1201
|
Effects of longer vs. shorter timed movement sequences on alpha motor inhibition when combining contractions and relaxations. Exp Brain Res 2018; 237:101-109. [PMID: 30341465 DOI: 10.1007/s00221-018-5401-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
Alpha inhibitory processes reflect motor stimuli by either increasing or decreasing amplitude (i.e., power). However, the functional role and interplay of event-related alpha oscillations remains a regulatory domain that has not been sufficiently addressed, particularly with respect to different muscle activation types and durations in consecutive movement (i.e., motor) tasks. The aim of this study was to investigate alpha-band activity (7-13 Hz) in longer vs. shorter timed isometric muscle activations at distinct torques (20% and 40% of maximum voluntary contraction, MVC) when combined in one motor task sequence. In a randomized and controlled design, 18 healthy males volunteered to perform 40 longer (i.e., 6 s) and 40 shorter (i.e., 3 s) motor task sequences, each comprising isometric contractions (i.e., palmar flexion) from baseline to 20% and 40% MVC subsequent to relaxations from 40% and 20% MVC to baseline. Continuous, synchronized EEG, EMG and torque recordings served to determine alpha-band activity over task-relevant motor areas at distinct torques. Main findings revealed increases in alpha activity during subsequent progressive muscle relaxation (from 20% MVC in long and short: p < .001; from 40% MVC in short: p < .05), whereas modulations in relevant motor areas were not significant (p = .84). It may be suggested that an active task-relevant inhibitory process indicates motor task sequence-related relaxation mirrored by an increasing alpha activity.
Collapse
|
1202
|
Embury CM, Wiesman AI, Proskovec AL, Mills MS, Heinrichs-Graham E, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Neural dynamics of verbal working memory processing in children and adolescents. Neuroimage 2018; 185:191-197. [PMID: 30336254 DOI: 10.1016/j.neuroimage.2018.10.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 01/01/2023] Open
Abstract
Development of cognitive functions and the underlying neurophysiology is evident throughout childhood and adolescence, with higher order processes such as working memory (WM) being some of the last cognitive faculties to fully mature. Previous functional neuroimaging studies of the neurodevelopment of WM have largely focused on overall regional activity levels rather than the temporal dynamics of neural component recruitment. In this study, we used magnetoencephalography (MEG) to examine the neural dynamics of WM in a large cohort of children and adolescents who were performing a high-load, modified verbal Sternberg WM task. Consistent with previous studies in adults, our findings indicated left-lateralized activity throughout the task period, beginning in the occipital cortices and spreading anterior to include temporal and prefrontal cortices during later encoding and into maintenance. During maintenance, the occipital alpha increase that has been widely reported in adults was found to be relatively weak in this developmental sample, suggesting continuing development of this component of neural processing, which was supported by correlational analyses. Intriguingly, we also found sex-specific developmental effects in alpha responses in the right inferior frontal region during encoding and in parietal and occipital cortices during maintenance. These findings suggested a developmental divergence between males and females in the maturation of neural circuitry serving WM during the transition from childhood to adolescence.
Collapse
Affiliation(s)
- Christine M Embury
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA; Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amy L Proskovec
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA; Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA
| | - Mackenzie S Mills
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
1203
|
Klatt LI, Getzmann S, Wascher E, Schneider D. The contribution of selective spatial attention to sound detection and sound localization: Evidence from event-related potentials and lateralized alpha oscillations. Biol Psychol 2018; 138:133-145. [DOI: 10.1016/j.biopsycho.2018.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022]
|
1204
|
Bagnoud J, Burra N, Castel C, Oakhill J, Thevenot C. Arithmetic word problems describing discrete quantities: E.E.G evidence for the construction of a situation model. Acta Psychol (Amst) 2018; 190:116-121. [PMID: 30071358 DOI: 10.1016/j.actpsy.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/01/2018] [Accepted: 07/23/2018] [Indexed: 11/24/2022] Open
Abstract
In this research, university students were asked to solve arithmetic word problems constructed either with discrete quantities, such as apples or marbles, or continuous quantities such as meters of rope or grams of sand. An analysis of their brain activity showed different alpha levels between the two types of problems with, in particular, a lower alpha power in the parieto-occipital area for problems describing discrete quantities. This suggests that processing discrete quantities during problem solving prompts more mental imagery than processing continuous quantities. These results are difficult to reconcile with the schema theory, according to which arithmetic problem solving depends on the activation of ready-made mental frames stored in long-term memory and triggered by the mathematical expression used in the texts. Within the schema framework, the nature of the objects described in the text should be quickly abstracted during problem solving because it cannot impact the semantic structure of the problem. On the contrary, our results support the situation model theory, which places greater emphasis on the problem context in order to account for individuals' behaviour. On a more methodological point of view, this study constitutes the first attempt to infer the characteristics of individual's mental representations of arithmetic text problems from EEG recordings. This opens the door for the application of brain activity measures in the field of arithmetic word problem.
Collapse
|
1205
|
Glazer JE, Kelley NJ, Pornpattananangkul N, Mittal VA, Nusslock R. Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing. Int J Psychophysiol 2018; 132:184-202. [DOI: 10.1016/j.ijpsycho.2018.02.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/18/2022]
|
1206
|
Irrmischer M, Poil S, Mansvelder HD, Intra FS, Linkenkaer‐Hansen K. Strong long-range temporal correlations of beta/gamma oscillations are associated with poor sustained visual attention performance. Eur J Neurosci 2018; 48:2674-2683. [PMID: 28858404 PMCID: PMC6221163 DOI: 10.1111/ejn.13672] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/27/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
Neuronal oscillations exhibit complex amplitude fluctuations with autocorrelations that persist over thousands of oscillatory cycles. Such long-range temporal correlations (LRTC) are thought to reflect neuronal systems poised near a critical state, which would render them capable of quick reorganization and responsive to changing processing demands. When we concentrate, however, the influence of internal and external sources of distraction is better reduced, suggesting that neuronal systems involved with sustained attention could benefit from a shift toward the less volatile sub-critical state. To test these ideas, we recorded electroencephalography (EEG) from healthy volunteers during eyes-closed rest and during a sustained attention task requiring a speeded response to images deviating in their presentation duration. We show that for oscillations recorded during rest, high levels of alpha-band LRTC in the sensorimotor region predicted good reaction-time performance in the attention task. During task execution, however, fast reaction times were associated with high-amplitude beta and gamma oscillations with low LRTC. Finally, we show that reduced LRTC during the attention task compared to the rest condition correlates with better performance, while increased LRTC of oscillations from rest to attention is associated with reduced performance. To our knowledge, this is the first empirical evidence that 'resting-state criticality' of neuronal networks predicts swift behavioral responses in a sensorimotor task, and that steady attentive processing of visual stimuli requires brain dynamics with suppressed temporal complexity.
Collapse
Affiliation(s)
- Mona Irrmischer
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
| | - Simon‐Shlomo Poil
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
- NBT Analytics BVAmsterdamThe Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
| | - Francesca Sangiuliano Intra
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
- IRCCSDon Gnocchi FoundationMilanItaly
| | - Klaus Linkenkaer‐Hansen
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
| |
Collapse
|
1207
|
Klimesch W. The frequency architecture of brain and brain body oscillations: an analysis. Eur J Neurosci 2018; 48:2431-2453. [PMID: 30281858 PMCID: PMC6668003 DOI: 10.1111/ejn.14192] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/19/2018] [Accepted: 09/13/2018] [Indexed: 01/04/2023]
Abstract
Research on brain oscillations has brought up a picture of coupled oscillators. Some of the most important questions that will be analyzed are, how many frequencies are there, what are the coupling principles, what their functional meaning is, and whether body oscillations follow similar coupling principles. It is argued that physiologically, two basic coupling principles govern brain as well as body oscillations: (i) amplitude (envelope) modulation between any frequencies m and n, where the phase of the slower frequency m modulates the envelope of the faster frequency n, and (ii) phase coupling between m and n, where the frequency of n is a harmonic multiple of m. An analysis of the center frequency of traditional frequency bands and their coupling principles suggest a binary hierarchy of frequencies. This principle leads to the foundation of the binary hierarchy brain body oscillation theory. Its central hypotheses are that the frequencies of body oscillations can be predicted from brain oscillations and that brain and body oscillations are aligned to each other. The empirical evaluation of the predicted frequencies for body oscillations is discussed on the basis of findings for heart rate, heart rate variability, breathing frequencies, fluctuations in the BOLD signal, and other body oscillations. The conclusion is that brain and many body oscillations can be described by a single system, where the cross talk - reflecting communication - within and between brain and body oscillations is governed by m : n phase to envelope and phase to phase coupling.
Collapse
Affiliation(s)
- Wolfgang Klimesch
- Centre of Cognitive NeuroscienceUniversity of SalzburgSalzburgAustria
| |
Collapse
|
1208
|
Lefebvre A, Delorme R, Delanoë C, Amsellem F, Beggiato A, Germanaud D, Bourgeron T, Toro R, Dumas G. Alpha Waves as a Neuromarker of Autism Spectrum Disorder: The Challenge of Reproducibility and Heterogeneity. Front Neurosci 2018; 12:662. [PMID: 30327586 PMCID: PMC6174243 DOI: 10.3389/fnins.2018.00662] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/04/2018] [Indexed: 11/13/2022] Open
Abstract
Background: There is no consensus in the literature concerning the presence of abnormal alpha wave profiles in patients with autism spectrum disorder (ASD). This may be due to phenotypic heterogeneity among patients as well as the limited sample sizes utilized. Here we present our results of alpha wave profile analysis based on a sample larger than most of those in the field, performed using a robust processing pipeline. Methods: We compared the alpha waves profiles at rest in children with ASD to those of age-, sex-, and IQ-matched control individuals. We used linear regression and non-parametric normative models using age as covariate forparsing the clinical heterogeneity. We explored the correlation between EEG profiles and the patient's brain volumes, obtained from structural MRI. We automatized the detection of the alpha peak and visually quality controled our MRI measurements. We assessed the robustness of our results by running the EEG preprocessing with two different versions of Matlab as well as Python. Results: A simple linear regression between peak power or frequency of the alpha waves and the status or age of the participants did not allow to identify any statistically significant relationship. The non-parametric normative model (which took account the non-linear effect of age on the alpha profiles) suggested that participants with ASD displayed more variability than control participants for both frequency and amplitude of the alpha peak (p < 0.05). Independent of the status of the individual, we also observed weak associations (uncorrected p < 0.05) between the alpha frequency, and the volumes of several cortical and subcortical structures (in particular the striatum), but which did not survive correction for multiple testing and changed between analysis pelines. Discussions: Our study did not find evidence for abnormal alpha wave profiles in ASD. We propose, however, an analysis pipeline to perform standardized and automatized EEG analyses on large cohorts. These should help the community to address the challenge of clinical heterogeneity of ASD and to tackle the problems of reproducibility.
Collapse
Affiliation(s)
- Aline Lefebvre
- Department of Child and Adolescent Psychiatry, Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Paris, France.,Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France.,CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Human Genetics and Cognitive Functions, University Paris Diderot, Paris, France
| | - Richard Delorme
- Department of Child and Adolescent Psychiatry, Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Paris, France.,Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France.,CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Human Genetics and Cognitive Functions, University Paris Diderot, Paris, France
| | - Catherine Delanoë
- Neurophysiology Department, Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Paris, France
| | - Frederique Amsellem
- Department of Child and Adolescent Psychiatry, Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Paris, France.,Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France.,CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Human Genetics and Cognitive Functions, University Paris Diderot, Paris, France
| | - Anita Beggiato
- Department of Child and Adolescent Psychiatry, Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Paris, France.,Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France.,CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Human Genetics and Cognitive Functions, University Paris Diderot, Paris, France
| | - David Germanaud
- Pediatric Neurology Department, Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France.,CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Human Genetics and Cognitive Functions, University Paris Diderot, Paris, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France.,CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Human Genetics and Cognitive Functions, University Paris Diderot, Paris, France
| | - Guillaume Dumas
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France.,CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Human Genetics and Cognitive Functions, University Paris Diderot, Paris, France
| |
Collapse
|
1209
|
Pascucci D, Hervais‐Adelman A, Plomp G. Gating by induced Α-Γ asynchrony in selective attention. Hum Brain Mapp 2018; 39:3854-3870. [PMID: 29797747 PMCID: PMC6866587 DOI: 10.1002/hbm.24216] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/17/2018] [Accepted: 05/06/2018] [Indexed: 11/09/2022] Open
Abstract
Visual selective attention operates through top-down mechanisms of signal enhancement and suppression, mediated by α-band oscillations. The effects of such top-down signals on local processing in primary visual cortex (V1) remain poorly understood. In this work, we characterize the interplay between large-scale interactions and local activity changes in V1 that orchestrates selective attention, using Granger-causality and phase-amplitude coupling (PAC) analysis of EEG source signals. The task required participants to either attend to or ignore oriented gratings. Results from time-varying, directed connectivity analysis revealed frequency-specific effects of attentional selection: bottom-up γ-band influences from visual areas increased rapidly in response to attended stimuli while distributed top-down α-band influences originated from parietal cortex in response to ignored stimuli. Importantly, the results revealed a critical interplay between top-down parietal signals and α-γ PAC in visual areas. Parietal α-band influences disrupted the α-γ coupling in visual cortex, which in turn reduced the amount of γ-band outflow from visual areas. Our results are a first demonstration of how directed interactions affect cross-frequency coupling in downstream areas depending on task demands. These findings suggest that parietal cortex realizes selective attention by disrupting cross-frequency coupling at target regions, which prevents them from propagating task-irrelevant information.
Collapse
Affiliation(s)
- David Pascucci
- Perceptual Networks Group, Department of PsychologyUniversity of FribourgFribourgSwitzerland
| | - Alexis Hervais‐Adelman
- Brain and Language Lab, Department of Clinical NeuroscienceUniversity of GenevaGenevaSwitzerland
- Max Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Gijs Plomp
- Perceptual Networks Group, Department of PsychologyUniversity of FribourgFribourgSwitzerland
- Functional Brain Mapping Lab, Department of Fundamental NeurosciencesUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
1210
|
Weiss SM, Meltzoff AN, Marshall PJ. Neural measures of anticipatory bodily attention in children: Relations with executive function. Dev Cogn Neurosci 2018; 34:148-158. [PMID: 30448644 PMCID: PMC6969295 DOI: 10.1016/j.dcn.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
The ability to selectively direct attention to a certain location or modality is a key neurocognitive skill. One important facet of selective attention is anticipation, a foundational biological construct that bridges basic perceptual processes and higher-order cognition. The current study focuses on the neural correlates of bodily anticipation in 6- to 8-year-old children using a task involving tactile stimulation. Electroencephalographic (EEG) activity over sensorimotor cortex was measured after a visual cue directed children to monitor their right or left hand in anticipation of tactile stimulation. Prior to delivery of the tactile stimulus, a regionally-specific desynchronization of the alpha-range mu rhythm occurred over central electrode sites (C3/C4) contralateral to the cue direction. The magnitude of anticipatory mu rhythm desynchronization was associated with children's performance on two executive function tasks (Flanker and Card Sort). We suggest that anticipatory mu desynchronization has utility as a specific neural marker of attention focusing in young children, which in turn may be implicated in the development of executive function.
Collapse
Affiliation(s)
- Staci Meredith Weiss
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Seattle, WA 98195,USA
| | - Peter J Marshall
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
1211
|
Sato J, Mossad SI, Wong SM, Hunt BAE, Dunkley BT, Smith ML, Urbain C, Taylor MJ. Alpha keeps it together: Alpha oscillatory synchrony underlies working memory maintenance in young children. Dev Cogn Neurosci 2018; 34:114-123. [PMID: 30336447 PMCID: PMC6969306 DOI: 10.1016/j.dcn.2018.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/15/2018] [Accepted: 09/20/2018] [Indexed: 11/15/2022] Open
Abstract
We investigated brain networks underlying working memory maintenance in children. Higher alpha phase synchrony was found for correct compared to incorrect responses. Working memory maintenance was associated with dominant fronto-temporal connections. Maintenance-related network included the left dorsolateral prefrontal cortex. Our results implicate sustained alpha phase synchrony with successful performance.
Working Memory (WM) supports a wide range of cognitive functions, and is positively associated with academic achievement. Although fMRI studies have revealed WM networks in adults, little is known about how these networks develop to support successful WM performance in children. Using magnetoencephalography, we examined the networks underlying the maintenance of visual information in 6-year-old children. We observed an increase in mean whole-brain connectivity that was specific to the alpha frequency band during the retention interval associated with correct compared to incorrect responses. Additionally, our network analysis revealed elevated alpha synchronization during WM maintenance in a distributed network of frontal, parietal and temporal regions. Central hubs in the network were lateralized to the left hemisphere with dominant fronto-temporal connections, including the dorsolateral prefrontal cortex, middle temporal and superior temporal gyri, as well as other canonical language areas. Local changes in power were also analysed for seeds of interest, including the left inferior parietal lobe, which revealed an increase in alpha power after stimulus onset that was sustained throughout the retention period of WM. Our results therefore implicate sustained fronto-temporal alpha synchrony during the retention interval with subsequent successful WM responses in children, which may be aided by subvocal rehearsal strategies.
Collapse
Affiliation(s)
- Julie Sato
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.
| | - Sarah I Mossad
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Simeon M Wong
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Benjamin A E Hunt
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Mary Lou Smith
- Department of Psychology, University of Toronto, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Psychology, Hospital for Sick Children, Toronto, Canada
| | - Charline Urbain
- UR2NF-Neuropsychology and Functional Neuroimaging Research Group at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada
| |
Collapse
|
1212
|
Erickson B, Truelove-Hill M, Oh Y, Anderson J, Zhang FZ, Kounios J. Resting-state brain oscillations predict trait-like cognitive styles. Neuropsychologia 2018; 120:1-8. [PMID: 30261163 DOI: 10.1016/j.neuropsychologia.2018.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 11/26/2022]
Abstract
Anecdotal reports suggest the existence of individual differences in peoples' cognitive styles for solving problems, in particular, the tendency to rely on insight (the "aha" phenomenon) versus deliberate analytical thought. We hypothesized that such stable individual differences exist and are associated with trait-like individual differences in resting-state brain activity. We tested this idea by recording participants' resting-state electroencephalograms (RS-EEGs) on 4 occasions over approximately 7 weeks and then tasking them with solving anagrams and compound remote associates problems that are solvable by either strategy. We found that peoples' tendency to solve problems consistently by insight or by analysis spans both tasks and time. Moreover, we discovered trait-like individual differences in the balance between frontal and posterior resting-state brain activity and in temporal-lobe hemispheric asymmetries that predict, at least weeks in advance, the tendency to solve by insight versus analysis. The discovery of an insight-analytic dimension of cognitive style and its neural basis in resting state brain activity suggests new avenues for the development of neuroscience-based methods for intellectual, educational, and vocational assessment.
Collapse
Affiliation(s)
- Brian Erickson
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Monica Truelove-Hill
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA 19104, USA
| | - Yongtaek Oh
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA 19104, USA
| | - Julia Anderson
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA 19104, USA
| | - Fengqing Zoe Zhang
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA 19104, USA
| | - John Kounios
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
1213
|
De Vito D, Fenske MJ. Affective evidence that inhibition is involved in separating accessory representations from active representations in visual working memory. VISUAL COGNITION 2018. [DOI: 10.1080/13506285.2018.1524402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- David De Vito
- Department of Psychology, University of Guelph, Ontario Canada
| | - Mark J. Fenske
- Department of Psychology, University of Guelph, Ontario Canada
| |
Collapse
|
1214
|
Jaquess KJ, Lo LC, Oh H, Lu C, Ginsberg A, Tan YY, Lohse KR, Miller MW, Hatfield BD, Gentili RJ. Changes in Mental Workload and Motor Performance Throughout Multiple Practice Sessions Under Various Levels of Task Difficulty. Neuroscience 2018; 393:305-318. [PMID: 30266685 DOI: 10.1016/j.neuroscience.2018.09.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 11/28/2022]
Abstract
The allocation of mental workload is critical to maintain cognitive-motor performance under various demands. While mental workload has been investigated during performance, limited efforts have examined it during cognitive-motor learning, while none have concurrently manipulated task difficulty. It is reasonable to surmise that the difficulty level at which a skill is practiced would impact the rate of skill acquisition and also the rate at which mental workload is reduced during learning (relatively slowed for challenging compared to easier tasks). This study aimed to monitor mental workload by assessing cortical dynamics during a task practiced under two difficulty levels over four days while perceived task demand, performance, and electroencephalography (EEG) were collected. As expected, self-reported mental workload was reduced, greater working memory engagement via EEG theta synchrony was observed, and reduced cortical activation, as indexed by progressive EEG alpha synchrony was detected during practice. Task difficulty was positively related to the magnitude of alpha desynchrony and accompanied by elevations in the theta-alpha ratio. Counter to expectation, the absence of an interaction between task difficulty and practice days for both theta and alpha power indicates that the refinement of mental processes throughout learning occurred at a comparable rate for both levels of difficulty. Thus, the assessment of brain dynamics was sensitive to the rate of change of cognitive workload with practice, but not to the degree of difficulty. Future work should consider a broader range of task demands and additional measures of brain processes to further assess this phenomenon.
Collapse
Affiliation(s)
- Kyle J Jaquess
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Li-Chuan Lo
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Hyuk Oh
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Calvin Lu
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Andrew Ginsberg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Ying Ying Tan
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA; Defense Science and Technology Agency, Singapore
| | - Keith R Lohse
- Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, UT, USA
| | | | - Bradley D Hatfield
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Rodolphe J Gentili
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA; Maryland Robotics Center, University of Maryland, College Park, MD, USA.
| |
Collapse
|
1215
|
Liu CC, Hajra SG, Song X, Doesburg SM, Cheung TPL, D'Arcy RCN. Cognitive loading via mental arithmetic modulates effects of blink-related oscillations on precuneus and ventral attention network regions. Hum Brain Mapp 2018; 40:377-393. [PMID: 30240494 DOI: 10.1002/hbm.24378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Blink-related oscillations (BROs) have been linked with environmental monitoring processes associated with blinking, with cortical activations in the bilateral precuneus. Although BROs have been described under resting and passive fixation conditions, little is known about their characteristics under cognitive loading. To address this, we investigated BRO effects during both mental arithmetic (MA) and passive fixation (PF) tasks using magnetoencephalography (n =20), while maintaining the same sensory environment in both tasks. Our results confirmed the presence of BRO effects in both MA and PF tasks, with similar characteristics including blink-related increase in global field power and blink-related activation of the bilateral precuneus. In addition, cognitive loading due to MA also modulated BRO effects by decreasing BRO-induced cortical activations in key brain regions including the bilateral anterior precuneus. Interestingly, blinking during MA-but not PF-activated regions of the ventral attention network (i.e., right supramarginal gyrus and inferior frontal gyrus), suggesting possible recruitment of these areas for blink processing under cognitive loading conditions. Time-frequency analysis revealed a consistent pattern of BRO-related effects in the precuneus in both tasks, but with task-related functional segregation within the anterior and posterior subregions. Based on these findings, we postulate a potential neurocognitive mechanism for blink processing in the precuneus. This study is the first investigation of BRO effects under cognitive loading, and our results provide compelling new evidence for the important cognitive implications of blink-related processing in the human brain.
Collapse
Affiliation(s)
- Careesa C Liu
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sujoy Ghosh Hajra
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Xiaowei Song
- Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health Authority, British Columbia, Canada
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Teresa P L Cheung
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada.,Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health Authority, British Columbia, Canada
| | - Ryan C N D'Arcy
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada.,Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health Authority, British Columbia, Canada
| |
Collapse
|
1216
|
Knowles MM, Wells A. Single Dose of the Attention Training Technique Increases Resting Alpha and Beta-Oscillations in Frontoparietal Brain Networks: A Randomized Controlled Comparison. Front Psychol 2018; 9:1768. [PMID: 30294294 PMCID: PMC6158576 DOI: 10.3389/fpsyg.2018.01768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/31/2018] [Indexed: 01/10/2023] Open
Abstract
The Attention Training Technique (ATT) was developed with the aim of reducing self-focused attention and increasing executive control as part of metacognitive therapy. So far there is a paucity of data on the neurophysiological effects of ATT. In the present study we tested for specific effects to determine if attention control components of ATT elicit a specific signature that is different from passive listening. Thirty-six healthy volunteers were randomized to an active (follow instructions) or control (ignore instructions) condition. Resting state EEG was recorded for 3 min with eyes open and eyes closed before and after exposure to training, and the power of the theta, alpha, and beta-bands were analyzed in frontal, midline, and posterior electrodes. The active ATT condition enhanced alpha and beta-band activity during eyes-open, and frontal alpha during eyes-closed (p < 0.005). Frontoparietal changes in Alpha were generally accompanied by changes in Beta in the same brain regions of interest. However, these associations were largely significant in the active ATT rather than the control condition. No between-group differences were observed in the Theta-band. These results suggest a single dose of attention training increases alpha and beta-oscillations in frontoparietal networks. These networks are associated with top-down attentional or executive control.
Collapse
Affiliation(s)
- Mark M. Knowles
- Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- Division of Psychology and Mental Health, The University of Manchester, Manchester, United Kingdom
| | - Adrian Wells
- Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- Division of Psychology and Mental Health, The University of Manchester, Manchester, United Kingdom
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
1217
|
Herring JD, Esterer S, Marshall TR, Jensen O, Bergmann TO. Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance. Neuroimage 2018; 184:440-449. [PMID: 30243972 DOI: 10.1016/j.neuroimage.2018.09.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022] Open
Abstract
Low frequency oscillations such as alpha (8-12 Hz) are hypothesized to rhythmically gate sensory processing, reflected by 40-100 Hz gamma band activity, via the mechanism of pulsed inhibition. We applied transcranial alternating current stimulation (TACS) at individual alpha frequency (IAF) and flanking frequencies (IAF-4 Hz, IAF+4 Hz) to the occipital cortex of healthy human volunteers during concurrent magnetoencephalography (MEG), while participants performed a visual detection task inducing strong gamma-band responses. Occipital (but not retinal) TACS phasically suppressed stimulus-induced gamma oscillations in the visual cortex and impaired target detection, with stronger phase-to-amplitude coupling predicting behavioral impairments. Retinal control TACS ruled out retino-thalamo-cortical entrainment resulting from (subthreshold) retinal stimulation. All TACS frequencies tested were effective, suggesting that visual gamma-band responses can be modulated by a range of low frequency oscillations. We propose that TACS-induced membrane potential modulations mimic the rhythmic change in cortical excitability by which spontaneous low frequency oscillations may eventually exert their impact when gating sensory processing via pulsed inhibition.
Collapse
Affiliation(s)
- Jim D Herring
- Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sophie Esterer
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Tom R Marshall
- Department of Experimental Psychology, University of Oxford, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Ole Jensen
- School of Psychology, University of Birmingham, Birmingham, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Til O Bergmann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| |
Collapse
|
1218
|
Recasens M, Gross J, Uhlhaas PJ. Low-Frequency Oscillatory Correlates of Auditory Predictive Processing in Cortical-Subcortical Networks: A MEG-Study. Sci Rep 2018; 8:14007. [PMID: 30228366 PMCID: PMC6143554 DOI: 10.1038/s41598-018-32385-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022] Open
Abstract
Emerging evidence supports the role of neural oscillations as a mechanism for predictive information processing across large-scale networks. However, the oscillatory signatures underlying auditory mismatch detection and information flow between brain regions remain unclear. To address this issue, we examined the contribution of oscillatory activity at theta/alpha-bands (4-8/8-13 Hz) and assessed directed connectivity in magnetoencephalographic data while 17 human participants were presented with sound sequences containing predictable repetitions and order manipulations that elicited prediction-error responses. We characterized the spectro-temporal properties of neural generators using a minimum-norm approach and assessed directed connectivity using Granger Causality analysis. Mismatching sequences elicited increased theta power and phase-locking in auditory, hippocampal and prefrontal cortices, suggesting that theta-band oscillations underlie prediction-error generation in cortical-subcortical networks. Furthermore, enhanced feedforward theta/alpha-band connectivity was observed in auditory-prefrontal networks during mismatching sequences, while increased feedback connectivity in the alpha-band was observed between hippocampus and auditory regions during predictable sounds. Our findings highlight the involvement of hippocampal theta/alpha-band oscillations towards auditory prediction-error generation and suggest a spectral dissociation between inter-areal feedforward vs. feedback signalling, thus providing novel insights into the oscillatory mechanisms underlying auditory predictive processing.
Collapse
Affiliation(s)
- Marc Recasens
- Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow, G12 8QB, Scotland, United Kingdom
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow, G12 8QB, Scotland, United Kingdom
- Institute of Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149, Muenster, Germany
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow, G12 8QB, Scotland, United Kingdom.
| |
Collapse
|
1219
|
Two Sides of the Same Coin: Distinct Sub-Bands in the α Rhythm Reflect Facilitation and Suppression Mechanisms during Auditory Anticipatory Attention. eNeuro 2018; 5:eN-NWR-0141-18. [PMID: 30225355 PMCID: PMC6140117 DOI: 10.1523/eneuro.0141-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/31/2018] [Accepted: 06/21/2018] [Indexed: 11/30/2022] Open
Abstract
Anticipatory attention results in enhanced response to task-relevant stimulus, and reduced processing of unattended input, suggesting the deployment of distinct facilitatory and suppressive mechanisms. α Oscillations are a suitable candidate for supporting these mechanisms. We aimed to examine the role of α oscillations, with a special focus on peak frequencies, in facilitatory and suppressive mechanisms during auditory anticipation, within the auditory and visual regions. Magnetoencephalographic (MEG) data were collected from fourteen healthy young human adults (eight female) performing an auditory task in which spatial attention to sounds was manipulated by visual cues, either informative or not of the target side. By incorporating uninformative cues, we could delineate facilitating and suppressive mechanisms. During anticipation of a visually-cued auditory target, we observed a decrease in α power around 9 Hz in the auditory cortices; and an increase around 13 Hz in the visual regions. Only this power increase in high α significantly correlated with behavior. Importantly, within the right auditory cortex, we showed a larger increase in high α power when attending an ipsilateral sound; and a stronger decrease in low α power when attending a contralateral sound. In summary, we found facilitatory and suppressive attentional mechanisms with distinct timing in task-relevant and task-irrelevant brain areas, differentially correlated to behavior and supported by distinct α sub-bands. We provide new insight into the role of the α peak-frequency by showing that anticipatory attention is supported by distinct facilitatory and suppressive mechanisms, mediated in different low and high sub-bands of the α rhythm, respectively.
Collapse
|
1220
|
Zeev-Wolf M, Levy J, Jahshan C, Peled A, Levkovitz Y, Grinshpoon A, Goldstein A. MEG resting-state oscillations and their relationship to clinical symptoms in schizophrenia. NEUROIMAGE-CLINICAL 2018; 20:753-761. [PMID: 30238919 PMCID: PMC6154766 DOI: 10.1016/j.nicl.2018.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 01/21/2023]
Abstract
Neuroimaging studies suggest that schizophrenia is characterized by disturbances in oscillatory activity, although at present it remains unclear whether these neural abnormalities are driven by dimensions of symptomatology. Examining different subgroups of patients based on their symptomatology is thus very informative in understanding the role of neural oscillation patterns in schizophrenia. In the present study we examined whether neural oscillations in the delta, theta, alpha, beta and gamma bands correlate with positive and negative symptoms in individuals with schizophrenia (SZ) during rest. Resting-state brain activity of 39 SZ and 25 neurotypical controls was recorded using magnetoencephalography. Patients were categorized based on the severity of their positive and negative symptoms. Spectral analyses of beamformer data revealed that patients high in positive symptoms showed widespread low alpha power, and alpha power was negatively correlated with positive symptoms. In contrast, patients high in negative symptoms showed greater beta power in left hemisphere regions than those low in negative symptoms, and beta power was positively correlated with negative symptoms. We further discuss these findings and suggest that different neural mechanisms may underlie positive and negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Maor Zeev-Wolf
- Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Department of Education, Ben Gurion University, Beer Sheva, Israel.
| | - Jonathan Levy
- Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Interdisciplinary Center, Herzliya, Israel
| | - Carol Jahshan
- VISN-22 Mental Illness Research, Education and Clinical Center (MIRECC), VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Abraham Peled
- Sha'ar Menashe Mental Health Center, Hadera, Israel, and Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yechiel Levkovitz
- Beer-Ya'akov-Ness-Ziona-Maban Mental Health Center, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Grinshpoon
- Sha'ar Menashe Mental Health Center, Hadera, Israel, and Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Abraham Goldstein
- Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
1221
|
Proskovec AL, Heinrichs-Graham E, Wilson TW. Load modulates the alpha and beta oscillatory dynamics serving verbal working memory. Neuroimage 2018; 184:256-265. [PMID: 30213775 DOI: 10.1016/j.neuroimage.2018.09.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 11/17/2022] Open
Abstract
A network of predominantly left-lateralized brain regions has been linked to verbal working memory (VWM) performance. However, the impact of memory load on the oscillatory dynamics serving VWM is far less understood. To further investigate this, we had 26 healthy adults perform a high-load (6 letter) and low-load (4 letter) variant of a VWM task while undergoing magnetoencephalography (MEG). MEG data were evaluated in the time-frequency domain and significant oscillatory responses spanning the encoding and maintenance phases were reconstructed using a beamformer. To determine the impact of load on the neural dynamics, the resulting images were examined using paired-samples t-tests and virtual sensor analyses. Our results indicated stronger increases in frontal theta activity in the high- relative to low-load condition during early encoding. Stronger decreases in alpha/beta activity were also observed during encoding in bilateral posterior cortices during the high-load condition, and the strength of these load effects increased as encoding progressed. During maintenance, stronger decreases in alpha activity in the left inferior frontal gyrus, middle temporal gyrus, supramarginal gyrus, and inferior parietal cortices were detected during high- relative to low-load performance, with the strength of these load effects remaining largely static throughout maintenance. Finally, stronger increases in occipital alpha activity were observed during maintenance in the high-load condition, and the strength of these effects grew stronger with time during the first half of maintenance, before dissipating during the latter half of maintenance. Notably, this was the first study to utilize a whole-brain approach to statistically evaluate the temporal dynamics of load-related oscillatory differences during encoding and maintenance processes, and our results highlight the importance of spatial, temporal, and spectral specificity in this regard.
Collapse
Affiliation(s)
- Amy L Proskovec
- Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Tony W Wilson
- Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Neurological Sciences, UNMC, Omaha, NE, USA.
| |
Collapse
|
1222
|
Thies M, Zrenner C, Ziemann U, Bergmann TO. Sensorimotor mu-alpha power is positively related to corticospinal excitability. Brain Stimul 2018; 11:1119-1122. [DOI: 10.1016/j.brs.2018.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/18/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
|
1223
|
Heideman SG, Rohenkohl G, Chauvin JJ, Palmer CE, van Ede F, Nobre AC. Anticipatory neural dynamics of spatial-temporal orienting of attention in younger and older adults. Neuroimage 2018; 178:46-56. [PMID: 29733953 PMCID: PMC6057272 DOI: 10.1016/j.neuroimage.2018.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/13/2018] [Accepted: 05/01/2018] [Indexed: 11/30/2022] Open
Abstract
Spatial and temporal expectations act synergistically to facilitate visual perception. In the current study, we sought to investigate the anticipatory oscillatory markers of combined spatial-temporal orienting and to test whether these decline with ageing. We examined anticipatory neural dynamics associated with joint spatial-temporal orienting of attention using magnetoencephalography (MEG) in both younger and older adults. Participants performed a cued covert spatial-temporal orienting task requiring the discrimination of a visual target. Cues indicated both where and when targets would appear. In both age groups, valid spatial-temporal cues significantly enhanced perceptual sensitivity and reduced reaction times. In the MEG data, the main effect of spatial orienting was the lateralised anticipatory modulation of posterior alpha and beta oscillations. In contrast to previous reports, this modulation was not attenuated in older adults; instead it was even more pronounced. The main effect of temporal orienting was a bilateral suppression of posterior alpha and beta oscillations. This effect was restricted to younger adults. Our results also revealed a striking interaction between anticipatory spatial and temporal orienting in the gamma-band (60-75 Hz). When considering both age groups separately, this effect was only clearly evident and only survived statistical evaluation in the older adults. Together, these observations provide several new insights into the neural dynamics supporting separate as well as combined effects of spatial and temporal orienting of attention, and suggest that different neural dynamics associated with attentional orienting appear differentially sensitive to ageing.
Collapse
Affiliation(s)
- Simone G Heideman
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK; Brain and Cognition Lab, Department of Experimental Psychology, University of Oxford, UK
| | - Gustavo Rohenkohl
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK; Brain and Cognition Lab, Department of Experimental Psychology, University of Oxford, UK
| | - Joshua J Chauvin
- Brain and Cognition Lab, Department of Experimental Psychology, University of Oxford, UK
| | - Clare E Palmer
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK; Brain and Cognition Lab, Department of Experimental Psychology, University of Oxford, UK
| | - Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK; Brain and Cognition Lab, Department of Experimental Psychology, University of Oxford, UK
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK; Brain and Cognition Lab, Department of Experimental Psychology, University of Oxford, UK.
| |
Collapse
|
1224
|
Merkel N, Wibral M, Bland G, Singer W. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study. Hum Brain Mapp 2018; 39:3487-3502. [PMID: 29700906 PMCID: PMC6866423 DOI: 10.1002/hbm.24189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 11/09/2022] Open
Abstract
Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization.
Collapse
Affiliation(s)
- Nina Merkel
- Max Planck Institute for Brain Research (MPI)Frankfurt am Main, Germany
- Ernst Strüngmann Institute for Neuroscience (ESI)Frankfurt am Main, Germany
- J.W. Goethe University, Epilepsy‐center, NeurologyFrankfurt am Main, Germany
| | - Michael Wibral
- Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am Main, Germany
- J.W. Goethe University, Brain Imaging Center (BIC)Frankfurt am Main, Germany
| | - Gareth Bland
- Max Planck Institute for Brain Research (MPI)Frankfurt am Main, Germany
- Ernst Strüngmann Institute for Neuroscience (ESI)Frankfurt am Main, Germany
| | - Wolf Singer
- Max Planck Institute for Brain Research (MPI)Frankfurt am Main, Germany
- Ernst Strüngmann Institute for Neuroscience (ESI)Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am Main, Germany
| |
Collapse
|
1225
|
Crivelli-Decker J, Hsieh LT, Clarke A, Ranganath C. Theta oscillations promote temporal sequence learning. Neurobiol Learn Mem 2018; 153:92-103. [PMID: 29753784 DOI: 10.1016/j.nlm.2018.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022]
Abstract
Many theoretical models suggest that neural oscillations play a role in learning or retrieval of temporal sequences, but the extent to which oscillations support sequence representation remains unclear. To address this question, we used scalp electroencephalography (EEG) to examine oscillatory activity over learning of different object sequences. Participants made semantic decisions on each object as they were presented in a continuous stream. For three "Consistent" sequences, the order of the objects was always fixed. Activity during Consistent sequences was compared to "Random" sequences that consisted of the same objects presented in a different order on each repetition. Over the course of learning, participants made faster semantic decisions to objects in Consistent, as compared to objects in Random sequences. Thus, participants were able to use sequence knowledge to predict upcoming items in Consistent sequences. EEG analyses revealed decreased oscillatory power in the theta (4-7 Hz) band at frontal sites following decisions about objects in Consistent sequences, as compared with objects in Random sequences. The theta power difference between Consistent and Random only emerged in the second half of the task, as participants were more effectively able to predict items in Consistent sequences. Moreover, we found increases in parieto-occipital alpha (10-13 Hz) and beta (14-28 Hz) power during the pre-response period for objects in Consistent sequences, relative to objects in Random sequences. Linear mixed effects modeling revealed that single trial theta oscillations were related to reaction time for future objects in a sequence, whereas beta and alpha oscillations were only predictive of reaction time on the current trial. These results indicate that theta and alpha/beta activity preferentially relate to future and current events, respectively. More generally our findings highlight the importance of band-specific neural oscillations in the learning of temporal order information.
Collapse
Affiliation(s)
- Jordan Crivelli-Decker
- Center for Neuroscience, University of California at Davis, United States; Department of Psychology, University of California at Davis, United States.
| | - Liang-Tien Hsieh
- Center for Neuroscience, University of California at Davis, United States; Department of Psychology and Helen Willis Neuroscience Institute, University of California at Berkeley, United States
| | - Alex Clarke
- Center for Neuroscience, University of California at Davis, United States; Department of Psychology, University of Cambridge, UK
| | - Charan Ranganath
- Center for Neuroscience, University of California at Davis, United States; Department of Psychology, University of California at Davis, United States.
| |
Collapse
|
1226
|
Babu Henry Samuel I, Wang C, Hu Z, Ding M. The frequency of alpha oscillations: Task-dependent modulation and its functional significance. Neuroimage 2018; 183:897-906. [PMID: 30176369 DOI: 10.1016/j.neuroimage.2018.08.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022] Open
Abstract
Power (amplitude) and frequency are two important characteristics of EEG alpha oscillations (8-12 Hz). There is an extensive literature showing that alpha power can be modulated in a goal-oriented manner to either enhance or suppress sensory information processing. Only a few studies to date have examined the task-dependent modulation of alpha frequency. Instead, alpha frequency is often viewed as a trait variable, and used to characterize individual differences in cognitive functioning. We performed two experiments to examine the task-dependent modulation of alpha frequency and its functional significance. In the first experiment, high-density EEG was recorded from 21 participants performing a Sternberg working memory task. The results showed that: (1) during memory encoding, alpha frequency decreased with increasing memory load, whereas during memory retention and retrieval, alpha frequency increased with increasing memory load, (2) higher alpha frequency prior to the onset of probe was associated with longer reaction time, and (3) higher alpha frequency prior to the onset of cue or probe was associated with weaker early cue-evoked or probe-evoked neural responses. In the second experiment, simultaneous EEG-fMRI was recorded from 59 participants during resting state. An EEG-informed fMRI analysis revealed that the spontaneous fluctuations of alpha frequency, but not alpha power, were inversely associated with BOLD activity in the visual cortex. Taken together, these findings suggest that alpha frequency is task-dependent, may serve as an indicator of cortical excitability, and along with alpha power, provides more comprehensive indexing of sensory gating.
Collapse
Affiliation(s)
- Immanuel Babu Henry Samuel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Chao Wang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Zhenhong Hu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
1227
|
Fraga González G, Smit DJA, van der Molen MJW, Tijms J, Stam CJ, de Geus EJC, van der Molen MW. EEG Resting State Functional Connectivity in Adult Dyslexics Using Phase Lag Index and Graph Analysis. Front Hum Neurosci 2018; 12:341. [PMID: 30214403 PMCID: PMC6125304 DOI: 10.3389/fnhum.2018.00341] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/10/2018] [Indexed: 11/13/2022] Open
Abstract
Developmental dyslexia may involve deficits in functional connectivity across widespread brain networks that enable fluent reading. We investigated the large-scale organization of electroencephalography (EEG) functional networks at rest in 28 dyslexics and 36 typically reading adults. For each frequency band (delta, theta alpha and beta), we assessed functional connectivity strength with the phase lag index (PLI). Network topology was examined using minimum spanning tree (MST) graphs derived from the functional connectivity matrices. We found significant group differences in the alpha band (8-13 Hz). The graph analysis indicated more interconnected nodes, in dyslexics compared to typical readers. The graph metrics were significantly correlated with age in dyslexics but not in typical readers, which may indicate more heterogeneity in maturation of brain networks in dyslexics. The present findings support the involvement of alpha oscillations in higher cognition and the sensitivity of graph metrics to characterize functional networks in adult dyslexia. Finally, the current results extend our previous findings on children.
Collapse
Affiliation(s)
- Gorka Fraga González
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Rudolf Berlin Center, Amsterdam, Netherlands
| | - Dirk J A Smit
- Department of Biological Psychology, VU University, Amsterdam, Netherlands.,Neuroscience Campus Amsterdam, VU University, Amsterdam, Netherlands
| | - Melle J W van der Molen
- Institute of Psychology, Leiden University, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Jurgen Tijms
- Rudolf Berlin Center, Amsterdam, Netherlands.,IWAL Institute, Amsterdam, Netherlands
| | - Cornelis Jan Stam
- Department of Clinical Neuropsychology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, VU University, Amsterdam, Netherlands.,Neuroscience Campus Amsterdam, VU University, Amsterdam, Netherlands
| | - Maurits W van der Molen
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
1228
|
Grandi LC, Kaelin-Lang A, Orban G, Song W, Salvadè A, Stefani A, Di Giovanni G, Galati S. Oscillatory Activity in the Cortex, Motor Thalamus and Nucleus Reticularis Thalami in Acute TTX and Chronic 6-OHDA Dopamine-Depleted Animals. Front Neurol 2018; 9:663. [PMID: 30210425 PMCID: PMC6122290 DOI: 10.3389/fneur.2018.00663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
The motor thalamus (MTh) and the nucleus reticularis thalami (NRT) have been largely neglected in Parkinson's disease (PD) research, despite their key role as interface between basal ganglia (BG) and cortex (Cx). In the present study, we investigated the oscillatory activity within the Cx, MTh, and NRT, in normal and different dopamine (DA)-deficient states. We performed our experiments in both acute and chronic DA-denervated rats by injecting into the medial forebrain bundle (MFB) tetrodotoxin (TTX) or 6-hydroxydopamine (6-OHDA), respectively. Interestingly, almost all the electroencephalogram (EEG) frequency bands changed in acute and/or chronic DA depletion, suggesting alteration of all oscillatory activities and not of a specific band. Overall, δ (2-4 Hz) and θ (4-8 Hz) band decreased in NRT and Cx in acute and chronic state, whilst, α (8-13 Hz) band decreased in acute and chronic states in the MTh and NRT but not in the Cx. The β (13-40 Hz) and γ (60-90 Hz) bands were enhanced in the Cx. In the NRT the β bands decreased, except for high-β (Hβ, 25-30 Hz) that increased in acute state. In the MTh, Lβ and Hβ decreased in acute DA depletion state and γ decreased in both TTX and 6-OHDA-treated animals. These results confirm that abnormal cortical β band are present in the established DA deficiency and it might be considered a hallmark of PD. The abnormal oscillatory activity in frequency interval of other bands, in particular the dampening of low frequencies in thalamic stations, in both states of DA depletion might also underlie PD motor and non-motor symptoms. Our data highlighted the effects of acute depletion of DA and the strict interplay in the oscillatory activity between the MTh and NRT in both acute and chronic stage of DA depletion. Moreover, our findings emphasize early alterations in the NRT, a crucial station for thalamic information processing.
Collapse
Affiliation(s)
- Laura C. Grandi
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| | - Alain Kaelin-Lang
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Gergely Orban
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| | - Wei Song
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| | - Agnese Salvadè
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| | - Alessandro Stefani
- Department System Medicine, UOSD Parkinson, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Salvatore Galati
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| |
Collapse
|
1229
|
Bridwell DA, Henderson S, Sorge M, Plis S, Calhoun VD. Relationships between alpha oscillations during speech preparation and the listener N400 ERP to the produced speech. Sci Rep 2018; 8:12838. [PMID: 30150670 PMCID: PMC6110750 DOI: 10.1038/s41598-018-31038-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/10/2018] [Indexed: 11/08/2022] Open
Abstract
While previous studies separately demonstrate EEG spectral modulations during speech preparation and ERP responses to the listened speech, it is unclear whether these responses are related on a trial-by-trial basis between a speaker and listener. In order to determine whether these responses are related in real-time, Electroencephalography (EEG) responses were measured simultaneously within a speaker and listener using a 24 electrode Mobile EEG system (18 participants; 9 pairs) during a sentence completion task. Each trial consisted of a sentence prompt with an incomplete ending (e.g. "I took my dog for a ____"). The speaker was instructed to fill in the ending with something expected (e.g. "walk") (40 trials) or unexpected (e.g. "drink") (40 trials). The other participant listened to the speaker throughout the block. We found that lower alpha band activity was reduced when individuals prepared unexpected sentence endings compared to expected sentence endings. Greater reductions in the speaker's lower alpha activity during response preparation were correlated with a more negative N400 response in the listener to the unexpected word. These findings demonstrate that alpha suppression and the N400 ERP effect are present within a hyperscanning context and they are correlated between the speaker and listener during sentence completion.
Collapse
Affiliation(s)
| | | | | | - Sergey Plis
- The Mind Research Network, Albuquerque, NM, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
1230
|
Clarke A, Devereux BJ, Tyler LK. Oscillatory Dynamics of Perceptual to Conceptual Transformations in the Ventral Visual Pathway. J Cogn Neurosci 2018; 30:1590-1605. [PMID: 30125217 DOI: 10.1162/jocn_a_01325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Object recognition requires dynamic transformations of low-level visual inputs to complex semantic representations. Although this process depends on the ventral visual pathway, we lack an incremental account from low-level inputs to semantic representations and the mechanistic details of these dynamics. Here we combine computational models of vision with semantics and test the output of the incremental model against patterns of neural oscillations recorded with magnetoencephalography in humans. Representational similarity analysis showed visual information was represented in low-frequency activity throughout the ventral visual pathway, and semantic information was represented in theta activity. Furthermore, directed connectivity showed visual information travels through feedforward connections, whereas visual information is transformed into semantic representations through feedforward and feedback activity, centered on the anterior temporal lobe. Our research highlights that the complex transformations between visual and semantic information is driven by feedforward and recurrent dynamics resulting in object-specific semantics.
Collapse
Affiliation(s)
- Alex Clarke
- University of Cambridge.,Anglia Ruskin University, Cambridge, United Kingdom
| | | | | |
Collapse
|
1231
|
Optimal referencing for stereo-electroencephalographic (SEEG) recordings. Neuroimage 2018; 183:327-335. [PMID: 30121338 DOI: 10.1016/j.neuroimage.2018.08.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/24/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Stereo-electroencephalography (SEEG) is an intracranial recording technique in which depth electrodes are inserted in the brain as part of presurgical assessments for invasive brain surgery. SEEG recordings can tap into neural signals across the entire brain and thereby sample both cortical and subcortical sites. However, even though signal referencing is important for proper assessment of SEEG signals, no previous study has comprehensively evaluated the optimal referencing method for SEEG. In our study, we recorded SEEG data from 15 human subjects during a motor task, referencing them against the average of two white matter contacts (monopolar reference). We then subjected these signals to 5 different re-referencing approaches: common average reference (CAR), gray-white matter reference (GWR), electrode shaft reference (ESR), bipolar reference, and Laplacian reference. The results from three different signal quality metrics suggest the use of the Laplacian re-reference for study of local population-level activity and low-frequency oscillatory activity.
Collapse
|
1232
|
Croce P, Zappasodi F, Spadone S, Capotosto P. Magnetic stimulation selectively affects pre-stimulus EEG microstates. Neuroimage 2018; 176:239-245. [DOI: 10.1016/j.neuroimage.2018.04.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022] Open
|
1233
|
Drijvers L, Özyürek A, Jensen O. Alpha and Beta Oscillations Index Semantic Congruency between Speech and Gestures in Clear and Degraded Speech. J Cogn Neurosci 2018; 30:1086-1097. [DOI: 10.1162/jocn_a_01301] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Previous work revealed that visual semantic information conveyed by gestures can enhance degraded speech comprehension, but the mechanisms underlying these integration processes under adverse listening conditions remain poorly understood. We used MEG to investigate how oscillatory dynamics support speech–gesture integration when integration load is manipulated by auditory (e.g., speech degradation) and visual semantic (e.g., gesture congruency) factors. Participants were presented with videos of an actress uttering an action verb in clear or degraded speech, accompanied by a matching (mixing gesture + “mixing”) or mismatching (drinking gesture + “walking”) gesture. In clear speech, alpha/beta power was more suppressed in the left inferior frontal gyrus and motor and visual cortices when integration load increased in response to mismatching versus matching gestures. In degraded speech, beta power was less suppressed over posterior STS and medial temporal lobe for mismatching compared with matching gestures, showing that integration load was lowest when speech was degraded and mismatching gestures could not be integrated and disambiguate the degraded signal. Our results thus provide novel insights on how low-frequency oscillatory modulations in different parts of the cortex support the semantic audiovisual integration of gestures in clear and degraded speech: When speech is clear, the left inferior frontal gyrus and motor and visual cortices engage because higher-level semantic information increases semantic integration load. When speech is degraded, posterior STS/middle temporal gyrus and medial temporal lobe are less engaged because integration load is lowest when visual semantic information does not aid lexical retrieval and speech and gestures cannot be integrated.
Collapse
Affiliation(s)
| | - Asli Özyürek
- Radboud University
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | |
Collapse
|
1234
|
Arns M, Vollebregt MA, Palmer D, Spooner C, Gordon E, Kohn M, Clarke S, Elliott GR, Buitelaar JK. Electroencephalographic biomarkers as predictors of methylphenidate response in attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol 2018; 28:881-891. [PMID: 29937325 DOI: 10.1016/j.euroneuro.2018.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 05/22/2018] [Accepted: 06/02/2018] [Indexed: 11/29/2022]
Abstract
UNLABELLED EEG biomarkers have shown promise in predicting non-response to stimulant medication in ADHD and could serve as translational biomarkers. This study aimed to replicate and extend previous EEG biomarkers. The international Study to Predict Optimized Treatment for ADHD (iSPOT-A), a multi-center, international, prospective open-label trial, enrolled 336 children and adolescents with ADHD (11.9 yrs; 245 males; prescribed methylphenidate) and 158 healthy children. Treatment response was established after six weeks using the clinician rated ADHD-Rating Scale-IV. Theta/Beta ratio (TBR) and alpha peak frequency (APF) were assessed at baseline as predictors for treatment outcome. No differences between ADHD and controls were found for TBR and APF. 62% of the ADHD group was classified as a responder. Responders did not differ from non-responders in age, medication dosage, and baseline severity of ADHD symptoms. Male-adolescent non-responders exhibited a low frontal APF (Fz: R = 9.2 Hz vs. NR = 8.1 Hz; ES = 0.83), whereas no effects were found for TBR. A low APF in male adolescents was associated with non-response to methylphenidate, replicating earlier work. Our data suggest that the typical maturational EEG changes observed in ADHD responders and controls are absent in non-responders to methylphenidate and these typical changes start emerging in adolescence. CLINICAL TRIALS REGISTRATION www.clinicaltrials.gov; NCT00863499 (https://clinicaltrials.gov/ct2/show/NCT00863499).
Collapse
Affiliation(s)
- Martijn Arns
- Research Institute Brainclinics, Bijleveldsingel 34, 6524 AD Nijmegen, The Netherlands; Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands.
| | - Madelon A Vollebregt
- Research Institute Brainclinics, Bijleveldsingel 34, 6524 AD Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Donna Palmer
- Brain Resource Ltd, Sydney, NSW, Australia; Brain Resource Ltd, San Francisco, CA, USA; Brain Dynamics Center, Sydney Medical School and Westmead Millenium Institute, University of Sydney, NSW, Australia
| | | | - Evian Gordon
- Brain Resource Ltd, Sydney, NSW, Australia; Brain Resource Ltd, San Francisco, CA, USA
| | - Michael Kohn
- Brain Dynamics Center, Sydney Medical School and Westmead Millenium Institute, University of Sydney, NSW, Australia; CRASH (Centre for Research into Adolescent'S Health) Westmead Hospital, Sydney Australia
| | - Simon Clarke
- Brain Dynamics Center, Sydney Medical School and Westmead Millenium Institute, University of Sydney, NSW, Australia; CRASH (Centre for Research into Adolescent'S Health) Westmead Hospital, Sydney Australia
| | - Glen R Elliott
- Children's Health Council, Palo Alto, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, CA, USA
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| |
Collapse
|
1235
|
Michail G, Keil J. High cognitive load enhances the susceptibility to non-speech audiovisual illusions. Sci Rep 2018; 8:11530. [PMID: 30069059 PMCID: PMC6070496 DOI: 10.1038/s41598-018-30007-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/20/2018] [Indexed: 12/03/2022] Open
Abstract
The role of attentional processes in the integration of input from different sensory modalities is complex and multifaceted. Importantly, little is known about how simple, non-linguistic stimuli are integrated when the resources available for sensory processing are exhausted. We studied this question by examining multisensory integration under conditions of limited endogenous attentional resources. Multisensory integration was assessed through the sound-induced flash illusion (SIFI), in which a flash presented simultaneously with two short auditory beeps is often perceived as two flashes, while cognitive load was manipulated using an n-back task. A one-way repeated measures ANOVA revealed that increased cognitive demands had a significant effect on the perception of the illusion while post-hoc tests showed that participants' illusion perception was increased when attentional resources were limited. Additional analysis demonstrated that this effect was not related to a response bias. These findings provide evidence that the integration of non-speech, audiovisual stimuli is enhanced under reduced attentional resources and it therefore supports the notion that top-down attentional control plays an essential role in multisensory integration.
Collapse
Affiliation(s)
- Georgios Michail
- Department of Psychiatry and Psychotherapy, Multisensory Integration Lab, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Julian Keil
- Department of Psychiatry and Psychotherapy, Multisensory Integration Lab, Charité Universitätsmedizin Berlin, Berlin, Germany
- Biological Psychology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
1236
|
Sumner RL, McMillan RL, Shaw AD, Singh KD, Sundram F, Muthukumaraswamy SD. Peak visual gamma frequency is modified across the healthy menstrual cycle. Hum Brain Mapp 2018; 39:3187-3202. [PMID: 29665216 PMCID: PMC6055613 DOI: 10.1002/hbm.24069] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022] Open
Abstract
Fluctuations in gonadal hormones over the course of the menstrual cycle are known to cause functional brain changes and are thought to modulate changes in the balance of cortical excitation and inhibition. Animal research has shown this occurs primarily via the major metabolite of progesterone, allopregnanolone, and its action as a positive allosteric modulator of the GABAA receptor. Our study used EEG to record gamma oscillations induced in the visual cortex using stationary and moving gratings. Recordings took place during twenty females' mid-luteal phase when progesterone and estradiol are highest, and early follicular phase when progesterone and estradiol are lowest. Significantly higher (∼5 Hz) gamma frequency was recorded during the luteal compared to the follicular phase for both stimuli types. Using dynamic causal modeling, these changes were linked to stronger self-inhibition of superficial pyramidal cells in the luteal compared to the follicular phase. In addition, the connection from inhibitory interneurons to deep pyramidal cells was found to be stronger in the follicular compared to the luteal phase. These findings show that complex functional changes in synaptic microcircuitry occur across the menstrual cycle and that menstrual cycle phase should be taken into consideration when including female participants in research into gamma-band oscillations.
Collapse
Affiliation(s)
- Rachael L. Sumner
- School of PsychologyThe University of AucklandAuckland1142New Zealand
| | | | | | - Krish D. Singh
- CUBRIC, School of PsychologyCardiff UniversityCardiffCF24 4HQUK
| | - Fred Sundram
- Department of Psychological MedicineThe University of AucklandAuckland1142New Zealand
| | | |
Collapse
|
1237
|
Ritter SM, Abbing J, van Schie HT. Eye-Closure Enhances Creative Performance on Divergent and Convergent Creativity Tasks. Front Psychol 2018; 9:1315. [PMID: 30108537 PMCID: PMC6079281 DOI: 10.3389/fpsyg.2018.01315] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/09/2018] [Indexed: 01/25/2023] Open
Abstract
In today's world of rapid changes and increasing complexity, understanding and enhancing creativity is of critical importance. Studies investigating EEG correlates of creativity linked power in the alpha frequency band to creativity, and alpha-power has been interpreted as reflecting attention on internal mental representations and inhibition of external sensory input. Thus far, however, there is no direct evidence for the idea that internally directed attention facilitates creativity. The aim of the current study was to experimentally investigate the relationship between eye-closure-a simple and effective means to stimulate internally directed attention-and creativity. Moreover, to test whether the potential beneficial effect of eye-closure is specific for creativity, or whether it improves general cognitive functioning, the current study tested the effect of eye-closure on creativity and on working memory (WM). Participants completed four tasks to measure divergent and convergent creativity (Adapted Alternative Uses (AAU) Test, Remote Associates Test (RAT), Sentence Construction Test, and Word Construction Test), and one task to measure WM (Digit Span Test). For each task, participants had to perform two versions, one version with eyes open and one version with eyes closed. Eye-closure facilitated creative performance on the classical divergent and convergent creativity tasks (AAU Test and RAT). No effect of eye-closure was observed on the WM task. These findings provide a novel and easily applicable means to enhance divergent and convergent creativity through eye-closure.
Collapse
Affiliation(s)
- Simone M. Ritter
- Department of Behaviour Change and Well-Being, Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | | | | |
Collapse
|
1238
|
Vidaurre D, Hunt LT, Quinn AJ, Hunt BAE, Brookes MJ, Nobre AC, Woolrich MW. Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. Nat Commun 2018; 9:2987. [PMID: 30061566 PMCID: PMC6065434 DOI: 10.1038/s41467-018-05316-z] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 01/08/2023] Open
Abstract
Frequency-specific oscillations and phase-coupling of neuronal populations are essential mechanisms for the coordination of activity between brain areas during cognitive tasks. Therefore, the ongoing activity ascribed to the different functional brain networks should also be able to reorganise and coordinate via similar mechanisms. We develop a novel method for identifying large-scale phase-coupled network dynamics and show that resting networks in magnetoencephalography are well characterised by visits to short-lived transient brain states, with spatially distinct patterns of oscillatory power and coherence in specific frequency bands. Brain states are identified for sensory, motor networks and higher-order cognitive networks. The cognitive networks include a posterior alpha (8-12 Hz) and an anterior delta/theta range (1-7 Hz) network, both exhibiting high power and coherence in areas that correspond to posterior and anterior subdivisions of the default mode network. Our results show that large-scale cortical phase-coupling networks have characteristic signatures in very specific frequency bands, possibly reflecting functional specialisation at different intrinsic timescales.
Collapse
Affiliation(s)
- Diego Vidaurre
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, OX37XJ, UK.
- Wellcome Centre for Integrative Neuroimaging, Oxford University Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, OX39DU, UK.
- Department of Psychiatry, University of Oxford, Oxford, OX37JX, UK.
- Department of Brain Physiology, Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.
| | - Laurence T Hunt
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, OX37XJ, UK
- Wellcome Centre for Integrative Neuroimaging, Oxford University Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, OX39DU, UK
- Department of Psychiatry, University of Oxford, Oxford, OX37JX, UK
| | - Andrew J Quinn
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, OX37XJ, UK
- Department of Psychiatry, University of Oxford, Oxford, OX37JX, UK
| | - Benjamin A E Hunt
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG72RD, UK
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Matthew J Brookes
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG72RD, UK
| | - Anna C Nobre
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, OX37XJ, UK
- Department of Psychiatry, University of Oxford, Oxford, OX37JX, UK
- Department of Experimental Psychology, University of Oxford, Oxford, 0X26GG, UK
| | - Mark W Woolrich
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, OX37XJ, UK
- Wellcome Centre for Integrative Neuroimaging, Oxford University Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, OX39DU, UK
- Department of Psychiatry, University of Oxford, Oxford, OX37JX, UK
| |
Collapse
|
1239
|
Chao ZC, Sawada M, Isa T, Nishimura Y. Dynamic Reorganization of Motor Networks During Recovery from Partial Spinal Cord Injury in Monkeys. Cereb Cortex 2018; 29:3059-3073. [DOI: 10.1093/cercor/bhy172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/28/2018] [Indexed: 11/12/2022] Open
Abstract
Abstract
After spinal cord injury (SCI), the motor-related cortical areas can be a potential substrate for functional recovery in addition to the spinal cord. However, a dynamic description of how motor cortical circuits reorganize after SCI is lacking. Here, we captured the comprehensive dynamics of motor networks across SCI in a nonhuman primate model. Using electrocorticography over the sensorimotor areas in monkeys, we collected broadband neuronal signals during a reaching-and-grasping task at different stages of recovery of dexterous finger movements after a partial SCI at the cervical levels. We identified two distinct network dynamics: grasping-related intrahemispheric interactions from the contralesional premotor cortex (PM) to the contralesional primary motor cortex (M1) in the high-γ band (>70 Hz), and motor-preparation-related interhemispheric interactions from the contralesional to ipsilesional PM in the α and low-β bands (10–15 Hz). The strengths of these networks correlated to the time course of behavioral recovery. The grasping-related network showed enhanced activation immediately after the injury, but gradually returned to normal while the strength of the motor-preparation-related network gradually increased. Our findings suggest a cortical compensatory mechanism after SCI, where two interdependent motor networks redirect activity from the contralesional hemisphere to the other hemisphere to facilitate functional recovery.
Collapse
Affiliation(s)
- Zenas C Chao
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Masahiro Sawada
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukio Nishimura
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Neural Prosthesis Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
1240
|
Kawasaki M, Kitajo K, Yamaguchi Y. Sensory-motor synchronization in the brain corresponds to behavioral synchronization between individuals. Neuropsychologia 2018; 119:59-67. [PMID: 30055179 DOI: 10.1016/j.neuropsychologia.2018.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Behavioral rhythms between individuals are known to spontaneously synchronize through social interactions; however, it remains unclear whether inter-brain synchronization emerges with this behavioral synchronization in the case of anti-phase coordination with other's behavior (e.g. turn-taking). In this study, we simultaneously recorded electroencephalograms (EEGs) we simultaneously recorded electroencephalograms (EEGs) from 2 participants as 1 pair (in total, 34 right-handed participants as 17 pairs) during an alternate tapping task in which pairs of participants alternated tapping a key with their right finger. Participants sat facing computer displays and were asked to match their partners' tapping intervals using visual feedback that was presented on the displays. Based on their ability to synchronize, we divided participants into Good performance and Poor performance groups. In both groups, wavelet analyses of EEG data revealed alpha-(approximately 12 Hz) and beta-(approximately 20 Hz) amplitude modulation in the left motor areas. Interestingly, both alpha and beta amplitudes were correlated between individuals from the Good group, but not from the Poor group. Moreover, while the Good group showed intra-brain and inter-brain alpha-phase synchronization (about 12 Hz) within the posterior brain areas (i.e., visual areas) and the central brain areas (i.e., motor areas), the Poor group did not. These results suggest that inter-brain synchronization may play an important role in coordinating one's behavioral rhythms with those of others.
Collapse
Affiliation(s)
- Masahiro Kawasaki
- Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, Japan.
| | - Keiichi Kitajo
- RIKEN CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Japan
| | - Yoko Yamaguchi
- Neuroinformatics Unit, Integrative Computational Brain Science Collaboration Center, RIKEN Center for Brain Science, Japan
| |
Collapse
|
1241
|
Facilitated Event-Related Power Modulations during Transcranial Alternating Current Stimulation (tACS) Revealed by Concurrent tACS-MEG. eNeuro 2018; 5:eN-TNWR-0069-18. [PMID: 30073188 PMCID: PMC6070188 DOI: 10.1523/eneuro.0069-18.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 01/02/2023] Open
Abstract
Non-invasive approaches to modulate oscillatory activity in the brain are increasingly popular in the scientific community. Transcranial alternating current stimulation (tACS) has been shown to modulate neural oscillations in a frequency-specific manner. However, due to a massive stimulation artifact at the targeted frequency, little is known about effects of tACS during stimulation. It remains unclear how the continuous application of tACS affects event-related oscillations during cognitive tasks. Depending on whether tACS influences pre- or post-stimulus oscillations, or both, the endogenous, event-related oscillatory dynamics could be pushed in various directions or not at all. A better understanding of these effects is crucial to plan, predict, and understand outcomes of solely behavioral tACS experiments. In the present study, a recently proposed procedure to suppress tACS artifacts by projecting MEG data into source-space using spatial filtering was utilized to recover event-related power modulations in the alpha-band during a mental rotation task. MEG data of 25 human subjects was continuously recorded. After 10-minute baseline measurement, participants received either 20 minutes of tACS at their individual alpha frequency or sham stimulation. Another 40 minutes of MEG data were acquired thereafter. Data were projected into source-space and carefully examined for residual artifacts. Results revealed strong facilitation of event-related power modulations in the alpha-band during tACS application. These results provide first direct evidence that tACS does not counteract top-down suppression of intrinsic oscillations, but rather enhances pre-existent power modulations within the range of the individual alpha (= stimulation) frequency.
Collapse
|
1242
|
Harris AM, Dux PE, Mattingley JB. Awareness is related to reduced post‐stimulus alpha power: a no‐report inattentional blindness study. Eur J Neurosci 2018; 52:4411-4422. [DOI: 10.1111/ejn.13947] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Anthony M. Harris
- Queensland Brain Institute The University of Queensland St Lucia Qld Australia
| | - Paul E. Dux
- School of Psychology The University of Queensland St Lucia Qld Australia
| | - Jason B. Mattingley
- Queensland Brain Institute The University of Queensland St Lucia Qld Australia
- School of Psychology The University of Queensland St Lucia Qld Australia
| |
Collapse
|
1243
|
Pan Y, Tan Z, Gao Z, Li Y, Wang L. Neural Activity Is Dynamically Modulated by Memory Load During the Maintenance of Spatial Objects. Front Psychol 2018; 9:1071. [PMID: 30018577 PMCID: PMC6037890 DOI: 10.3389/fpsyg.2018.01071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/06/2018] [Indexed: 12/04/2022] Open
Abstract
Visuospatial working memory (WM) is a fundamental but severely limited ability to temporarily remember selected stimuli. Several studies have investigated the underlying neural mechanisms of maintaining various visuospatial stimuli simultaneously (i.e., WM load, the number of representations that need to be maintained in WM). However, two confounding factors, namely verbal representation and encoding load (the number of items that need to be encoded into WM), have not been well controlled in previous studies. In this study, we developed a novel delayed-match-to-sample task (DMST) controlling for these two confounding factors and recorded scalp EEG signals during the task. We found that behavioral performance deteriorated severely as memory load increased. Neural activity was modulated by WM load in a dynamic manner. Specifically, higher memory load induced stronger amplitude in occipital and central channel-clusters during the early delay period, while the inverse trend was observed in central and frontal channel-clusters during late delay. In addition, the same inverse memory load effect, that was lower memory load induced stronger amplitude, was observed in occipital channel-cluster alpha power during late delay. Finally, significant correlations between neural activity and individual reaction time showed a role of late-delay central and frontal channel-cluster amplitude in predicting behavioral performance. Because the occipital cortex is important for visual information maintenance, the decrease in alpha oscillation was consistent with the cognitive role that is “gating by inhibition.” Together, our results from a well-controlled DMST suggest that WM load not exerted constant but dynamic effect on neural activity during maintenance of visuospatial objects.
Collapse
Affiliation(s)
- Yali Pan
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Tan
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyao Gao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| |
Collapse
|
1244
|
Resting-state EEG power and connectivity are associated with alpha peak frequency slowing in healthy aging. Neurobiol Aging 2018; 71:149-155. [PMID: 30144647 DOI: 10.1016/j.neurobiolaging.2018.07.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/21/2018] [Accepted: 07/10/2018] [Indexed: 01/15/2023]
Abstract
The individual alpha peak frequency (IAPF) of the human electroencephalography (EEG) typically experiences slowing with increasing age. Despite this hallmark change, studies that investigate modulations of conventional EEG alpha power and connectivity by aging and age-related neuropathology neglect to account for intergroup differences in IAPF. To investigate the relationship of age-related IAPF slowing with EEG power and connectivity, we recorded eyes-closed resting-state EEG in 37 young adults and 32 older adults. We replicated the finding of a slowed IAPF in older adults. IAPF values were significantly correlated with the frequency of maximum global connectivity and the means of their distributions did not differ, suggesting that connectivity was highest at the IAPF. Older adults expressed reduced global EEG power and connectivity at the conventional upper alpha band (10-12 Hz) compared with young adults. By contrast, groups had equivalent power and connectivity at the IAPF. The results suggest that conventional spectral boundaries may be biased against older adults or any group with a slowed IAPF. We conclude that investigations of alpha activity in aging and age-related neuropathology should be adapted to the IAPF of the individual and that previous findings should be interpreted with caution. EEG in the dominant alpha range may be unsuitable for examining cortico-cortical connectivity due to its subcortical origins.
Collapse
|
1245
|
Abstract
BACKGROUND Anesthetics are believed to alter functional connectivity across brain regions. However, network-level analyses of anesthesia, particularly in humans, are sparse. The authors hypothesized that propofol-induced loss of consciousness results in functional disconnection of human sensorimotor cortices underlying the loss of volitional motor responses. METHODS The authors recorded local field potentials from sensorimotor cortices in patients with Parkinson disease (N = 12) and essential tremor (N = 7) undergoing deep brain stimulation surgery, before and after propofol-induced loss of consciousness. Local spectral power and interregional connectivity (coherence and imaginary coherence) were evaluated separately across conditions for the two populations. RESULTS Propofol anesthesia caused power increases for frequencies between 2 and 100 Hz across the sensorimotor cortices and a shift of the dominant spectral peak in α and β frequencies toward lower frequencies (median ± SD peak frequency: 24.5 ± 2.6 Hz to 12.8 ± 2.3 Hz in Parkinson disease; 13.8 ± 2.1 Hz to 12.1 ± 1.0 Hz in essential tremor). Despite local increases in power, sensorimotor cortical coherence was suppressed with propofol in both cohorts, specifically in β frequencies (18 to 29 Hz) for Parkinson disease and α and β (10 to 48 Hz) in essential tremor. CONCLUSIONS The decrease in functional connectivity between sensory and motor cortices, despite an increase in local spectral power, suggests that propofol causes a functional disconnection of cortices with increases in autonomous activity within cortical regions. This pattern occurs across diseases evaluated, suggesting that these may be generalizable effects of propofol in patients with movement disorders and beyond. Sensorimotor network disruption may underlie anesthetic-induced loss of volitional control.
Collapse
|
1246
|
Temporal Expectation Modulates the Cortical Dynamics of Short-Term Memory. J Neurosci 2018; 38:7428-7439. [PMID: 30012685 DOI: 10.1523/jneurosci.2928-17.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022] Open
Abstract
Increased memory load is often signified by enhanced neural oscillatory power in the alpha range (8-13 Hz), which is taken to reflect inhibition of task-irrelevant brain regions. The corresponding neural correlates of memory decay, however, are not yet well understood. In the current study, we investigated auditory short-term memory decay in humans using a delayed matching-to-sample task with pure-tone sequences. First, in a behavioral experiment, we modeled memory performance over six different delay-phase durations. Second, in a MEG experiment, we assessed alpha-power modulations over three different delay-phase durations. In both experiments, the temporal expectation for the to-be-remembered sound was manipulated so that it was either temporally expected or not. In both studies, memory performance declined over time, but this decline was weaker when the onset time of the to-be-remembered sound was expected. Similarly, patterns of alpha power in and alpha-tuned connectivity between sensory cortices changed parametrically with delay duration (i.e., decrease in occipitoparietal regions, increase in temporal regions). Temporal expectation not only counteracted alpha-power decline in heteromodal brain areas (i.e., supramarginal gyrus), but also had a beneficial effect on memory decay, counteracting memory performance decline. Correspondingly, temporal expectation also boosted alpha connectivity within attention networks known to play an active role during memory maintenance. The present data show how patterns of alpha power orchestrate short-term memory decay and encourage a more nuanced perspective on alpha power across brain space and time beyond its inhibitory role.SIGNIFICANCE STATEMENT Our sensory memories of the physical world fade quickly. We show here that this decay of short-term memory can be counteracted by so-called temporal expectation; that is, knowledge of when to expect a sensory event that an individual must remember. We also show that neural oscillations in the "alpha" (8-13 Hz) range index both the degree of memory decay (for brief sound patterns) and the respective memory benefit from temporal expectation. Spatially distributed cortical patterns of alpha power show opposing effects in auditory versus visual sensory cortices. Moreover, alpha-tuned connectivity changes within supramodal attention networks reflect the allocation of neural resources as short-term memory representations fade.
Collapse
|
1247
|
Andoh J, Matsushita R, Zatorre RJ. Insights Into Auditory Cortex Dynamics From Non-invasive Brain Stimulation. Front Neurosci 2018; 12:469. [PMID: 30057522 PMCID: PMC6053524 DOI: 10.3389/fnins.2018.00469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023] Open
Abstract
Non-invasive brain stimulation (NIBS) has been widely used as a research tool to modulate cortical excitability of motor as well as non-motor areas, including auditory or language-related areas. NIBS, especially transcranial magnetic stimulation (TMS) and transcranial direct current stimulation, have also been used in clinical settings, with however variable therapeutic outcome, highlighting the need to better understand the mechanisms underlying NIBS techniques. TMS was initially used to address causality between specific brain areas and related behavior, such as language production, providing non-invasive alternatives to lesion studies. Recent literature however suggests that the relationship is not as straightforward as originally thought, and that TMS can show both linear and non-linear modulation of brain responses, highlighting complex network dynamics. In particular, in the last decade, NIBS studies have enabled further advances in our understanding of auditory processing and its underlying functional organization. For instance, NIBS studies showed that even when only one auditory cortex is stimulated unilaterally, bilateral modulation may result, thereby highlighting the influence of functional connectivity between auditory cortices. Additional neuromodulation techniques such as transcranial alternating current stimulation or transcranial random noise stimulation have been used to target frequency-specific neural oscillations of the auditory cortex, thereby providing further insight into modulation of auditory functions. All these NIBS techniques offer different perspectives into the function and organization of auditory cortex. However, further research should be carried out to assess the mode of action and long-term effects of NIBS to optimize their use in clinical settings.
Collapse
Affiliation(s)
- Jamila Andoh
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada
| | - Reiko Matsushita
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada
| |
Collapse
|
1248
|
The Functional Alterations in Top-Down Attention Streams of Parkinson's disease Measured by EEG. Sci Rep 2018; 8:10609. [PMID: 30006636 PMCID: PMC6045632 DOI: 10.1038/s41598-018-29036-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/04/2018] [Indexed: 01/09/2023] Open
Abstract
Early and moderate Parkinson’s disease patients seem to have attention dysfunctions manifested differentially in separate attention streams: top-down and bottom-up. With a focus on the neurophysiological underpinnings of such differences, this study evaluated source-localized regional activity and functional connectivity of regions in the top-down and bottom-up streams as well as any discordance between the two streams. Resting state electroencephalography was used for 36 Parkinson’s disease patients and 36 healthy controls matched for age and gender. Parkinson’s disease patients showed disproportionally higher bilateral gamma activity in the bottom-up stream and higher left alpha2 connectivity in the top-down stream when compared to age-matched controls. An additional cross-frequency coupling analysis showed that Parkinson’s patients have higher alpha2-gamma coupling in the right posterior parietal cortex, which is part of the top-down stream. Higher coupling in this region was also associated with lower severity of motor symptoms in Parkinson’s disease. This study provides evidence that in Parkinson’s disease, the activity in gamma frequency band and connectivity in alpha2 frequency band is discordant between top-down and bottom-up attention streams.
Collapse
|
1249
|
Piispala J, Starck T, Jansson-Verkasalo E, Kallio M. Decreased occipital alpha oscillation in children who stutter during a visual Go/Nogo task. Clin Neurophysiol 2018; 129:1971-1980. [PMID: 30029047 DOI: 10.1016/j.clinph.2018.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/18/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Our goal was to discover attention- and inhibitory control-related differences in the main oscillations of the brain of children who stutter (CWS) compared to typically developed children (TDC). METHODS We performed a time-frequency analysis using wavelets, fast Fourier transformation (FFT) and the Alpha/Theta power ratio of EEG data collected during a visual Go/Nogo task in 7-9 year old CWS and TDC, including also the time window between consecutive tasks. RESULTS CWS showed significantly reduced occipital alpha power and Alpha/Theta ratio in the "resting" or preparatory period between visual stimuli especially in the Nogo condition. CONCLUSIONS The CWS demonstrate reduced inhibition of the visual cortex and information processing in the absence of visual stimuli, which may be related to problems in attentional gating. SIGNIFICANCE Occipital alpha oscillation is elementary in the control and inhibition of visual attention and the lack of occipital alpha modulation indicate fundamental differences in the regulation of visual information processing in CWS. Our findings support the view of stuttering as part of a wide-ranging brain dysfunction most likely involving also attentional and inhibitory networks.
Collapse
Affiliation(s)
- Johanna Piispala
- Department of Clinical Neurophysiology, Oulu University Hospital, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Finland.
| | - Tuomo Starck
- Department of Clinical Neurophysiology, Oulu University Hospital, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Finland.
| | - Eira Jansson-Verkasalo
- Department of Psychology and Speech-Language Pathology, Speech-Language Pathology, University of Turku, Finland.
| | - Mika Kallio
- Department of Clinical Neurophysiology, Oulu University Hospital, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Finland.
| |
Collapse
|
1250
|
van Schouwenburg MR, Sörensen LKA, de Klerk R, Reteig LC, Slagter HA. No Differential Effects of Two Different Alpha-Band Electrical Stimulation Protocols Over Fronto-Parietal Regions on Spatial Attention. Front Neurosci 2018; 12:433. [PMID: 30018530 PMCID: PMC6037819 DOI: 10.3389/fnins.2018.00433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
In a previous study using transcranial alternating current stimulation (tACS), we found preliminary evidence that phase coherence in the alpha band (8–12 Hz) within the fronto-parietal network may critically support top-down control of spatial attention (van Schouwenburg et al., 2017). Specifically, synchronous alpha-band stimulation over the right frontal and parietal cortex (0° relative phase) was associated with changes in performance and fronto-parietal coherence during a spatial attention task as compared to sham stimulation. In the current study, we firstly aimed to replicate these findings with synchronous tACS. Second, we extended our previous protocol by adding a second tACS condition in which the right frontal and parietal cortex were stimulated in a desynchronous fashion (180° relative phase), to test the specificity of the changes observed in our previous study. Participants (n = 23) were tested in three different sessions in which they received either synchronous, desynchronous, or sham stimulation over the right frontal and parietal cortex. In contrast to our previous study, we found no spatially selective effects of stimulation on behavior or coherence in either stimulation protocol compared to sham. We highlight some of the differences in study design that may have contributed to this discrepancy in findings and more generally may determine the effectiveness of tACS.
Collapse
Affiliation(s)
- Martine R van Schouwenburg
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Lynn K A Sörensen
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Raza de Klerk
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Leon C Reteig
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Heleen A Slagter
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|