrasia, all of which have associated microRNA abnormalities. In this paper, we discuss several leukemias including acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL) and identify altered microRNAs and their targets. Immune disorders with altered blood levels of antibodies include autoimmune disorders, such as systemic lupus erythematosus (SLE) with associated anti-self-autoantibodies and immunoglobulin A nephropathy (IgAN) also have related microRNA abnormalities. The alterations in microRNAs may serve as therapeutic targets in these blood disorders.
Collapse
|
1216
|
Xia R, Zhu H, An YQ, Beers EP, Liu Z. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 2012; 13:R47. [PMID: 22704043 PMCID: PMC3446319 DOI: 10.1186/gb-2012-13-6-r47] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/30/2012] [Accepted: 06/15/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) and their regulatory functions have been extensively characterized in model species but whether apple has evolved similar or unique regulatory features remains unknown. RESULTS We performed deep small RNA-seq and identified 23 conserved, 10 less-conserved and 42 apple-specific miRNAs or families with distinct expression patterns. The identified miRNAs target 118 genes representing a wide range of enzymatic and regulatory activities. Apple also conserves two TAS gene families with similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profiles and target specificities. Importantly, we found that miR159, miR828 and miR858 can collectively target up to 81 MYB genes potentially involved in diverse aspects of plant growth and development. These miRNA target sites are differentially conserved among MYBs, which is largely influenced by the location and conservation of the encoded amino acid residues in MYB factors. Finally, we found that 10 of the 19 miR828-targeted MYBs undergo small interfering RNA (siRNA) biogenesis at the 3' cleaved, highly divergent transcript regions, generating over 100 sequence-distinct siRNAs that potentially target over 70 diverse genes as confirmed by degradome analysis. CONCLUSIONS Our work identified and characterized apple miRNAs, their expression patterns, targets and regulatory functions. We also discovered that three miRNAs and the ensuing siRNAs exploit both conserved and divergent sequence features of MYB genes to initiate distinct regulatory networks targeting a multitude of genes inside and outside the MYB family.
Collapse
Affiliation(s)
- Rui Xia
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
1217
|
Wu HJ, Ma YK, Chen T, Wang M, Wang XJ. PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 2012; 40:W22-8. [PMID: 22693224 PMCID: PMC3394341 DOI: 10.1093/nar/gks554] [Citation(s) in RCA: 355] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Small RNAs (smRNAs) in plants, mainly microRNAs and small interfering RNAs, play important roles in both transcriptional and post-transcriptional gene regulation. The broad application of high-throughput sequencing technology has made routinely generation of bulk smRNA sequences in laboratories possible, thus has significantly increased the need for batch analysis tools. PsRobot is a web-based easy-to-use tool dedicated to the identification of smRNAs with stem-loop shaped precursors (such as microRNAs and short hairpin RNAs) and their target genes/transcripts. It performs fast analysis to identify smRNAs with stem-loop shaped precursors among batch input data and predicts their targets using a modified Smith–Waterman algorithm. PsRobot integrates the expression data of smRNAs in major plant smRNA biogenesis gene mutants and smRNA-associated protein complexes to give clues to the smRNA generation and functional processes. Besides improved specificity, the reliability of smRNA target prediction results can also be evaluated by mRNA cleavage (degradome) data. The cross species conservation statuses and the multiplicity of smRNA target sites are also provided. PsRobot is freely accessible at http://omicslab.genetics.ac.cn/psRobot/.
Collapse
Affiliation(s)
- Hua-Jun Wu
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
1218
|
Wang J, Yang X, Xu H, Chi X, Zhang M, Hou X. Identification and characterization of microRNAs and their target genes in Brassica oleracea. Gene 2012; 505:300-8. [PMID: 22688123 DOI: 10.1016/j.gene.2012.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/18/2012] [Accepted: 06/02/2012] [Indexed: 12/23/2022]
Abstract
The microRNAs are a new class of small non-coding endogenous RNAs with lengths of approximately ~21 nt. MicroRNAs perform their biological function via the degradation of the target mRNAs or by inhibiting protein translation. Until recently, only limited numbers of miRNAs were identified in Brassica oleracea, a vegetable widely cultivated around the world. In present study, 193 potential miRNA candidates were identified from 17 expressed sequence tag (ESTs) and 152 genome survey sequences (GSSs) in B. oleracea. These miRNA candidates were classified into 70 families using a well-defined comparative genome-based computational analysis. Most miRNAs belong to the miRNA169, miR5021, miR156 and miR158 families. Of these, 36 miRNA families are firstly found in Brassica species. Around 1393 B. oleracea genes were predicted as candidate targets of 175 miRNAs. The mutual relationship between miRNAs and the candidate target genes was verified by checking differentially expression levels using quantitative real-time polymerase chain reaction (qRT-PCR) and 5' RLM-RACE analyses. These target genes participate in multiple biological and metabolic processes, including signal transduction, stress response, and plant development. Gene Ontology analysis shows that the 818, 514, and 265 target genes are involved in molecular functions, biological processes, and cellular component respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis suggests that these miRNAs might regulate 186 metabolic pathways, including those of lipid, energy, starch and sucrose, fatty acid and nitrogen.
Collapse
Affiliation(s)
- Jinyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
1219
|
WANG XINWEI, HEEGAARD NIELSHH, ØRUM HENRIK. MicroRNAs in liver disease. Gastroenterology 2012; 142:1431-43. [PMID: 22504185 PMCID: PMC6311104 DOI: 10.1053/j.gastro.2012.04.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 04/04/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNA molecules that regulate gene expression posttranscriptionally through complementary base pairing with thousands of messenger RNAs. They regulate diverse physiological, developmental, and pathophysiological processes. Recent studies have uncovered the contribution of microRNAs to the pathogenesis of many human diseases, including liver diseases. Moreover, microRNAs have been identified as biomarkers that can often be detected in the systemic circulation. We review the role of microRNAs in liver physiology and pathophysiology, focusing on viral hepatitis, liver fibrosis, and cancer. We also discuss microRNAs as diagnostic and prognostic markers and microRNA-based therapeutic approaches for liver disease.
Collapse
Affiliation(s)
- XIN WEI WANG
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer institute, National Institutes of Health, Bethesda, Maryland
| | - NIELS H. H. HEEGAARD
- Department of Clinical Biochemistry and Immunology Statens Serum Institut, Copenhagen, Denmark
| | - HENRIK ØRUM
- Santaris Pharma, Kogle Allé 6, Hørsholm, Denmark
| |
Collapse
|
1220
|
Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. PLANT PHYSIOLOGY 2012; 159:721-38. [PMID: 22508932 PMCID: PMC3375937 DOI: 10.1104/pp.112.196048] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/15/2012] [Indexed: 05/18/2023]
Abstract
The male sterility of thermosensitive genic male sterile (TGMS) lines of wheat (Triticum aestivum) is strictly controlled by temperature. The early phase of anther development is especially susceptible to cold stress. MicroRNAs (miRNAs) play an important role in plant development and in responses to environmental stress. In this study, deep sequencing of small RNA (smRNA) libraries obtained from spike tissues of the TGMS line under cold and control conditions identified a total of 78 unique miRNA sequences from 30 families and trans-acting small interfering RNAs (tasiRNAs) derived from two TAS3 genes. To identify smRNA targets in the wheat TGMS line, we applied the degradome sequencing method, which globally and directly identifies the remnants of smRNA-directed target cleavage. We identified 26 targets of 16 miRNA families and three targets of tasiRNAs. Comparing smRNA sequencing data sets and TaqMan quantitative polymerase chain reaction results, we identified six miRNAs and one tasiRNA (tasiRNA-ARF [for Auxin-Responsive Factor]) as cold stress-responsive smRNAs in spike tissues of the TGMS line. We also determined the expression profiles of target genes that encode transcription factors in response to cold stress. Interestingly, the expression of cold stress-responsive smRNAs integrated in the auxin-signaling pathway and their target genes was largely noncorrelated. We investigated the tissue-specific expression of smRNAs using a tissue microarray approach. Our data indicated that miR167 and tasiRNA-ARF play roles in regulating the auxin-signaling pathway and possibly in the developmental response to cold stress. These data provide evidence that smRNA regulatory pathways are linked with male sterility in the TGMS line during cold stress.
Collapse
MESH Headings
- Adaptation, Physiological
- Cold Temperature
- Computational Biology
- Flowers/genetics
- Flowers/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Plant
- Indoleacetic Acids/metabolism
- MicroRNAs/metabolism
- Plant Infertility
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, RNA/methods
- Signal Transduction
- Stress, Physiological
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Triticum/genetics
- Triticum/physiology
Collapse
|
1221
|
Lages E, Ipas H, Guttin A, Nesr H, Berger F, Issartel JP. MicroRNAs: molecular features and role in cancer. Front Biosci (Landmark Ed) 2012; 17:2508-40. [PMID: 22652795 DOI: 10.2741/4068] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) are small noncoding endogenously produced RNAs that play key roles in controlling the expression of many cellular proteins. Once they are recruited and incorporated into a ribonucleoprotein complex miRISC, they can target specific mRNAs in a miRNA sequence-dependent process and interfere in the translation into proteins of the targeted mRNAs via several mechanisms. Consequently, miRNAs can regulate many cellular pathways and processes. Dysregulation of their physiological roles may largely contribute to disease. In particular, in cancer, miRNAs can be involved in the deregulation of the expression of important genes that play key roles in tumorigenesis, tumor development, and angiogenesis and have oncogenic or tumor suppressor roles. This review focuses on the biogenesis and maturation of miRNAs, their mechanisms of gene regulation, and the way their expression is deregulated in cancer. The involvement of miRNAs in several oncogenic pathways such as angiogenesis and apoptosis, and in the inter-cellular dialog mediated by miRNA-loaded exosomes as well as the development of new therapeutical strategies based on miRNAs will be discussed.
Collapse
Affiliation(s)
- Elodie Lages
- INSERM, U836, Team7 Nanomedicine and Brain, BP 170, Grenoble, France
| | | | | | | | | | | |
Collapse
|
1222
|
Sattar S, Song Y, Anstead JA, Sunkar R, Thompson GA. Cucumis melo microRNA expression profile during aphid herbivory in a resistant and susceptible interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:839-48. [PMID: 22375710 DOI: 10.1094/mpmi-09-11-0252] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Aphis gossypii resistance in melon (Cucumis melo) is due to the presence of a single dominant virus aphid transmission (Vat) gene belonging to the nucleotide-binding site leucine-rich repeat family of resistance genes. Significant transcriptional reprogramming occurs in Vat(+) plants during aphid infestation as metabolism shifts to respond to this biotic stress. MicroRNAs (miRNAs) are involved in the regulation of many biotic stress responses. The role of miRNAs was investigated in response to aphid herbivory during both resistant and susceptible interactions. Small RNA (smRNA) libraries were constructed from bulked leaf tissues of a Vat(+) melon line following early and late aphid infestations. Sequence analysis indicated that the expression profiles of conserved and newly identified miRNAs were altered during different stages of aphid herbivory. These results were verified by quantitative polymerase chain reaction experiments in both resistant Vat(+) and susceptible Vat(-) interactions. The comparative analyses revealed that most of the conserved miRNA families were differentially regulated during the early stages of aphid infestation in the resistant and susceptible interactions. Along with the conserved miRNA families, 18 cucurbit-specific miRNAs were expressed during the different stages of aphid herbivory. The comparison of the miRNA profiles in the resistant and susceptible interactions provides insight into the miRNA-dependent post-transcriptional gene regulation in Vat-mediated resistance.
Collapse
Affiliation(s)
- Sampurna Sattar
- College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
1223
|
High-throughput sequencing discovery of conserved and novel microRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Genet Genomics 2012; 287:555-63. [DOI: 10.1007/s00438-012-0699-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/16/2012] [Indexed: 02/02/2023]
|
1224
|
Mercury toxicity, molecular response and tolerance in higher plants. Biometals 2012; 25:847-57. [PMID: 22639189 DOI: 10.1007/s10534-012-9560-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/16/2012] [Indexed: 12/21/2022]
Abstract
Mercury (Hg) contamination in soils has become a great concern as a result of its natural release and anthropogenic activities. This review presents broad aspects of our recent understanding of mercury contamination and toxicology in plants including source of Hg contamination, toxicology, tolerant regulation in plants, and minimization strategy. We first introduced the sources of mercury contamination in soils. Mercury exists in different forms, but ionic mercury (Hg(2+)) is the predominant form in soils and readily absorbed by plants. The second issue to be discussed is the uptake, transport, and localization of Hg(2+) in plants. Mercury accumulated in plants evokes severe phytotoxicity and impairs numerous metabolic processes including nutrient uptake, water status, and photosynthesis. The mechanisms of mercury-induced toxicology, molecular response and gene networks for regulating plant tolerance will be reviewed. In the case of Hg recent much progress has been made in profiling of transcriptome and more importantly, uncovering a group of small RNAs that potentially mediates plant tolerance to Hg. Several newly discovered signaling molecules such as nitric oxide and carbon monoxide have now been described as regulators of plant tolerance to Hg. A recently emerged strategy, namely selection and breeding of plant cultivars to minimize Hg (or other metals) accumulation will be discussed in the last part of the review.
Collapse
|
1225
|
Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa. Gene 2012; 504:160-5. [PMID: 22634103 DOI: 10.1016/j.gene.2012.05.034] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/29/2012] [Accepted: 05/15/2012] [Indexed: 11/21/2022]
Abstract
Plant microRNAs have a vital role in various abiotic stress responses by regulating gene expression. Heat stress is one of the most severe abiotic stresses, and affects plant growth and development, even leading to death. To identify heat-responsive miRNAs at the genome-wide level in Populus, Solexa sequencing was employed to sequence two libraries from Populus tomentosa, treated and untreated by heat stress. Sequence analysis identified 134 conserved miRNAs belonging to 30 miRNA families, and 16 novel miRNAs belonging to 14 families. Among these miRNAs, 52 miRNAs from 15 families were responsive to heat stress and most of them were down-regulated. qRT-PCR analysis confirmed that the conserved and novel miRNAs were expressed in P. tomentosa, and revealed similar expression trends to the Solexa sequencing results obtained under heat stress. One hundred and nine targets of the novel miRNAs were predicted. This study opens up a new avenue for understanding the regulatory mechanisms of miRNAs involvement in the heat stress response of trees.
Collapse
|
1226
|
Meng Y, Shao C, Wang H, Jin Y. Target mimics: an embedded layer of microRNA-involved gene regulatory networks in plants. BMC Genomics 2012; 13:197. [PMID: 22613869 PMCID: PMC3441763 DOI: 10.1186/1471-2164-13-197] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/17/2012] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs (miRNAs) play an essential role in gene regulation in plants. At the same time, the expression of miRNA genes is also tightly controlled. Recently, a novel mechanism called “target mimicry” was discovered, providing another layer for modulating miRNA activities. However, except for the artificial target mimics manipulated for functional studies on certain miRNA genes, only one example, IPS1 (Induced by Phosphate Starvation 1)—miR399 was experimentally confirmed in planta. To date, few analyses for comprehensive identification of natural target mimics have been performed in plants. Thus, limited evidences are available to provide detailed information for interrogating the questionable issue whether target mimicry was widespread in planta, and implicated in certain biological processes. Results In this study, genome-wide computational prediction of endogenous miRNA mimics was performed in Arabidopsis and rice, and dozens of target mimics were identified. In contrast to a recent report, the densities of target mimic sites were found to be much higher within the untranslated regions (UTRs) when compared to those within the coding sequences (CDSs) in both plants. Some novel sequence characteristics were observed for the miRNAs that were potentially regulated by the target mimics. GO (Gene Ontology) term enrichment analysis revealed some functional insights into the predicted mimics. After degradome sequencing data-based identification of miRNA targets, the regulatory networks constituted by target mimics, miRNAs and their downstream targets were constructed, and some intriguing subnetworks were further exploited. Conclusions These results together suggest that target mimicry may be widely implicated in regulating miRNA activities in planta, and we hope this study could expand the current understanding of miRNA-involved regulatory networks.
Collapse
Affiliation(s)
- Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Xiasha, Hangzhou 310036, PR China.
| | | | | | | |
Collapse
|
1227
|
Kantar M, Akpınar BA, Valárik M, Lucas SJ, Doležel J, Hernández P, Budak H. Subgenomic analysis of microRNAs in polyploid wheat. Funct Integr Genomics 2012; 12:465-79. [DOI: 10.1007/s10142-012-0285-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/29/2012] [Accepted: 05/02/2012] [Indexed: 01/13/2023]
|
1228
|
Liu Q. Novel miRNAs in the control of arsenite levels in rice. Funct Integr Genomics 2012; 12:649-58. [DOI: 10.1007/s10142-012-0282-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/01/2012] [Accepted: 04/09/2012] [Indexed: 01/08/2023]
|
1229
|
Budak H, Akpinar A. Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 15:791-9. [PMID: 22122669 DOI: 10.1089/omi.2011.0073] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a lack of knowledge on the tissue-specific expression of miRNAs in response to dehydration stress in Brachypodium (Brachypodium distachyon (L.) Beauv), a model for temperate grass species. In this study, miRNA expression patterns of drought-tolerant Brachypodium were investigated using the miRNA microarray platform. A total of 205 miRNAs in control and 438 miRNAs in both drought-treated leaf and root tissues were expressed. Seven of the detected Brachypodium miRNAs were dehydration stress responsive. Expression levels of known drought-responsive miRNAs, miR896, and miR1867 were quantified by qRT-PCR in Brachypodium upon 4 h and 8 h dehydration stress applications. This was performed to compare drought responsiveness of miRNAs in closely related species. Target transcripts of selected drought responsive miRNAs, miR170, miR1850, miR896, miR406, miR528, miR390, were computationally predicted. Target transcript of miR896 was verified by retrieving a cleaved miR896 transcript from drought stress-treated leaf samples using a modified 5' RLM-RACE. Brachypodium dehydration responsive miRNA were also detected in barley and wild emmer wheat. Hence, the outcomes highlighted the conserved features of miRNA upon dehydration stress in Triticeae.
Collapse
Affiliation(s)
- Hikmet Budak
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.
| | | |
Collapse
|
1230
|
Turner M, Yu O, Subramanian S. Genome organization and characteristics of soybean microRNAs. BMC Genomics 2012; 13:169. [PMID: 22559273 PMCID: PMC3481472 DOI: 10.1186/1471-2164-13-169] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/23/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND microRNAs (miRNAs) are key regulators of gene expression and play important roles in many aspects of plant biology. The role(s) of miRNAs in nitrogen-fixing root nodules of leguminous plants such as soybean is not well understood. We examined a library of small RNAs from Bradyrhizobium japonicum-inoculated soybean roots and identified novel miRNAs. In order to enhance our understanding of miRNA evolution, diversification and function, we classified all known soybean miRNAs based on their phylogenetic conservation (conserved, legume- and soybean-specific miRNAs) and examined their genome organization, family characteristics and target diversity. We predicted targets of these miRNAs and experimentally validated several of them. We also examined organ-specific expression of selected miRNAs and their targets. RESULTS We identified 120 previously unknown miRNA genes from soybean including 5 novel miRNA families. In the soybean genome, genes encoding miRNAs are primarily intergenic and a small percentage were intragenic or less than 1000 bp from a protein-coding gene, suggesting potential co-regulation between the miRNA and its parent gene. Difference in number and orientation of tandemly duplicated miRNA genes between orthologous genomic loci indicated continuous evolution and diversification. Conserved miRNA families are often larger in size and produce less diverse mature miRNAs than legume- and soybean-specific families. In addition, the majority of conserved and legume-specific miRNA families produce 21 nt long mature miRNAs with distinct nucleotide distribution and regulate a more conserved set of target mRNAs compared to soybean-specific families. A set of nodule-specific target mRNAs and their cognate regulatory miRNAs had inverse expression between root and nodule tissues suggesting that spatial restriction of target gene transcripts by miRNAs might govern nodule-specific gene expression in soybean. CONCLUSIONS Genome organization of soybean miRNAs suggests that they are actively evolving. Distinct family characteristics of soybean miRNAs suggest continuous diversification of function. Inverse organ-specific expression between selected miRNAs and their targets in the roots and nodules, suggested a potential role for these miRNAs in regulating nodule development.
Collapse
Affiliation(s)
- Marie Turner
- Plant Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Oliver Yu
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Senthil Subramanian
- Plant Science Department, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
1231
|
Chen L, Ren Y, Zhang Y, Xu J, Zhang Z, Wang Y. Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. PLANTA 2012; 235:873-83. [PMID: 22101925 DOI: 10.1007/s00425-011-1548-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 11/04/2011] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs, generally of 20-23 nt, that down-regulate target gene expression during development, differentiation, growth, and metabolism. In Populus, extensive studies of miRNAs involved in cold, heat, dehydration, salinity, and mechanical stresses have been performed; however, there are few reports profiling the miRNA expression patterns during pathogen stress. We obtained almost 38 million raw reads through Solexa sequencing of two libraries from Populus inoculated and uninoculated with canker disease pathogen. Sequence analyses identified 74 conserved miRNA sequences belonging to 37 miRNA families from 154 loci in the Populus genome and 27 novel miRNA sequences from 35 loci, including their complementary miRNA* strands. Intriguingly, the miRNA* of three conserved miRNAs were more abundant than their corresponding miRNAs. The overall expression levels of conserved miRNAs increased when subjected to pathogen stress, and expression levels of 33 miRNA sequences markedly changed. The expression trends determined by sequencing and by qRT-PCR were similar. Finally, nine target genes for three conserved miRNAs and 63 target genes for novel miRNAs were predicted using computational analysis, and their functions were annotated. Deep sequencing provides an opportunity to identify pathogen-regulated miRNAs in trees, which will help in understanding the regulatory mechanisms of plant defense responses during pathogen infection.
Collapse
Affiliation(s)
- Lei Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
1232
|
Ren L, Tang G. Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 187:59-68. [PMID: 22404833 DOI: 10.1016/j.plantsci.2012.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/20/2012] [Accepted: 01/28/2012] [Indexed: 05/29/2023]
Abstract
Sucrose induces the expression of miR398 and the production of miR398 is controlled by SQUAMOSA promoter binding protein-like7 (SPL7) transcription factor under copper deficiency in Arabidopsis thaliana. Little else, however, is known about the sucrose-regulated copper homeostasis in Arabidopsis. Here, we employed the microarray technology to screen for sucrose-responsive microRNAs (miRNAs), and identified several candidates using northern blotting. In addition to miR398, miR408, miR319, and miR160 are also responsive to sucrose. Furthermore, the induction of miR398 and miR408 by sucrose depends on the presence of SPL7. MiR398 and miR408 induction by high sucrose was eliminated by high copper. Meanwhile, high sucrose treatment strongly suppressed copper accumulation. Knock-down of SPL7 dramatically reduced copper accumulation in plants under low sucrose, but this effect was compromised in the presence of high levels of sucrose. Taken together, these results suggest a connection between sucrose signaling and copper accumulation in cells, and that sucrose-regulated copper accumulation is both SPL7-dependent and SPL7-independent in Arabidopsis.
Collapse
Affiliation(s)
- Ligang Ren
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | | |
Collapse
|
1233
|
Motomura K, Le QT, Kumakura N, Fukaya T, Takeda A, Watanabe Y. The role of decapping proteins in the miRNA accumulation in Arabidopsis thaliana. RNA Biol 2012; 9:644-52. [PMID: 22614834 DOI: 10.4161/rna.19877] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Decapping 1 (DCP1), Decapping 2 (DCP2) and VARICOSE (VCS) are components of the decapping complex that removes the 7-methyl-guanosine 5'-diphosphate from the 5' end of mRNAs. In animals, the decapping proteins are involved in miRNA-mediated gene silencing, whereas in plants the roles of the decapping proteins in the miRNA pathway are not well understood. Here we demonstrated that the accumulation of miRNAs decreased in dcp1, dcp2 and vcs mutants, indicating that DCP1, DCP2 and VCS are important for the miRNA pathway in Arabidopsis thaliana. The primary miRNAs (pri-miRNAs) did not increase and miRNA biogenesis components did not decrease in these mutants, suggesting that the miRNA decrease in decapping mutants is not due to the defect of pri-miRNA processing. We showed that the accumulation of miRNA targets increased concomitantly with the decrease of miRNA in the decapping mutants. Our results suggested that the seedling lethal phenotypes in the dcp1, dcp2 and vcs mutants are caused not only by the defect in decapping, but also by the disruption of miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Kazuki Motomura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
1234
|
Yang X, Zhang H, Li L. Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:421-31. [PMID: 22247970 DOI: 10.1111/j.1365-313x.2011.04882.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) represent an important class of sequence-specific, trans-acting endogenous small RNA molecules that modulate gene expression at the post-transcriptional level. They function by binding to partial complementary cis-regulatory sites (miRNA binding sites) in their target mRNAs. Based on two recent observations from plant genome studies, namely that alternative splicing is a common phenomenon and that miRNA regulates a significant proportion of the transcriptome, we hypothesize that there may be a mechanism for gene regulation that involves both processes. In the present study, we performed a systemic search in the model plant Arabidopsis thaliana using annotated gene models as well as publically available high-throughput RNA sequencing data with a total of 570 million reads. Of the 354 high-confidence miRNA binding sites identified in Arabidopsis, at least 44 (12.4%) were affected by alternative splicing such that mRNA isoforms of the same miRNA target gene differ in the sequences encoding the miRNA binding sites. By simulation, we found that the frequency of alternative splicing at miRNA binding sites is significantly higher than at other regions. Comparative and functional analyses further indicated that the alternative splicing events are important for target gene expression and miRNA action. Together our results show that alternative splicing of miRNA binding sites is a plausible mechanism for attenuating miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Xiaozeng Yang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | | |
Collapse
|
1235
|
Differential effects of viral silencing suppressors on siRNA and miRNA loading support the existence of two distinct cellular pools of ARGONAUTE1. EMBO J 2012; 31:2553-65. [PMID: 22531783 DOI: 10.1038/emboj.2012.92] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/09/2012] [Indexed: 01/02/2023] Open
Abstract
Plant viruses encode RNA silencing suppressors (VSRs) to counteract the antiviral RNA silencing response. Based on in-vitro studies, several VSRs were proposed to suppress silencing through direct binding of short-interfering RNAs (siRNAs). Because their expression also frequently hinders endogenous miRNA-mediated regulation and stabilizes labile miRNA* strands, VSRs have been assumed to prevent both siRNA and miRNA loading into their common effector protein, AGO1, through sequestration of small RNA (sRNA) duplexes in vivo. These assumptions, however, have not been formally tested experimentally. Here, we present a systematic in planta analysis comparing the effects of four distinct VSRs in Arabidopsis. While all of the VSRs tested compromised loading of siRNAs into AGO1, only P19 was found to concurrently prevent miRNA loading, consistent with a VSR strategy primarily based on sRNA sequestration. By contrast, we provide multiple lines of evidence that the action of the other VSRs tested is unlikely to entail siRNA sequestration, indicating that in-vitro binding assays and in-vivo miRNA* stabilization are not reliable indicator of VSR action. The contrasted effects of VSRs on siRNA versus miRNA loading into AGO1 also imply the existence of two distinct pools of cellular AGO1 that are specifically loaded by each class of sRNAs. These findings have important implications for our current understanding of RNA silencing and of its suppression in plants.
Collapse
|
1236
|
Rizal G, Karki S, Thakur V, Chatterjee J, A. Coe R, Wanchana S, Quick WP. Towards a C4 Rice. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajcb.2012.13.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
1237
|
Xu N, Li Y, Zhao YT, Guo L, Fang YY, Zhao JH, Wang XJ, Huang L, Guo HS. Identification and characterization of small RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus. PLoS One 2012; 7:e35306. [PMID: 22514725 PMCID: PMC3325985 DOI: 10.1371/journal.pone.0035306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/13/2012] [Indexed: 11/18/2022] Open
Abstract
The term RNA silencing (RNA interference, RNAi) describes a set of mechanisms that regulate gene expression in eukaryotes. Small interfering RNAs (siRNA) and microRNAs (miRNAs) are two major types of RNAi-associated small RNAs (smRNAs) found in most eukaryotic organisms. Despite the presence of a plethora of non-coding RNAs longer than 50-nucleotide (nt) in length in various species of Archaea, little is known about smRNAs in archaea that resemble the 20-24-nt long smRNAs found in eukaryotes, which have been implicated in the post-transcriptional control of gene expression. Here, we report the finding of a large number of smRNAs approximatelly 20-nt in length, including phased smRNAs and potential miRNAs, from the hyperthermophilic archaeon Sulfolobus solfataricus p2 (Ssp2) based on deep sequencing. The expression of some of the miRNA candidates in Ssp2 was confirmed. Consistent with the Ssp2 hyperthermophilic properties, we found that higher temperatures more efficiently induced the production of the miRNA candidates in an in vitro system using the putative foldback precursor transcripts incubated with Ssp2 extract. Although we initially predicted putative target genes of some miRNA candidates, further analysis mapped the cleavage sites downstream of the miRNA candidate complementary regions, similar to those involved in plant miRNA-mediated TAS transcript cleavage. We also identified smRNAs from clustered, regularly interspaced, short palindromic repeat (CRISPR) loci, which play important roles in prokaryotic microbial defense systems. Archaea represent a unique life form next to Bacteria and Eukarya, and our results may provide a useful resource for further in-depth study on the regulation and evolution of smRNAs in this special organism.
Collapse
Affiliation(s)
- Ning Xu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Tao Zhao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Li Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Fang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jie Wang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
1238
|
Wan LC, Zhang H, Lu S, Zhang L, Qiu Z, Zhao Y, Zeng QY, Lin J. Transcriptome-wide identification and characterization of miRNAs from Pinus densata. BMC Genomics 2012; 13:132. [PMID: 22480283 PMCID: PMC3347991 DOI: 10.1186/1471-2164-13-132] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 04/06/2012] [Indexed: 11/18/2022] Open
Abstract
Background MicroRNAs (miRNAs) play key roles in diverse developmental processes, nutrient homeostasis and responses to biotic and abiotic stresses. The biogenesis and regulatory functions of miRNAs have been intensively studied in model angiosperms, such as Arabidopsis thaliana, Oryza sativa and Populus trichocarpa. However, global identification of Pinus densata miRNAs has not been reported in previous research. Results Here, we report the identification of 34 conserved miRNAs belonging to 25 miRNA families from a P. densata mRNA transcriptome database using local BLAST and MIREAP programs. The primary and/or precursor sequences of 29 miRNAs were further confirmed by RT-PCR amplification and subsequent sequencing. The average value of the minimal folding free energy indexes of the 34 miRNA precursors was 0.92. Nineteen (58%) mature miRNAs began with a 5' terminal uridine residue. Analysis of miRNA precursors showed that 19 mature miRNAs were novel members of 14 conserved miRNA families, of which 17 miRNAs were further validated by subcloning and sequencing. Using real-time quantitative RT-PCR, we found that the expression levels of 7 miRNAs were more than 2-fold higher in needles than in stems. In addition, 72 P. densata mRNAs were predicted to be targets of 25 miRNA families. Four target genes, including a nodal modulator 1-like protein gene, two GRAS family transcription factor protein genes and one histone deacetylase gene, were experimentally verified to be the targets of 3 P. densata miRNAs, pde-miR162a, pde-miR171a and pde-miR482a, respectively. Conclusions This study led to the discovery of 34 conserved miRNAs comprising 25 miRNA families from Pinus densata. These results lay a solid foundation for further studying the regulative roles of miRNAs in the development, growth and responses to environmental stresses in P. densata.
Collapse
Affiliation(s)
- Li-Chuan Wan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
1239
|
Abstract
Our understanding of the importance of noncoding RNA molecules is steadily growing. One such important class of RNA molecules are microRNAs (miRNAs). These tiny RNAs fulfill important functions in cellular behavior by influencing the protein output levels of a high variety of genes through the regulation of target messenger RNAs. Moreover, miRNAs have been implicated in a wide range of diseases. In pathological conditions, the miRNA expression levels can be altered due to changes in the transcriptional or posttranscriptional regulation of miRNA expression. On the other side, mRNA molecules might be able to escape the regulation by miRNAs. In this review, we give an overview on how miRNA biogenesis can be altered in disease as well as how mRNAs can avoid the regulation by miRNAs. The interplay between these two processes defines the final protein output in a cell, and thus the normal or pathological cellular phenotype.
Collapse
|
1240
|
Hendelman A, Buxdorf K, Stav R, Kravchik M, Arazi T. Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10 (SlARF10) derepression. PLANT MOLECULAR BIOLOGY 2012; 78:561-76. [PMID: 22287097 DOI: 10.1007/s11103-012-9883-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 01/12/2012] [Indexed: 05/04/2023]
Abstract
Auxin response factors (ARFs) are plant transcription factors that activate or repress the expression of auxin-responsive genes and accordingly, play key roles in auxin-mediated developmental processes. Here we identified and characterized the Solanum lycopersicum (tomato) ARF10 homolog (SlARF10), demonstrated that it is posttranscriptionally regulated by Sl-miR160, and investigated the significance of this regulation for tomato development. In wild-type tomato, SlARF10 is primarily expressed in the pericarp of mature and ripened fruit, showing an expression profile complementary to that of Sl-miR160. Constitutive expression of wild-type SlARF10 did not alter tomato development. However, transgenic tomato plants that constitutively expressed the Sl-miR160a-resistant version (mSlARF10) developed narrow leaflet blades, sepals and petals, and abnormally shaped fruit. During compound leaf development, mSlARF10 accumulation specifically inhibited leaflet blade outgrowth without affecting other auxin-driven processes such as leaflet initiation and lobe formation. Moreover, blade size was inversely correlated with mSlARF10 transcript levels, strongly implying that the SlARF10 protein, which was localized to the nucleus, can function as a transcriptional repressor of leaflet lamina outgrowth. Accordingly, known auxin-responsive genes, which promote cell growth, were downregulated in shoot apices that accumulated increased mSlARF10 levels. Taken together, we propose that repression of SlARF10 by Sl-miR160 is essential for auxin-mediated blade outgrowth and early fruit development.
Collapse
Affiliation(s)
- A Hendelman
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 6, 50250 Bet Dagan, Israel
| | | | | | | | | |
Collapse
|
1241
|
Wang B, Dong M, Chen W, Liu X, Feng R, Xu T. Microarray identification of conserved microRNAs in Pinellia pedatisecta. Gene 2012; 498:36-40. [DOI: 10.1016/j.gene.2012.01.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/29/2011] [Accepted: 01/27/2012] [Indexed: 12/13/2022]
|
1242
|
Ng DWK, Lu J, Chen ZJ. Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:154-61. [PMID: 22326630 DOI: 10.1016/j.pbi.2012.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/04/2011] [Accepted: 01/04/2012] [Indexed: 05/09/2023]
Abstract
Small RNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs), and trans-acting siRNAs (ta-siRNAs), mediate gene expression and epigenetic regulation. While siRNAs are highly diverged, miRNAs and ta-siRNAs are generally conserved but many are differentially expressed between related species and in interspecific hybrids and allopolyploids. On one hand, combination of diverged maternal and paternal siRNAs in the same nucleus may exert cis-acting and trans-acting effects on transposable elements (TEs) and TE-associated genes, leading to genomic instability and endosperm and embryo failures, constituting a bottleneck for the evolution of hybrids and polyploids. On the other hand, cis and trans-acting small RNAs induce quantitative and qualitative changes in epigenetic regulation, leading to morphological variation and hybrid vigor in F1 hybrids and stable allopolyploids as well as transgressive phenotypes in the progeny, increasing a potential for adaptive evolution.
Collapse
Affiliation(s)
- Danny W-K Ng
- Section of Molecular Cell and Developmental Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
1243
|
Sunkar R, Li YF, Jagadeeswaran G. Functions of microRNAs in plant stress responses. TRENDS IN PLANT SCIENCE 2012; 17:196-203. [PMID: 22365280 DOI: 10.1016/j.tplants.2012.01.010] [Citation(s) in RCA: 580] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/21/2012] [Accepted: 01/25/2012] [Indexed: 05/18/2023]
Abstract
The discovery of microRNAs (miRNAs) as gene regulators has led to a paradigm shift in the understanding of post-transcriptional gene regulation in plants and animals. miRNAs have emerged as master regulators of plant growth and development. Evidence suggesting that miRNAs play a role in plant stress responses arises from the discovery that miR398 targets genes with known roles in stress tolerance. In addition, the expression profiles of most miRNAs that are implicated in plant growth and development are significantly altered during stress. These later findings imply that attenuated plant growth and development under stress may be under the control of stress-responsive miRNAs. Here we review recent progress in the understanding of miRNA-mediated plant stress tolerance.
Collapse
Affiliation(s)
- Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | |
Collapse
|
1244
|
Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1210-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
1245
|
Mao W, Li Z, Xia X, Li Y, Yu J. A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber. PLoS One 2012; 7:e33040. [PMID: 22479356 PMCID: PMC3316546 DOI: 10.1371/journal.pone.0033040] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/08/2012] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs playing an important regulatory function in plant development and stress responses. Among them, some are evolutionally conserved in plant and others are only expressed in certain species, tissue or developmental stages. Cucumber is among the most important greenhouse species in the world, but only a limited number of miRNAs from cucumber have been identified and the experimental validation of the related miRNA targets is still lacking. In this study, two independent small RNA libraries from cucumber leaves and roots were constructed, respectively, and sequenced with the high-throughput Illumina Solexa system. Based on sequence similarity and hairpin structure prediction, a total of 29 known miRNA families and 2 novel miRNA families containing a total of 64 miRNA were identified. QRT-PCR analysis revealed that some of the cucumber miRNAs were preferentially expressed in certain tissues. With the recently developed 'high throughput degradome sequencing' approach, 21 target mRNAs of known miRNAs were identified for the first time in cucumber. These targets were associated with development, reactive oxygen species scavenging, signaling transduction and transcriptional regulation. Our study provides an overview of miRNA expression profile and interaction between miRNA and target, which will help further understanding of the important roles of miRNAs in cucumber plants.
Collapse
Affiliation(s)
- Weihua Mao
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Zeyun Li
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yadan Li
- Hunan Agricultural Bioengineering Research Institute, Hunan Agricultural University, Changsha, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| |
Collapse
|
1246
|
Wang C, Han J, Liu C, Kibet KN, Kayesh E, Shangguan L, Li X, Fang J. Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. BMC Genomics 2012. [PMID: 22455456 DOI: 10.1186/1471‐2164‐13‐122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. RESULTS A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. CONCLUSIONS Deep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved miRNAs, indicating that specific miRNAs exist in Amur grape. These results show that a number of regulatory miRNAs exist in Amur grape and play an important role in Amur grape growth, development, and response to abiotic or biotic stress.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
1247
|
Wang C, Han J, Liu C, Kibet KN, Kayesh E, Shangguan L, Li X, Fang J. Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. BMC Genomics 2012; 13:122. [PMID: 22455456 PMCID: PMC3353164 DOI: 10.1186/1471-2164-13-122] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 03/29/2012] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. Results A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. Conclusions Deep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved miRNAs, indicating that specific miRNAs exist in Amur grape. These results show that a number of regulatory miRNAs exist in Amur grape and play an important role in Amur grape growth, development, and response to abiotic or biotic stress.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
1248
|
Catalano D, Pignone D, Sonnante G, Finetti-Sialer MM. In-silico and in-vivo analyses of EST databases unveil conserved miRNAs from Carthamus tinctorius and Cynara cardunculus. BMC Bioinformatics 2012; 13 Suppl 4:S12. [PMID: 22536958 PMCID: PMC3314569 DOI: 10.1186/1471-2105-13-s4-s12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small RNAs (21-24 bp) providing an RNA-based system of gene regulation highly conserved in plants and animals. In plants, miRNAs control mRNA degradation or restrain translation, affecting development and responses to stresses. Plant miRNAs show imperfect but extensive complementarity to mRNA targets, making their computational prediction possible, useful when data mining is applied on different species. In this study we used a comparative approach to identify both miRNAs and their targets, in artichoke and safflower. RESULTS Two complete expressed sequence tags (ESTs) datasets from artichoke (3.6 · 10(4) entries) and safflower (4.2 · 10(4)), were analysed with a bioinformatic pipeline and in vitro experiments, identifying 17 potential miRNAs. For each EST, using RNAhybrid program and 953 non redundant miRNA mature sequences, available in mirBase as reference, we searched matching putative targets. 8730 out of 42011 ESTs from safflower and 7145 of 36323 ESTs from artichoke showed at least one predicted miRNA target. BLAST analysis showed that 75% of all ESTs shared at least a common homologous region (E-value < 10(-4)) and about 50% of these displayed 400 bp or longer aligned sequences as conserved homologous/orthologous (COS) regions. 960 and 890 ESTs of safflower and artichoke organized in COS shared 79 different miRNA targets, considered functionally conserved, and statistically significant when compared with random sequences (signal to noise ratio > 2 and specificity ≥ 0.85). Four highly significant miRNAs selected from in silico data were experimentally validated in globe artichoke leaves. CONCLUSIONS Mature miRNAs and targets were predicted within EST sequences of safflower and artichoke. Most of the miRNA targets appeared highly/moderately conserved, highlighting an important and conserved function. In this study we introduce a stringent parameter for the comparative sequence analysis, represented by the identification of the same target in the COS region. After statistical analysis 79 targets, found on the COS regions and belonging to 60 miRNA families, have a signal to noise ratio > 2, with ≥ 0.85 specificity. The putative miRNAs identified belong to 55 dicotyledon plants and to 24 families only in monocotyledon.
Collapse
Affiliation(s)
- Domenico Catalano
- Istituto di Genetica Vegetale, Consiglio Nazionale delle Ricerche, Bari, 70126, Italy.
| | | | | | | |
Collapse
|
1249
|
Shu L, Hu Z. Characterization and differential expression of microRNAs elicited by sulfur deprivation in Chlamydomonas reinhardtii. BMC Genomics 2012; 13:108. [PMID: 22439676 PMCID: PMC3441669 DOI: 10.1186/1471-2164-13-108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 03/22/2012] [Indexed: 11/20/2022] Open
Abstract
Background microRNAs (miRNAs) have been found to play an essential role in the modulation of numerous biological processes in eukaryotes. Chlamydomonas reinhardtii is an ideal model organism for the study of many metabolic processes including responses to sulfur-deprivation. We used a deep sequencing platform to extensively profile and identify changes in the miRNAs expression that occurred under sulfur-replete and sulfur-deprived conditions. The aim of our research was to characterize the differential expression of Chlamydomonas miRNAs under sulfur-deprived conditions, and subsequently, the target genes of miRNA involved in sulfur-deprivation were further predicted and analyzed. Results By using high-throughput sequencing, we characterized the microRNA transcriptomes under sulphur-replete and sulfur-deprived conditions in Chlamydomonas reinhardtii. We predicted a total of 310 miRNAs which included 85 known miRNAs and 225 novel miRNAs. 13 miRNAs were the specific to the sulfur-deprived conditions. 47 miRNAs showed significantly differential expressions responding to sulfur-deprivation, and most were up-regulated in the small RNA libraries with sulfur-deprivation. Using a web-based integrated system (Web MicroRNAs Designer 3) and combing the former information from a transcriptome of Chlamydomonas reinhardtii, 22 miRNAs and their targets involved in metabolism regulation with sulfur-deprivation were verified. Conclusions Our results indicate that sulfur-deprivation may have a significant influence on small RNA expression patterns, and the differential expressions of miRNAs and interactions between miRNA and its targets might further reveal the molecular mechanism responding to sulfur-deprivation in Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Longfei Shu
- Department of Aquatic Ecology, Eawag, Switzerland
| | | |
Collapse
|
1250
|
Yun J, Kim YS, Jung JH, Seo PJ, Park CM. The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis. J Biol Chem 2012; 287:15307-16. [PMID: 22442143 DOI: 10.1074/jbc.m111.318477] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coordination of the onset of flowering with developmental status and seasonal cues is critical for reproductive success in plants. Molecular genetic studies on Arabidopsis mutants that have alterations in flowering time have identified a wide array of genes that belong to distinct genetic flowering pathways. The flowering time genes are regulated through versatile molecular and biochemical mechanisms, such as controlled RNA metabolism and chromatin modifications. Recent studies have shown that a group of AT-hook DNA-binding motif-containing proteins plays a role in plant developmental processes and stress responses. Here, we demonstrate that the AT-hook protein AHL22 (AT-hook motif nuclear localized 22) regulates flowering time by modifying FLOWERING LOCUS T (FT) chromatin in Arabidopsis. AHL22 binds to a stretch of the AT-rich sequence in the FT locus. It interacts with a subset of histone deacetylases. An Arabidopsis mutant overexpressing the AHL22 gene (OE-AHL22) exhibited delayed flowering, and FT transcription was significantly reduced in the mutant. Consistent with the delayed flowering and FT suppression in the OE-AHL22 mutant, histone 3 (H3) acetylation was reduced and H3 lysine 9 dimethylation was elevated in the FT chromatin. We propose that AHL22 acts as a chromatin remodeling factor that modifies the architecture of FT chromatin by modulating both H3 acetylation and methylation.
Collapse
Affiliation(s)
- Ju Yun
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|