1301
|
Bugaut A, Jantos K, Wietor JL, Rodriguez R, Sanders J, Balasubramanian S. Exploring the Differential Recognition of DNA G-Quadruplex Targets by Small Molecules Using Dynamic Combinatorial Chemistry. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705589] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
1302
|
Todd AK, Neidle S. The relationship of potential G-quadruplex sequences in cis-upstream regions of the human genome to SP1-binding elements. Nucleic Acids Res 2008; 36:2700-4. [PMID: 18353860 PMCID: PMC2377421 DOI: 10.1093/nar/gkn078] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We have carried out a survey of potential quadruplex structure sequences (PQSS), which occur in the immediate upstream region (500 bp) of human genes. By examining the number and distribution of these we have established that there is a clear link between them and the occurrence of the SP1-binding element ‘GGGCGG’, such that a large number of upstream PQSS incorporate the SP1-binding element.
Collapse
Affiliation(s)
- Alan K Todd
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | |
Collapse
|
1303
|
Tsumagari K, Qi L, Jackson K, Shao C, Lacey M, Sowden J, Tawil R, Vedanarayanan V, Ehrlich M. Epigenetics of a tandem DNA repeat: chromatin DNaseI sensitivity and opposite methylation changes in cancers. Nucleic Acids Res 2008; 36:2196-207. [PMID: 18281700 PMCID: PMC2367708 DOI: 10.1093/nar/gkn055] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNA methylation and chromatin DNaseI sensitivity were analyzed in and adjacent to D4Z4 repeat arrays, which consist of 1 to ∼100 tandem 3.3-kb units at subtelomeric 4q and 10q. D4Z4 displayed hypomethylation in some cancers and hypermethylation in others relative to normal tissues. Surprisingly, in cancers with extensive D4Z4 methylation there was a barrier to hypermethylation spreading to the beginning of this disease-associated array (facioscapulohumeral muscular dystrophy, FSHD) despite sequence conservation in repeat units throughout the array. We infer a different chromatin structure at the proximal end of the array than at interior repeats, consistent with results from chromatin DNaseI sensitivity assays indicating a boundary element near the beginning of the array. The relative chromatin DNaseI sensitivity in FSHD and control myoblasts and lymphoblasts was as follows: a non-genic D4Z4-adjacent sequence (p13E-11, array-proximal)> untranscribed gene standards > D4Z4 arrays> constitutive heterochromatin (satellite 2; P< 10−4 for all comparisons). Cancers displaying D4Z4 hypermethylation also exhibited a hypermethylation-resistant subregion within the 3.3-kb D4Z4 repeat units. This subregion contains runs of G that form G-quadruplexes in vitro. Unusual DNA structures might contribute to topological constraints that link short 4q D4Z4 arrays to FSHD and make long ones phenotypically neutral.
Collapse
Affiliation(s)
- Koji Tsumagari
- Human Genetics Program and Department of Biochemistry and Tulane Cancer Center, Tulane Medical School, Department of Mathematics, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1304
|
Cheng MK, Modi C, Cookson JC, Hutchinson I, Heald RA, McCarroll AJ, Missailidis S, Tanious F, Wilson WD, Mergny JL, Laughton CA, Stevens MFG. Antitumor polycyclic acridines. 20. Search for DNA quadruplex binding selectivity in a series of 8,13-dimethylquino[4,3,2-kl]acridinium salts: telomere-targeted agents. J Med Chem 2008; 51:963-75. [PMID: 18247546 DOI: 10.1021/jm070587t] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The growth-inhibitory activities of an extensive series of quaternized quino[4,3,2- kl]acridinium salts against tumor cell lines in vitro have been measured and their biological properties interpreted in the light of differential binding to different DNA isoforms. Selectivity for quadruplex DNA binding and stabilization by compounds were explored through an array of methods: UV absorption and fluorescence emission spectroscopy, surface plasmon resonance, and competition dialysis. Quadruplex DNA interaction was further characterized through FRET and DNA polymerase arrest assays. Telomerase inhibition, inferred from the TRAP assay, is attributed to quadruplex stabilization, supported by the strong correlation (R(2) = 0.81) across the series between quadruplex DNA binding affinity and TRAP inhibition potency. Growth inhibition potency in the NCI60 human tumor cell line panel is more marked in compounds with greater DNA duplex binding affinity (R(2) = 0.82). Quantification of relative quadruplex and duplex binding affinity constants puts some of these ligands among the most selective quadruplex DNA interactive agents reported to date.
Collapse
Affiliation(s)
- Mai-Kim Cheng
- Cancer Research UK Experimental Cancer Chemotherapy Research Group, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1305
|
Iwamoto F, Stadler M, Chalupníková K, Oakeley E, Nagamine Y. Transcription-dependent nucleolar cap localization and possible nuclear function of DExH RNA helicase RHAU. Exp Cell Res 2008; 314:1378-91. [PMID: 18279852 DOI: 10.1016/j.yexcr.2008.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/21/2007] [Accepted: 01/07/2008] [Indexed: 12/31/2022]
Abstract
RHAU (RNA helicase associated with AU-rich element) is a DExH protein originally identified as a factor accelerating AU-rich element-mediated mRNA degradation. The discovery that RHAU is predominantly localized in the nucleus, despite mRNA degradation occurring in the cytoplasm, prompted us to consider the nuclear functions of RHAU. In HeLa cells, RHAU was found to be localized throughout the nucleoplasm with some concentrated in nuclear speckles. Transcriptional arrest altered the localization to nucleolar caps, where RHAU is closely localized with RNA helicases p68 and p72, suggesting that RHAU is involved in transcription-related RNA metabolism in the nucleus. To see whether RHAU affects global gene expression transcriptionally or posttranscriptionally, we performed microarray analysis using total RNA from RHAU-depleted HeLa cell lines, measuring both steady-state mRNA levels and mRNA half-lives by actinomycin D chase. There was no change in the half-lives of most transcripts whose steady-state levels were affected by RHAU knockdown, suggesting that these transcripts are subjected to transcriptional regulation. We propose that RHAU has a dual function, being involved in both the synthesis and degradation of mRNA in different subcellular compartments.
Collapse
Affiliation(s)
- Fumiko Iwamoto
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Switzerland
| | | | | | | | | |
Collapse
|
1306
|
Bugaut A, Balasubramanian S. A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry 2008; 47:689-97. [PMID: 18092816 PMCID: PMC2408741 DOI: 10.1021/bi701873c] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
G-Rich sequences found within biologically important regions of the genome have been shown to form intramolecular G-quadruplexes with varied loop lengths and sequences. Many of these quadruplexes will be distinguishable from each other on the basis of their thermodynamic stabilities and folded conformations. It has been proposed that loop lengths can strongly influence the topology and stability of intramolecular G-quadruplexes. Previous studies have been limited to the analysis of quadruplex sequences with particular loop sequences, making it difficult to make generalizations. Here, we describe an original study that aimed to elucidate the effect of loop length on the biophysical properties of G-quadruplexes in a sequence-independent context. We employed UV melting and circular dichroism spectroscopy to examine and compare the properties of 21 DNA quadruplex libraries, each comprising partially randomized loop sequences with lengths ranging from one to three nucleotides. Our work supports a number of general predictions that can be made solely on the basis of loop lengths. In particular, the results emphasize the strong influence of single-nucleotide loops on quadruplex properties. This study provides a predictive framework that may help identify or classify biologically relevant G-quadruplex-forming sequences.
Collapse
Affiliation(s)
- Anthony Bugaut
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | | |
Collapse
|
1307
|
Eddy J, Maizels N. Conserved elements with potential to form polymorphic G-quadruplex structures in the first intron of human genes. Nucleic Acids Res 2008; 36:1321-33. [PMID: 18187510 PMCID: PMC2275096 DOI: 10.1093/nar/gkm1138] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To understand how potential for G-quadruplex formation might influence regulation of gene expression, we examined the 2 kb spanning the transcription start sites (TSS) of the 18 217 human RefSeq genes, distinguishing contributions of template and nontemplate strands. Regions both upstream and downstream of the TSS are G-rich, but the downstream region displays a clear bias toward G-richness on the nontemplate strand. Upstream of the TSS, much of the G-richness and potential for G-quadruplex formation derives from the presence of well-defined canonical regulatory motifs in duplex DNA, including CpG dinucleotides which are sites of regulatory methylation, and motifs recognized by the transcription factor SP1. This challenges the notion that quadruplex formation upstream of the TSS contributes to regulation of gene expression. Downstream of the TSS, G-richness is concentrated in the first intron, and on the nontemplate strand, where polymorphic sequence elements with potential to form G-quadruplex structures and which cannot be accounted for by known regulatory motifs are found in almost 3000 (16%) of the human RefSeq genes, and are conserved through frogs. These elements could in principle be recognized either as DNA or as RNA, providing structural targets for regulation at the level of transcription or RNA processing.
Collapse
Affiliation(s)
- Johanna Eddy
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195-7650, USA
| | | |
Collapse
|
1308
|
Bugaut A, Jantos K, Wietor JL, Rodriguez R, Sanders JKM, Balasubramanian S. Exploring the differential recognition of DNA G-quadruplex targets by small molecules using dynamic combinatorial chemistry. Angew Chem Int Ed Engl 2008; 47:2677-80. [PMID: 18300215 PMCID: PMC2408711 DOI: 10.1002/anie.200705589] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anthony Bugaut
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | - Katja Jantos
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | - Jean-Luc Wietor
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | - Raphaël Rodriguez
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | - Jeremy K. M. Sanders
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | | |
Collapse
|
1309
|
Hershman SG, Chen Q, Lee JY, Kozak ML, Yue P, Wang LS, Johnson FB. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res 2008; 36:144-56. [PMID: 17999996 PMCID: PMC2248735 DOI: 10.1093/nar/gkm986] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 10/14/2007] [Accepted: 10/19/2007] [Indexed: 11/24/2022] Open
Abstract
Although well studied in vitro, the in vivo functions of G-quadruplexes (G4-DNA and G4-RNA) are only beginning to be defined. Recent studies have demonstrated enrichment for sequences with intramolecular G-quadruplex forming potential (QFP) in transcriptional promoters of humans, chickens and bacteria. Here we survey the yeast genome for QFP sequences and similarly find strong enrichment for these sequences in upstream promoter regions, as well as weaker but significant enrichment in open reading frames (ORFs). Further, four findings are consistent with roles for QFP sequences in transcriptional regulation. First, QFP is correlated with upstream promoter regions with low histone occupancy. Second, treatment of cells with N-methyl mesoporphyrin IX (NMM), which binds G-quadruplexes selectively in vitro, causes significant upregulation of loci with QFP-possessing promoters or ORFs. NMM also causes downregulation of loci connected with the function of the ribosomal DNA (rDNA), which itself has high QFP. Third, ORFs with QFP are selectively downregulated in sgs1 mutants that lack the G4-DNA-unwinding helicase Sgs1p. Fourth, a screen for yeast mutants that enhance or suppress growth inhibition by NMM revealed enrichment for chromatin and transcriptional regulators, as well as telomere maintenance factors. These findings raise the possibility that QFP sequences form bona fide G-quadruplexes in vivo and thus regulate transcription.
Collapse
Affiliation(s)
- Steve G. Hershman
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Cell and Molecular Biology Graduate Program, Penn Center for Bioinformatics, and Penn Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Qijun Chen
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Cell and Molecular Biology Graduate Program, Penn Center for Bioinformatics, and Penn Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Julia Y. Lee
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Cell and Molecular Biology Graduate Program, Penn Center for Bioinformatics, and Penn Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Marina L. Kozak
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Cell and Molecular Biology Graduate Program, Penn Center for Bioinformatics, and Penn Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Peng Yue
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Cell and Molecular Biology Graduate Program, Penn Center for Bioinformatics, and Penn Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Li-San Wang
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Cell and Molecular Biology Graduate Program, Penn Center for Bioinformatics, and Penn Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - F. Brad Johnson
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Cell and Molecular Biology Graduate Program, Penn Center for Bioinformatics, and Penn Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
1310
|
Gonzalez V, Wilson T, Kurihara I, Imai A, Thomas JA, Otsuki J. A dinuclear ruthenium(ii) complex that functions as a label-free colorimetric sensor for DNA. Chem Commun (Camb) 2008:1868-70. [DOI: 10.1039/b802073f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
1311
|
Li G, Huang J, Zhang M, Zhou Y, Zhang D, Wu Z, Wang S, Weng X, Zhou X, Yang G. Bis(benzimidazole)pyridine derivative as a new class of G-quadruplex inducing and stabilizing ligand. Chem Commun (Camb) 2008:4564-6. [DOI: 10.1039/b807916a] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
1312
|
Huppert JL. Thermodynamic prediction of RNA–DNA duplex-forming regions in the human genome. MOLECULAR BIOSYSTEMS 2008; 4:686-91. [DOI: 10.1039/b800354h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
1313
|
Drewe WC, Neidle S. Click chemistry assembly of G-quadruplex ligands incorporating a diarylurea scaffold and triazole linkers. Chem Commun (Camb) 2008:5295-7. [DOI: 10.1039/b814576h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
1314
|
Huppert JL. Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem Soc Rev 2008; 37:1375-84. [DOI: 10.1039/b702491f] [Citation(s) in RCA: 391] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
1315
|
Abstract
G-quadruplex or G4 DNA, a four-stranded DNA structure formed in G-rich sequences, has been hypothesized to be a structural motif involved in gene regulation. In this study, we examined the regulatory role of potential G4 DNA motifs (PG4Ms) located in the putative transcriptional regulatory region (TRR, -500 to +500) of genes across the human genome. We found that PG4Ms in the 500-bp region downstream of the annotated transcription start site (TSS; PG4M(D500)) are associated with gene expression. Generally, PG4M(D500)-positive genes are expressed at higher levels than PG4M(D500)-negative genes, and an increased number of PG4M(D500) provides a cumulative effect. This observation was validated by controlling for attributes, including gene family, function, and promoter similarity. We also observed an asymmetric pattern of PG4M(D500) distribution between strands, whereby the frequency of PG4M(D500) in the coding strand is generally higher than that in the template strand. Further analysis showed that the presence of PG4M(D500) and its strand asymmetry are associated with significant enrichment of RNAP II at the putative TRR. On the basis of these results, we propose a model of G4 DNA-mediated stimulation of transcription with the hypothesis that PG4M(D500) contributes to gene transcription by maintaining the DNA in an open conformation, while the asymmetric distribution of PG4M(D500) considerably reduces the probability of blocking the progression of the RNA polymerase complex on the template strand. Our findings provide a comprehensive view of the regulatory function of G4 DNA in gene transcription.
Collapse
|
1316
|
Huppert JL. Four-stranded DNA: cancer, gene regulation and drug development. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2007; 365:2969-84. [PMID: 17855220 DOI: 10.1098/rsta.2007.0011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA can form many structures other than the famous double helix. In particular, guanine-rich DNA of particular sequences can form four-stranded structures, called G-quadruplexes. This article describes the structural form of these sequences, techniques for predicting which sequences can fold up in this manner and efforts towards stability prediction. It then discusses the biological significance of these structures, focusing on their importance in telomeric regions at the end of chromosomes, and their existence in gene promoters and mRNA, where they may be involved with regulating transcription and translation, respectively. Ligands that are capable of selectively binding to these structures are introduced and described, as are DNA aptamers that form G-quadruplex structures; both of these classes of compound have been investigated as anticancer agents in clinical trials. The growing use of G-quadruplexes in the nanotechnology field is also outlined. The article concludes with an analysis of future directions the field may take, with some proposals for further important studies.
Collapse
Affiliation(s)
- Julian Leon Huppert
- Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
1317
|
Todd AK. Bioinformatics approaches to quadruplex sequence location. Methods 2007; 43:246-51. [DOI: 10.1016/j.ymeth.2007.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 08/02/2007] [Indexed: 11/27/2022] Open
|
1318
|
Ragazzon P, Chaires JB. Use of competition dialysis in the discovery of G-quadruplex selective ligands. Methods 2007; 43:313-23. [PMID: 17967701 PMCID: PMC2171366 DOI: 10.1016/j.ymeth.2007.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 05/23/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022] Open
Abstract
G-quadrplex DNA can exist in a rich variety of structural forms, ranging from unimolecular folded structures containing diverse types of loops and strand oreintations, to bimolecular dimeric structures, and finally to tetramolecular parallel-stranded structures. These diverse structures present numerous potential small molecule binding sites with distinctive properties. There is mounting evidence for important functional roles for G-quadruplex structures in biology. G-quadruplexes may participate in the maintenance of telomeres, in transcriptional regulation and, in mRNA, may act to modulate translation. G-quadruplexes thus represent an attractive target for new small-molecule therapeutic agents. Competition dialysis provides a useful tool for the discovery of small molecules that selectively recognize the unique structural features of G-quadruplexes. The principles and practice of the competition dialysis experiment are described here.
Collapse
Affiliation(s)
- Patricia Ragazzon
- James Graham Brown Cancer Center, University of Louisville, 529 S. Jackson St., Louisville, KY 40202 USA
| | - Jonathan B. Chaires
- James Graham Brown Cancer Center, University of Louisville, 529 S. Jackson St., Louisville, KY 40202 USA
| |
Collapse
|
1319
|
Kikin O, Zappala Z, D'Antonio L, Bagga PS. GRSDB2 and GRS_UTRdb: databases of quadruplex forming G-rich sequences in pre-mRNAs and mRNAs. Nucleic Acids Res 2007; 36:D141-8. [PMID: 18045785 PMCID: PMC2238929 DOI: 10.1093/nar/gkm982] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
G-quadruplex motifs in the RNA play significant roles in key cellular processes and human disease. While sequences capable of forming G-quadruplexes in the pre-mRNA are involved in regulation of polyadenylation and splicing events in mammalian transcripts, the G-quadruplex motifs in the UTRs may help regulate mRNA expression. GRSDB2 is a second-generation database containing information on the composition and distribution of putative Quadruplex-forming G-Rich Sequences (QGRS) mapped in ∼29 000 eukaryotic pre-mRNA sequences, many of which are alternatively processed. The data stored in the GRSDB2 is based on computational analysis of NCBI Entrez Gene entries with the help of an improved version of the QGRS Mapper program. The database allows complex queries with a wide variety of parameters, including Gene Ontology terms. The data is displayed in a variety of formats with several additional computational capabilities. We have also developed a new database, GRS_UTRdb, containing information on the composition and distribution patterns of putative QGRS in the 5′- and 3′-UTRs of eukaryotic mRNA sequences. The goal of these experiments has been to build freely accessible resources for exploring the role of G-quadruplex structure in regulation of gene expression at post-transcriptional level. The databases can be accessed at the G-Quadruplex Resource Site at: http://bioinformatics.ramapo.edu/GQRS/.
Collapse
Affiliation(s)
- Oleg Kikin
- Bergen County Academies, Hackensack and Bioinformatics, School of Theoretical and Applied Science, Ramapo College of New Jersey, Mahwah, NJ, USA
| | | | | | | |
Collapse
|
1320
|
Abstract
Over the past decade, nucleic acid chemists have seen the spectacular emergence of molecules designed to interact efficiently and selectively with a peculiar DNA structure named G-quadruplex. Initially derived from classical DNA intercalators, these G-quadruplex ligands progressively became the focal point of new excitement since they appear to inhibit selectively the growth of cancer cells thereby opening interesting perspectives towards the development of novel anti-cancer drugs. The present article aims to help researchers enter this exciting research field, and to highlight recent advances in the design of G-quadruplex ligands.
Collapse
Affiliation(s)
- David Monchaud
- Institut Curie, CNRS UMR176, Section Recherche, Centre Universitaire Paris XI, Bât. 110, 91405, Orsay, France
| | | |
Collapse
|
1321
|
Hazel P, Parkinson GN, Neidle S. Topology variation and loop structural homology in crystal and simulated structures of a bimolecular DNA quadruplex. J Am Chem Soc 2007; 128:5480-7. [PMID: 16620121 DOI: 10.1021/ja058577+] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The topology of DNA quadruplexes depends on the nature and number of the nucleotides linking G-quartet motifs. To assess the effects of a three-nucleotide TTT linker, the crystal structure of the DNA sequence d(G(4)T(3)G(4)) has been determined at 1.5 A resolution, together with that of the brominated analogue d(G(4)(Br)UTTG(4)) at 2.4 A resolution. Both sequences form bimolecular intermolecular G-quadruplexes with lateral loops. d(G(4)(Br)UTTG(4)) crystallized in the monoclinic space group P2(1) with three quadruplex molecules in the asymmetric unit, two associating together as a head-to-head stacked dimer, and the third as a single head-to-tail dimer. The head-to-head dimers have two lateral loops on the same G-quadruplex face and form an eight-G-quartet stack, with a linear array of seven K(+) ions between the quartets. d(G(4)T(3)G(4)) crystallized in the orthorhombic space group C222 and has a structure very similar to the head-to-tail dimer in the P2(1) unit cell. The sequence studied here is able to form several different folds; however, all four quadruplexes in the two structures have lateral loops, in contrast to the diagonal loops reported for the analogous quadruplex with T(4) loops. A total of seven independent T(3) loops were observed in the two structures. These can be classified into two discrete conformational classes, suggesting that these represent preferred loop conformations that are independent of crystal-packing forces.
Collapse
Affiliation(s)
- Pascale Hazel
- Cancer Research U.K. Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | |
Collapse
|
1322
|
McManus SA, Li Y. A deoxyribozyme with a novel guanine quartet-helix pseudoknot structure. J Mol Biol 2007; 375:960-8. [PMID: 18054790 DOI: 10.1016/j.jmb.2007.10.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/17/2007] [Accepted: 10/29/2007] [Indexed: 11/24/2022]
Abstract
Here we report a deoxyribozyme with a unique structure that contains a two-tiered guanine quadruplex interlinked to a Watson-Crick duplex. Through in vitro selection, sequence mutation, and methylation interference, we show the presence of both the two-tiered guanine-quadruplex and two helical regions contained in the active structure of this self-phosphorylating deoxyribozyme. Interestingly, one GG element of the quadruplex is part of a hairpin loop within one of the identified helical regions. Circular dichroism analysis showed that antiparallel quadruplex formation was dependent on this helix. To our knowledge, this is the first report of a pseudoknot nucleic acid structure that involves a guanine quadruplex. Our findings indicate that guanine quadruplexes can be part of complex structural arrangements, increasing the likelihood of finding more complex guanine quadruplex arrangements in biological systems.
Collapse
Affiliation(s)
- Simon A McManus
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Canada
| | | |
Collapse
|
1323
|
Yadav VK, Abraham JK, Mani P, Kulshrestha R, Chowdhury S. QuadBase: genome-wide database of G4 DNA--occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Res 2007; 36:D381-5. [PMID: 17962308 PMCID: PMC2238983 DOI: 10.1093/nar/gkm781] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Emerging evidence indicates the importance of G-quadruplex motifs as drug targets. [Stuart A. Borman, Ascent of quadruplexes-nucleic acid structures become promising drug targets. Chem. Eng. News, 2007;85, 12-17], which stems from the fact that these motifs are present in a surprising number of promoters wherein their role in controlling gene expression has been demonstrated for a few. We present a compendium of quadruplex motifs, with particular focus on their occurrence and conservation in promoters-QuadBase. It is composed of two parts (EuQuad and ProQuad). EuQuad gives information on quadruplex motifs present within 10 kb of transcription starts sites in 99 980 human, chimpanzee, rat and mouse genes. ProQuad contains quadruplex information of 146 prokaryotes. Apart from gene-specific searches for quadruplex motifs, QuadBase has a number of other modules. 'Orthologs Analysis' queries for conserved motifs across species based on a selected reference organism; 'Pattern Search' can be used to fetch specific motifs of interest from a selected organism using user-defined criteria for quadruplex motifs, i.e. stem, loop size, etc. 'Pattern Finder' tool can search for motifs in any given sequence. QuadBase is freely available to users from non-profit organization at http://quadbase.igib.res.in/.
Collapse
Affiliation(s)
- Vinod Kumar Yadav
- G. N. Ramachandran Knowledge Centre for Genome Informatics and Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, New Delhi 110 007, India
| | | | | | | | | |
Collapse
|
1324
|
Petraccone L, Erra E, Randazzo A, Giancola C. Energetic aspects of locked nucleic acids quadruplex association and dissociation. Biopolymers 2007; 83:584-94. [PMID: 16944520 DOI: 10.1002/bip.20591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The design of modified nucleic acid aptamers is improved by considering thermodynamics and kinetics of their association/dissociation processes. Locked Nucleic Acids (LNA) is a promising class of nucleic acid analogs. In this work the thermodynamic and kinetic properties of a LNA quadruplex formed by the TGGGT sequence, containing only conformationally restricted LNA residues, are reported and compared to those of 2'-OMe-RNA (O-RNA) and DNA quadruplexes. The thermodynamic analysis indicates that the sugar-modified quadruplexes (LNA and O-RNA) are stabilized by entropic effects. The kinetic analysis shows that LNA and O-RNA quadruplexes are characterized by a slower dissociation and a faster association with respect to DNA quadruplex. Interestingly, the LNA quadruplex formation process shows a second-order kinetics with respect to single strand concentration and has a negative activation energy. To explain these data, a mechanism for tetramer formation with two intermediate states was proposed.
Collapse
Affiliation(s)
- Luigi Petraccone
- Dipartimento di Scienze Farmaceutiche, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
| | | | | | | |
Collapse
|
1325
|
Zhang R, Lin Y, Zhang CT. Greglist: a database listing potential G-quadruplex regulated genes. Nucleic Acids Res 2007; 36:D372-6. [PMID: 17916572 PMCID: PMC2238908 DOI: 10.1093/nar/gkm787] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The double helix is a conformation that genomic DNA usually assumes; under certain conditions, however, guanine-rich DNA sequences can form a four-stranded structure, G-quadruplex, which is found to play a role in regulating gene expression. Indeed, it has been demonstrated that the G-quadruplex formed in the c-MYC promoter suppresses its transcriptional activity. Recent studies suggest that G-quadruplex motifs (GQMs) are enriched in human gene promoters. To facilitate the research of G-quadruplex, we have constructed Greglist, a database listing potentially G-quadruplex regulated genes. Greglist harbors genes that contain promoter GQMs from genomes of various species, including humans, mice, rats and chickens. Many important genes are found to contain previously unreported promoter GQMs, such as ATM, BAD, AKT1, LEPR, UCP1, APOE, DKK1, WT1, WEE1, WNT1 and CLOCK. Furthermore, we find that not only protein coding genes, 126 human microRNAs also contain promoter GQMs. Greglist therefore provides candidates for further studying G-quadruplex functions and is freely available at http://tubic.tju.edu.cn/greglist.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Epidemiology and Biostatistics, Tianjin Cancer Institute and Hospital, Tianjin 300060, China
| | | | | |
Collapse
|
1326
|
Shirude PS, Gillies ER, Ladame S, Godde F, Shin-ya K, Huc I, Balasubramanian S. Macrocyclic and helical oligoamides as a new class of G-quadruplex ligands. J Am Chem Soc 2007; 129:11890-1. [PMID: 17845042 PMCID: PMC2195897 DOI: 10.1021/ja073775h] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pravin S. Shirude
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Elizabeth R. Gillies
- Institut Européen de Chimie et Biologie, Université Bordeaux 1-CNRS UMR 5248, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Sylvain Ladame
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Frédéric Godde
- Institut Européen de Chimie et Biologie, Université Bordeaux 1-CNRS UMR 5248, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Kazuo Shin-ya
- Chemical Biology Team Biological Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Ivan Huc
- Institut Européen de Chimie et Biologie, Université Bordeaux 1-CNRS UMR 5248, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Shankar Balasubramanian
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
1327
|
Patel DJ, Phan AT, Kuryavyi V. Human telomere, oncogenic promoter and 5'-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res 2007; 35:7429-55. [PMID: 17913750 PMCID: PMC2190718 DOI: 10.1093/nar/gkm711] [Citation(s) in RCA: 751] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Guanine-rich DNA sequences can form G-quadruplexes stabilized by stacked G–G–G–G tetrads in monovalent cation-containing solution. The length and number of individual G-tracts and the length and sequence context of linker residues define the diverse topologies adopted by G-quadruplexes. The review highlights recent solution NMR-based G-quadruplex structures formed by the four-repeat human telomere in K+ solution and the guanine-rich strands of c-myc, c-kit and variant bcl-2 oncogenic promoters, as well as a bimolecular G-quadruplex that targets HIV-1 integrase. Such structure determinations have helped to identify unanticipated scaffolds such as interlocked G-quadruplexes, as well as novel topologies represented by double-chain-reversal and V-shaped loops, triads, mixed tetrads, adenine-mediated pentads and hexads and snap-back G-tetrad alignments. The review also highlights the recent identification of guanine-rich sequences positioned adjacent to translation start sites in 5′-untranslated regions (5′-UTRs) of RNA oncogenic sequences. The activity of the enzyme telomerase, which maintains telomere length, can be negatively regulated through G-quadruplex formation at telomeric ends. The review evaluates progress related to ongoing efforts to identify small molecule drugs that bind and stabilize distinct G-quadruplex scaffolds associated with telomeric and oncogenic sequences, and outlines progress towards identifying recognition principles based on several X-ray-based structures of ligand–G-quadruplex complexes.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | |
Collapse
|
1328
|
Bates P, Mergny JL, Yang D. Quartets in G-major. The First International Meeting on Quadruplex DNA. EMBO Rep 2007; 8:1003-10. [PMID: 17901879 PMCID: PMC2247389 DOI: 10.1038/sj.embor.7401073] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Accepted: 08/09/2007] [Indexed: 11/09/2022] Open
Affiliation(s)
- Paula Bates
- Brown Cancer Center, Department of Medicine and Department of Biochemistry & Molecular Biology, University of Louisville, 580 S. Preston Street, Louisville, Kentucky 40202, USA
- Tel: +1 502 852 2432; Fax: +1 502 852 2356
| | - Jean-Louis Mergny
- INSERM, U565, Acides Nucléiques: Dynamique, Ciblage et Fonctions Biologiques, and CNRS, UMR5153—Muséum National d'Histoire Naturelle USM503 Régulation et Dynamique des Génomes, Département de Régulations, Développement et Diversité Moléculaire, 43 Rue Cuvier, CP26, Paris Cedex 5, F-75231, France
- CNRS, UMR5153—Muséum National d'Histoire Naturelle USM503 Régulation et Dynamique des Génomes, Département de Régulations, Développement et Diversité Moléculaire, 43 Rue Cuvier, CP26, Paris Cedex 5, F-75231, France
- Tel: +33 1 40 79 36 89; Fax: +33 1 40 79 37 05
| | - Danzhou Yang
- College of Pharmacy, The University of Arizona, 1703 E. Mabel Street, Tucson, Arizona 85721, USA
- Arizona Cancer Center, 1515 N. Campbell Avenue, Tucson, Arizona 85724, USA
- BIO5 Institute, The University of Arizona, 1140 E. South Campus Dr, Tucson, Arizona 85721, USA
- Tel: +1 520 626 5969; Fax: +1 520 626 6988
| |
Collapse
|
1329
|
Affiliation(s)
- W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Hiroshi Sugiyama
- Department of Chemistry, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
1330
|
Wochner A, Menger M, Orgel D, Cech B, Rimmele M, Erdmann VA, Glökler J. A DNA aptamer with high affinity and specificity for therapeutic anthracyclines. Anal Biochem 2007; 373:34-42. [PMID: 17931589 DOI: 10.1016/j.ab.2007.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/31/2007] [Accepted: 09/07/2007] [Indexed: 11/18/2022]
Abstract
We describe the characterization of a DNA aptamer that displays high affinity and specificity for the anthracyclines daunomycin and doxorubicin, both of which are frequently used in chemotherapy. Aptamers were isolated from a pool of random sequences using a semiautomated procedure for magnetic beads. All selected aptamers displayed high affinity for the target molecule daunomycin. One aptamer was further characterized and exhibited a dissociation constant (KD) of 20 nM. To examine the aptamer's binding properties and clarify its applicability for diagnostic assays, its performance under various buffer conditions was evaluated. The aptamer proved to be very robust and not dependent on the presence of specific ions. It also tolerated a wide pH range and immobilization via 5'-biotinylation. Furthermore, a competition assay for sensitive daunomycin detection was established. This not only allows the determination of the aptamer's specificity but also allows the quantification of as little as 8.4 microg/L daunomycin and doxorubicin.
Collapse
|
1331
|
Brassart B, Gomez D, De Cian A, Paterski R, Montagnac A, Qui KH, Temime-Smaali N, Trentesaux C, Mergny JL, Gueritte F, Riou JF. A new steroid derivative stabilizes g-quadruplexes and induces telomere uncapping in human tumor cells. Mol Pharmacol 2007; 72:631-40. [PMID: 17586599 DOI: 10.1124/mol.107.036574] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG) with a 3' single-stranded extension (the G-overhang). The stabilization of G-quadruplexes in the human telomeric sequence by small-molecule ligands inhibits the activity of telomerase and results in telomere uncapping, leading to senescence or apoptosis of tumor cells. Therefore, the search for new and selective G-quadruplex ligands is of considerable interest because a selective ligand might provide a telomere-targeted therapeutic approach to treatment of cancer. We have screened a bank of derivatives from natural and synthetic origin using a temperature fluorescence assay and have identified two related compounds that induce G-quadruplex stabilization: malouetine and steroid FG. These steroid derivatives have nonplanar and nonaromatic structures, different from currently known G-quadruplex ligands. Malouetine is a natural product isolated from the leaves of Malouetia bequaaertiana E. Woodson and is known for its curarizing and DNA-binding properties. Steroid FG, a funtumine derivative substituted with a guanylhydrazone moiety, interacted selectively with the telomeric G-quadruplex in vitro. This derivative induced senescence and telomere shortening of HT1080 tumor cells at submicromolar concentrations, corresponding to the phenotypic inactivation of telomerase activity. In addition, steroid FG induced a rapid degradation of the telomeric G-overhang and the formation of anaphase bridges, characteristics of telomere uncapping. Finally, the expression of protection of telomere 1 (POT1) induced resistance to the growth effect of steroid FG. These results indicate that these steroid ligands represent a new class of telomere-targeted agents with potential as antitumor drugs.
Collapse
Affiliation(s)
- Bertrand Brassart
- Laboratoire d'Onco-Pharmacologie, JE 2428, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, F-51096 Reims, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1332
|
Todd AK, Haider SM, Parkinson GN, Neidle S. Sequence occurrence and structural uniqueness of a G-quadruplex in the human c-kit promoter. Nucleic Acids Res 2007; 35:5799-808. [PMID: 17720713 PMCID: PMC2034477 DOI: 10.1093/nar/gkm609] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The 22-nt c-kit87 promoter sequence is unique within the human genome. Its fold and tertiary structure have recently been determined by NMR methods [Phan,A.T., Kuryavyi,V., Burge,S., Neidle,S. and Patel,D.J. (2007) Structure of an unprecedented G-quadruplex scaffold in the c-kit promoter. J. Am. Chem. Soc., 129, 4386–4392], and does not have precedent among known DNA quadruplexes. We show here using bioinformatics and molecular dynamics simulations methods that (i) none of the closely related sequences (encompassing all nucleotides not involved in the maintenance of structural integrity) occur immediately upstream (<100 nt) of a transcription start site, and (ii) that all of these sequences correspond to the same stable tertiary structure. It is concluded that the c-kit87 tertiary structure may also be formed in a very small number of other loci in the human genome, but the likelihood of these playing a significant role in the expression of particular genes is very low. The c-kit87 quadruplex thus fulfils a fundamental criterion of a ‘good’ drug target, in that it possesses distinctive three-dimensional structural features that are only present in at most a handful of other genes.
Collapse
Affiliation(s)
| | | | | | - Stephen Neidle
- *To whom correspondence should be addressed. +44 207 753 5969+44 207 753 5970
| |
Collapse
|
1333
|
Bourdoncle A, Estévez Torres A, Gosse C, Lacroix L, Vekhoff P, Le Saux T, Jullien L, Mergny JL. Quadruplex-based molecular beacons as tunable DNA probes. J Am Chem Soc 2007; 128:11094-105. [PMID: 16925427 DOI: 10.1021/ja0608040] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular beacons (MBs) are fluorescent nucleic acid probes with a hairpin-shaped structure in which the 5' and 3' ends are self-complementary. Due to a change in their emissive properties upon recognition with complementary sequences, MBs allow the diagnosis of single-stranded DNA or RNA with high mismatch discrimination, in vitro and in vivo. Whereas the stems of MB hairpins usually rely on the formation of a Watson-Crick duplex, we demonstrate in this report that the preceding structure can be replaced by a G-quadruplex motif (G4). Intramolecular quadruplexes may still be formed with a central loop composed of 12 to 21 bases, therefore extending the sequence repertoire of quadruplex formation. G4-MB can efficiently be used for oligonucleotide discrimination: in the presence of a complementary sequence, the central loop hybridizes and forms a duplex that causes opening of the quadruplex stem. The corresponding G4-MB unfolding can be detected by a change in its fluorescence emission. We discuss the thermodynamic and kinetic opportunities that are provided by using G4-MB instead of traditional MB. In particular, the intrinsic feature of the quadruplex motif facilitates the design of functional molecular beacons by independently varying the concentration of monovalent or divalent cations in the medium.
Collapse
Affiliation(s)
- A Bourdoncle
- Département de Chimie, CNRS UMR 8640, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
1334
|
Rodriguez R, Pantoş G, Gonçalves D, Sanders J, Balasubramanian S. Ligand-Driven G-Quadruplex Conformational Switching By Using an Unusual Mode of Interaction. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200605075] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
1335
|
Shirude PS, Okumus B, Ying L, Ha T, Balasubramanian S. Single-molecule conformational analysis of G-quadruplex formation in the promoter DNA duplex of the proto-oncogene c-kit. J Am Chem Soc 2007; 129:7484-5. [PMID: 17523641 PMCID: PMC2195893 DOI: 10.1021/ja070497d] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pravin S. Shirude
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Burak Okumus
- Department of Physics and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Illinois 61801
| | - Liming Ying
- Biological Nanoscience Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Taekjip Ha
- Department of Physics and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Illinois 61801
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
1336
|
Sket P, Plavec J. Not All G-Quadruplexes Exhibit Ion-Channel-like Properties: NMR Study of Ammonium Ion (Non)movement within the d(G3T4G4)2 Quadruplex. J Am Chem Soc 2007; 129:8794-800. [PMID: 17580943 DOI: 10.1021/ja0710003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A solution-state NMR study on 15NH4(+) ion movement within d(G(3)T(4)G(4))(2), a dimeric G-quadruplex consisting of three G-quartets and two T(4) loops, rather unexpectedly demonstrated the absence of 15NH4(+) ion movement between the binding sites U and L along the central axis of the G-quadruplex. Distinct temperature dependences of autocorrelation signals for U and L binding sites have been observed in 15N-1H NzExHSQC spectra which correlate with the local stiffness of the G-quadruplex. The volumes of the cross-peaks, which are the result of 15NH4(+) ion movement, have been interpreted in terms of rate constants, T(1) relaxation, and proton exchange. 15NH4(+) ion movements from the binding sites U and L into the bulk solution are characterized by lifetimes of 139 ms and 1.7 s at 298 K, respectively. The 12 times faster movement from the binding site U demonstrates that 15NH4(+) ion movement is controlled by the structure of T4 loop residues, which through diagonal- vs edge-type orientations impose distinct steric restraints for cations to leave or enter the G-quadruplex. Arrhenius-type analysis has afforded an activation energy of 66 kJ mol(-)1 for the UB process, while it could not be determined for the LB process due to slow rates at temperatures below 298 K. We further the use of the 15NH4(+) ion as an NMR probe to gain insight into the occupancy of binding sites by cations and kinetics of ion movement which are intrinsically correlated with the structural details, dynamic fluctuations, and local flexibility of the DNA structure.
Collapse
Affiliation(s)
- Primoz Sket
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | | |
Collapse
|
1337
|
Rachwal PA, Findlow IS, Werner JM, Brown T, Fox KR. Intramolecular DNA quadruplexes with different arrangements of short and long loops. Nucleic Acids Res 2007; 35:4214-22. [PMID: 17576685 PMCID: PMC1919480 DOI: 10.1093/nar/gkm316] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We have examined the folding, stability and kinetics of intramolecular quadruplexes formed by DNA sequences containing four G3 tracts separated by either single T or T4 loops. All these sequences fold to form intramolecular quadruplexes and 1D-NMR spectra suggest that they each adopt unique structures (with the exception of the sequence with all three loops containing T4, which is polymorphic). The stability increases with the number of single T loops, though the arrangement of different length loops has little effect. In the presence of potassium ions, the oligonucleotides that contain at least one single T loop exhibit similar CD spectra, which are indicative of a parallel topology. In contrast, when all three loops are substituted with T4 the CD spectrum is typical of an antiparallel arrangement. In the presence of sodium ions, the sequences with two and three single T loops also adopt a parallel folded structure. Kinetic studies on the complexes with one or two T4 loops in the presence of potassium ions reveal that sequences with longer loops display slower folding rates.
Collapse
Affiliation(s)
- Phillip A. Rachwal
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - I. Stuart Findlow
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Joern M. Werner
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Tom Brown
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Keith R. Fox
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
- *To whom correspondence should be addressed. +44 23 8059 4374+44 23 8059 4459
| |
Collapse
|
1338
|
Zhao Y, Du Z, Li N. Extensive selection for the enrichment of G4 DNA motifs in transcriptional regulatory regions of warm blooded animals. FEBS Lett 2007; 581:1951-6. [PMID: 17462634 DOI: 10.1016/j.febslet.2007.04.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 01/01/2023]
Abstract
A comprehensive analysis of potential G4 DNA motifs (G4Ms) in genomic regions flanking transcription start sites (TSS) was performed across 13 animal species. We found that G4Ms are significantly enriched in the transcriptional regulatory regions (TRRs) of warm-blooded animals. Further analysis of human genes in different temporal groups reveals that the enrichment is not specific to genes found only in warm-blooded species but instead exist in a wide range of genes. Our findings therefore suggest that the high prevalence of G4Ms in TRRs is extensively selected in warm-blooded animals, supporting the hypothesis that G4Ms are involved in the regulation of gene transcription.
Collapse
Affiliation(s)
- Yiqiang Zhao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 10094, China
| | | | | |
Collapse
|
1339
|
Gabelica V, Baker ES, Teulade-Fichou MP, De Pauw E, Bowers MT. Stabilization and structure of telomeric and c-myc region intramolecular G-quadruplexes: the role of central cations and small planar ligands. J Am Chem Soc 2007; 129:895-904. [PMID: 17243826 DOI: 10.1021/ja065989p] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A promising approach for anticancer strategies is the stabilization of telomeric DNA into a G-quadruplex structure. To explore the intrinsic stabilization of folded G-quadruplexes, we combined electrospray ionization mass spectrometry, ion mobility spectrometry, and molecular modeling studies to study different DNA sequences known to form quadruplexes. Two telomeric DNA sequences of different lengths and two DNA sequences derived from the NHE III1 region of the c-myc oncogene (Pu22 and Pu27) were studied. NH4+ and the ligands PIPER, TMPyP4, and the three quinacridines MMQ1, MMQ3, and BOQ1 were complexed with the DNA sequences to determine their effect on the stability of the G-quadruplexes. Our results demonstrate that G-quadruplex intramolecular folds are stabilized by NH4+ cations and the ligands listed. Furthermore, the ligands can be classified according to their ability to stabilize the quadruplexes and end stacking is shown to be the dominant mode for ligand attachment. In all cases our solvent-free experimental observations and theoretical modeling reveal structures that are highly relevant to the solution-phase structures.
Collapse
|
1340
|
Yao Y, Wang Q, Hao YH, Tan Z. An exonuclease I hydrolysis assay for evaluating G-quadruplex stabilization by small molecules. Nucleic Acids Res 2007; 35:e68. [PMID: 17426118 PMCID: PMC1888815 DOI: 10.1093/nar/gkm194] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Telomere length homeostasis is a prerequisite for the generation and growth of cancer. In >85% cancer cells, telomere length is maintained by telomerase that add telomere repeats to the end of telomere DNA. Because the G-rich strand of telomere DNA can fold into G-quadruplex that inhibits telomerase activity, stabilizing telomere quadruplex by small molecules is emerging as a potential therapeutic strategy against cancer. In these applications, the specificity of small molecules toward quadruplex over other forms of DNA is an important property to ensure no processes other than telomere elongation are interrupted. The evaluating assays currently available more or less have difficulty identifying or distinguishing quadruplex-irrelevant effect from quadruplex stabilization. Here, we describe an exonuclease I hydrolysis assay that evaluates quadruplex stabilization by DNA-interacting compounds, discriminates inhibitory effect from different sources and helps determine the optimal compound concentration.
Collapse
Affiliation(s)
- Yuan Yao
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | - Quan Wang
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | - Yu-hua Hao
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | - Zheng Tan
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
- *To whom correspondence should be addressed. +86 (10) 6480-7259+86 (10) 6480-7099,
| |
Collapse
|
1341
|
Kumari S, Bugaut A, Huppert JL, Balasubramanian S. An RNA G-quadruplex in the 5' UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 2007; 3:218-21. [PMID: 17322877 PMCID: PMC2206252 DOI: 10.1038/nchembio864] [Citation(s) in RCA: 636] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 01/25/2007] [Indexed: 02/07/2023]
Abstract
Guanine-rich nucleic acid sequences can adopt noncanonical four-stranded secondary structures called guanine (G)-quadruplexes. Bioinformatics analysis suggests that G-quadruplex motifs are prevalent in genomes, which raises the need to elucidate their function. There is now evidence for the existence of DNA G-quadruplexes at telomeres with associated biological function. A recent hypothesis supports the notion that gene promoter elements contain DNA G-quadruplex motifs that control gene expression at the transcriptional level. We discovered a highly conserved, thermodynamically stable RNA G-quadruplex in the 5' untranslated region (UTR) of the gene transcript of the human NRAS proto-oncogene. Using a cell-free translation system coupled to a reporter gene assay, we have demonstrated that this NRAS RNA G-quadruplex modulates translation. This is the first example of translational repression by an RNA G-quadruplex. Bioinformatics analysis has revealed 2,922 other 5' UTR RNA G-quadruplex elements in the human genome. We propose that RNA G-quadruplexes in the 5' UTR modulate gene expression at the translational level.
Collapse
Affiliation(s)
- Sunita Kumari
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
1342
|
Rachwal PA, Brown T, Fox KR. Sequence effects of single base loops in intramolecular quadruplex DNA. FEBS Lett 2007; 581:1657-60. [PMID: 17399710 DOI: 10.1016/j.febslet.2007.03.040] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/08/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
We have examined the properties of intramolecular G-quadruplexes in which the G3 tracts are separated by single base loops. The most stable complex contained 1',2'-dideoxyribose in all three loops, while loops containing T and C were slightly less stable (by about 2 degrees C). Quadruplexes containing loops with single A residues were less stable by 8 degrees C for each T to A substitution. These folded sequences display similar CD spectra, which are consistent with the formation of parallel stranded complexes with double-chain reversal loops. These results demonstrate that loop sequence, and not just length, affects quadruplex stability.
Collapse
Affiliation(s)
- Phillip A Rachwal
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | |
Collapse
|
1343
|
|
1344
|
Phan AT, Kuryavyi V, Burge S, Neidle S, Patel DJ. Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter. J Am Chem Soc 2007; 129:4386-92. [PMID: 17362008 PMCID: PMC4693632 DOI: 10.1021/ja068739h] [Citation(s) in RCA: 388] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The c-kit oncogene is an important target in the treatment of gastrointestinal tumors. A potential approach to inhibition of the expression of this gene involves selective stabilization of G-quadruplex structures that may be induced to form in the c-kit promoter region. Here we report on the structure of an unprecedented intramolecular G-quadruplex formed by a G-rich sequence in the c-kit promoter in K+ solution. The structure represents a new folding topology with several unique features. Most strikingly, an isolated guanine is involved in G-tetrad core formation, despite the presence of four three-guanine tracts. There are four loops: two single-residue double-chain-reversal loops, a two-residue loop, and a five-residue stem-loop, which contain base-pairing alignments. This unique structural scaffold provides a highly specific platform for the future design of ligands specifically targeted to the promoter DNA of c-kit.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Vitaly Kuryavyi
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Sarah Burge
- Cancer Research UK Biomolecular Structure Group, School of Pharmacy, University of London, London WC1N 1AX, United Kingdom
| | - Stephen Neidle
- Cancer Research UK Biomolecular Structure Group, School of Pharmacy, University of London, London WC1N 1AX, United Kingdom
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| |
Collapse
|
1345
|
Du Z, Kong P, Gao Y, Li N. Enrichment of G4 DNA motif in transcriptional regulatory region of chicken genome. Biochem Biophys Res Commun 2007; 354:1067-70. [PMID: 17275786 DOI: 10.1016/j.bbrc.2007.01.093] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 01/18/2007] [Indexed: 11/21/2022]
Abstract
G-quadruplex or G4 DNA is a stable, four-stranded DNA structure formed from guanine-rich regions. Based on the hypothesis that G4 DNA participated in the regulation of transcription, we analyzed G4 DNA in 5kb 5' flanking regions of 2892 chicken RefSeq genes with annotated transcription start sites (TSS). In total, 4769 distinct putative G4 DNA motifs (G4M) were identified in 1880 (65%) genes. The pattern of distribution of the G4M showed a gradient along the 5' flanking regions; from -5 to -4kb, to -1kb to the TSS, the frequency (number of G4M per kilobase) increased significantly from 0.192 to 0.768, and 62.56% of the G4M in the 1kb upstream regions were located in the region -400 to the TSS, where a core promoter is always present. Thus, 38.24% of the analyzed genes contained at least one G4M in the 400bp upstream region. Our findings support the hypothesis that G4M are involved in gene transcription.
Collapse
Affiliation(s)
- Zhuo Du
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
1346
|
Rodriguez R, Pantoş GD, Gonçalves DPN, Sanders JKM, Balasubramanian S. Ligand-driven G-quadruplex conformational switching by using an unusual mode of interaction. Angew Chem Int Ed Engl 2007; 46:5405-7. [PMID: 17562537 PMCID: PMC2277493 DOI: 10.1002/anie.200605075] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Raphaël Rodriguez
- Department of Chemistry University of Cambridge Lensfield Road, Cambridge CB2 1EW (UK). Fax: (+44) 1223-336-913, E-mail:
| | - G. Dan Pantoş
- Department of Chemistry University of Cambridge Lensfield Road, Cambridge CB2 1EW (UK). Fax: (+44) 1223-336-913, E-mail:
| | - Diana P. N. Gonçalves
- Department of Chemistry University of Cambridge Lensfield Road, Cambridge CB2 1EW (UK). Fax: (+44) 1223-336-913, E-mail:
| | - Jeremy K. M. Sanders
- Department of Chemistry University of Cambridge Lensfield Road, Cambridge CB2 1EW (UK). Fax: (+44) 1223-336-913, E-mail:
| | - Shankar Balasubramanian
- Department of Chemistry University of Cambridge Lensfield Road, Cambridge CB2 1EW (UK). Fax: (+44) 1223-336-913, E-mail:
| |
Collapse
|
1347
|
Oganesian L, Bryan TM. Physiological relevance of telomeric G-quadruplex formation: a potential drug target. Bioessays 2007; 29:155-65. [PMID: 17226803 DOI: 10.1002/bies.20523] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The concept of a G-quartet, a unique structural arrangement intrinsic to guanine-rich DNA, was first introduced by Gellert and colleagues over 40 years ago. For decades, it has been uncertain whether the G-quartet and the structure that it gives rise to, the G-quadruplex, are purely in vitro phenomena. Nevertheless, the presence of signature G-rich motifs in the eukaryotic genome, and the plethora of proteins that bind to, modify or resolve this nucleic acid structure in vitro have provided circumstantial evidence for its physiological relevance. More recently, direct visualisation of G-quadruplex DNA at native telomeres was achieved, bolstering the evidence for its existence in the cell. Furthermore, G-quadruplex folded telomeric DNA has been found to perturb telomere function and to impede the action of telomerase, an enzyme overexpressed in >85% of human cancers, hence opening up a novel avenue for cancer therapy in the form of G-quadruplex stabilising agents.
Collapse
Affiliation(s)
- Liana Oganesian
- Children's Medical Research Institute, Westmead, Sydney Australia
| | | |
Collapse
|
1348
|
Huppert JL, Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 2006; 35:406-13. [PMID: 17169996 PMCID: PMC1802602 DOI: 10.1093/nar/gkl1057] [Citation(s) in RCA: 1044] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/17/2006] [Accepted: 11/18/2006] [Indexed: 11/22/2022] Open
Abstract
Certain G-rich DNA sequences readily form four-stranded structures called G-quadruplexes. These sequence motifs are located in telomeres as a repeated unit, and elsewhere in the genome, where their function is currently unknown. It has been proposed that G-quadruplexes may be directly involved in gene regulation at the level of transcription. In support of this hypothesis, we show that the promoter regions (1 kb upstream of the transcription start site TSS) of genes are significantly enriched in quadruplex motifs relative to the rest of the genome, with >40% of human gene promoters containing one or more quadruplex motif. Furthermore, these promoter quadruplexes strongly associate with nuclease hypersensitive sites identified throughout the genome via biochemical measurement. Regions of the human genome that are both nuclease hypersensitive and within promoters show a remarkable (230-fold) enrichment of quadruplex elements, compared to the rest of the genome. These quadruplex motifs identified in promoter regions also show an interesting structural bias towards more stable forms. These observations support the proposal that promoter G-quadruplexes are directly involved in the regulation of gene expression.
Collapse
Affiliation(s)
- Julian L. Huppert
- Cambridge University Chemical Laboratory, University of CambridgeLensfield Road, Cambridge CB2 1EW, UK
- Wellcome Trust Sanger Institute, HinxtonCambridge CB10 1SA, UK
| | - Shankar Balasubramanian
- Cambridge University Chemical Laboratory, University of CambridgeLensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
1349
|
Gonçalves DPN, Rodriguez R, Balasubramanian S, Sanders JKM. Tetramethylpyridiniumporphyrazines--a new class of G-quadruplex inducing and stabilising ligands. Chem Commun (Camb) 2006:4685-7. [PMID: 17109036 PMCID: PMC2220048 DOI: 10.1039/b611731g] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3,4-Tetramethylpyridiniumporphyrazines bind strongly and selectively to human telomeric G-quadruplex DNA, inducing the formation of an antiparallel quadruplex in a process that mimics molecular chaperones.
Collapse
Affiliation(s)
| | | | | | - Jeremy K. M. Sanders
- University Chemical Laboratory, Lensfield Road, Cambridge, UK CB2 1EW. E-mail: ; Fax: +44 (0) 1223 336017; Tel: +44 (0) 1223 336411
| |
Collapse
|
1350
|
Redman JE, Ladame S, Reszka AP, Neidle S, Balasubramanian S. Discovery of G-quadruplex stabilizing ligands through direct ELISA of a one-bead-one-compound library. Org Biomol Chem 2006; 4:4364-9. [PMID: 17102882 PMCID: PMC2196204 DOI: 10.1039/b611716c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the identification of small-molecule G-quadruplex ligands using a direct ELISA screen of a one-bead-one-compound library of unnatural polyamides displayed on a branched linker with a biotin tag. This general purpose parallel screen for small molecule-oligonucleotide interactions was validated by surface plasmon resonance and ELISA of resynthesized compounds. Linear polyamides displayed similar rankings in their affinity for quadruplex as their branched counterparts. Quadruplex affinity as judged by these surface based techniques was a useful predictor of the ability of the ligands to stabilize the quadruplex to thermal unfolding in solution.
Collapse
Affiliation(s)
- James E. Redman
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. E-mail: ; Fax: 44 1223 336913; Tel: 44 1223 336347
| | - Sylvain Ladame
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. E-mail: ; Fax: 44 1223 336913; Tel: 44 1223 336347
| | - Anthony P. Reszka
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London, WC1N 1AX, UK. E-mail: ; Fax: 44 020 7753 5970; Tel: 44 7753 5969
| | - Stephen Neidle
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London, WC1N 1AX, UK. E-mail: ; Fax: 44 020 7753 5970; Tel: 44 7753 5969
| | - Shankar Balasubramanian
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. E-mail: ; Fax: 44 1223 336913; Tel: 44 1223 336347
| |
Collapse
|