1251
|
Abstract
The rate of spontaneous mutation is a key parameter in modeling the genetic structure and evolution of populations. The impact of the accumulated load of mutations and the consequences of increasing the mutation rate are important in assessing the genetic health of populations. Mutation frequencies are among the more directly measurable population parameters, although the information needed to convert them into mutation rates is often lacking. A previous analysis of mutation rates in RNA viruses (specifically in riboviruses rather than retroviruses) was constrained by the quality and quantity of available measurements and by the lack of a specific theoretical framework for converting mutation frequencies into mutation rates in this group of organisms. Here, we describe a simple relation between ribovirus mutation frequencies and mutation rates, apply it to the best (albeit far from satisfactory) available data, and observe a central value for the mutation rate per genome per replication of micro(g) approximately 0.76. (The rate per round of cell infection is twice this value or about 1.5.) This value is so large, and ribovirus genomes are so informationally dense, that even a modest increase extinguishes the population.
Collapse
Affiliation(s)
- J W Drake
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709-2233, USA.
| | | |
Collapse
|
1252
|
Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T, Barnes DE. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci U S A 1999; 96:13300-5. [PMID: 10557315 PMCID: PMC23942 DOI: 10.1073/pnas.96.23.13300] [Citation(s) in RCA: 622] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage generated by oxidant byproducts of cellular metabolism has been proposed as a key factor in cancer and aging. Oxygen free radicals cause predominantly base damage in DNA, and the most frequent mutagenic base lesion is 7,8-dihydro-8-oxoguanine (8-oxoG). This altered base can pair with A as well as C residues, leading to a greatly increased frequency of spontaneous G.C-->T.A transversion mutations in repair-deficient bacterial and yeast cells. Eukaryotic cells use a specific DNA glycosylase, the product of the OGG1 gene, to excise 8-oxoG from DNA. To assess the role of the mammalian enzyme in repair of DNA damage and prevention of carcinogenesis, we have generated homozygous ogg1(-/-) null mice. These animals are viable but accumulate abnormal levels of 8-oxoG in their genomes. Despite this increase in potentially miscoding DNA lesions, OGG1-deficient mice exhibit only a moderately, but significantly, elevated spontaneous mutation rate in nonproliferative tissues, do not develop malignancies, and show no marked pathological changes. Extracts of ogg1 null mouse tissues cannot excise the damaged base, but there is significant slow removal in vivo from proliferating cells. These findings suggest that in the absence of the DNA glycosylase, and in apparent contrast to bacterial and yeast cells, an alternative repair pathway functions to minimize the effects of an increased load of 8-oxoG in the genome and maintain a low endogenous mutation frequency.
Collapse
Affiliation(s)
- A Klungland
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
1253
|
Filatov DA, Charlesworth D. DNA polymorphism, haplotype structure and balancing selection in the Leavenworthia PgiC locus. Genetics 1999; 153:1423-34. [PMID: 10545470 PMCID: PMC1460830 DOI: 10.1093/genetics/153.3.1423] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A study of DNA polymorphism and divergence was conducted for the cytosolic phosphoglucose isomerase (PGI:E.C.5.3.1.9) gene of five species of the mustard genus Leavenworthia: Leavenworthia stylosa, L. alabamica, L. crassa, L. uniflora, and L. torulosa. Sequences of an internal 2.3-kb PgiC gene region spanning exons 6-16 were obtained from 14 L. stylosa plants from two natural populations and from one to several plants for each of the other species. The level of nucleotide polymorphism in L. stylosa PgiC gene was quite high (pi = 0.051, theta = 0.052). Although recombination is estimated to be high in this locus, extensive haplotype structure was observed for the entire 2.3-kb region. The L. stylosa sequences fall into at least two groups, distinguished by the presence of several indels and nucleotide substitutions, and one of the three charge change nucleotide replacements within the region sequenced correlates with the haplotypes. The differences between the haplotypes are older than between the species, and the haplotypes are still segregating in at least two of five species studied. There is no evidence of recent or ancient population subdivision that could maintain distinct haplotypes. The age of the haplotypes and the results of Kelly's Z(nS) and Wall's B and Q tests with recombination suggest that the haplotypes are maintained due to balancing selection at or near this locus.
Collapse
Affiliation(s)
- D A Filatov
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | |
Collapse
|
1254
|
Elena, Moya. Rate of deleterious mutation and the distribution of its effects on fitness in vesicular stomatitis virus. J Evol Biol 1999; 12:1078-1088. [DOI: 10.1046/j.1420-9101.1999.00110.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Despite their importance, the parameters describing the spontaneous deleterious mutation process have not been well described in many organisms. If mutations are important for the evolution of every living organism, their importance becomes critical in the case of RNA-based viruses, in which the frequency of mutation is orders of magnitude larger than in DNA-based organisms. The present work reports minimum estimates of the deleterious mutation rate, as well as the characterization of the distribution of deleterious mutational effects on the total fitness of the vesicular stomatitis virus (VSV). The estimates are based on mutation-accumulation experiments in which selection against deleterious mutations was minimized by recurrently imposing genetic bottlenecks of size one. The estimated deleterious mutation rate was 1.2 mutations per genome and generation, with a mean fitness effect of –0.39% per generation. At the end of the mutation-accumulation experiment, the average reduction in fitness was 38% and the distribution of accumulated deleterious effects was, on average, left-skewed. The magnitude of the skewness depends on the initial fitness of the clone analysed. The implications of our findings for the evolutionary biology of RNA viruses are discussed.
Collapse
Affiliation(s)
- Elena
- Institut Cavanilles de Biodiversitat i Biología Evolutiva and Departament de Genètica, Universitat de València, Spain
| | - Moya
- Institut Cavanilles de Biodiversitat i Biología Evolutiva and Departament de Genètica, Universitat de València, Spain
| |
Collapse
|
1255
|
|
1256
|
|
1257
|
Abstract
Attempts to calibrate bacterial evolution have relied on the assumption that rates of molecular sequence divergence in bacteria are similar to those of higher eukaryotes, or to those of the few bacterial taxa for which ancestors can be reliably dated from ecological or geological evidence. Despite similarities in the substitution rates estimated for some lineages, comparisons of the relative rates of evolution at different classes of nucleotide sites indicate no basis for their universal application to all bacteria. However, there is evidence that bacteria have a constant genome-wide mutation rate on an evolutionary time scale but that this rate differs dramatically from the rate estimated by experimental methods.
Collapse
Affiliation(s)
- H Ochman
- Department of Ecology, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
1258
|
Schultz ST. Can females benefit from selfing avoidance? Genetic associations and the evolution of plant gender. Proc Biol Sci 1999. [DOI: 10.1098/rspb.1999.0874] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- S. T. Schultz
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| |
Collapse
|
1259
|
Pletcher SD, Houle D, Curtsinger JW. The evolution of age-specific mortality rates in Drosophila melanogaster: genetic divergence among unselected lines. Genetics 1999; 153:813-23. [PMID: 10511560 PMCID: PMC1460796 DOI: 10.1093/genetics/153.2.813] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Age-specific effects of spontaneous mutations on mortality rates in Drosophila are inferred from three large demographic experiments. Data were collected from inbred lines that were allowed to accumulate spontaneous mutations for 10, 19, and 47 generations. Estimates of age-specific mutational variance for mortality were based on data from all three experiments, totalling approximately 225,000 flies, using a model developed for genetic analysis of age-dependent traits (the character process model). Both within- and among-generation analyses suggest that the input of genetic variance is greater for early life mortality rates than for mortality at older ages. In females, age-specific mutational variances ranged over an order of magnitude from 5.96 x 10(-3) at 2 wk posteclosion to 0.02 x 10(-3) at 7 wk. The male data show a similar pattern. Age-specific genetic variances were substantially less at generation 47 than at generation 19-an unexplained observation that is likely due to block effects. Mutational correlations among mortality rates at different ages tend to increase with the accumulation of new mutations. Comparison of the mutation-accumulation lines at generations 19 and 47 with their respective control lines suggests little age-specific mutational bias.
Collapse
Affiliation(s)
- S D Pletcher
- Department of Ecology, University of Minnesota, Saint Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
1260
|
Abstract
Studies in microbial evolution have focused on the origin and vertical transmission of genetic variation within populations experiencing limited recombination. Genomic analyses have highlighted the importance of horizontal genetic transfer in shaping the composition of microbial genomes, providing novel metabolic capabilities, and catalyzing the diversification of bacterial lineages.
Collapse
Affiliation(s)
- J G Lawrence
- Department of Biological Sciences University of Pittsburgh Pittsburgh, PA 15260, USA
| |
Collapse
|
1261
|
Affiliation(s)
- P D Keightley
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, Scotland.
| | | |
Collapse
|
1262
|
Schultz ST, Lynch M, Willis JH. Spontaneous deleterious mutation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 1999; 96:11393-8. [PMID: 10500187 PMCID: PMC18044 DOI: 10.1073/pnas.96.20.11393] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The frequency and selective impact of deleterious mutations are fundamental parameters in evolutionary theory, yet they have not been directly measured in a plant species. To estimate these quantities, we allowed spontaneous mutations to accumulate for 10 generations in 1,000 inbred lines of the annual, self-fertilizing plant Arabidopsis thaliana and assayed fitness differences between generations 0 and 10 in a common garden. Germination rate, fruit set, and number of seeds per fruit each declined by less than 1% per generation in the mutation lines, and total fitness declined by 0.9% per generation. Among-line variances increased in the mutation lines for all traits. Application of an equal-effects model suggests a downwardly biased genomic deleterious mutation rate of 0.1 and a upwardly biased effect of individual mutations on total fitness of 20%. This genomic deleterious mutation rate is consistent with estimates of nucleotide substitution rates in flowering plants, the genome size of Arabidopsis, and the equilibrium inbreeding depression observed in this highly selfing plant species.
Collapse
Affiliation(s)
- S T Schultz
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA.
| | | | | |
Collapse
|
1263
|
Abstract
In asexual populations, beneficial mutations that occur in different lineages compete with one another. This phenomenon, known as clonal interference, ensures that those beneficial mutations that do achieve fixation are of large effect. Clonal interference also increases the time between fixations, thereby slowing the adaptation of asexual populations. The effects of clonal interference were measured in the asexual RNA virus vesicular stomatitis virus; rates and average effects of beneficial mutations were quantified.
Collapse
Affiliation(s)
- R Miralles
- Institut Cavanilles de Biodiversitat i Biología Evolutiva and Departament de Genètica, Universitat de València, Apartado 22085, 46071 València, Spain
| | | | | | | |
Collapse
|
1264
|
Jelesko JG, Harper R, Furuya M, Gruissem W. Rare germinal unequal crossing-over leading to recombinant gene formation and gene duplication in Arabidopsis thaliana. Proc Natl Acad Sci U S A 1999; 96:10302-7. [PMID: 10468603 PMCID: PMC17883 DOI: 10.1073/pnas.96.18.10302] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small, multigene families organized in a tandem array can facilitate the rapid evolution of the gene cluster by a process of meiotic unequal crossing-over. To study this process in a multicellular organism, we created a synthetic RBCSB gene cluster in Arabidopsis thaliana and used this to measure directly the frequency of meiotic, intergenic unequal crossing-over between sister chromatids. The synthetic RBCSB gene cluster was composed of a silent DeltaRBCS1B::LUC chimeric gene fusion, lacking all 5' transcription and translation signals, followed by RBCS2B and RBC3B genomic DNA. Expression of luciferase activity (luc(+)) required a homologous recombination event between the DeltaRBCS1B::LUC and the RBCS3B genes, yielding a novel recombinant RBCS3B/ 1B::LUC chimeric gene whose expression was driven by RBCS3B 5' transcription and translation signals. Using sensitive, single-photon-imaging equipment, three luc(+) seedlings were identified in more than 1 million F2 seedlings derived from self-fertilized F1 plants hemizygous for the synthetic RBCSB gene cluster. The F2 luc(+) seedlings were isolated, and molecular and genetic analysis indicated that the luc(+) trait was caused by the formation of a recombinant chimeric RBCS3B/1B::LUC gene. A predicted duplication of the RBCS2B gene also was present. The recombination resolution break points mapped adjacent to a region of intron I at which a disjunction in sequence similarity between RBCS1B and RBCS3B occurs; this provided evidence supporting models of gene cluster evolution by exon-shuffling processes. In contrast to most measures of meiotic unequal crossing-over that require the deletion of a gene in a gene cluster, these results directly measured the frequency of meiotic unequal crossing-over (approximately 3 x 10(-6)), leading to the expansion of the gene cluster and the formation of a novel recombinant gene.
Collapse
Affiliation(s)
- J G Jelesko
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | | | | | |
Collapse
|
1265
|
Promislow DE, Jordan IK, McDonald JF. Genomic demography: a life-history analysis of transposable element evolution. Proc Biol Sci 1999; 266:1555-60. [PMID: 10467744 PMCID: PMC1690175 DOI: 10.1098/rspb.1999.0815] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retrotransposons are ubiquitous mobile genetic elements that have played a significant role in shaping eukaryotic genome evolution. The genome of the yeast Saccharomyces cerevisiae harbours five families of retrotransposons, Ty1-Ty5. With the publication of the S. cerevisiae genome sequence, for the first time a full genomic complement of retrotransposon sequences is available. Analysis of these sequences promises to yield insight into the nature of host--transposon coevolution. Evolutionary change in Ty elements depends on their replication and excision rates, which have been determined in the laboratory. Rates measured in the laboratory may differ from those that have operated over evolutionary time. Based on an analysis of sequence data for the Ty1, Ty2 and hybrid Ty1/2 families, we develop a novel 'genomic demography' model to estimate long-term transposition and excision rates and to estimate how long ago these elements entered the yeast genome. We find that rates of excision and transposition have averaged 7.2-8.7 x 10(-8) per generation over evolutionary time. Two separate models provide upper- and lower-bound estimates for the age of the system, suggesting that the first elements entered the genome between approximately 50 million and 250 million generations ago.
Collapse
Affiliation(s)
- D E Promislow
- Department of Genetics, University of Georgia, Athens 30602-7223, USA.
| | | | | |
Collapse
|
1266
|
Schmidt KJ, Beck KE, Grogan DW. UV stimulation of chromosomal marker exchange in Sulfolobus acidocaldarius: implications for DNA repair, conjugation and homologous recombination at extremely high temperatures. Genetics 1999; 152:1407-15. [PMID: 10430571 PMCID: PMC1460722 DOI: 10.1093/genetics/152.4.1407] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The hyperthermophilic archaeon Sulfolobus acidocaldarius exchanges and recombines chromosomal markers by a conjugational mechanism, and the overall yield of recombinants is greatly increased by previous exposure to UV light. This stimulation was studied in an effort to clarify its mechanism and that of marker exchange itself. A variety of experiments failed to identify a significant effect of UV irradiation on the frequency of cell pairing, indicating that subsequent steps are primarily affected, i.e., transfer of DNA between cells or homologous recombination. The UV-induced stimulation decayed rather quickly in parental cells during preincubation at 75 degrees, and the rate of decay depended on the incubation temperature. Preincubation at 75 degrees decreased the yield of recombinants neither from unirradiated parental cells nor from parental suspensions subsequently irradiated. We interpret these results as evidence that marker exchange is stimulated by recombinogenic DNA lesions formed as intermediates in the process of repairing UV photoproducts in the S. acidocaldarius chromosome.
Collapse
Affiliation(s)
- K J Schmidt
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 54221-0006, USA
| | | | | |
Collapse
|
1267
|
Abstract
The evolution of dominance has been subject to intensive debate since Fisher first argued that modifiers would be selected for if they made wild-type alleles more dominant over mutant alleles. An alternative explanation, put forward by Wright, is that the commonly observed dominance of wild-type alleles is simply a physiological consequence of metabolic pathways. Wright's explanation has gained support over the years, largely ending the debate over the general recessivity of deleterious mutations. Nevertheless there is reason to believe that dominance relationships have been moulded by natural selection to some extent. First, the metabolic pathways are themselves products of evolutionary processes that may have led them to be more stable to perturbations, including mutations. Secondly, theoretical models and empirical experiments suggest that substantial selection for dominance modifiers exists during the spread of adaptive alleles or when a polymorphism is maintained either by overdominant selection or by migration-selection balance.
Collapse
Affiliation(s)
- D Bourguet
- Station de Recherche de Lutte Biologique, INRA, La Minière, 78285 Guyancourt, France.
| |
Collapse
|
1268
|
Abstract
A cascade DNA amplification strategy that generates arbitrary signatures from amplification profiles (ASAP) was used to measure genome-wide mutation rates in bermudagrass (Cynodon). ASAP quantified nucleotide changes that were induced by irradiation, genetic instabilities and normal vegetative growth of cultivars and accessions of sterile interspecific hybrids. DNA sequence divergence between cultivar 'Tifway' and its gamma radiation-induced mutant 'Tifway II' (0.70 +/- 0.66%) was comparable to estimates in radiation-induced mutants and spontaneous sports of chrysanthemum (Chrysanthemum morifolium Ramat.). A similar divergence in sequence (0.95 +/- 0.20%) was observed in the pairwise comparison of 17 nondisjunctive 'Tifgreen' and 'Tifdwarf' accessions. Mutation during normal Tifdwarf vegetative growth was evaluated by planting sprigs and sampling their offspring. Somatic sequence divergence levels (0.004 +/- 0.007%) resulted in a mutation rate of 1.05 x 10-8 per nucleotide per generation, assuming that a bermudagrass sprig constitutes a generation of growth. These rates were comparable to those found in germinal cells and individuals of either human or Drosophila melanogaster, supporting the notion that eukaryotic evolution is generation rather than time dependent. The high accumulation of somatic mutations (10 per triploid genome) is consistent with a model whereby mutation load in a population exhibiting obligate vegetative reproduction is substantially higher than in a population under sexual or asexual reproduction. These constraints could be the cause of reported genetic instabilities in the Tifgreen-Tifdwarf complex. Finally, a long-term rate measured across accessions and indicative of the accumulation of mutations in 17 Tifgreen-Tifdwarf populations (µ = 1.02 x 10-8 per nucleotide per generation) was strikingly congruent with the bermudagrass vegetative mutation rate, suggesting absence of evolutionary constraints in the sampled genomic regions. Mutation rates calculated from across-accesions divergence estimates (5.18 +/- 0.53%) indicated that plant material was evolving 100 times faster (3.8 x 10-7 changes per nucleotide per year) than a molecular clock rate estimate for grasses, probably resulting from the compound effect of clonal growth and life span of the hybrid plant material.
Collapse
|
1269
|
Abstract
The presence of mutator genotypes in populations of bacteria may be favoured by selection because they produce rare beneficial mutations and thereby increase the rate of adaptive evolution. Recent work, however, shows that the relationship between mutation rates and adaptive evolution is more complicated.
Collapse
Affiliation(s)
- P B Rainey
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
1270
|
Abstract
Ty1, the genetically tractable retrotransposable element found in the yeast Saccharomyces cerevisiae, closely resembles vertebrate retroviruses both in structure and in mechanism of replication. By direct sequence analysis, we examined the rate and spectrum of new mutations appearing during a single cycle of Ty1 replication. The rate of new mutations was comparable to those seen for replicating retroviruses. All observed changes were base substitutions, and their location suggested that template ends may be hot spots for generating these mutations. To test this, we developed methods to examine, at the nucleotide level, the end structure of the expected Ty1 replication intermediates. Our results demonstrate that Ty1 reverse transcriptase can add terminal non-templated bases in vivo during each step in replication. Furthermore, Ty1 RNAse H creates multiple template ends by imprecisely cleaving RNA. This expands the range of sites of subsequent non-templated base addition. Finally, on reaching template ends, Ty1 reverse transcriptase can strand transfer to inappropriate templates. Taken together, these mutagenic mechanisms may influence the evolution of particular regions of the Ty1 genome and serve as a mechanism to regulate the overall level of Ty1 transposition in its host cell.
Collapse
Affiliation(s)
- A Gabriel
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855, USA.
| | | |
Collapse
|
1271
|
Abstract
Although mutation has chaotic aspects, spontaneous mutation rates assume certain characteristic values when expressed per genome per genome duplication. The rate among lytic RNA viruses is roughly 1, while the rate among retroelements is roughly 0.2. The rate among viral and cellular microbes with DNA chromosomes is close to 0.0034. Mutation rates among higher eukaryotes, estimated from specific-locus studies, vary greatly. Most of this variation can be suppressed if the rates are expressed per cell division instead of per sexual generation, and if the genome size is taken to be only a little larger than the sum of the protein-encoding sequences; then, the mutation rate is roughly 0.01. The reasons for different characteristic mutation rates among different organism groups remain mysterious and pose a substantial challenge to students of evolution.
Collapse
Affiliation(s)
- J W Drake
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709-2233, USA.
| |
Collapse
|
1272
|
Abstract
The fidelity of replication has evolved to reproduce B-form DNA accurately, while allowing a low frequency of mutation. The fidelity of replication can be compromised, however, by defined order sequence DNA (dosDNA) that can adopt unusual or non B-DNA conformations. These alternative DNA conformations, including hairpins, cruciforms, triplex DNAs, and slipped-strand structures, may affect enzyme-template interactions that potentially lead to mutations. To analyze the effect of dosDNA elements on spontaneous mutagenesis, various mutational inserts containing inverted repeats or direct repeats were cloned in a plasmid containing a unidirectional origin of replication and a selectable marker for the mutation. This system allows for analysis of mutational events that are specific for the leading or lagging strands during DNA replication in Escherichia coli. Deletions between direct repeats, involving misalignment stabilized by DNA secondary structure, occurred preferentially on the lagging strand. Intermolecular strand switch events, correcting quasipalindromes to perfect inverted repeats, occurred preferentially during replication of the leading strand.
Collapse
Affiliation(s)
- R R Sinden
- Department of Biochemistry and Biophysics, Texas A&M University, Houston 77030-3303, USA.
| | | | | |
Collapse
|
1273
|
Johnson T. Beneficial mutations, hitchhiking and the evolution of mutation rates in sexual populations. Genetics 1999; 151:1621-31. [PMID: 10101182 PMCID: PMC1460574 DOI: 10.1093/genetics/151.4.1621] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Natural selection acts in three ways on heritable variation for mutation rates. A modifier allele that increases the mutation rate is (i) disfavored due to association with deleterious mutations, but is also favored due to (ii) association with beneficial mutations and (iii) the reduced costs of lower fidelity replication. When a unique beneficial mutation arises and sweeps to fixation, genetic hitchhiking may cause a substantial change in the frequency of a modifier of mutation rate. In previous studies of the evolution of mutation rates in sexual populations, this effect has been underestimated. This article models the long-term effect of a series of such hitchhiking events and determines the resulting strength of indirect selection on the modifier. This is compared to the indirect selection due to deleterious mutations, when both types of mutations are randomly scattered over a given genetic map. Relative to an asexual population, increased levels of recombination reduce the effects of beneficial mutations more rapidly than those of deleterious mutations. However, the role of beneficial mutations in determining the evolutionarily stable mutation rate may still be significant if the function describing the cost of high-fidelity replication has a shallow gradient.
Collapse
Affiliation(s)
- T Johnson
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, Scotland.
| |
Collapse
|
1274
|
Harris RS, Kong Q, Maizels N. Somatic hypermutation and the three R's: repair, replication and recombination. Mutat Res 1999; 436:157-78. [PMID: 10095138 DOI: 10.1016/s1383-5742(99)00003-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Somatic hypermutation introduces single base changes into the rearranged variable (V) regions of antigen activated B cells at a rate of approximately 1 mutation per kilobase per generation. This is nearly a million-fold higher than the typical mutation rate in a mammalian somatic cell. Rampant mutation at this level could have a devastating effect, but somatic hypermutation is accurately targeted and tightly regulated. Here, we provide an overview of immunoglobulin gene somatic hypermutation; discuss mechanisms of mutation in model organisms that may be relevant to the hypermutation mechanism; and review recent advances toward understanding the possible role(s) of DNA repair, replication, and recombination in this fascinating process.
Collapse
Affiliation(s)
- R S Harris
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
1275
|
Li JL, Li J, Deng HW. The effect of overdominance on characterizing deleterious mutations in large natural populations. Genetics 1999; 151:895-913. [PMID: 9927478 PMCID: PMC1460508 DOI: 10.1093/genetics/151.2.895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternatives to the mutation-accumulation approach have been developed to characterize deleterious genomic mutations. However, they all depend on the assumption that the standing genetic variation in natural populations is solely due to mutation-selection (M-S) balance and therefore that overdominance does not contribute to heterosis. Despite tremendous efforts, the extent to which this assumption is valid is unknown. With different degrees of violation of the M-S balance assumption in large equilibrium populations, we investigated the statistical properties and the robustness of these alternative methods in the presence of overdominance. We found that for dominant mutations, estimates for U (genomic mutation rate) will be biased upward and those for h (mean dominance coefficient) and s (mean selection coefficient), biased downward when additional overdominant mutations are present. However, the degree of bias is generally moderate and depends largely on the magnitude of the contribution of overdominant mutations to heterosis or genetic variation. This renders the estimates of U and s not always biased under variable mutation effects that, when working alone, cause U and s to be underestimated. The contributions to heterosis and genetic variation from overdominant mutations are monotonic but not linearly proportional to each other. Our results not only provide a basis for the correct inference of deleterious mutation parameters from natural populations, but also alleviate the biggest concern in applying the new approaches, thus paving the way for reliably estimating properties of deleterious mutations.
Collapse
Affiliation(s)
- J L Li
- Osteoporosis Research Center and Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68131, USA
| | | | | |
Collapse
|
1276
|
Abstract
It has been suggested that humans may suffer a high genomic deleterious mutation rate. Here we test this hypothesis by applying a variant of a molecular approach to estimate the deleterious mutation rate in hominids from the level of selective constraint in DNA sequences. Under conservative assumptions, we estimate that an average of 4.2 amino-acid-altering mutations per diploid per generation have occurred in the human lineage since humans separated from chimpanzees. Of these mutations, we estimate that at least 38% have been eliminated by natural selection, indicating that there have been more than 1.6 new deleterious mutations per diploid genome per generation. Thus, the deleterious mutation rate specific to protein-coding sequences alone is close to the upper limit tolerable by a species such as humans that has a low reproductive rate, indicating that the effects of deleterious mutations may have combined synergistically. Furthermore, the level of selective constraint in hominid protein-coding sequences is atypically low. A large number of slightly deleterious mutations may therefore have become fixed in hominid lineages.
Collapse
Affiliation(s)
- A Eyre-Walker
- Centre for the Study of Evolution and School of Biological Sciences, University of Sussex, Brighton, UK.
| | | |
Collapse
|
1277
|
Korona R. Unpredictable fitness transitions between haploid and diploid strains of the genetically loaded yeast Saccharomyces cerevisiae. Genetics 1999; 151:77-85. [PMID: 9872949 PMCID: PMC1460445 DOI: 10.1093/genetics/151.1.77] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutator strains of yeast were used to accumulate random point mutations. Most of the observed changes in fitness were negative and relatively small, although major decreases and increases were also present. The average fitness of haploid strains was lowered by approximately 25% due to the accumulated genetic load. The impact of the load remained basically unchanged when a homozygous diploid was compared with the haploid from which it was derived. In other experiments a heterozygous diploid was compared with the two different loaded haploids from which it was obtained. The fitness of such a loaded diploid was much less reduced and did not correlate with the average fitness of the two haploids. There was a fitness correlation, however, when genetically related heterozygous diploids were compared, indicating that the fitness effects of the new alleles were not entirely lost in the heterozygotes. It is argued here that to explain the observed pattern of fitness transitions it is necessary to invoke nonadditive genetic interactions that go beyond the uniform masking effect of wild-type alleles. Thus, the results gathered with haploids and homozygotes should be extrapolated to heterozygotes with caution when multiple loci contribute to the genetic load.
Collapse
Affiliation(s)
- R Korona
- Institute of Environmental Biology, Jagiellonian University, 30-060 Krakow, Poland.
| |
Collapse
|
1278
|
Vassilieva LL, Lynch M. The rate of spontaneous mutation for life-history traits in Caenorhabditis elegans. Genetics 1999; 151:119-29. [PMID: 9872953 PMCID: PMC1460455 DOI: 10.1093/genetics/151.1.119] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spontaneous mutations were accumulated in 100 replicate lines of Caenorhabditis elegans over a period of approximately 50 generations. Periodic assays of these lines and comparison to a frozen control suggest that the deleterious mutation rate for typical life-history characters in this species is at least 0.05 per diploid genome per generation, with the average mutational effect on the order of 14% or less in the homozygous state and the average mutational heritability approximately 0.0034. While the average mutation rate per character and the average mutational heritability for this species are somewhat lower than previous estimates for Drosophila, these differences can be reconciled to a large extent when the biological differences between these species are taken into consideration.
Collapse
Affiliation(s)
- L L Vassilieva
- Department of Biology, University of Oregon, Eugene, Oregon 97403,
| | | |
Collapse
|
1279
|
Nachman MW, Bauer VL, Crowell SL, Aquadro CF. DNA variability and recombination rates at X-linked loci in humans. Genetics 1998; 150:1133-41. [PMID: 9799265 PMCID: PMC1460397 DOI: 10.1093/genetics/150.3.1133] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We sequenced 11,365 bp from introns of seven X-linked genes in 10 humans, one chimpanzee, and one orangutan to (i) provide an average estimate of nucleotide diversity (pi) in humans, (ii) investigate whether there is variation in pi among loci, (iii) compare ratios of polymorphism to divergence among loci, and (iv) provide a preliminary test of the hypothesis that heterozygosity is positively correlated with the local rate of recombination. The average value for pi was low 0.063%, SE = 0.036%, about one order of magnitude smaller than for Drosophila melanogaster, the species for which the best data are available. Among loci, pi varied by over one order of magnitude. Statistical tests of neutrality based on ratios of polymorphism to divergence or based on the frequency spectrum of variation within humans failed to reject a neutral, equilibrium model. However, there was a positive correlation between heterozygosity and rate of recombination, suggesting that the joint effects of selection and linkage are important in shaping patterns of nucleotide variation in humans.
Collapse
Affiliation(s)
- M W Nachman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | |
Collapse
|
1280
|
Keightley PD. Inference of genome-wide mutation rates and distributions of mutation effects for fitness traits: a simulation study. Genetics 1998; 150:1283-93. [PMID: 9799279 PMCID: PMC1460396 DOI: 10.1093/genetics/150.3.1283] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The properties and limitations of maximum likelihood (ML) inference of genome-wide mutation rates (U) and parameters of distributions of mutation effects are investigated. Mutation parameters are estimated from simulated experiments in which mutations randomly accumulate in inbred lines. ML produces more accurate estimates than the procedure of Bateman and Mukai and is more robust if the data do not conform to the model assumed. Unbiased ML estimates of the mutation effects distribution parameters can be obtained if a value for U can be assumed, but if U is estimated simultaneously with the distribution parameters, likelihood may increase monotonically as a function of U. If the distribution of mutation effects is leptokurtic, the number of mutation events per line is large, or if genotypic values are poorly estimated, only a lower limit for U, an upper limit for the mean mutation effect, and a lower limit for the kurtosis of the distribution can be given. It is argued that such lower (upper) limits are appropriate minima (maxima). Estimates of the mean mutational effect are unbiased but may convey little about the properties of the distribution if it is leptokurtic.
Collapse
Affiliation(s)
- P D Keightley
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, Scotland, UK.
| |
Collapse
|
1281
|
Glassner BJ, Rasmussen LJ, Najarian MT, Posnick LM, Samson LD. Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proc Natl Acad Sci U S A 1998; 95:9997-10002. [PMID: 9707589 PMCID: PMC21450 DOI: 10.1073/pnas.95.17.9997] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increased spontaneous mutation is associated with increased cancer risk. Here, by using a model system, we show that spontaneous mutation can be increased several hundred-fold by a simple imbalance between the first two enzymes involved in DNA base excision repair. The Saccharomyces cerevisiae MAG1 3-methyladenine (3MeA) DNA glycosylase, when expressed at high levels relative to the apurinic/apyrimidinic endonuclease, increases spontaneous mutation by up to approximately 600-fold in S. cerevisiae and approximately 200-fold in Escherichia coli. Genetic evidence suggests that, in yeast, the increased spontaneous mutation requires the generation of abasic sites and the processing of these sites by the REV1/REV3/REV7 lesion bypass pathway. Comparison of the mutator activity produced by Mag1, which has a broad substrate range, with that produced by the E. coli Tag 3MeA DNA glycosylase, which has a narrow substrate range, indicates that the removal of endogenously produced 3MeA is unlikely to be responsible for the mutator effect of Mag1. Finally, the human AAG 3-MeA DNA glycosylase also can produce a small (approximately 2-fold) but statistically significant increase in spontaneous mutation, a result which could have important implications for carcinogenesis.
Collapse
Affiliation(s)
- B J Glassner
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
1282
|
Haynes RH. Heritable variation and mutagenesis at early International Congresses of Genetics. Genetics 1998; 148:1419-31. [PMID: 9581628 PMCID: PMC1460087 DOI: 10.1093/genetics/148.4.1419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- R H Haynes
- Department of Biology, York University, Toronto, Ontario, Canada.
| |
Collapse
|
1283
|
Affiliation(s)
- J F Crow
- Laboratory of Genetics, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
1284
|
Thompson JN, Woodruff RC, Huai H. Mutation rate: a simple concept has become complex. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1998; 32:292-300. [PMID: 9882003 DOI: 10.1002/(sici)1098-2280(1998)32:4<292::aid-em2>3.0.co;2-v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The factors that cause new mutations or affect the rate at which they occur have important implications for many areas of genetics. But recent work on phenomena such as premeiotic mutations, which yield a cluster of identical new mutants at the some time, led us to realize that researchers are using the term "mutation rate" in different, and sometimes contradictory, ways. One premeiotic genetic change may ultimately yield several new mutant offspring, but should this be considered one new mutation or many? The way the data are handled in analyses can have a significant effect on the results. How, then, does one handle clusters in the estimation of mutation rates? We explore this question and propose that geneticists begin to distinguish clearly between three different phenomena that to this point have been given the same name: the initial prerepair "genetic damage rate," the postrepair "mutational event rate," and the observed "mutation rate" as it is expressed in the proportion of new mutant offspring. We believe that all new mutant offspring should be counted when estimating mutation rate, irrespective of when in the developmental cycle it is believed that the initial mutational event occurred.
Collapse
Affiliation(s)
- J N Thompson
- Department of Zoology, University of Oklahoma, Norman 73019, USA.
| | | | | |
Collapse
|