1251
|
Fallon SJ, Mattiesing RM, Muhammed K, Manohar S, Husain M. Fractionating the Neurocognitive Mechanisms Underlying Working Memory: Independent Effects of Dopamine and Parkinson's Disease. Cereb Cortex 2018; 27:5727-5738. [PMID: 29040416 PMCID: PMC5939219 DOI: 10.1093/cercor/bhx242] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Indexed: 01/04/2023] Open
Abstract
Deficits in working memory (WM) in Parkinson’s disease (PD) are often considered to be secondary to dopaminergic depletion. However, the neurocognitive mechanisms by which dopamine causes these deficits remain highly contested, and PD is now also known to be associated with nondopaminergic pathology. Here, we examined how PD and dopaminergic medication modulate three components of WM: maintenance over time, updating contents with new information and making memories distracter-resistant. Compared with controls, patients were disproportionately impaired when retaining information for longer durations. By applying a probabilistic model, we were able to reveal that the source of this error was selectively due to precision of memory representations degrading over time. By contrast, replenishing dopamine levels in PD improved executive control over both the ability to ignore and update, but did not affect maintenance of information across time. This was due to a decrease in guess responses, consistent with the view that dopamine serves to prevent WM representations being corrupted by irrelevant information, but has no impact on information decay. Cumulatively, these results reveal a dissociation in the neural mechanisms underlying poor WM: whereas dopamine reduces interference, nondopaminergic systems in PD appear to modulate processes that prevent information decaying more quickly over time.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, New Radcliffe House, Walton Street, Oxford, OX2 6AG, UK
| | | | - Kinan Muhammed
- Department of Experimental Psychology, University of Oxford, New Radcliffe House, Walton Street, Oxford, OX2 6AG, UK.,Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Sanjay Manohar
- Department of Experimental Psychology, University of Oxford, New Radcliffe House, Walton Street, Oxford, OX2 6AG, UK.,Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, New Radcliffe House, Walton Street, Oxford, OX2 6AG, UK.,Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
1252
|
Kustermann T, Rockstroh B, Miller GA, Popov T. Neural network communication facilitates verbal working memory. Biol Psychol 2018; 136:119-126. [DOI: 10.1016/j.biopsycho.2018.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/08/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
|
1253
|
Barlaam F, Fortin C, Vaugoyeau M, Schmitz C, Assaiante C. Mu-oscillation changes related to the development of anticipatory postural control in children and adolescents. J Neurophysiol 2018; 120:129-138. [DOI: 10.1152/jn.00637.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anticipatory postural adjustments (APAs) cancel the destabilizing effects of movement on posture. Across development, the maturation of APAs is characterized by an accurate adjustment of the timing parameters of electromyographic (EMG) response. The study aimed at investigating the maturation of cortical oscillations involved in the improvement of APAs efficiency. Thirty-six healthy participants (8–16 yr) performed the bimanual load-lifting task in which subjects are instructed to lift a load, placed on the left forearm, with the right hand. EMG data were acquired over the biceps brachii on the postural arm to the determine EMG response onset. Electroencephalographic signals were analyzed in the time-frequency domain by convolution with complex Gaussian Morlet wavelets. Electrophysiological signature of APAs in children and adolescents consisted of a mu-rhythm desynchronization over the sensorimotor cortex contralateral to the postural arm. Across development, the mu-rhythm desynchronization was characterized by a progressive shift forward of the onset of the desynchronization, lower amplitude, and velocity. These changes occurred along with an alteration of the timing of the EMG response, as shown by an earlier onset of the flexor inhibition with increasing age. The maturational changes in the Mu-oscillations might sustain the development of APAs. A possible role of the Mu-oscillation in the generation of postural command is discussed. NEW & NOTEWORTHY Across development, our study showed a progressive shift forward of the parameters of the mu-rhythm desynchronization. These changes occurred along with an alteration of the timing parameters of the electromyographic response, as shown by an earlier onset of the flexor inhibition with increasing age. The progressive development of APAs during childhood and adolescence might therefore be sustained by maturational electrophysiological changes that include mu-rhythm oscillation modifications in the postural sensorimotor cortex.
Collapse
Affiliation(s)
- Fanny Barlaam
- Laboratoire de Neurosciences Cognitives, CNRS, Aix Marseille Université, Marseille, France
- Fédération 3C, CNRS, Aix Marseille University, Marseille, France
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, DYCOG Team, Centre Hospitalier Le Vinatier, Bron, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Carole Fortin
- Laboratoire de Neurosciences Cognitives, CNRS, Aix Marseille Université, Marseille, France
- Fédération 3C, CNRS, Aix Marseille University, Marseille, France
| | - Marianne Vaugoyeau
- Laboratoire de Neurosciences Cognitives, CNRS, Aix Marseille Université, Marseille, France
- Fédération 3C, CNRS, Aix Marseille University, Marseille, France
| | - Christina Schmitz
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, DYCOG Team, Centre Hospitalier Le Vinatier, Bron, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Christine Assaiante
- Laboratoire de Neurosciences Cognitives, CNRS, Aix Marseille Université, Marseille, France
- Fédération 3C, CNRS, Aix Marseille University, Marseille, France
| |
Collapse
|
1254
|
tACS-mediated modulation of the auditory steady-state response as seen with MEG. Hear Res 2018; 364:90-95. [DOI: 10.1016/j.heares.2018.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/11/2018] [Accepted: 03/23/2018] [Indexed: 11/20/2022]
|
1255
|
Mehraei G, Shinn-Cunningham B, Dau T. Influence of talker discontinuity on cortical dynamics of auditory spatial attention. Neuroimage 2018; 179:548-556. [PMID: 29960089 DOI: 10.1016/j.neuroimage.2018.06.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 11/25/2022] Open
Abstract
In everyday acoustic scenes, listeners face the challenge of selectively attending to a sound source and maintaining attention on that source long enough to extract meaning. This task is made more daunting by frequent perceptual discontinuities in the acoustic scene: talkers move in space and conversations switch from one speaker to another in a background of many other sources. The inherent dynamics of such switches directly impact our ability to sustain attention. Here we asked how discontinuity in talker voice affects the ability to focus auditory attention to sounds from a particular location as well as neural correlates of underlying processes. During electroencephalography recordings, listeners attended to a stream of spoken syllables from one direction while ignoring distracting syllables from a different talker from the opposite hemifield. On some trials, the talker switched locations in the middle of the streams, creating a discontinuity. This switch disrupted attentional modulation of cortical responses; specifically, event-related potentials evoked by syllables in the to-be-attended direction were suppressed and power in alpha oscillations (8-12 Hz) were reduced following the discontinuity. Importantly, at an individual level, the ability to maintain attention to a target stream and report its content, despite the discontinuity, correlates with the magnitude of the disruption of these cortical responses. These results have implications for understanding cortical mechanisms supporting attention. The changes in the cortical responses may serve as a predictor of how well individuals can communicate in complex acoustic scenes and may help in the development of assistive devices and interventions to aid clinical populations.
Collapse
Affiliation(s)
- Golbarg Mehraei
- Hearing Systems Group, Technical University of Denmark, Ørsteds Plads Building 352, 2800, Kongens Lyngby, Denmark.
| | - Barbara Shinn-Cunningham
- Center for Research in Sensory Communication and Emerging Neural Technology, Boston University, Boston, MA, 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Torsten Dau
- Hearing Systems Group, Technical University of Denmark, Ørsteds Plads Building 352, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
1256
|
Mamashli F, Khan S, Bharadwaj H, Losh A, Pawlyszyn SM, Hämäläinen MS, Kenet T. Maturational trajectories of local and long-range functional connectivity in autism during face processing. Hum Brain Mapp 2018; 39:4094-4104. [PMID: 29947148 DOI: 10.1002/hbm.24234] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized neurophysiologically by, among other things, functional connectivity abnormalities in the brain. Recent evidence suggests that the nature of these functional connectivity abnormalities might not be uniform throughout maturation. Comparing between adolescents and young adults (ages 14-21) with ASD and age- and IQ-matched typically developing (TD) individuals, we previously documented, using magnetoencephalography (MEG) data, that local functional connectivity in the fusiform face areas (FFA) and long-range functional connectivity between FFA and three higher order cortical areas were all reduced in ASD. Given the findings on abnormal maturation trajectories in ASD, we tested whether these results extend to preadolescent children (ages 7-13). We found that both local and long-range functional connectivity were in fact normal in this younger age group in ASD. Combining the two age groups, we found that local and long-range functional connectivity measures were positively correlated with age in TD, but negatively correlated with age in ASD. Last, we showed that local functional connectivity was the primary feature in predicting age in ASD group, but not in the TD group. Furthermore, local functional connectivity was only correlated with ASD severity in the older group. These results suggest that the direction of maturation of functional connectivity for processing of faces from childhood to young adulthood is itself abnormal in ASD, and that during the processing of faces, these trajectory abnormalities are more pronounced for local functional connectivity measures than they are for long-range functional connectivity measures.
Collapse
Affiliation(s)
- Fahimeh Mamashli
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts
| | - Sheraz Khan
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts.,Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts
| | - Hari Bharadwaj
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts.,Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts
| | - Ainsley Losh
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts
| | | | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts.,Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Tal Kenet
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts
| |
Collapse
|
1257
|
Theta oscillations mediate pre-activation of highly expected word initial phonemes. Sci Rep 2018; 8:9503. [PMID: 29934613 PMCID: PMC6015046 DOI: 10.1038/s41598-018-27898-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022] Open
Abstract
Prediction has been proposed to be a fundamental neurocognitive mechanism. However, its role in language comprehension is currently under debate. In this magnetoencephalography study we aimed to find evidence of word-form phonological pre-activation and to characterize the oscillatory mechanisms supporting this. Participants were presented firstly with a picture of an object, and then, after a delay (fixed or variable), they heard the corresponding word. Target words could contain a phoneme substitution, and participants’ task was to detect mispronunciations. Word-initial phonemes were either fricatives or plosives, generating two experimental conditions (expect-fricative and expect-plosive). In the pre-word interval, significant differences (α = 0.05) emerged between conditions both for fixed and variable delays. Source reconstruction of this effect showed a brain-wide network involving several frequency bands, including bilateral superior temporal areas commonly associated with phonological processing, in a theta range. These results show that phonological representations supported by the theta band may be active before word onset, even under temporal uncertainty. However, in the evoked response just prior to the word, differences between conditions were apparent under variable- but not fixed-delays. This suggests that additional top-down mechanisms sensitive to phonological form may be recruited when there is uncertainty in the signal.
Collapse
|
1258
|
Thevathasan W, Moro E. What is the therapeutic mechanism of pedunculopontine nucleus stimulation in Parkinson's disease? Neurobiol Dis 2018; 128:67-74. [PMID: 29933055 DOI: 10.1016/j.nbd.2018.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022] Open
Abstract
Pedunculopontine nucleus (PPN) deep brain stimulation (DBS) is an experimental treatment for Parkinson's disease (PD) which offers a fairly circumscribed benefit for gait freezing and perhaps balance impairment. The benefit on gait freezing is variable and typically incomplete, which may reflect that the clinical application is yet to be optimised or reflect a fundamental limitation of the therapeutic mechanism. Thus, a better understanding of the therapeutic mechanism of PPN DBS may guide the further development of this therapy. The available evidence supports that the PPN is underactive in PD due to a combination of both degeneration and excessive inhibition. Low frequency PPN DBS could enhance PPN network activity, perhaps via disinhibition. A clinical implication is that in some PD patients, the PPN may be too degenerate for PPN DBS to work. Reaction time studies report that PPN DBS mediates a very specific benefit on pre-programmed movement. This seems relevant to the pathophysiology of gait freezing, which can be argued to reflect impaired release of pre-programmed adjustments to locomotion. Thus, the benefit of PPN DBS on gait freezing could be akin to that mediated by external cues. Alpha band activity is a prominent finding in local field potential recordings from PPN electrodes in PD patients. Alpha band activity is implicated in the suppression of task irrelevant processes and thus the effective allocation of attention (processing resources). Attentional deficits are prominent in patients with PD and gait freezing and PPN alpha activity has been observed to drop out prior to gait freezing episodes and to increase with levodopa. This raises the hypothesis that PPN DBS could support or emulate PPN alpha activity and consequently enhance the allocation of attention. Although PPN DBS has not been convincingly shown to increase general alertness or attention, it remains possible that PPN DBS may enhance the allocation of processing resources within the motor system, or "motor attention". For example, this could facilitate the 'switching' of motor state between continuation of pattern generated locomotion towards the intervention of pre-programmed adjustments. However, if the downstream consequence of PPN DBS on movement is limited to a circumscribed unblocking of pre-programmed movement, then this may have a similarly circumscribed degree of benefit for gait. If this is the case, then it may be possible to identify patients who may benefit most from PPN DBS. For example, those in whom pre-programmed deficits are the major contributors to gait freezing.
Collapse
Affiliation(s)
- Wesley Thevathasan
- Departments of Neurology, Royal Melbourne Hospital and Austin Hospitals, University of Melbourne, Australia and the Bionics Institute of Australia, Melbourne, Australia
| | - Elena Moro
- Movement Disorders Center, Division of Neurology, CHU Grenoble, Grenoble Alpes University, INSERM U1214, Grenoble, France.
| |
Collapse
|
1259
|
Capotosto P, Baldassarre A, Sestieri C, Spadone S, Romani GL, Corbetta M. Task and Regions Specific Top-Down Modulation of Alpha Rhythms in Parietal Cortex. Cereb Cortex 2018; 27:4815-4822. [PMID: 27600845 DOI: 10.1093/cercor/bhw278] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/11/2016] [Indexed: 01/22/2023] Open
Abstract
Alpha (8-12 Hz) power desynchronization is strongly associated to visual perception but has been observed in a large variety of tasks, indicating a general role in task anticipation. We previously reported in human observers that interference by repetitive transcranial magnetic stimulation (rTMS) of core regions of the dorsal attention network (DAN) disrupts both anticipatory alpha desynchronization and performance during a visuospatial attention (VSA) task. Here, we test the hypothesis that alpha desynchronization is task specific, and can be selectively modulated by interfering with activity in different higher-order parietal regions. We contrast the effects of rTMS on alpha rhythms and behavior on 2 different tasks: a VSA and a semantic decision task, by targeting the posterior intraparietal sulcus (pIPS), a core region of the DAN, or the angular gyrus (AG), a core region of the default mode network (DMN). We found that both performance and anticipatory alpha desynchronization were affected by stimulation of IPS only during VSA, and of AG only during semantic decisions. These findings indicate the existence of multiple dedicated parietal channels for the modulation of anticipatory alpha rhythms, which in turn reflect task-specific modulation of excitability in human parieto-occipital cortex.
Collapse
Affiliation(s)
- Paolo Capotosto
- Department of Neuroscience, Imaging, and Clinical Science, Institute of Advanced Biomedical Technologies (ITAB), University "G. D'Annunzio", Via dei Vestini 33, Chieti 66100, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging, and Clinical Science, Institute of Advanced Biomedical Technologies (ITAB), University "G. D'Annunzio", Via dei Vestini 33, Chieti 66100, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Science, Institute of Advanced Biomedical Technologies (ITAB), University "G. D'Annunzio", Via dei Vestini 33, Chieti 66100, Italy
| | - Sara Spadone
- Department of Neuroscience, Imaging, and Clinical Science, Institute of Advanced Biomedical Technologies (ITAB), University "G. D'Annunzio", Via dei Vestini 33, Chieti 66100, Italy
| | - Gian Luca Romani
- Department of Neuroscience, Imaging, and Clinical Science, Institute of Advanced Biomedical Technologies (ITAB), University "G. D'Annunzio", Via dei Vestini 33, Chieti 66100, Italy
| | - Maurizio Corbetta
- Department of Neurology, Radiology, Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| |
Collapse
|
1260
|
Moment-to-Moment Fluctuations in Neuronal Excitability Bias Subjective Perception Rather than Strategic Decision-Making. eNeuro 2018; 5:eN-NWR-0430-17. [PMID: 29911179 PMCID: PMC6002263 DOI: 10.1523/eneuro.0430-17.2018] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/24/2018] [Accepted: 04/02/2018] [Indexed: 11/21/2022] Open
Abstract
Perceiving an external stimulus depends not only on the physical features of the stimulus, but also fundamentally on the current state of neuronal excitability, indexed by the power of ongoing alpha-band and beta-band oscillations (8-30 Hz). Recent studies suggest that heightened excitability does not improve perceptual precision, but biases observers to report the presence of a stimulus regardless of its physical presence. It is unknown whether this bias is due to changes in observers' subjective perceptual experience (perceptual bias) or their perception-independent decision-making strategy (decision bias). We tested these alternative interpretations in an EEG experiment in which male and female human participants performed two-interval forced choice (2IFC) detection and discrimination. According to signal detection theory, perceptual bias only affects 2IFC detection, but not discrimination, while interval decision bias should be task independent. We found that correct detection was more likely when excitability before the stimulus-present interval exceeded that before the stimulus-absent interval (i.e., 8-17 Hz power was weaker before the stimulus-present interval), consistent with an effect of excitability on perceptual bias. By contrast, discrimination accuracy was unaffected by excitability fluctuations between intervals, ruling out an effect on interval decision bias. We conclude that the current state of neuronal excitability biases the perceptual experience itself, rather than the decision process.
Collapse
|
1261
|
Proskovec AL, Wiesman AI, Heinrichs-Graham E, Wilson TW. Beta Oscillatory Dynamics in the Prefrontal and Superior Temporal Cortices Predict Spatial Working Memory Performance. Sci Rep 2018; 8:8488. [PMID: 29855522 PMCID: PMC5981644 DOI: 10.1038/s41598-018-26863-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/22/2018] [Indexed: 01/28/2023] Open
Abstract
The oscillatory dynamics serving spatial working memory (SWM), and how such dynamics relate to performance, are poorly understood. To address these topics, the present study recruited 22 healthy adults to perform a SWM task during magnetoencephalography (MEG). The resulting MEG data were transformed into the time-frequency domain, and significant oscillatory responses were imaged using a beamformer. Voxel time series data were extracted from the cluster peaks to quantify the dynamics, while whole-brain partial correlation maps were computed to identify regions where oscillatory strength varied with accuracy on the SWM task. The results indicated transient theta oscillations in spatially distinct subregions of the prefrontal cortices at the onset of encoding and maintenance, which may underlie selection of goal-relevant information. Additionally, strong and persistent decreases in alpha and beta oscillations were observed throughout encoding and maintenance in parietal, temporal, and occipital regions, which could serve sustained attention and maintenance processes during SWM performance. The neuro-behavioral correlations revealed that beta activity within left dorsolateral prefrontal control regions and bilateral superior temporal integration regions was negatively correlated with SWM accuracy. Notably, this is the first study to employ a whole-brain approach to significantly link neural oscillations to behavioral performance in the context of SWM.
Collapse
Affiliation(s)
- Amy L Proskovec
- Department of Psychology, University of Nebraska - Omaha, Omaha, NE, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Alex I Wiesman
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Tony W Wilson
- Department of Psychology, University of Nebraska - Omaha, Omaha, NE, USA. .,Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA. .,Department of Neurological Sciences, UNMC, Omaha, NE, USA.
| |
Collapse
|
1262
|
Vosskuhl J, Strüber D, Herrmann CS. Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations. Front Hum Neurosci 2018; 12:211. [PMID: 29887799 PMCID: PMC5980979 DOI: 10.3389/fnhum.2018.00211] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Cognitive neuroscience set out to understand the neural mechanisms underlying cognition. One central question is how oscillatory brain activity relates to cognitive processes. Up to now, most of the evidence supporting this relationship was correlative in nature. This situation changed dramatically with the recent development of non-invasive brain stimulation (NIBS) techniques, which open up new vistas for neuroscience by allowing researchers for the first time to validate their correlational theories by manipulating brain functioning directly. In this review, we focus on transcranial alternating current stimulation (tACS), an electrical brain stimulation method that applies sinusoidal currents to the intact scalp of human individuals to directly interfere with ongoing brain oscillations. We outline how tACS can impact human brain oscillations by employing different levels of observation from non-invasive tACS application in healthy volunteers and intracranial recordings in patients to animal studies demonstrating the effectiveness of alternating electric fields on neurons in vitro and in vivo. These findings likely translate to humans as comparable effects can be observed in human and animal studies. Neural entrainment and plasticity are suggested to mediate the behavioral effects of tACS. Furthermore, we focus on mechanistic theories about the relationship between certain cognitive functions and specific parameters of brain oscillaitons such as its amplitude, frequency, phase and phase coherence. For each of these parameters we present the current state of testing its functional relevance by means of tACS. Recent developments in the field of tACS are outlined which include the stimulation with physiologically inspired non-sinusoidal waveforms, stimulation protocols which allow for the observation of online-effects, and closed loop applications of tACS.
Collapse
Affiliation(s)
- Johannes Vosskuhl
- Experimental Psychology Lab, Center for Excellence “Hearing4all,” European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Daniel Strüber
- Experimental Psychology Lab, Center for Excellence “Hearing4all,” European Medical School, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Center for Excellence “Hearing4all,” European Medical School, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
1263
|
Perceptual Oscillation of Audiovisual Time Simultaneity. eNeuro 2018; 5:eN-NWR-0047-18. [PMID: 29845106 PMCID: PMC5969321 DOI: 10.1523/eneuro.0047-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/09/2018] [Accepted: 03/17/2018] [Indexed: 01/01/2023] Open
Abstract
Action and perception are tightly coupled systems requiring coordination and synchronization over time. How the brain achieves synchronization is still a matter of debate, but recent experiments suggest that brain oscillations may play an important role in this process. Brain oscillations have been also proposed to be fundamental in determining time perception. Here, we had subjects perform an audiovisual temporal order judgment task to investigate the fine dynamics of temporal bias and sensitivity before and after the execution of voluntary hand movement (button-press). The reported order of the audiovisual sequence was rhythmically biased as a function of delay from hand action execution. Importantly, we found that it oscillated at a theta range frequency, starting ∼500 ms before and persisting ∼250 ms after the button-press, with consistent phase-locking across participants. Our results show that the perception of cross-sensory simultaneity oscillates rhythmically in synchrony with the programming phase of a voluntary action, demonstrating a link between action preparation and bias in temporal perceptual judgments.
Collapse
|
1264
|
Popov T, Jensen O, Schoffelen JM. Dorsal and ventral cortices are coupled by cross-frequency interactions during working memory. Neuroimage 2018; 178:277-286. [PMID: 29803957 DOI: 10.1016/j.neuroimage.2018.05.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 01/15/2023] Open
Abstract
Oscillatory activity in the alpha and gamma bands is considered key in shaping functional brain architecture. Power increases in the high-frequency gamma band are typically reported in parallel to decreases in the low-frequency alpha band. However, their functional significance and in particular their interactions are not well understood. The present study shows that, in the context of an N-back working memory task, alpha power decreases in the dorsal visual stream are related to gamma power increases in early visual areas. Granger causality analysis revealed directed interregional interactions from dorsal to ventral stream areas, in accordance with task demands. Present results reveal a robust, behaviorally relevant, and architectonically decisive power-to-power relationship between alpha and gamma activity. This relationship suggests that anatomically distant power fluctuations in oscillatory activity can link cerebral network dynamics on trial-by-trial basis during cognitive operations such as working memory.
Collapse
Affiliation(s)
- Tzvetan Popov
- Department of Psychology, Universtität Konstanz, Germany
| | - Ole Jensen
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, The Netherlands; School of Psychology, University of Birmingham, Hills Building, Birmingham, B15 2TT, UK
| | - Jan-Mathijs Schoffelen
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, The Netherlands.
| |
Collapse
|
1265
|
Cortical Oscillatory Mechanisms Supporting the Control of Human Social-Emotional Actions. J Neurosci 2018; 38:5739-5749. [PMID: 29793973 DOI: 10.1523/jneurosci.3382-17.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/17/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
Abstract
The human anterior prefrontal cortex (aPFC) is involved in regulating social-emotional behavior, presumably by modulating effective connectivity with downstream parietal, limbic, and motor cortices. Regulating that connectivity might rely on theta-band oscillations (4-8 Hz), a brain rhythm known to create overlapping periods of excitability between distant regions by temporally releasing neurons from inhibition. Here, we used MEG to understand how aPFC theta-band oscillations implement control over prepotent social-emotional behaviors; that is, the control over automatically elicited approach and avoidance actions. Forty human male participants performed a social approach-avoidance task in which they approached or avoided visually displayed emotional faces (happy or angry) by pulling or pushing a joystick. Approaching angry and avoiding happy faces (incongruent condition) requires rapid application of cognitive control to override prepotent habitual action tendencies to approach appetitive and to avoid aversive situations. In the time window before response delivery, trial-by-trial variations in aPFC theta-band power (6 Hz) predicted reaction time increases during emotional control and were inversely related to beta-band power (14-22 Hz) over parietofrontal cortex. In sensorimotor areas contralateral to the moving hand, premovement gamma-band rhythms (60-90 Hz) were stronger during incongruent than congruent trials, with power increases phase locked to peaks of the aPFC theta-band oscillations. These findings define a mechanistic relation between cortical areas involved in implementing rapid control over human social-emotional behavior. The aPFC may bias neural processing toward rule-driven actions and away from automatic emotional tendencies by coordinating tonic disinhibition and phasic enhancement of parietofrontal circuits involved in action selection.SIGNIFICANCE STATEMENT Being able to control social-emotional behavior is crucial for successful participation in society, as is illustrated by the severe social and occupational difficulties experienced by people suffering from social motivational disorders such as social anxiety. In this study, we show that theta-band oscillations in the anterior prefrontal cortex (aPFC), which are thought to provide temporal organization for neural firing during communication between distant brain areas, facilitate this control by linking aPFC to parietofrontal beta-band and sensorimotor gamma-band oscillations involved in action selection. These results contribute to a mechanistic understanding of cognitive control over automatic social-emotional action and point to frontal theta-band oscillations as a possible target of rhythmic neurostimulation techniques during treatment for social anxiety.
Collapse
|
1266
|
Cho H, Ahn M, Ahn S, Kwon M, Jun SC. EEG datasets for motor imagery brain-computer interface. Gigascience 2018; 6:1-8. [PMID: 28472337 PMCID: PMC5493744 DOI: 10.1093/gigascience/gix034] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/03/2017] [Indexed: 12/04/2022] Open
Abstract
Background: Most investigators of brain–computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)–based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. Findings: We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Conclusions: Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states.
Collapse
Affiliation(s)
- Hohyun Cho
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Minkyu Ahn
- School of Computer Science and Electrical Engineering, Handong Global University, 558 Handong-ro Buk-gu, Pohang Gyeongbuk 37554, Korea
| | - Sangtae Ahn
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, 115 Mason Farm Road, Chapel Hill, NC 27514, USA
| | - Moonyoung Kwon
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Sung Chan Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| |
Collapse
|
1267
|
Underlying neural alpha frequency patterns associated with intra-hemispheric inhibition during an interhemispheric transfer task. Biol Psychol 2018; 136:39-45. [PMID: 29782970 DOI: 10.1016/j.biopsycho.2018.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/13/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022]
Abstract
Interhemispheric transfer measured via differences in right- or left-handed motoric responses to lateralized visual stimuli, known as the crossed-uncrossed difference (CUD), is one way of identifying patterns of processing that are vital for understanding the transfer of neural signals. Examination of interhemispheric transfer by means of the CUD is not entirely explained by simple measures of response time. Multiple processes contribute to wide variability observed in CUD reaction times. Prior research has suggested that intra-hemispheric inhibitory processes may be involved in regulation of speed of transfer. Our study examined electroencephalography recordings and time-locked alpha frequency activity while 18 participants responded to lateralized targets during performance of the Poffenberger Paradigm. Our results suggest that there are alpha frequency differences at fronto-central lateral electrodes based on target, hand-of-response, and receiving hemisphere. These findings suggest that early motoric inhibitory mechanisms may help explain the wide range of variability typically seen with the CUD.
Collapse
|
1268
|
Mühlberg S, Soto-Faraco S. Cross-modal decoupling in temporal attention between audition and touch. PSYCHOLOGICAL RESEARCH 2018; 83:1626-1639. [PMID: 29774432 DOI: 10.1007/s00426-018-1023-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
Abstract
Temporal orienting leads to well-documented behavioural benefits for sensory events occurring at the anticipated moment. However, the consequences of temporal orienting in cross-modal contexts are still unclear. On the one hand, some studies using audio-tactile paradigms suggest that attentional orienting in time and modality are a closely coupled system, in which temporal orienting dominates modality orienting, similar to what happens in cross-modal spatial attention. On the other hand, recent findings using a visuo-tactile paradigm suggest that attentional orienting in time can unfold independently in each modality, leading to cross-modal decoupling. In the present study, we investigated if cross-modal decoupling in time can be extrapolated to audio-tactile contexts. If so, decoupling might represent a general property of cross-modal attention in time. To this end, we used a speeded discrimination task in which we manipulated the probability of target presentation in time and modality. In each trial, a manipulation of time-based expectancy was used to guide participants' attention to task-relevant events, either tactile or auditory, at different points in time. In two experiments, we found that participants generally showed enhanced behavioural performance at the most likely onset time of each modality and no evidence for coupling. This pattern supports the hypothesis that cross-modal decoupling could be a general phenomenon in temporal orienting.
Collapse
Affiliation(s)
- Stefanie Mühlberg
- Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona, 08018, Spain. .,Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Carrer de Ramon Trias Fargas, 25-27, Edifici Mercè Rodoreda (Room 24.327), 08005, Barcelona, Spain.
| | - Salvador Soto-Faraco
- Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona, 08018, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, 08010, Spain
| |
Collapse
|
1269
|
Liebrand M, Kristek J, Tzvi E, Krämer UM. Ready for change: Oscillatory mechanisms of proactive motor control. PLoS One 2018; 13:e0196855. [PMID: 29768455 PMCID: PMC5955690 DOI: 10.1371/journal.pone.0196855] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/21/2018] [Indexed: 11/19/2022] Open
Abstract
Proactive motor control is a preparatory mechanism facilitating upcoming action inhibition or adaptation. Previous studies investigating proactive motor control mostly focused on response inhibition, as in the classical go-nogo or stop-signal tasks. However, everyday life rarely calls for the complete suppression of actions without subsequent behavioral adjustment. Therefore, we conducted a modified cued go-nogo-change task, in which cues indicated whether participants might have to change to an alternative action or inhibit the response to an upcoming target. Based on the dual-mechanisms of control framework and using electroencephalography (EEG), we investigated the role of the sensorimotor cortex and of prefrontal regions in preparing to change and cancel motor responses. We focused on mu and beta power over sensorimotor cortex ipsi- and contralateral to an automatic motor response and on prefrontal beta power. Over ipsilateral sensorimotor cortex, mu and beta power was relatively decreased when anticipating to change or inhibit the automatic motor behavior. Moreover, alpha phase coupling between ipsilateral motor cortex and prefrontal areas decreased when preparing to change, suggesting a decoupling of sensorimotor regions from prefrontal control. When the standard motor action actually had to be changed, prefrontal beta power increased, reflecting enhanced cognitive control. Our data highlight the role of the ipsilateral motor cortex in preparing to inhibit and change upcoming motor actions. Here, especially mu power and phase coupling seem to be critical to guide upcoming behavior.
Collapse
Affiliation(s)
- Matthias Liebrand
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Graduate School for Computing in Medicine and Life Sciences, University of Lübeck, Lübeck, Germany
| | - Jascha Kristek
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Elinor Tzvi
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Ulrike M. Krämer
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
1270
|
Solís-Vivanco R, Jensen O, Bonnefond M. Top-Down Control of Alpha Phase Adjustment in Anticipation of Temporally Predictable Visual Stimuli. J Cogn Neurosci 2018; 30:1157-1169. [PMID: 29762100 DOI: 10.1162/jocn_a_01280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Alpha oscillations (8-14 Hz) are proposed to represent an active mechanism of functional inhibition of neuronal processing. Specifically, alpha oscillations are associated with pulses of inhibition repeating every ∼100 msec. Whether alpha phase, similar to alpha power, is under top-down control remains unclear. Moreover, the sources of such putative top-down phase control are unknown. We designed a cross-modal (visual/auditory) attention study in which we used magnetoencephalography to record the brain activity from 34 healthy participants. In each trial, a somatosensory cue indicated whether to attend to either the visual or auditory domain. The timing of the stimulus onset was predictable across trials. We found that, when visual information was attended, anticipatory alpha power was reduced in visual areas, whereas the phase adjusted just before the stimulus onset. Performance in each modality was predicted by the phase of the alpha oscillations previous to stimulus onset. Alpha oscillations in the left pFC appeared to lead the adjustment of alpha phase in visual areas. Finally, alpha phase modulated stimulus-induced gamma activity. Our results confirm that alpha phase can be top-down adjusted in anticipation of predictable stimuli and improve performance. Phase adjustment of the alpha rhythm might serve as a neurophysiological resource for optimizing visual processing when temporal predictions are possible and there is considerable competition between target and distracting stimuli.
Collapse
Affiliation(s)
- Rodolfo Solís-Vivanco
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico.,Donders Institute for Brain, Cognition, & Behaviour, Center for Cognitive Neuroimaging, Radboud University Nijmegen
| | - Ole Jensen
- Center for Human Brain Health, University of Birmingham
| | - Mathilde Bonnefond
- Donders Institute for Brain, Cognition, & Behaviour, Center for Cognitive Neuroimaging, Radboud University Nijmegen.,INSERM UMRS 1028, CNRS UMR 5292, Université de Lyon
| |
Collapse
|
1271
|
Sangiuliano Intra F, Avramiea AE, Irrmischer M, Poil SS, Mansvelder HD, Linkenkaer-Hansen K. Long-Range Temporal Correlations in Alpha Oscillations Stabilize Perception of Ambiguous Visual Stimuli. Front Hum Neurosci 2018; 12:159. [PMID: 29740303 PMCID: PMC5928216 DOI: 10.3389/fnhum.2018.00159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/06/2018] [Indexed: 02/05/2023] Open
Abstract
Ongoing brain dynamics have been proposed as a type of “neuronal noise” that can trigger perceptual switches when viewing an ambiguous, bistable stimulus. However, no prior study has directly quantified how such neuronal noise relates to the rate of percept reversals. Specifically, it has remained unknown whether individual differences in complexity of resting-state oscillations—as reflected in long-range temporal correlations (LRTC)—are associated with perceptual stability. We hypothesized that participants with stronger resting-state LRTC in the alpha band experience more stable percepts, and thereby fewer perceptual switches. Furthermore, we expected that participants who report less discontinuous thoughts during rest, experience less switches. To test this, we recorded electroencephalography (EEG) in 65 healthy volunteers during 5 min Eyes-Closed Rest (ECR), after which they filled in the Amsterdam Resting-State Questionnaire (ARSQ). This was followed by three conditions where participants attended an ambiguous structure-from-motion stimulus—Neutral (passively observe the stimulus), Hold (the percept for as long as possible), and Switch (as often as possible). LRTC of resting-state alpha oscillations predicted the number of switches only in the Hold condition, with stronger LRTC associated with less switches. Contrary to our expectations, there was no association between resting-state Discontinuity of Mind and percept stability. Participants were capable of controlling switching according to task goals, and this was accompanied by increased alpha power during Hold and decreased power during Switch. Fewer switches were associated with stronger task-related alpha LRTC in all conditions. Together, our data suggest that bistable visual perception is to some extent under voluntary control and influenced by LRTC of alpha oscillations.
Collapse
Affiliation(s)
- Francesca Sangiuliano Intra
- IRCCS, Don Gnocchi Foundation, Milan, Italy.,Department of Integrative Neurophysiology, CNCR, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Arthur-Ervin Avramiea
- Department of Integrative Neurophysiology, CNCR, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mona Irrmischer
- Department of Integrative Neurophysiology, CNCR, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, CNCR, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, CNCR, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
1272
|
Suppression of no-longer relevant information in Working Memory: An alpha-power related mechanism? Biol Psychol 2018; 135:112-116. [DOI: 10.1016/j.biopsycho.2018.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/09/2018] [Accepted: 03/25/2018] [Indexed: 11/22/2022]
|
1273
|
Cueing listeners to attend to a target talker progressively improves word report as the duration of the cue-target interval lengthens to 2,000 ms. Atten Percept Psychophys 2018; 80:1520-1538. [PMID: 29696570 DOI: 10.3758/s13414-018-1531-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endogenous attention is typically studied by presenting instructive cues in advance of a target stimulus array. For endogenous visual attention, task performance improves as the duration of the cue-target interval increases up to 800 ms. Less is known about how endogenous auditory attention unfolds over time or the mechanisms by which an instructive cue presented in advance of an auditory array improves performance. The current experiment used five cue-target intervals (0, 250, 500, 1,000, and 2,000 ms) to compare four hypotheses for how preparatory attention develops over time in a multi-talker listening task. Young adults were cued to attend to a target talker who spoke in a mixture of three talkers. Visual cues indicated the target talker's spatial location or their gender. Participants directed attention to location and gender simultaneously ("objects") at all cue-target intervals. Participants were consistently faster and more accurate at reporting words spoken by the target talker when the cue-target interval was 2,000 ms than 0 ms. In addition, the latency of correct responses progressively shortened as the duration of the cue-target interval increased from 0 to 2,000 ms. These findings suggest that the mechanisms involved in preparatory auditory attention develop gradually over time, taking at least 2,000 ms to reach optimal configuration, yet providing cumulative improvements in speech intelligibility as the duration of the cue-target interval increases from 0 to 2,000 ms. These results demonstrate an improvement in performance for cue-target intervals longer than those that have been reported previously in the visual or auditory modalities.
Collapse
|
1274
|
Dunkley BT, Urban K, Da Costa L, Wong SM, Pang EW, Taylor MJ. Default Mode Network Oscillatory Coupling Is Increased Following Concussion. Front Neurol 2018; 9:280. [PMID: 29755402 PMCID: PMC5932404 DOI: 10.3389/fneur.2018.00280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Concussion is a common form of mild traumatic brain injury. Despite the descriptor "mild," a single injury can leave long-lasting and sustained alterations to brain function, including changes to localized activity and large-scale interregional communication. Cognitive complaints are thought to arise from such functional deficits. We investigated the impact of injury on neurophysiological and functionally specialized resting networks, known as intrinsic connectivity networks (ICNs), using magnetoencephalography. We assessed neurophysiological connectivity in 40 males, 20 with concussion and 20 without. Regions-of-interest that comprise nodes of ICNs were defined, and their time courses derived using a beamformer approach. Pairwise fluctuations and covariations in band-limited amplitude envelopes were computed reflecting measures of functional connectivity. Intra-network connectivity was compared between groups using permutation testing and correlated with symptoms. We observed increased resting spectral connectivity in the default mode network (DMN) and motor networks (MOTs) in our concussion group when compared with controls, across alpha through gamma ranges. Moreover, these differences were not explained by power spectrum density within the ICNs. Furthermore, this increased coupling was significantly associated with symptoms in the DMN and MOTs-but once accounting for comorbidities (including, depression, anxiety, and ADHD) only the DMN continued to be associated with symptoms. The DMN plays a critical role in shifting between cognitive tasks. These data suggest even a single concussion can perturb the intrinsic coupling of this functionally specialized network in the brain, and may explain persistent and wide-ranging symptomatology.
Collapse
Affiliation(s)
- Benjamin T. Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada
- Neurosciences & Mental Health Program, Sick Kids Research Institute, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Karolina Urban
- Holland-Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | | | - Simeon M Wong
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth W. Pang
- Neurosciences & Mental Health Program, Sick Kids Research Institute, Toronto, ON, Canada
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Margot J. Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada
- Neurosciences & Mental Health Program, Sick Kids Research Institute, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
1275
|
Effects of meaningfulness on perception: Alpha-band oscillations carry perceptual expectations and influence early visual responses. Sci Rep 2018; 8:6606. [PMID: 29700428 PMCID: PMC5920106 DOI: 10.1038/s41598-018-25093-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 04/09/2018] [Indexed: 12/03/2022] Open
Abstract
Perceptual experience results from a complex interplay of bottom-up input and prior knowledge about the world, yet the extent to which knowledge affects perception, the neural mechanisms underlying these effects, and the stages of processing at which these two sources of information converge, are still unclear. In several experiments we show that language, in the form of verbal labels, both aids recognition of ambiguous “Mooney” images and improves objective visual discrimination performance in a match/non-match task. We then used electroencephalography (EEG) to better understand the mechanisms of this effect. The improved discrimination of images previously labeled was accompanied by a larger occipital-parietal P1 evoked response to the meaningful versus meaningless target stimuli. Time-frequency analysis of the interval between the cue and the target stimulus revealed increases in the power of posterior alpha-band (8–14 Hz) oscillations when the meaning of the stimuli to be compared was trained. The magnitude of the pre-target alpha difference and the P1 amplitude difference were positively correlated across individuals. These results suggest that prior knowledge prepares the brain for upcoming perception via the modulation of alpha-band oscillations, and that this preparatory state influences early (~120 ms) stages of visual processing.
Collapse
|
1276
|
Brüers S, VanRullen R. Alpha Power Modulates Perception Independently of Endogenous Factors. Front Neurosci 2018; 12:279. [PMID: 29743869 PMCID: PMC5930164 DOI: 10.3389/fnins.2018.00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/10/2018] [Indexed: 11/24/2022] Open
Abstract
Oscillations are ubiquitous in the brain. Alpha oscillations in particular have been proposed to play an important role in sensory perception. Past studies have shown that the power of ongoing EEG oscillations in the alpha band is negatively correlated with visual outcome. Moreover, it also co-varies with other endogenous factors such as attention, vigilance, or alertness. In turn, these endogenous factors influence visual perception. Therefore, it remains unclear how much of the relation between alpha and perception is indirectly mediated by such endogenous factors, and how much reflects a direct causal influence of alpha rhythms on sensory neural processing. We propose to disentangle the direct from the indirect causal routes by introducing modulations of alpha power, independently of any fluctuations in endogenous factors. To this end, we use white-noise sequences to constrain the brain activity of 20 participants. The cross-correlation between the white-noise sequences and the concurrently recorded EEG reveals the impulse response function (IRF), a model of the systematic relationship between stimulation and brain response. These IRFs are then used to reconstruct rather than record the brain activity linked with new random sequences (by convolution). Interestingly, this reconstructed EEG only contains information about oscillations directly linked to the white-noise stimulation; fluctuations in attention and other endogenous factors may still modulate brain alpha rhythms during the task, but our reconstructed EEG is immune to these factors. We found that the detection of near-perceptual threshold targets embedded within these new white-noise sequences depended on the power of the ~10 Hz reconstructed EEG over parieto-occipital channels. Around the time of presentation, higher power led to poorer performance. Thus, fluctuations in alpha power, induced here by random luminance sequences, can directly influence perception: the relation between alpha power and perception is not a mere consequence of fluctuations in endogenous factors.
Collapse
Affiliation(s)
- Sasskia Brüers
- UMR 5549, Faculté de Médecine Purpan, Centre National de la Recherche Scientifique, Toulouse, France
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Rufin VanRullen
- UMR 5549, Faculté de Médecine Purpan, Centre National de la Recherche Scientifique, Toulouse, France
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
1277
|
Drion G, Dethier J, Franci A, Sepulchre R. Switchable slow cellular conductances determine robustness and tunability of network states. PLoS Comput Biol 2018; 14:e1006125. [PMID: 29684009 PMCID: PMC5940245 DOI: 10.1371/journal.pcbi.1006125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 05/08/2018] [Accepted: 04/06/2018] [Indexed: 11/21/2022] Open
Abstract
Neuronal information processing is regulated by fast and localized fluctuations of brain states. Brain states reliably switch between distinct spatiotemporal signatures at a network scale even though they are composed of heterogeneous and variable rhythms at a cellular scale. We investigated the mechanisms of this network control in a conductance-based population model that reliably switches between active and oscillatory mean-fields. Robust control of the mean-field properties relies critically on a switchable negative intrinsic conductance at the cellular level. This conductance endows circuits with a shared cellular positive feedback that can switch population rhythms on and off at a cellular resolution. The switch is largely independent from other intrinsic neuronal properties, network size and synaptic connectivity. It is therefore compatible with the temporal variability and spatial heterogeneity induced by slower regulatory functions such as neuromodulation, synaptic plasticity and homeostasis. Strikingly, the required cellular mechanism is available in all cell types that possess T-type calcium channels but unavailable in computational models that neglect the slow kinetics of their activation. Brain information processing involves electrophysiological signals at multiple temporal and spatial timescales, from the single neuron level to whole brain areas. A fast and local control of these signals by neurochemicals called neuromodulators is essential in complex tasks such as movement initiation and attentional focus. The neuromodulators act at the cellular scale to control signals that propagate at potentially much larger scales. The present paper highlights the critical role of a cellular switch of excitability for the fast and localized control of cellular and network states. By turning ON and OFF the cellular switch, neuromodulators can robustly switch large populations between distinct network states. We stress the importance of controlling the switch at a cellular level and independently of the connectivity to allow for tunable spatiotemporal signatures of the network states.
Collapse
Affiliation(s)
- Guillaume Drion
- Department of Electrical Engineering and Computer Science, University of Liege, Liege, Belgium
| | - Julie Dethier
- Department of Electrical Engineering and Computer Science, University of Liege, Liege, Belgium
| | - Alessio Franci
- National Autonomous University of Mexico, Science Faculty, Department of Mathematics, Coyoacán, D.F., México
| | - Rodolphe Sepulchre
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
1278
|
Ruggiero F, Lavazza A, Vergari M, Priori A, Ferrucci R. Transcranial Direct Current Stimulation of the Left Temporal Lobe Modulates Insight. CREATIVITY RESEARCH JOURNAL 2018. [DOI: 10.1080/10400419.2018.1446817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
1279
|
Entrainment of theta, not alpha, oscillations is predictive of the brightness enhancement of a flickering stimulus. Sci Rep 2018; 8:6152. [PMID: 29670114 PMCID: PMC5906697 DOI: 10.1038/s41598-018-24215-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/28/2018] [Indexed: 11/24/2022] Open
Abstract
Frequency-dependent brightness enhancement, where a flickering light can appear twice as bright as an equiluminant constant light, has been reported to exist within the alpha (8–12 Hz) band. Could oscillatory neural activity be driving this perceptual effect? Here, in two experiments, human subjects reported which of two flickering stimuli were brighter. Strikingly, 4 Hz stimuli were reported as brighter more than 80% of the time when compared to all other tested frequencies, even though all stimuli were equiluminant and of equal temporal length. Electroencephalography recordings showed that inter-trial phase coherence (ITC) of theta (4 Hz) was: (1) Significantly greater than alpha, contralateral to the flickering stimulus; (2) Enhanced by the presence of a second ipsilateral 4 Hz flickering stimulus; and (3) Uniquely lateralized, unlike the alpha band. Importantly, on trials with two identical stimuli (i.e. 4 Hz vs 4 Hz), the brightness discrimination judgment could be predicted by the hemispheric balance in the amount of 4 Hz ITC. We speculate that the theta rhythm plays a distinct information transfer role, where its ability to share information between hemispheres via entrainment promotes a better processing of visual information to inform a discrimination decision.
Collapse
|
1280
|
van Ede F, Chekroud SR, Stokes MG, Nobre AC. Decoding the influence of anticipatory states on visual perception in the presence of temporal distractors. Nat Commun 2018; 9:1449. [PMID: 29654312 PMCID: PMC5899132 DOI: 10.1038/s41467-018-03960-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 03/23/2018] [Indexed: 01/17/2023] Open
Abstract
Anticipatory states help prioritise relevant perceptual targets over competing distractor stimuli and amplify early brain responses to these targets. Here we combine electroencephalography recordings in humans with multivariate stimulus decoding to address whether anticipation also increases the amount of target identity information contained in these responses, and to ask how targets are prioritised over distractors when these compete in time. We show that anticipatory cues not only boost visual target representations, but also delay the interference on these target representations caused by temporally adjacent distractor stimuli—possibly marking a protective window reserved for high-fidelity target processing. Enhanced target decoding and distractor resistance are further predicted by the attenuation of posterior 8–14 Hz alpha oscillations. These findings thus reveal multiple mechanisms by which anticipatory states help prioritise targets from temporally competing distractors, and they highlight the potential of non-invasive multivariate electrophysiology to track cognitive influences on perception in temporally crowded contexts. Anticipation helps to prioritise the processing of task-relevant sensory targets over irrelevant distractors. Here the authors analyse visual EEG responses and show that anticipation may do so by enhancing the neural representation of the target and by delaying the interference caused by distractors that follow closely in time.
Collapse
Affiliation(s)
- Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
| | - Sammi R Chekroud
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Mark G Stokes
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.,Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.,Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
1281
|
Fodor Z, Sirály E, Horváth A, Salacz P, Hidasi Z, Csibri É, Szabó Á, Csukly G. Decreased Event-Related Beta Synchronization During Memory Maintenance Marks Early Cognitive Decline in Mild Cognitive Impairment. J Alzheimers Dis 2018; 63:489-502. [PMID: 29630552 DOI: 10.3233/jad-171079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mild cognitive impairment (MCI) refers to a measurable deficit in cognition in the absence of dementia or impairment in activities of daily living. Working memory impairment is among the earliest signs of MCI. Oscillatory analysis of working memory might be a potential tool for identifying patients at increased risk of developing dementia. Our study aimed to assess the temporospatial pattern of spectral differences during working memory maintenance between MCI patients and healthy controls and to compare the sources of oscillatory activity between the two groups. Event-related spectral perturbation of 17 MCI patients and 21 healthy control participants was studied with 128-channel EEG during the Sternberg working memory task. Source localization was performed by using the eLORETA software. Among the participants, 13 MCI and 15 control participants underwent a structural brain MRI examination. Event-related synchronization (ERS) in the alpha and beta frequency band was significantly lower in MCI patients compared to healthy control participants during retention. Both study groups showed significant memory load-related enhancement in both frequency band. In the MCI group, source localization revealed significantly attenuated beta oscillatory activity in the inferior and middle temporal gyrus, in the fusiform gyrus, and in the cuneus. Beta ERS correlated significantly with the size of the hippocampus, entorhinal cortex, and parahippocampal gyrus. During the retention period, MCI is characterized by decreased alpha and beta ERS compared to controls indicating early impairment in neural networks serving working memory maintenance. The assessment of electrophysiological changes in the beta frequency range may provide a useful diagnostic tool for the early detection of cognitive impairment.
Collapse
Affiliation(s)
- Zsuzsanna Fodor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Enikő Sirály
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - András Horváth
- Department of Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Pál Salacz
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.,Department of Neurology, Hospital at Péterfy Sándor Street, Budapest, Hungary
| | - Zoltán Hidasi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Éva Csibri
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Ádám Szabó
- MR Research Center, Semmelweis University, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
1282
|
Astrand E. A continuous time-resolved measure decoded from EEG oscillatory activity predicts working memory task performance. J Neural Eng 2018; 15:036021. [DOI: 10.1088/1741-2552/aaae73] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
1283
|
Wöstmann M, Vosskuhl J, Obleser J, Herrmann CS. Opposite effects of lateralised transcranial alpha versus gamma stimulation on auditory spatial attention. Brain Stimul 2018; 11:752-758. [PMID: 29656907 DOI: 10.1016/j.brs.2018.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/15/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Spatial attention relatively increases the power of neural 10-Hz alpha oscillations in the hemisphere ipsilateral to attention, and decreases alpha power in the contralateral hemisphere. For gamma oscillations (>40 Hz), the opposite effect has been observed. The functional roles of lateralised oscillations for attention are currently unclear. HYPOTHESIS If lateralised oscillations are functionally relevant for attention, transcranial stimulation of alpha versus gamma oscillations in one hemisphere should differentially modulate the accuracy of spatial attention to the ipsi-versus contralateral side. METHODS 20 human participants performed a dichotic listening task under continuous transcranial alternating current stimulation (tACS, vs sham) at alpha (10 Hz) or gamma (47 Hz) frequency. On each trial, participants attended to four spoken numbers on the left or right ear, while ignoring numbers on the other ear. In order to stimulate a left temporo-parietal cortex region, which is known to show marked modulations of alpha power during auditory spatial attention, tACS (1 mA peak-to-peak amplitude) was applied at electrode positions TP7 and FC5 over the left hemisphere. RESULTS As predicted, unihemispheric alpha-tACS relatively decreased the recall of targets contralateral to stimulation, but increased recall of ipsilateral targets. Importantly, this spatial pattern of results was reversed for gamma-tACS. CONCLUSIONS Results provide a proof of concept that transcranially stimulated oscillations can enhance spatial attention and facilitate attentional selection of speech. Furthermore, opposite effects of alpha versus gamma stimulation support the view that states of high alpha are incommensurate with active neural processing as reflected by states of high gamma.
Collapse
Affiliation(s)
- Malte Wöstmann
- Department of Psychology, University of Lübeck, Lübeck, Germany.
| | - Johannes Vosskuhl
- Experimental Psychology Lab, Center for Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Center for Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
1284
|
Vassileiou B, Meyer L, Beese C, Friederici AD. Alignment of alpha-band desynchronization with syntactic structure predicts successful sentence comprehension. Neuroimage 2018; 175:286-296. [PMID: 29627592 DOI: 10.1016/j.neuroimage.2018.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
Sentence comprehension requires the encoding of phrases and their relationships into working memory. To date, despite the importance of neural oscillations in language comprehension, the neural-oscillatory dynamics of sentence encoding are only sparsely understood. Although oscillations in a wide range of frequency bands have been reported both for the encoding of unstructured word lists and for working-memory intensive sentences, it is unclear to what extent these frequency bands subserve processes specific to the working-memory component of sentence comprehension or to general verbal working memory. In our auditory electroencephalography study, we isolated the working-memory component of sentence comprehension by adapting a subsequent memory paradigm to sentence comprehension and assessing oscillatory power changes during successful sentence encoding. Time-frequency analyses and source reconstruction revealed alpha-power desynchronization in left-hemispheric language-relevant regions during successful sentence encoding. We further showed that sentence encoding was more successful when source-level alpha-band desynchronization aligned with computational measures of syntactic-compared to lexical-semantic-difficulty. Our results are a preliminary indication of a domain-general mechanism of cortical disinhibition via alpha-band desynchronization superimposed onto the language-relevant cortex, which is beneficial for encoding sentences into working memory.
Collapse
Affiliation(s)
- Benedict Vassileiou
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.
| | - Lars Meyer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Caroline Beese
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| |
Collapse
|
1285
|
Lozano-Soldevilla D. On the Physiological Modulation and Potential Mechanisms Underlying Parieto-Occipital Alpha Oscillations. Front Comput Neurosci 2018; 12:23. [PMID: 29670518 PMCID: PMC5893851 DOI: 10.3389/fncom.2018.00023] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/20/2018] [Indexed: 12/25/2022] Open
Abstract
The parieto-occipital alpha (8–13 Hz) rhythm is by far the strongest spectral fingerprint in the human brain. Almost 90 years later, its physiological origin is still far from clear. In this Research Topic I review human pharmacological studies using electroencephalography (EEG) and magnetoencephalography (MEG) that investigated the physiological mechanisms behind posterior alpha. Based on results from classical and recent experimental studies, I find a wide spectrum of drugs that modulate parieto-occipital alpha power. Alpha frequency is rarely affected, but this might be due to the range of drug dosages employed. Animal and human pharmacological findings suggest that both GABA enhancers and NMDA blockers systematically decrease posterior alpha power. Surprisingly, most of the theoretical frameworks do not seem to embrace these empirical findings and the debate on the functional role of alpha oscillations has been polarized between the inhibition vs. active poles hypotheses. Here, I speculate that the functional role of alpha might depend on physiological excitation as much as on physiological inhibition. This is supported by animal and human pharmacological work showing that GABAergic, glutamatergic, cholinergic, and serotonergic receptors in the thalamus and the cortex play a key role in the regulation of alpha power and frequency. This myriad of physiological modulations fit with the view that the alpha rhythm is a complex rhythm with multiple sources supported by both thalamo-cortical and cortico-cortical loops. Finally, I briefly discuss how future research combining experimental measurements derived from theoretical predictions based of biophysically realistic computational models will be crucial to the reconciliation of these disparate findings.
Collapse
|
1286
|
Alpha Oscillations Are Causally Linked to Inhibitory Abilities in Ageing. J Neurosci 2018; 38:4418-4429. [PMID: 29615485 DOI: 10.1523/jneurosci.1285-17.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 11/21/2022] Open
Abstract
Aging adults typically show reduced ability to ignore task-irrelevant information, an essential skill for optimal performance in many cognitive operations, including those requiring working memory (WM) resources. In a first experiment, young and elderly human participants of both genders performed an established WM paradigm probing inhibitory abilities by means of valid, invalid, and neutral retro-cues. Elderly participants showed an overall cost, especially in performing invalid trials, whereas younger participants' general performance was comparatively higher, as expected.Inhibitory abilities have been linked to alpha brain oscillations but it is yet unknown whether in aging these oscillations (also typically impoverished) and inhibitory abilities are causally linked. To probe this possible causal link in aging, we compared in a second experiment parietal alpha-transcranial alternating current stimulation (tACS) with either no stimulation (Sham) or with two control stimulation frequencies (theta- and gamma-tACS) in the elderly group while performing the same WM paradigm. Alpha- (but not theta- or gamma-) tACS selectively and significantly improved performance (now comparable to younger adults' performance in the first experiment), particularly for invalid cues where initially elderly showed the highest costs. Alpha oscillations are therefore causally linked to inhibitory abilities and frequency-tuned alpha-tACS interventions can selectively change these abilities in the elderly.SIGNIFICANCE STATEMENT Ignoring task-irrelevant information, an ability associated to rhythmic brain activity in the alpha frequency band, is fundamental for optimal performance. Indeed, impoverished inhibitory abilities contribute to age-related decline in cognitive functions like working memory (WM), the capacity to briefly hold information in mind. Whether in aging adults alpha oscillations and inhibitory abilities are causally linked is yet unknown. We experimentally manipulated frequency-tuned brain activity using transcranial alternating current stimulation (tACS), combined with a retro-cue paradigm assessing WM and inhibition. We found that alpha-tACS induced a significant improvement in target responses and misbinding errors, two indexes of inhibition. We concluded that in aging alpha oscillations are causally linked to inhibitory abilities, and that despite being impoverished, these abilities are still malleable.
Collapse
|
1287
|
Wittenberg MA, Baumgarten TJ, Schnitzler A, Lange J. U-shaped Relation between Prestimulus Alpha-band and Poststimulus Gamma-band Power in Temporal Tactile Perception in the Human Somatosensory Cortex. J Cogn Neurosci 2018; 30:552-564. [DOI: 10.1162/jocn_a_01219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuronal oscillations are a ubiquitous phenomenon in the human nervous system. Alpha-band oscillations (8–12 Hz) have been shown to correlate negatively with attention and performance, whereas gamma-band oscillations (40–150 Hz) correlate positively. Here, we studied the relation between prestimulus alpha-band power and poststimulus gamma-band power in a suprathreshold tactile discrimination task. Participants received two electrical stimuli to their left index finger with different SOAs (0 msec, 100 msec, intermediate SOA, intermediate SOA ± 10 msec). The intermediate SOA was individually determined so that stimulation was bistable, and participants perceived one stimulus in half of the trials and two stimuli in the other half. We measured neuronal activity with magnetoencephalography (MEG). In trials with intermediate SOAs, behavioral performance correlated inversely with prestimulus alpha-band power but did not correlate with poststimulus gamma-band power. Poststimulus gamma-band power was high in trials with low and high prestimulus alpha-band power and low for intermediate prestimulus alpha-band power (i.e., U-shaped). We suggest that prestimulus alpha activity modulates poststimulus gamma activity and subsequent perception: (1) low prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that two stimuli were perceived; (2) intermediate prestimulus alpha-band power leads to low gamma-band power (interpreted as inefficient stimulus processing), consequently, perception was not biased in either direction; and (3) high prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that only one stimulus was perceived.
Collapse
|
1288
|
Irrmischer M, Houtman SJ, Mansvelder HD, Tremmel M, Ott U, Linkenkaer‐Hansen K. Controlling the Temporal Structure of Brain Oscillations by Focused Attention Meditation. Hum Brain Mapp 2018; 39:1825-1838. [PMID: 29331064 PMCID: PMC6585826 DOI: 10.1002/hbm.23971] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 12/09/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Abstract
Our focus of attention naturally fluctuates between different sources of information even when we desire to focus on a single object. Focused attention (FA) meditation is associated with greater control over this process, yet the neuronal mechanisms underlying this ability are not entirely understood. Here, we hypothesize that the capacity of attention to transiently focus and swiftly change relates to the critical dynamics emerging when neuronal systems balance at a point of instability between order and disorder. In FA meditation, however, the ability to stay focused is trained, which may be associated with a more homogeneous brain state. To test this hypothesis, we applied analytical tools from criticality theory to EEG in meditation practitioners and meditation-naïve participants from two independent labs. We show that in practitioners-but not in controls-FA meditation strongly suppressed long-range temporal correlations (LRTC) of neuronal oscillations relative to eyes-closed rest with remarkable consistency across frequency bands and scalp locations. The ability to reduce LRTC during meditation increased after one year of additional training and was associated with the subjective experience of fully engaging one's attentional resources, also known as absorption. Sustained practice also affected normal waking brain dynamics as reflected in increased LRTC during an eyes-closed rest state, indicating that brain dynamics are altered beyond the meditative state. Taken together, our findings suggest that the framework of critical brain dynamics is promising for understanding neuronal mechanisms of meditative states and, specifically, we have identified a clear electrophysiological correlate of the FA meditation state.
Collapse
Affiliation(s)
- Mona Irrmischer
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU AmsterdamAmsterdam1081 HVNetherlands
| | - Simon J. Houtman
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU AmsterdamAmsterdam1081 HVNetherlands
| | - Huibert D. Mansvelder
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU AmsterdamAmsterdam1081 HVNetherlands
| | - Michael Tremmel
- Bender Institute of Neuroimaging (BION), Justus Liebig University GiessenGiessen35394Germany
| | - Ulrich Ott
- Bender Institute of Neuroimaging (BION), Justus Liebig University GiessenGiessen35394Germany
| | - Klaus Linkenkaer‐Hansen
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU AmsterdamAmsterdam1081 HVNetherlands
| |
Collapse
|
1289
|
Kam JWY, Solbakk AK, Endestad T, Meling TR, Knight RT. Lateral prefrontal cortex lesion impairs regulation of internally and externally directed attention. Neuroimage 2018; 175:91-99. [PMID: 29604457 DOI: 10.1016/j.neuroimage.2018.03.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 11/19/2022] Open
Abstract
Our capacity to flexibly shift between internally and externally directed attention is crucial for successful performance of activities in our daily lives. Neuroimaging studies have implicated the lateral prefrontal cortex (LPFC) in both internally directed processes, including autobiographical memory retrieval and future planning, and externally directed processes, including cognitive control and selective attention. However, the causal involvement of the LPFC in regulating internally directed attention states is unknown. The current study recorded scalp EEG from patients with LPFC lesions and healthy controls as they performed an attention task that instructed them to direct their attention either to the external environment or their internal milieu. We compared frontocentral midline theta and posterior alpha between externally and internally directed attention states. While healthy controls showed increased theta power during externally directed attention and increased alpha power during internally directed attention, LPFC patients revealed no differences between the two attention states in either electrophysiological measure in the analyzed time windows. These findings provide evidence that damage to the LPFC leads to dysregulation of both types of attention, establishing the important role of LPFC in supporting sustained periods of internally and externally directed attention.
Collapse
Affiliation(s)
- Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California - Berkeley, 132 Barker Hall, Berkeley, CA, 94720, USA.
| | - Anne-Kristin Solbakk
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Postboks 1094, Blindern, 0317, Oslo, Norway; Department of Neuropsychology, Helgeland Hospital, 8657, Mosjøen, Norway; Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital - Rikshospitalet, 0027, Oslo, Norway.
| | - Tor Endestad
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Postboks 1094, Blindern, 0317, Oslo, Norway.
| | - Torstein R Meling
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Postboks 1094, Blindern, 0317, Oslo, Norway; Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital - Rikshospitalet, 0027, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0373, Oslo, Norway.
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California - Berkeley, 132 Barker Hall, Berkeley, CA, 94720, USA; Department of Psychology, University of California - Berkeley, 130 Barker Hall, Berkeley, CA, 94720, USA.
| |
Collapse
|
1290
|
Clarke A, Roberts BM, Ranganath C. Neural oscillations during conditional associative learning. Neuroimage 2018; 174:485-493. [PMID: 29588228 DOI: 10.1016/j.neuroimage.2018.03.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022] Open
Abstract
Associative learning requires mapping between complex stimuli and behavioural responses. When multiple stimuli are involved, conditional associative learning is a gradual process with learning based on trial and error. It is established that a distributed network of regions track associative learning, however the role of neural oscillations in human learning remains less clear. Here we used scalp EEG to test how neural oscillations change during learning of arbitrary visuo-motor associations. Participants learned to associative 48 different abstract shapes to one of four button responses through trial and error over repetitions of the shapes. To quantify how well the associations were learned for each trial, we used a state-space computational model of learning that provided a probability of each trial being correct given past performance for that stimulus, that we take as a measure of the strength of the association. We used linear modelling to relate single-trial neural oscillations to single-trial measures of association strength. We found frontal midline theta oscillations during the delay period tracked learning, where theta activity was strongest during the early stages of learning and declined as the associations were formed. Further, posterior alpha and low-beta oscillations in the cue period showed strong desynchronised activity early in learning, while stronger alpha activity during the delay period was seen as associations became well learned. Moreover, the magnitude of these effects during early learning, before the associations were learned, related to improvements in memory seen on the next presentation of the stimulus. The current study provides clear evidence that frontal theta and posterior alpha/beta oscillations play a key role during associative memory formation.
Collapse
Affiliation(s)
- Alex Clarke
- Center for Neuroscience, University of California Davis, USA.
| | | | - Charan Ranganath
- Center for Neuroscience, University of California Davis, USA; Department of Psychology, University of California Davis, USA
| |
Collapse
|
1291
|
Solís-Vivanco R, Rodríguez-Violante M, Cervantes-Arriaga A, Justo-Guillén E, Ricardo-Garcell J. Brain oscillations reveal impaired novelty detection from early stages of Parkinson's disease. Neuroimage Clin 2018; 18:923-931. [PMID: 29876277 PMCID: PMC5988040 DOI: 10.1016/j.nicl.2018.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
Abstract
The identification of reliable biomarkers for early diagnosis and progression tracking of neurodegenerative diseases has become an important objective in clinical neuroscience in the last years. The P3a event-related potential, considered as the neurophysiological hallmark of novelty detection, has been shown to be reduced in Parkinson's disease (PD) and proposed as a sensitive measure for illness duration and severity. Our aim for this study was to explore for the first time whether impaired novelty detection could be observed through phase- and time-locked brain oscillatory activity at early PD. Twenty-seven patients with idiopathic PD at early stages (disease duration <5 years and Hoehn and Yahr stage <3) were included. A healthy control group (n = 24) was included as well. All participants performed an auditory involuntary attention task including frequent and deviant tones while a digital EEG was obtained. A neuropsychological battery was administered as well. Time-frequency representations of power and phase-locked oscillations and P3a amplitudes were compared between groups. We found a significant reduction of power and phase locking of slow oscillations (3-7 Hz) for deviant tones in the PD group compared to controls in the P3a time range (300-550 ms). Also, reduced modulation of late induced (not phase locked) alpha-beta oscillations (400-650 ms, 8-25 Hz) was observed in the PD group after deviant tones onset. The P3a amplitude was predicted by years of evolution in the PD group. Finally, while phase-locked slow oscillations were associated with task behavioral distraction effects, induced alpha-beta activity was related to cognitive flexibility performance. Our results show that novelty detection impairment can be identified in neurophysiological terms from very early stages of PD, and such impairment increases linearly as the disease progresses. Also, induced alpha-beta oscillations underlying novelty detection are related to executive functioning.
Collapse
Affiliation(s)
- Rodolfo Solís-Vivanco
- Neuropsychology Department, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico; School of Psychology, Universidad Nacional Autónoma de México (UNAM), Mexico.
| | | | | | - Edith Justo-Guillén
- School of Psychology, Universidad Nacional Autónoma de México (UNAM), Mexico
| | | |
Collapse
|
1292
|
Boudewyn MA. Understanding Working Memory and Attentional Control Impairments in Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018. [PMID: 29528291 DOI: 10.1016/j.bpsc.2017.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Megan A Boudewyn
- Imaging Research Center, UC Davis Medical Center, Sacramento, California.
| |
Collapse
|
1293
|
Westner BU, Dalal SS, Hanslmayr S, Staudigl T. Across-subjects classification of stimulus modality from human MEG high frequency activity. PLoS Comput Biol 2018. [PMID: 29529062 PMCID: PMC5864083 DOI: 10.1371/journal.pcbi.1005938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-trial analyses have the potential to uncover meaningful brain dynamics that are obscured when averaging across trials. However, low signal-to-noise ratio (SNR) can impede the use of single-trial analyses and decoding methods. In this study, we investigate the applicability of a single-trial approach to decode stimulus modality from magnetoencephalographic (MEG) high frequency activity. In order to classify the auditory versus visual presentation of words, we combine beamformer source reconstruction with the random forest classification method. To enable group level inference, the classification is embedded in an across-subjects framework. We show that single-trial gamma SNR allows for good classification performance (accuracy across subjects: 66.44%). This implies that the characteristics of high frequency activity have a high consistency across trials and subjects. The random forest classifier assigned informational value to activity in both auditory and visual cortex with high spatial specificity. Across time, gamma power was most informative during stimulus presentation. Among all frequency bands, the 75 Hz to 95 Hz band was the most informative frequency band in visual as well as in auditory areas. Especially in visual areas, a broad range of gamma frequencies (55 Hz to 125 Hz) contributed to the successful classification. Thus, we demonstrate the feasibility of single-trial approaches for decoding the stimulus modality across subjects from high frequency activity and describe the discriminative gamma activity in time, frequency, and space. Averaging brain activity across trials is a powerful way to increase signal-to-noise ratio in MEG data. This approach, however, potentially obscures meaningful brain dynamics that unfold on the single-trial level. Single-trial analyses have been successfully applied to time domain or low frequency oscillatory activity; its application to MEG high frequency activity is hindered by the low amplitude of these signals. In the present study, we show that stimulus modality (visual versus auditory presentation of words) can successfully be decoded from single-trial MEG high frequency activity by combining source reconstruction with a random forest classification algorithm. This approach reveals patterns of activity above 75 Hz in both visual and auditory cortex, highlighting the importance of high frequency activity for the processing of domain-specific stimuli. Thereby, our results extend prior findings by revealing high-frequency activity in auditory cortex related to auditory word stimuli in MEG data. The adopted across-subjects framework furthermore suggests a high inter-individual consistency in the high frequency activity patterns.
Collapse
Affiliation(s)
- Britta U. Westner
- Department of Psychology, University of Konstanz, Konstanz, Germany
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| | - Sarang S. Dalal
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simon Hanslmayr
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Tobias Staudigl
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
1294
|
Chacko RV, Kim B, Jung SW, Daitch AL, Roland JL, Metcalf NV, Corbetta M, Shulman GL, Leuthardt EC. Distinct phase-amplitude couplings distinguish cognitive processes in human attention. Neuroimage 2018. [PMID: 29518565 PMCID: PMC6369928 DOI: 10.1016/j.neuroimage.2018.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spatial attention is the cognitive function that coordinates the selection of visual stimuli with appropriate behavioral responses. Recent studies have reported that phase-amplitude coupling (PAC) of low and high frequencies covaries with spatial attention, but differ on the direction of covariation and the frequency ranges involved. We hypothesized that distinct phase-amplitude frequency pairs have differentiable contributions during tasks that manipulate spatial attention. We investigated this hypothesis with electrocorticography (ECoG) recordings from participants who engaged in a cued spatial attention task. To understand the contribution of PAC to spatial attention we classified cortical sites by their relationship to spatial variables or behavioral performance. Local neural activity in spatial sites was sensitive to spatial variables in the task, while local neural activity in behavioral sites correlated with reaction time. We found two PAC frequency clusters that covaried with different aspects of the task. During a period of cued attention, delta-phase/high-gamma (DH) PAC was sensitive to cue direction in spatial sites. In contrast, theta-alpha-phase/beta-low-gamma-amplitude (TABL) PAC robustly correlated with future reaction times in behavioral sites. Finally, we investigated the origins of TABL PAC and found it corresponded to behaviorally relevant, sharp waveforms, which were also coupled to a low frequency rhythm. We conclude that TABL and DH PAC correspond to distinct mechanisms during spatial attention tasks and that sharp waveforms are elements of a coupled dynamical process.
Collapse
Affiliation(s)
- Ravi V Chacko
- Department of Biomedical Engineering, Washington University in St. Louis, MO, 63108, United States.
| | - Byungchan Kim
- Department of Biomedical Engineering, Washington University in St. Louis, MO, 63108, United States
| | - Suh Woo Jung
- Department of Biomedical Engineering, Washington University in St. Louis, MO, 63108, United States
| | - Amy L Daitch
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, United States
| | - Jarod L Roland
- Department of Neurological Surgery, Washington University in St. Louis, MO, 63108, United States
| | - Nicholas V Metcalf
- Department of Neurology, Washington University in St. Louis, MO, 63108, United States
| | - Maurizio Corbetta
- Department of Biomedical Engineering, Washington University in St. Louis, MO, 63108, United States; Department of Neurology, Washington University in St. Louis, MO, 63108, United States; Department of Neuroscience, Padova Neuroscience Center, University of Padova, PD, 35122, Italy
| | - Gordon L Shulman
- Department of Neurology, Washington University in St. Louis, MO, 63108, United States
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University in St. Louis, MO, 63108, United States; Department of Neurological Surgery, Washington University in St. Louis, MO, 63108, United States
| |
Collapse
|
1295
|
Lau P, Wollbrink A, Wunderlich R, Engell A, Löhe A, Junghöfer M, Pantev C. Targeting Heterogeneous Findings in Neuronal Oscillations in Tinnitus: Analyzing MEG Novices and Mental Health Comorbidities. Front Psychol 2018; 9:235. [PMID: 29551983 PMCID: PMC5841018 DOI: 10.3389/fpsyg.2018.00235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Tinnitus is a prevalent phenomenon and bothersome for people affected by it. Its occurrence and maintenance have a clear neuroscientific tie and one aspect are differences in the neuronal oscillatory pattern, especially in auditory cortical areas. As studies in this field come to different results, the aim of this study was to analyze a large number of participants to achieve more stable results. Furthermore, we expanded our analysis to two variables of potential influence, namely being a novice to neuroscientific measurements and the exclusion of psychological comorbidities. Oscillatory brain activity of 88 subjects (46 with a chronic tinnitus percept, 42 without) measured in resting state by MEG was investigated. In the analysis based on the whole group, in sensor space increased activity in the delta frequency band was found in tinnitus patients. Analyzing the subgroup of novices, a significant difference in the theta band emerged additionally to the delta band difference (sensor space). Localizing the origin of the activity, we found a difference in theta and gamma band for the auditory regions for the whole group and the same significant difference in the subgroup of novices. However, no differences in oscillatory activity were observed between tinnitus and control groups once subjects with mental health comorbidity were excluded. Against the background of previous studies, the study at hand underlines the fragility of the results in the field of neuronal cortical oscillations in tinnitus. It supports the body of research arguing for low frequency oscillations and gamma band activity as markers associated with tinnitus.
Collapse
Affiliation(s)
- Pia Lau
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Andreas Wollbrink
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Robert Wunderlich
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Alva Engell
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Alwina Löhe
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Christo Pantev
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| |
Collapse
|
1296
|
Cerquera A, Vollebregt MA, Arns M. Nonlinear Recurrent Dynamics and Long-Term Nonstationarities in EEG Alpha Cortical Activity: Implications for Choosing Adequate Segment Length in Nonlinear EEG Analyses. Clin EEG Neurosci 2018; 49:71-78. [PMID: 28805079 DOI: 10.1177/1550059417724695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nonlinear analysis of EEG recordings allows detection of characteristics that would probably be neglected by linear methods. This study aimed to determine a suitable epoch length for nonlinear analysis of EEG data based on its recurrence rate in EEG alpha activity (electrodes Fz, Oz, and Pz) from 28 healthy and 64 major depressive disorder subjects. Two nonlinear metrics, Lempel-Ziv complexity and scaling index, were applied in sliding windows of 20 seconds shifted every 1 second and in nonoverlapping windows of 1 minute. In addition, linear spectral analysis was carried out for comparison with the nonlinear results. The analysis with sliding windows showed that the cortical dynamics underlying alpha activity had a recurrence period of around 40 seconds in both groups. In the analysis with nonoverlapping windows, long-term nonstationarities entailed changes over time in the nonlinear dynamics that became significantly different between epochs across time, which was not detected with the linear spectral analysis. Findings suggest that epoch lengths shorter than 40 seconds neglect information in EEG nonlinear studies. In turn, linear analysis did not detect characteristics from long-term nonstationarities in EEG alpha waves of control subjects and patients with major depressive disorder patients. We recommend that application of nonlinear metrics in EEG time series, particularly of alpha activity, should be carried out with epochs around 60 seconds. In addition, this study aimed to demonstrate that long-term nonlinearities are inherent to the cortical brain dynamics regardless of the presence or absence of a mental disorder.
Collapse
Affiliation(s)
- Alexander Cerquera
- 1 School of Electronics and Biomedical Engineering, Research Group Complex Systems, Universidad Antonio Nariño, Bogota, Colombia.,2 J. Crayton Pruitt Family Department of Biomedical Engineering, Brain Mapping Lab, University of Florida, Gainesville, FL, USA
| | - Madelon A Vollebregt
- 3 Research Institute Brainclinics, Nijmegen, The Netherlands.,4 Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, The Netherlands
| | - Martijn Arns
- 3 Research Institute Brainclinics, Nijmegen, The Netherlands.,5 Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
1297
|
Boudewyn MA, Carter CS. Electrophysiological correlates of adaptive control and attentional engagement in patients with first episode schizophrenia and healthy young adults. Psychophysiology 2018; 55:10.1111/psyp.12820. [PMID: 28295391 PMCID: PMC5599306 DOI: 10.1111/psyp.12820] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 12/02/2016] [Indexed: 11/29/2022]
Abstract
The goal of this study was to investigate the neural dynamics of error processing and post-error adjustments in cognitive control and attention to a cognitive task in schizophrenia. We adopted a time-frequency approach in order to examine activity in the theta and alpha frequency bands as indices of cognitive control and attentional engagement. The results showed that error processing was characterized by increases in theta-band activity, accompanied by decreases in alpha-band activity, in both healthy control participants and participants with schizophrenia. However, both the theta and alpha effects were significantly reduced in participants with schizophrenia. Post-error increases in theta activity were associated with improved accuracy on subsequent trials in control participants but not in participants with schizophrenia. In addition, increases in alpha-band activity were found in the prestimulus period before partial attention lapses, but only for control participants and participants with schizophrenia with relatively low positive symptom severity. These results provide evidence for a deficit in cognitive control mechanisms mediated by midfrontal theta activity in schizophrenia, and suggest a particularly pronounced deficit in patients' ability to engage adaptive control mechanisms following errors. Our results also indicate that partial attention lapses can be indexed in both control participants and participants with schizophrenia by increases in alpha activity, but that in schizophrenia this varies as a function of positive symptom severity. We suggest that disrupted theta-band function represents a key deficit of schizophrenia, whereas disruptions in the alpha band may be the byproduct of atypically regulated attention.
Collapse
Affiliation(s)
- Megan A Boudewyn
- Imaging Research Center, University of California, Davis, Sacramento, California
| | - Cameron S Carter
- Imaging Research Center, University of California, Davis, Sacramento, California
| |
Collapse
|
1298
|
Tzvi E, Bauhaus LJ, Kessler TU, Liebrand M, Wöstmann M, Krämer UM. Alpha-gamma phase amplitude coupling subserves information transfer during perceptual sequence learning. Neurobiol Learn Mem 2018; 149:107-117. [DOI: 10.1016/j.nlm.2018.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/09/2018] [Accepted: 02/19/2018] [Indexed: 11/30/2022]
|
1299
|
Zrenner C, Desideri D, Belardinelli P, Ziemann U. Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimul 2018; 11:374-389. [DOI: 10.1016/j.brs.2017.11.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
|
1300
|
Tune S, Wöstmann M, Obleser J. Probing the limits of alpha power lateralisation as a neural marker of selective attention in middle-aged and older listeners. Eur J Neurosci 2018; 48:2537-2550. [PMID: 29430736 DOI: 10.1111/ejn.13862] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/22/2017] [Accepted: 02/01/2018] [Indexed: 02/05/2023]
Abstract
In recent years, hemispheric lateralisation of alpha power has emerged as a neural mechanism thought to underpin spatial attention across sensory modalities. Yet, how healthy ageing, beginning in middle adulthood, impacts the modulation of lateralised alpha power supporting auditory attention remains poorly understood. In the current electroencephalography study, middle-aged and older adults (N = 29; ~40-70 years) performed a dichotic listening task that simulates a challenging, multitalker scenario. We examined the extent to which the modulation of 8-12 Hz alpha power would serve as neural marker of listening success across age. With respect to the increase in interindividual variability with age, we examined an extensive battery of behavioural, perceptual and neural measures. Similar to findings on younger adults, middle-aged and older listeners' auditory spatial attention induced robust lateralisation of alpha power, which synchronised with the speech rate. Notably, the observed relationship between this alpha lateralisation and task performance did not co-vary with age. Instead, task performance was strongly related to an individual's attentional and working memory capacity. Multivariate analyses revealed a separation of neural and behavioural variables independent of age. Our results suggest that in age-varying samples as the present one, the lateralisation of alpha power is neither a sufficient nor necessary neural strategy for an individual's auditory spatial attention, as higher age might come with increased use of alternative, compensatory mechanisms. Our findings emphasise that explaining interindividual variability will be key to understanding the role of alpha oscillations in auditory attention in the ageing listener.
Collapse
Affiliation(s)
- Sarah Tune
- Department of Psychology, University of Lübeck, Maria-Goeppert-Str. 9a, 23562, Lübeck, Germany
| | - Malte Wöstmann
- Department of Psychology, University of Lübeck, Maria-Goeppert-Str. 9a, 23562, Lübeck, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Maria-Goeppert-Str. 9a, 23562, Lübeck, Germany
| |
Collapse
|