1401
|
Lewis MA, Steel KP. MicroRNAs in mouse development and disease. Semin Cell Dev Biol 2010; 21:774-80. [PMID: 20152923 PMCID: PMC2938480 DOI: 10.1016/j.semcdb.2010.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 02/04/2010] [Indexed: 01/07/2023]
Abstract
MicroRNAs, small non-coding RNAs which act as repressors of target genes, were discovered in 1993, and since then have been shown to play important roles in the development of numerous systems. Consistent with this role, they are also implicated in the pathogenesis of multiple diseases. Here we review the involvement of microRNAs in mouse development and disease, with particular reference to deafness as an example.
Collapse
Affiliation(s)
- Morag A Lewis
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | |
Collapse
|
1402
|
Takacs CM, Giraldez AJ. MicroRNAs as genetic sculptors: fishing for clues. Semin Cell Dev Biol 2010; 21:760-7. [PMID: 20152922 DOI: 10.1016/j.semcdb.2010.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/04/2010] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) encode small RNA molecules of approximately 22nts in length that regulate the deadenylation, translation, and decay of their target mRNAs. The identification of miRNAs in plants and animals has uncovered a new layer of gene regulation with important implications for development, cellular homeostasis and disease. Because each miRNA is predicted to regulate several hundred genes, a major challenge in the field remains to elucidate the precise roles for each miRNA and to understand the physiological relevance of individual miRNA-target interactions in vivo. Despite the wide variety of biological contexts where miRNAs function, a common theme emerges, whereby miRNAs shape gene expression within both spatial and temporal dimensions by removing messages from previous cellular states as well as modulating the levels of actively transcribed genes. This review will focus on the role that the teleost Danio rerio (zebrafish) has played in shaping our understanding of miRNA function in vertebrates.
Collapse
Affiliation(s)
- Carter M Takacs
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | |
Collapse
|
1403
|
van Solingen C, Seghers L, Bijkerk R, Duijs JMGJ, Roeten MK, van Oeveren-Rietdijk AM, Baelde HJ, Monge M, Vos JB, de Boer HC, Quax PHA, Rabelink TJ, van Zonneveld AJ. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 2010; 13:1577-85. [PMID: 19120690 PMCID: PMC3828868 DOI: 10.1111/j.1582-4934.2008.00613.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs are negative regulators of gene expression that play a key role in cell-type specific differentiation and modulation of cell function and have been proposed to be involved in neovascularization. Previously, using an extensive cloning and sequencing approach, we identified miR-126 to be specifically and highly expressed in human endothelial cells (EC). Here, we demonstrate EC-specific expression of miR-126 in capillaries and the larger vessels in vivo. We therefore explored the potential role of miR-126 in arteriogenesis and angiogenesis. Using miR-reporter constructs, we show that miR-126 is functionally active in EC in vitro and that it could be specifically repressed using antagomirs specifically targeting miR-126. To study the consequences of miR-126 silencing on vascular regeneration, mice were injected with a single dose of antagomir-126 or a control 'scramblemir' and exposed to ischemia of the left hindlimb by ligation of the femoral artery. Although miR-126 was effectively silenced in mice treated with a single, high dose (HD) of antagomir-126, laser Doppler perfusion imaging did not show effects on blood flow recovery. In contrast, quantification of the capillary density in the gastrocnemius muscle revealed that mice treated with a HD of antagomir-126 had a markedly reduced angiogenic response. Aortic explant cultures of the mice confirmed the role of miR-126 in angiogenesis. Our data demonstrate a facilitary function for miR-126 in ischemia-induced angiogenesis and show the efficacy and specificity of antagomir-induced silencing of EC-specific microRNAs in vivo.
Collapse
Affiliation(s)
- Coen van Solingen
- Department of Nephrology and the Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1404
|
Condorelli G, Latronico MVG, Dorn GW. microRNAs in heart disease: putative novel therapeutic targets? Eur Heart J 2010; 31:649-58. [PMID: 20118173 DOI: 10.1093/eurheartj/ehp573] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
microRNAs (miRs) are short, approximately 22-nucleotide-long non-coding RNAs involved in the control of gene expression. They guide ribonucleoprotein complexes that effect translational repression or messenger RNA degradation to targeted messenger RNAs. miRs were initially thought to be peculiar to the developmental regulation of the nematode worm, in which they were first described in 1993. Since then, hundreds of different miRs have been reported in diverse organisms, and many have been implicated in the regulation of physiological processes of adult animals. Of importance, misexpression of miRs has been uncovered as a pathogenic mechanism in several diseases. Here, we first outline the biogenesis and mechanism of action of miRs, and then discuss their relevance to heart biology, pathology, and medicine.
Collapse
|
1405
|
Gilsohn E, Volk T. Slowdown promotes muscle integrity by modulating integrin-mediated adhesion at the myotendinous junction. Development 2010; 137:785-94. [PMID: 20110313 DOI: 10.1242/dev.043703] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The correct assembly of the myotendinous junction (MTJ) is crucial for proper muscle function. In Drosophila, this junction comprises hemi-adherens junctions that are formed upon arrival of muscles at their corresponding tendon cells. The MTJ mainly comprises muscle-specific alphaPS2betaPS integrin receptors and their tendon-derived extracellular matrix ligand Thrombospondin (Tsp). We report the identification and functional analysis of a novel tendon-derived secreted protein named Slowdown (Slow). Homozygous slow mutant larvae exhibit muscle or tendon rupture, sluggish larval movement, partial lethality, and the surviving adult flies are unable to fly. These defects result from improper assembly of the embryonic MTJ. In slow mutants, Tsp prematurely accumulates at muscle ends, the morphology of the muscle leading edge changes and the MTJ architecture is aberrant. Slow was found to form a protein complex with Tsp. This complex is biologically active and capable of altering the morphology and directionality of muscle ends. Our analysis implicates Slow as an essential component of the MTJ, crucial for ensuring muscle and tendon integrity during larval locomotion.
Collapse
Affiliation(s)
- Eliezer Gilsohn
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
1406
|
Oglesby IK, Bray IM, Chotirmall SH, Stallings RL, O’Neill SJ, McElvaney NG, Greene CM. miR-126 Is Downregulated in Cystic Fibrosis Airway Epithelial Cells and Regulates TOM1 Expression. THE JOURNAL OF IMMUNOLOGY 2010; 184:1702-9. [DOI: 10.4049/jimmunol.0902669] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
1407
|
Abstract
The transcriptional regulation of cardiovascular development requires precise spatiotemporal control of gene expression, and heterozygous mutations of transcription factors have frequently been implicated in human cardiovascular malformations. A novel mechanism involving post-transcriptional regulation by small, noncoding microRNAs (miRNAs) has emerged as a central regulator of many cardiogenic processes. We are beginning to understand the functions that miRNAs play during essential biologic processes, such as cell proliferation, differentiation, apoptosis, stress response, and tumorigenesis. The identification of miRNAs expressed in specific cardiac and vascular cell types has led to the discovery of important regulatory roles for these small RNAs during cardiomyocyte differentiation, cell cycle, conduction, and vessel formation. Here, we overview the recent findings on miRNA regulation in cardiovascular development. Further analysis of miRNA function during cardiovascular development will allow us to determine the potential for novel miRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Kimberly R. Cordes
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, CA 94158 USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, CA 94158 USA
| | - Kathryn N. Ivey
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, CA 94158 USA
| |
Collapse
|
1408
|
Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Köppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 2:ra81. [PMID: 19996457 DOI: 10.1126/scisignal.2000610] [Citation(s) in RCA: 1046] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Apoptosis is a pivotal process in embryogenesis and postnatal cell homeostasis and involves the shedding of membranous microvesicles termed apoptotic bodies. In response to tissue damage, the CXC chemokine CXCL12 and its receptor CXCR4 counteract apoptosis and recruit progenitor cells. Here, we show that endothelial cell-derived apoptotic bodies are generated during atherosclerosis and convey paracrine alarm signals to recipient vascular cells that trigger the production of CXCL12. CXCL12 production was mediated by microRNA-126 (miR-126), which was enriched in apoptotic bodies and repressed the function of regulator of G protein (heterotrimeric guanosine triphosphate-binding protein) signaling 16, an inhibitor of G protein-coupled receptor (GPCR) signaling. This enabled CXCR4, a GPCR, to trigger an autoregulatory feedback loop that increased the production of CXCL12. Administration of apoptotic bodies or miR-126 limited atherosclerosis, promoted the incorporation of Sca-1+ progenitor cells, and conferred features of plaque stability on different mouse models of atherosclerosis. This study highlights functions of microRNAs in health and disease that may extend to the recruitment of progenitor cells during other forms of tissue repair or homeostasis.
Collapse
Affiliation(s)
- Alma Zernecke
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1409
|
Zhang C. Novel functions for small RNA molecules. CURRENT OPINION IN MOLECULAR THERAPEUTICS 2009; 11:641-651. [PMID: 20072941 PMCID: PMC3593927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Small RNAs are short (approximately 18 to 30 nucleotides), non-coding RNA molecules that can regulate gene expression in both the cytoplasm and the nucleus via post-transcriptional gene silencing (PTGS), chromatin-dependent gene silencing (CDGS) or RNA activation (RNAa). Three classes of small RNAs have been defined: microRNAs (miRNAs), siRNAs and Piwi-interacting RNAs (piRNAs). Research has indicated that small RNAs play important roles in cellular processes such as cell differentiation, growth/proliferation, migration, apoptosis/death, metabolism and defense. Accordingly, small RNAs are critical regulators of normal development and physiology. More interestingly, increasing evidence indicates that small RNAs are involved in the pathogenesis of diverse diseases including cancer, cardiovascular disease, stroke, neurodegenerative disease, diabetes, liver disease, kidney disease and infectious disease. More than 20 clinical trials are ongoing to evaluate therapies based on small RNA. Additionally, small RNAs may serve as novel biomarkers and therapeutic targets for the majority of diseases.
Collapse
Affiliation(s)
- Chunxiang Zhang
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, RNA Research Laboratory, Department of Anesthesiology, 185 South Orange Avenue, MSB Room E548, Newark, NJ 07101, USA.
| |
Collapse
|
1410
|
Silber J, James CD, Hodgson JG. microRNAs in gliomas: small regulators of a big problem. Neuromolecular Med 2009; 11:208-22. [PMID: 19731102 DOI: 10.1007/s12017-009-8087-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 08/25/2009] [Indexed: 12/19/2022]
Abstract
Gliomas are the most common form of primary brain tumors and are associated with a poor clinical outcome. The molecular mechanisms that contribute to gliomagenesis have become increasingly clear in recent years, yet much remains to be learned. This is particularly true for the role of microRNAs in gliomagenesis, as an appreciation for the significance of aberrant miRNA expression in human cancer has only emerged in the last 5 years. It is now evident that microRNAs regulate a wide variety of tumorigenic processes including cellular proliferation, differentiation, angiogenesis, invasion, and apoptosis. Here we review the current state of knowledge related to the role of microRNAs in glial tumor development. This is a rapidly evolving field and it is likely that we have only begun to appreciate the involvement of microRNAs in relation to glioma formation, and the therapeutic potential of microRNAs to improve outcome for glioma patients.
Collapse
Affiliation(s)
- Joachim Silber
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 92121, USA
| | | | | |
Collapse
|
1411
|
Hsieh CH, Rau CS, Jeng SF, Lin CJ, Chen YC, Wu CJ, Lu TH, Lu CH, Chang WN. Identification of the potential target genes of microRNA-146a induced by PMA treatment in human microvascular endothelial cells. Exp Cell Res 2009; 316:1119-26. [PMID: 19944095 DOI: 10.1016/j.yexcr.2009.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/06/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
Abstract
Phorbol 12-myristate 13-acetate (PMA) is known to activate protein kinase C (PKC) and increase angiogenesis in cultured endothelial cells. Using a microRNA (miRNA) array, we found that PMA induced miR-146a expression in human microvascular endothelial cells. The miR-146a expression was dependent on dose and time and independent of PKC activation. Using a combined approach involving predictions using miRanda algorithm and whole genome microarray experiments with or without inhibition of miR-146a expression by LNA-antimir-146a or LNA-control, 29 potential target genes of miR-146a were identified. Because endothelial cell S phase progression is an early event in the induction of angiogenesis, we evaluated 5 cell cycle-related genes from the 29 target genes and found that the transcripts of 3 genes (CCNA2, PA2G4, and BRCA1) were downregulated after PMA treatment, but their expression was rescued upon miR-146a inhibition. However, inhibition of miR-146a expression failed to alter the cell cycle distribution or angiogenesis induced by PMA treatment. By using a combined approach involving computational prediction and a whole genome microarray experiment in the presence or absence of antimir, the observations in this presented article raise the possibility that antimir strategies might be used to identify the potential miRNA targets.
Collapse
Affiliation(s)
- Ching-Hua Hsieh
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung Hsien, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
1412
|
Larsson E, Fredlund Fuchs P, Heldin J, Barkefors I, Bondjers C, Genové G, Arrondel C, Gerwins P, Kurschat C, Schermer B, Benzing T, Harvey SJ, Kreuger J, Lindahl P. Discovery of microvascular miRNAs using public gene expression data: miR-145 is expressed in pericytes and is a regulator of Fli1. Genome Med 2009; 1:108. [PMID: 19917099 PMCID: PMC2808743 DOI: 10.1186/gm108] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/14/2009] [Accepted: 11/16/2009] [Indexed: 01/08/2023] Open
Abstract
Background A function for the microRNA (miRNA) pathway in vascular development and angiogenesis has been firmly established. miRNAs with selective expression in the vasculature are attractive as possible targets in miRNA-based therapies. However, little is known about the expression of miRNAs in microvessels in vivo. Here, we identified candidate microvascular-selective miRNAs by screening public miRNA expression datasets. Methods Bioinformatics predictions of microvascular-selective expression were validated with real-time quantitative reverse transcription PCR on purified microvascular fragments from mouse. Pericyte expression was shown with in situ hybridization on tissue sections. Target sites were identified with 3' UTR luciferase assays, and migration was tested in a microfluid chemotaxis chamber. Results miR-145, miR-126, miR-24, and miR-23a were selectively expressed in microvascular fragments isolated from a range of tissues. In situ hybridization and analysis of Pdgfb retention motif mutant mice demonstrated predominant expression of miR-145 in pericytes. We identified the Ets transcription factor Friend leukemia virus integration 1 (Fli1) as a miR-145 target, and showed that elevated levels of miR-145 reduced migration of microvascular cells in response to growth factor gradients in vitro. Conclusions miR-126, miR-24 and miR-23a are selectively expressed in microvascular endothelial cells in vivo, whereas miR-145 is expressed in pericytes. miR-145 targets the hematopoietic transcription factor Fli1 and blocks migration in response to growth factor gradients. Our findings have implications for vascular disease and provide necessary information for future drug design against miRNAs with selective expression in the microvasculature.
Collapse
Affiliation(s)
- Erik Larsson
- Wallenberg Laboratory for Cardiovascular Research, Bruna Stråket 16, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1413
|
microRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther 2009; 125:92-104. [PMID: 19896977 DOI: 10.1016/j.pharmthera.2009.10.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 02/08/2023]
Abstract
microRNAs (miRNAs) are 21-23-nucleotide non-protein-coding RNA molecules that act as negative regulators of gene expression, modulating the stability and/or the translational efficiency of target messenger RNAs. This review describes miRNA regulation and function in tissue response to acute ischemia. We focused our attention on a subset of miRNAs that have been found de-regulated in different studies, suggesting that they may represent "master ischemic" miRNAs, playing a pathogenetic role in different components of tissue response to ischemia. First, we analyzed the role of miRNAs in cell response to hypoxia, a crucial component of ischemia, and in angiogenesis. Then, we describe miRNAs role in acute myocardial infarction as much as in hindlimb, cerebral, hepatic and retinal ischemia. The role played by specific miRNAs in the regulation of apoptosis, fibrosis, regeneration and myocardial arrhythmias is illustrated. The identification of specific miRNAs as key regulators of the response to ischemia has opened new clinical avenues. miRNAs may constitute excellent non-invasive disease biomarkers. Furthermore, innovative strategies targeting miRNAs, aimed to reduce the levels of pathogenic or aberrantly expressed miRNAs or to elevate the levels of miRNAs with beneficial functions, have been developed and could be applied in the treatment of ischemic diseases.
Collapse
|
1414
|
Will the real plaque vasculature please stand up? Why we need to distinguish the vasa plaquorum from the vasa vasorum. Trends Cardiovasc Med 2009; 19:87-94. [PMID: 19679265 DOI: 10.1016/j.tcm.2009.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many studies of experimental atherosclerosis and pathologic observations of human specimens have provided evidence supporting a correlation between vascularization of the atherosclerotic plaque and its natural growth and progression toward acute failure, associated with clinical events. The growing interest in the topic is illustrated by several excellent recent reviews discussing the molecular mechanisms that might play a role in the formation of plaque vasculature and that could explain some of the observed associations with pathologic features of experimental and human atherosclerotic lesions. At the same time, these reviews also emphasize that the field is still largely in uncharted territory. Hoping to spark some new investigations, we are taking this opportunity to question some of the common assumptions and to highlight less explored mechanisms. Finally, we are proposing to adopt the term vasa plaquorum to refer to the neovasculature located within the atherosclerotic plaque to distinguish it clearly from vasa vasorum, the native, supporting vasculature of the artery. We suggest that this new nomenclature offers a potential solution to eliminate ambiguity regarding implicit, but frequently neglected, differences between these structures. We think these points are relevant for future efforts to tailor diagnostic tools and therapeutic interventions targeting plaque neovascularization for the clinical management of atherosclerosis.
Collapse
|
1415
|
Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A, Novelli G, Melino G, Lauro R, Federici M. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 2009; 120:1524-32. [PMID: 19786632 DOI: 10.1161/circulationaha.109.864629] [Citation(s) in RCA: 390] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Aging is a major risk factor for the development of atherosclerosis and coronary artery disease. Through a microarray approach, we have identified a microRNA (miR-217) that is progressively expressed in endothelial cells with aging. miR-217 regulates the expression of silent information regulator 1 (SirT1), a major regulator of longevity and metabolic disorders that is progressively reduced in multiple tissues during aging. METHODS AND RESULTS miR-217 inhibits SirT1 expression through a miR-217-binding site within the 3'-UTR of SirT1. In young human umbilical vein endothelial cells, human aortic endothelial cells, and human coronary artery endothelial cells, miR-217 induces a premature senescence-like phenotype and leads to an impairment in angiogenesis via inhibition of SirT1 and modulation of FoxO1 (forkhead box O1) and endothelial nitric oxide synthase acetylation. Conversely, inhibition of miR-217 in old endothelial cells ultimately reduces senescence and increases angiogenic activity via an increase in SirT1. miR-217 is expressed in human atherosclerotic lesions and is negatively correlated with SirT1 expression and with FoxO1 acetylation status. CONCLUSIONS Our data pinpoint miR-217 as an endogenous inhibitor of SirT1, which promotes endothelial senescence and is potentially amenable to therapeutic manipulation for prevention of endothelial dysfunction in metabolic disorders.
Collapse
Affiliation(s)
- Rossella Menghini
- Department of Internal Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1416
|
Ohlsson Teague EMC, Print CG, Hull ML. The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update 2009; 16:142-65. [DOI: 10.1093/humupd/dmp034] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
1417
|
Olson P, Lu J, Zhang H, Shai A, Chun MG, Wang Y, Libutti SK, Nakakura EK, Golub TR, Hanahan D. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 2009; 23:2152-65. [PMID: 19759263 DOI: 10.1101/gad.1820109] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While altered expression of microRNAs (miRs) in tumors has been well documented, it remains unclear how the miR transcriptome intersects neoplastic progression. By profiling the miR transcriptome we identified miR expression signatures associated with steps in tumorigenesis and the acquisition of hallmark capabilities in a prototypical mouse model of cancer. Metastases and a rare subset of primary tumors shared a distinct miR signature, implicating a discrete lineage for metastatic tumors. The miR-200 family is strongly down-regulated in metastases and met-like primary tumors, thereby relieving repression of the mesenchymal transcription factor Zeb1, which in turn suppresses E-cadherin. Treatment with a clinically approved angiogenesis inhibitor normalized angiogenic signature miRs in primary tumors, while altering expression of metastatic signature miRs similarly to liver metastases, suggesting their involvement in adaptive resistance to anti-angiogenic therapy via enhanced metastasis. Many of the miR changes associated with specific stages and hallmark capabilities in the mouse model are similarly altered in human tumors, including cognate pancreatic neuroendocrine tumors, implying a generality.
Collapse
Affiliation(s)
- Peter Olson
- Diabetes Center, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1418
|
Li X, Shen Y, Ichikawa H, Antes T, Goldberg GS. Regulation of miRNA expression by Src and contact normalization: effects on nonanchored cell growth and migration. Oncogene 2009; 28:4272-83. [PMID: 19767772 DOI: 10.1038/onc.2009.278] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transformation by the Src tyrosine kinase (Src) promotes nonanchored cell growth and migration. However, nontransformed cells can force Src-transformed cells to assume a normal morphology and phenotype by a process called 'contact normalization'. It has become clear that microRNA (miRNA) can affect tumorigenesis by targeting gene products that direct cell growth and migration. However, the roles of miRNA in Src transformation or contact normalization have not yet been reported. We examined the expression of 95 miRNAs and found 9 of them significantly affected by Src. In this study, we report that miR-218 and miR-224 were most significantly induced by Src, but not affected by contact normalization. In contrast, miR-126 was most significantly suppressed by Src and was induced by contact normalization in transformed cells. Mir-126 targets Crk, a component of the focal adhesion network that participates in events required for tumor cell migration. Accordingly, we show that miR-126 expression correlates inversely with Crk levels, motility and the invasive potential of human mammary carcinoma cells. Moreover, we show that miR-224 expression promotes nonanchored growth of nontransformed cells. These data reveal novel insights into how Src regulates miRNA expression to promote hallmarks of tumor cell growth and invasion, and how nontransformed cells can affect miRNA expression in adjacent tumor cells to inhibit this process.
Collapse
Affiliation(s)
- X Li
- UMDNJ-Graduate School of Biomedical Sciences, 2 Medical Center Drive, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
| | | | | | | | | |
Collapse
|
1419
|
Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, Richardson JA, Bassel-Duby R, Olson EN. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev 2009; 23:2166-78. [PMID: 19720868 PMCID: PMC2751981 DOI: 10.1101/gad.1842409] [Citation(s) in RCA: 534] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/11/2009] [Indexed: 12/21/2022]
Abstract
Vascular injury triggers dedifferentiation and cytoskeletal remodeling of smooth muscle cells (SMCs), culminating in vessel occlusion. Serum response factor (SRF) and its coactivator, myocardin, play a central role in the control of smooth muscle phenotypes by regulating the expression of cytoskeletal genes. We show that SRF and myocardin regulate a cardiovascular-specific microRNA (miRNA) cluster encoding miR-143 and miR-145. To assess the functions of these miRNAs in vivo, we systematically deleted them singly and in combination in mice. Mice lacking both miR-143 and miR-145 are viable and do not display overt abnormalities in smooth muscle differentiation, although they show a significant reduction in blood pressure due to reduced vascular tone. Remarkably, however, neointima formation in response to vascular injury is profoundly impeded in mice lacking these miRNAs, due to disarray of actin stress fibers and diminished migratory activity of SMCs. These abnormalities reflect the regulation of a cadre of modulators of SRF activity and actin dynamics by miR-143 and miR-145. Thus, miR-143 and miR-145 act as integral components of the regulatory network whereby SRF controls cytoskeletal remodeling and phenotypic switching of SMCs during vascular disease.
Collapse
Affiliation(s)
- Mei Xin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eric M. Small
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lillian B. Sutherland
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xiaoxia Qi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | - James A. Richardson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
1420
|
Wu F, Yang Z, Li G. Role of specific microRNAs for endothelial function and angiogenesis. Biochem Biophys Res Commun 2009; 386:549-53. [PMID: 19540203 PMCID: PMC2821898 DOI: 10.1016/j.bbrc.2009.06.075] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 06/15/2009] [Indexed: 12/23/2022]
Abstract
Accumulating evidence indicates that various aspects of angiogenesis, such as proliferation, migration, and morphogenesis of endothelial cells, can be regulated by specific miRNAs in an endothelial-specific manner. As novel molecular targets, miRNAs have a potential value for treatment of angiogenesis-associated diseases such as cancers, inflammation, and vascular diseases. In this article, we review the latest advances in the identification and validation of angiogenesis-regulatory miRNAs and their targets, and discuss their roles and mechanisms in regulating endothelial cell function and angiogenesis.
Collapse
Affiliation(s)
- Fusheng Wu
- Department of Neurosurgery & Physiology, LSU Health Science Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
1421
|
Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin ES, Zhang C. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 2009; 284:29514-25. [PMID: 19706597 DOI: 10.1074/jbc.m109.027896] [Citation(s) in RCA: 362] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Several recent reports have suggested that microRNAs (miRNAs) might play critical roles in acute myocardial infarction (AMI). However, the miRNA expression signature in the early phase of AMI has not been identified. In this study, the miRNA expression signature was investigated in rat hearts 6 h after AMI. Compared with the expression signature in the noninfarcted areas, 38 miRNAs were differentially expressed in infarcted areas and 33 miRNAs were aberrantly expressed in the border areas. Remarkably, miR-21 expression was significantly down-regulated in infarcted areas, but was up-regulated in border areas. The down-regulation of miR-21 in the infarcted areas was inhibited by ischemic preconditioning, a known cardiac protective method. Overexpression of miR-21 via adenovirus expressing miR-21 (Ad-miR-21) decreased myocardial infarct size by 29% at 24 h and decreased the dimension of left ventricles at 2 weeks after AMI. Using both gain-of-function and loss-of-function approaches in cultured cardiac myocytes, we identified that miR-21 had a protective effect on ischemia-induced cell apoptosis that was associated with its target gene programmed cell death 4 and activator protein 1 pathway. The protective effect of miR-21 against ischemia-induced cardiac myocyte damage was further confirmed in vivo by decreased cell apoptosis in the border and infarcted areas of the infarcted rat hearts after treatment with Ad-miR-21. The results suggest that miRNAs such as miR-21 may play critical roles in the early phase of AMI.
Collapse
Affiliation(s)
- Shimin Dong
- Department of Anesthesiology, RNA and Cardiovascular Research Laboratory, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07101, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1422
|
Rao PK, Toyama Y, Chiang HR, Gupta S, Bauer M, Medvid R, Reinhardt F, Liao R, Krieger M, Jaenisch R, Lodish HF, Blelloch R. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 2009; 105:585-94. [PMID: 19679836 DOI: 10.1161/circresaha.109.200451] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE Heart failure is a deadly and devastating disease that places immense costs on an aging society. To develop therapies aimed at rescuing the failing heart, it is important to understand the molecular mechanisms underlying cardiomyocyte structure and function. OBJECTIVE microRNAs are important regulators of gene expression, and we sought to define the global contributions made by microRNAs toward maintaining cardiomyocyte integrity. METHODS AND RESULTS First, we performed deep sequencing analysis to catalog the miRNA population in the adult heart. Second, we genetically deleted, in cardiac myocytes, an essential component of the machinery that is required to generate miRNAs. Deep sequencing of miRNAs from the heart revealed the enrichment of a small number of microRNAs with one, miR-1, accounting for 40% of all microRNAs. Cardiomyocyte-specific deletion of dgcr8, a gene required for microRNA biogenesis, revealed a fully penetrant phenotype that begins with left ventricular malfunction progressing to a dilated cardiomyopathy and premature lethality. CONCLUSIONS These observations reveal a critical role for microRNAs in maintaining cardiac function in mature cardiomyocytes and raise the possibility that only a handful of microRNAs may ultimately be responsible for the dramatic cardiac phenotype seen in the absence of dgcr8.
Collapse
Affiliation(s)
- Prakash K Rao
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1423
|
Catalucci D, Gallo P, Condorelli G. MicroRNAs in Cardiovascular Biology and Heart Disease. ACTA ACUST UNITED AC 2009; 2:402-8. [DOI: 10.1161/circgenetics.109.857425] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MicroRNAs play important roles in many cellular and biological functions via the regulation of mRNA target translation. In the cardiovascular field, microRNAs are now acknowledged as fundamental in regulating the expression of genes that governs physiological and pathological myocardial adaptation to stress. Here, we review recent progress in the understanding of microRNA functions and their involvement in heart disease.
Collapse
Affiliation(s)
- Daniele Catalucci
- From the Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Multimedica (D.C., G.C.), Milan, Italy; Department of Cardiovascular Medicine and Fondazione San Raffaele (P.G.), Campus BioMedico University, Rome, Italy; and Division of Cardiology (G.C.), Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Paolo Gallo
- From the Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Multimedica (D.C., G.C.), Milan, Italy; Department of Cardiovascular Medicine and Fondazione San Raffaele (P.G.), Campus BioMedico University, Rome, Italy; and Division of Cardiology (G.C.), Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Gianluigi Condorelli
- From the Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Multimedica (D.C., G.C.), Milan, Italy; Department of Cardiovascular Medicine and Fondazione San Raffaele (P.G.), Campus BioMedico University, Rome, Italy; and Division of Cardiology (G.C.), Department of Medicine, University of California San Diego, La Jolla, Calif
| |
Collapse
|
1424
|
Sotiropoulou G, Pampalakis G, Lianidou E, Mourelatos Z. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA (NEW YORK, N.Y.) 2009; 15:1443-1461. [PMID: 19561119 PMCID: PMC2714746 DOI: 10.1261/rna.1534709] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Transformation of normal cells into malignant tumors requires the acquisition of six hallmark traits, e.g., self-sufficiency in growth signals, insensitivity to antigrowth signals and self-renewal, evasion of apoptosis, limitless replication potential, angiogenesis, invasion, and metastasis, which are common to all cancers (Hanahan and Weinberg 2000). These new cellular traits evolve from defects in major regulatory microcircuits that are fundamental for normal homeostasis. The discovery of microRNAs (miRNAs) as a new class of small non-protein-coding RNAs that control gene expression post-transcriptionally by binding to various mRNA targets suggests that these tiny RNA molecules likely act as molecular switches in the extensive regulatory web that involves thousands of transcripts. Most importantly, accumulating evidence suggests that numerous microRNAs are aberrantly expressed in human cancers. In this review, we discuss the emergent roles of microRNAs as switches that function to turn on/off known cellular microcircuits. We outline recent compelling evidence that deregulated microRNA-mediated control of cellular microcircuits cooperates with other well-established regulatory mechanisms to confer the hallmark traits of the cancer cell. Furthermore, these exciting insights into aberrant microRNA control in cancer-associated circuits may be exploited for cancer therapies that will target deregulated miRNA switches.
Collapse
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras 26500, Greece.
| | | | | | | |
Collapse
|
1425
|
Abstract
Cell cytoskeleton proteins are fundamental to cell shape, cell adhesion and cell motility, and therefore play an important role during angiogenesis. One of the major regulators of cytoskeletal protein expression is serum response factor (SRF), a MADS-box transcription factor that regulates multiple genes implicated in cell growth, migration, cytoskeletal organization, energy metabolism and myogenesis. Recent data have demonstrated a crucial role of SRF downstream of VEGF and FGF signalling during sprouting angiogenesis, regulating endothelial cell (EC) migration, actin polymerisation, tip cell morphology, EC junction assembly and vascular integrity. Here, we review the role of SRF in the regulation of angiogenesis and EC function, integrate SRF function into a broader mechanism regulating branching morphogenesis, and discuss future directions and perspectives of SRF in EC biology.
Collapse
Affiliation(s)
- Claudio A Franco
- UPMC Univ Paris 06, UR4, aging, stress and inflammation, Paris, France
| | | |
Collapse
|
1426
|
MicroRNAs in adult and embryonic neurogenesis. Neuromolecular Med 2009; 11:141-52. [PMID: 19598002 DOI: 10.1007/s12017-009-8077-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 06/30/2009] [Indexed: 12/22/2022]
Abstract
Neurogenesis is defined as a process that includes the proliferation of neural stem/progenitor cells (NPCs) and the differentiation of these cells into new neurons that integrate into the existing neuronal circuitry. MicroRNAs (miRNAs) are a recently discovered class of small non-protein coding RNA molecules implicated in a wide range of diverse gene regulatory mechanisms. More and more data demonstrate that numerous miRNAs are expressed in a spatially and temporally controlled manners in the nervous system, which suggests that miRNAs have important roles in the gene regulatory networks involved in both brain development and adult neural plasticity. This review summarizes the roles of miRNAs-mediated gene regulation in the nervous system with focus on neurogenesis in both embryonic and adult brains.
Collapse
|
1427
|
|
1428
|
Sen CK, Gordillo GM, Khanna S, Roy S. Micromanaging vascular biology: tiny microRNAs play big band. J Vasc Res 2009; 46:527-40. [PMID: 19571573 DOI: 10.1159/000226221] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 04/17/2009] [Indexed: 12/14/2022] Open
Abstract
Micro-RNAs (miRNAs) are estimated to regulate 30% of the human genome primarily through translational repression. In 2005-2008, the first series of observations establishing the key significance of miRNAs in the regulation of vascular biology came from experimental studies involved in arresting miRNA biogenesis to deplete the miRNA pools of vascular tissues and cells. Dicer-dependent biogenesis of miRNA is required for blood vessel development during embryogenesis and wound healing. miRNAs regulate redox signaling in endothelial cells, a key regulator of vascular cell biology. miRNAs that regulate angiogenesis include miRNA 17-5p, cluster 17-92, 21, 27a&b, 126, 130a, 210, 221, 222, 378 and the let7 family. miRNAs also represent a new therapeutic target for the treatment of proliferative vascular diseases as well as hypertension. Evidence supporting the regulation of inducible adhesion molecules by miRNA supports a role of miRNAs in regulating vascular inflammation. Productive strategies to safely up-regulate as well as down-regulate miRNAs in vivo are in place and being tested for their value in disease intervention. Prudent targeting of non-coding genes such as miRNAs, which in turn regulates large sets of coding genes, holds promise in gene therapy. Recent developments in miRNA biology offer lucrative opportunities to manage vascular health.
Collapse
Affiliation(s)
- Chandan K Sen
- Laboratory of Molecular Medicine, Department of Surgery, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
1429
|
Affiliation(s)
- Kurt G Barringhaus
- Department of Cardiovascular Medicine, University of Massachusetts Medical School, LRB 821, 364 Plantation St, Worcester, MA 01605, USA.
| | | |
Collapse
|
1430
|
Wang S, Olson EN. AngiomiRs--key regulators of angiogenesis. Curr Opin Genet Dev 2009; 19:205-11. [PMID: 19446450 PMCID: PMC2696563 DOI: 10.1016/j.gde.2009.04.002] [Citation(s) in RCA: 359] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 12/20/2022]
Abstract
The formation of new blood vessels through the process of angiogenesis is critical in vascular development and homeostasis. Aberrant angiogenesis leads to a variety of diseases, such as ischemia and cancer. Recent studies have revealed important roles for miRNAs in regulating endothelial cell (EC) function, especially angiogenesis. Mice with EC-specific deletion of Dicer, a key enzyme for generating miRNAs, display defective postnatal angiogenesis. Specific miRNAs (angiomiRs) have recently been shown to regulate angiogenesis in vivo. miRNA-126, an EC-restricted miRNA, regulates vascular integrity and developmental angiogenesis. miR-378, miR-296, and the miR-17-92 cluster contribute to tumor angiogenesis. Manipulating angiomiRs in the settings of pathological vascularization represents a new therapeutic approach.
Collapse
Affiliation(s)
- Shusheng Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
1431
|
Smart N, Dubé KN, Riley PR. Coronary vessel development and insight towards neovascular therapy. Int J Exp Pathol 2009; 90:262-83. [PMID: 19563610 PMCID: PMC2697550 DOI: 10.1111/j.1365-2613.2009.00646.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/21/2008] [Indexed: 12/20/2022] Open
Abstract
Formation of the coronary arteries consists of a precisely orchestrated series of morphogenetic and molecular events which can be divided into three distinct processes: vasculogenesis, angiogenesis and arteriogenesis (Risau 1997; Carmeliet 2000). Even subtle perturbations in this process may lead to congenital coronary artery anomalies, as occur in 0.2-1.2% of the general population (von Kodolitsch et al. 2004). Contrary to the previously held dogma, the process of vasculogenesis is not limited to prenatal development. Both vasculogenesis and angiogenesis are now known to actively occur within the adult heart. When the need for regeneration arises, for example in the setting of coronary artery disease, a reactivation of embryonic processes ensues, redeploying many of the same molecular regulators. Thus, an understanding of the mechanisms of embryonic coronary vasculogenesis and angiogenesis may prove invaluable in developing novel strategies for cardiovascular regeneration and therapeutic coronary angiogenesis.
Collapse
Affiliation(s)
- Nicola Smart
- Molecular Medicine Unit, UCL-Institute of Child Health, London, UK
| | | | | |
Collapse
|
1432
|
Ruan K, Fang X, Ouyang G. MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett 2009; 285:116-26. [PMID: 19464788 DOI: 10.1016/j.canlet.2009.04.031] [Citation(s) in RCA: 336] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 04/20/2009] [Accepted: 04/23/2009] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of 18-25 nucleotides in length that function as negative regulators. miRNAs post-transcriptionally regulate gene expression by either inhibiting mRNA translation or inducing mRNA degradation, and participate in a wide variety of physiological and pathological cellular processes. Recent reports have revealed that the deregulation of miRNAs correlates with various human cancers and is involved in the initiation and progression of human cancers. miRNAs can act as oncogenes or tumor suppressors to inhibit the expression of cancer-related target genes and to promote or suppress tumorigenesis in various tissues. Therefore, abnormal miRNA expression can be regarded as a common feature of human cancers, and the identification of miRNAs and their respective targets may provide potential diagnostic and prognostic tumor biomarkers and new therapeutic strategies to treat cancers. In the present review, we discuss the emerging roles of miRNAs in the hallmarks of human cancers.
Collapse
Affiliation(s)
- Kai Ruan
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | |
Collapse
|
1433
|
Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 2009; 324:1710-3. [PMID: 19460962 DOI: 10.1126/science.1174381] [Citation(s) in RCA: 950] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Here, we show that the miR-17approximately92 cluster is highly expressed in human endothelial cells and that miR-92a, a component of this cluster, controls the growth of new blood vessels (angiogenesis). Forced overexpression of miR-92a in endothelial cells blocked angiogenesis in vitro and in vivo. In mouse models of limb ischemia and myocardial infarction, systemic administration of an antagomir designed to inhibit miR-92a led to enhanced blood vessel growth and functional recovery of damaged tissue. MiR-92a appears to target mRNAs corresponding to several proangiogenic proteins, including the integrin subunit alpha5. Thus, miR-92a may serve as a valuable therapeutic target in the setting of ischemic disease.
Collapse
Affiliation(s)
- Angelika Bonauer
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1434
|
Langer C, Marcucci G, Holland KB, Radmacher MD, Maharry K, Paschka P, Whitman SP, Mrózek K, Baldus CD, Vij R, Powell BL, Carroll AJ, Kolitz JE, Caligiuri MA, Larson RA, Bloomfield CD. Prognostic importance of MN1 transcript levels, and biologic insights from MN1-associated gene and microRNA expression signatures in cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 2009; 27:3198-204. [PMID: 19451432 DOI: 10.1200/jco.2008.20.6110] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To determine the prognostic importance of the meningioma 1 (MN1) gene expression levels in the context of other predictive molecular markers, and to derive MN1 associated gene- and microRNA-expression profiles in cytogenetically normal acute myeloid leukemia (CN-AML). PATIENTS AND METHODS MN1 expression was measured in 119 untreated primary CN-AML adults younger than 60 years by real-time reverse-transcriptase polymerase chain reaction. Patients were also tested for FLT3, NPM1, CEBPA, and WT1 mutations, MLL partial tandem duplications, and BAALC and ERG expression. Gene- and microRNA-expression profiles were attained by performing genome-wide microarray assays. Patients were intensively treated on two first-line Cancer and Leukemia Group B clinical trials. Results Higher MN1 expression associated with NPM1 wild-type (P < .001), increased BAALC expression (P = .004), and less extramedullary involvement (P = .01). In multivariable analyses, higher MN1 expression associated with a lower complete remission rate (P = .005) after adjustment for WBC; shorter disease-free survival (P = .01) after adjustment for WT1 mutations, FLT3 internal tandem duplications (FLT3-ITD), and high ERG expression; and shorter survival (P = .04) after adjustment for WT1 and NPM1 mutations, FLT3-ITD, and WBC. Gene- and microRNA-expression profiles suggested that high MN1 expressers share features with high BAALC expressers and patients with wild-type NPM1. Higher MN1 expression also appears to be associated with genes and microRNAs that are active in aberrant macrophage/monocytoid function and differentiation. CONCLUSION MN1 expression independently predicts outcome in CN-AML patients. The MN1 gene- and microRNA-expression signatures suggest biologic features that could be exploited as therapeutic targets.
Collapse
Affiliation(s)
- Christian Langer
- Division of Hematology and Oncology, Comprehensive Cancer Center, The Ohio State University, Suite A434 Starling-Loving Hall, 320 W 10th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1435
|
|
1436
|
Taniguchi K, Sasaki KI, Watari K, Yasukawa H, Imaizumi T, Ayada T, Okamoto F, Ishizaki T, Kato R, Kohno RI, Kimura H, Sato Y, Ono M, Yonemitsu Y, Yoshimura A. Suppression of Sproutys has a therapeutic effect for a mouse model of ischemia by enhancing angiogenesis. PLoS One 2009; 4:e5467. [PMID: 19424491 PMCID: PMC2674940 DOI: 10.1371/journal.pone.0005467] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 04/13/2009] [Indexed: 02/07/2023] Open
Abstract
Sprouty proteins (Sproutys) inhibit receptor tyrosine kinase signaling and control various aspects of branching morphogenesis. In this study, we examined the physiological function of Sproutys in angiogenesis, using gene targeting and short-hairpin RNA (shRNA) knockdown strategies. Sprouty2 and Sprouty4 double knockout (KO) (DKO) mice were embryonic-lethal around E12.5 due to cardiovascular defects. The number of peripheral blood vessels, but not that of lymphatic vessels, was increased in Sprouty4 KO mice compared with wild-type (WT) mice. Sprouty4 KO mice were more resistant to hind limb ischemia and soft tissue ischemia than WT mice were, because Sprouty4 deficiency causes accelerated neovascularization. Moreover, suppression of Sprouty2 and Sprouty4 expression in vivo by shRNA targeting accelerated angiogenesis and has a therapeutic effect in a mouse model of hind limb ischemia. These data suggest that Sproutys are physiologically important negative regulators of angiogenesis in vivo and novel therapeutic targets for treating peripheral ischemic diseases.
Collapse
Affiliation(s)
- Koji Taniguchi
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ken-ichiro Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University, Kurume, Japan
| | - Kousuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideo Yasukawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University, Kurume, Japan
| | - Tsutomu Imaizumi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University, Kurume, Japan
| | - Toranoshin Ayada
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Fuyuki Okamoto
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takuma Ishizaki
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Reiko Kato
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ri-ichiro Kohno
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Kimura
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshikazu Yonemitsu
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Japan Science and Technology Corporation (JST), CREST, Kawaguchi, Japan
- * E-mail:
| |
Collapse
|
1437
|
Negrini M, Nicoloso MS, Calin GA. MicroRNAs and cancer--new paradigms in molecular oncology. Curr Opin Cell Biol 2009; 21:470-9. [PMID: 19411171 DOI: 10.1016/j.ceb.2009.03.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 02/25/2009] [Accepted: 03/24/2009] [Indexed: 12/18/2022]
Abstract
The 'classic' view of molecular oncology indicates that cancer is a genetic disease involving tumor suppressor and oncogenic proteins. However, in the recent years, it has been demonstrated that small regulatory non-coding RNAs (ncRNAs) named microRNAs (miRNAs) are involved in human tumorigenesis, thus revealing a new layer in the molecular architecture of human cancer. Gene expression studies revealed that hundreds of miRNAs are deregulated in cancer cells and functional studies clarified that miRNAs are involved in all the molecular and biological processes that drive tumorigenesis. Here, we summarize the recent advances in miRNA involvement in human cancer and illustrate the benefits of using these knowledge for medical practice. New diagnostic classifiers based on miRNAs will soon be available for medical practitioners and, even more importantly, miRNAs may become novel anti-cancer tools.
Collapse
Affiliation(s)
- Massimo Negrini
- Department of Experimental and Diagnostic Medicine, Interdepartment Center for Cancer Research, University of Ferrara, Ferrara 44100, Italy.
| | | | | |
Collapse
|
1438
|
Abstract
Brain tumors exhibit marked and aberrant blood vessel formation indicating angiogenic endothelial cells as a potential target for brain tumor treatment. The brain tumor blood vessels are used for nutrient delivery, and possibly for cancer cell migration. The process of angiogenesis is complex and involves multiple players. The current angiogenesis inhibitors used in clinical trials mostly target single angiogenic proteins and so far show limited effects on tumor growth. Besides the conventional angiogenesis inhibitors, RNA-based inhibitors such as small-interfering RNAs (siRNAs) are being analyzed for their capacity to silence the message of proteins involved in neovascularization. More recently, a new family of non-coding RNAs, named angiomirs [microRNAs (miRNAs) involved in angiogenesis] has emerged. These small RNAs have the advantage over siRNAs in that they have the potential of silencing multiple messages at the same time and therefore they might become therapeutically relevant in a "one-hit multiple-target" context against brain tumor angiogenesis. In this review we will discuss the emerging technologies in anti-angiogenesis emphasizing on RNA-based therapeutics.
Collapse
Affiliation(s)
- Thomas Würdinger
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | | |
Collapse
|
1439
|
Abstract
The transcriptional regulation of cardiovascular development requires precise spatiotemporal control of gene expression, and heterozygous mutations of transcription factors have frequently been implicated in human cardiovascular malformations. A novel mechanism involving posttranscriptional regulation by small, noncoding microRNAs (miRNAs) has emerged as a central regulator of many cardiogenic processes. We are beginning to understand the functions that miRNAs play during essential biological processes, such as cell proliferation, differentiation, apoptosis, stress response, and tumorigenesis. The identification of miRNAs expressed in specific cardiac and vascular cell types has led to the discovery of important regulatory roles for these small RNAs during cardiomyocyte differentiation, cell cycle, conduction, vessel formation, and during stages of cardiac hypertrophy in the adult. Here, we overview the recent findings on miRNA regulation in cardiovascular development and report the latest advances in understanding their function by unveiling their mRNA targets. Further analysis of miRNA function during cardiovascular development will allow us to determine the potential for novel miRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Kimberly R Cordes
- Gladstone Institute of Cardiovascular Disease, 1650 Owens St, San Francisco, CA 94158, USA
| | | |
Collapse
|
1440
|
Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA. MicroRNAs--the micro steering wheel of tumour metastases. Nat Rev Cancer 2009; 9:293-302. [PMID: 19262572 DOI: 10.1038/nrc2619] [Citation(s) in RCA: 621] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, microRNAs (miRNAs) have been discovered to have a role in metastasis. Here we describe how miRNAs are involved in advanced stages of tumour progression, stressing their roles as metastasis activators or suppressors, and discuss their possible use in the clinic as predictive markers and as therapeutic strategies for patients with metastases. Furthermore, we develop the concept that the same miRNAs could be involved both in the cancer stem cell phenotype and in the ability of specific cancer cells to produce metastases, thus representing a mechanistic link between the initial and the final steps of tumorigenesis.
Collapse
Affiliation(s)
- Milena S Nicoloso
- Experimental Therapeutics Department, MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
1441
|
Buysschaert I, Schmidt T, Roncal C, Carmeliet P, Lambrechts D. Genetics, epigenetics and pharmaco-(epi)genomics in angiogenesis. J Cell Mol Med 2009; 12:2533-51. [PMID: 19210754 PMCID: PMC3828872 DOI: 10.1111/j.1582-4934.2008.00515.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Angiogenesis is controlled by a balance between pro- and anti-angiogenic factors. Studies in mice and human beings have shown that this balance, as well as the general sensitivity of the endothelium to these factors, is genetically pre-determined. In an effort to dissect this genetic basis, different types of genetic variability have emerged: mutations and translocations in angiogenic factors have been linked to several vascular malformations and haemangiomas, whereas SNPs have been associated with complex genetic disorders, such as cancer, neurodegeneration and diabetes. In addition, copy number alterations of angiogenic factors have been reported in several tumours. More recently, epigenetic changes caused by aberrant DNA methylation or histone acetylation of anti-angiogenic molecules have been shown to determine angiogenesis as well. Initial studies also revealed a crucial role for microRNAs in stimulating or reducing angiogenesis. So far, most of these genetic studies have focused on tumour angiogenesis, but future research is expected to improve our understanding of how genetic variants determine angiogenesis in other diseases. Importantly, these genetic insights might also be of important clinical relevance for the use of anti-angiogenic strategies in cancer or macular degeneration.
Collapse
|
1442
|
MicroRNA in cell differentiation and development. ACTA ACUST UNITED AC 2009; 52:205-11. [PMID: 19294345 DOI: 10.1007/s11427-009-0040-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 11/28/2008] [Indexed: 12/21/2022]
Abstract
The regulation of gene expression by microRNAs (miRNAs) is a recently discovered pattern of gene regulation in animals and plants. MiRNAs have been implicated in various aspects of animal development and cell differentiation, such as early embryonic development, neuronal development, muscle development, and lymphocyte development, by the analysis of genetic deletions of individual miRNAs in mammals. These studies show that miRNAs are key regulators in animal development and are potential causes of human diseases. Here we review some recent discoveries about the functions of miRNAs in cell differentiation and development.
Collapse
|
1443
|
Fraisl P, Mazzone M, Schmidt T, Carmeliet P. Regulation of angiogenesis by oxygen and metabolism. Dev Cell 2009; 16:167-79. [PMID: 19217420 DOI: 10.1016/j.devcel.2009.01.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Blood vessels form an important interface between the environment and the organism by carrying oxygen and nutrients to all cells and thus determining cellular metabolism. It is therefore not surprising that oxygen and metabolism influence the development of the vascular network. Here, we discuss recent insights regarding the emerging crosstalk between angiogenesis and metabolism. We will highlight advances in how oxygen and metabolism regulate angiogenesis as well as how angiogenic factors in turn also regulate metabolism.
Collapse
|
1444
|
miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 2009; 106:5813-8. [PMID: 19289822 DOI: 10.1073/pnas.0810550106] [Citation(s) in RCA: 599] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Altered growth and development of the endocrine pancreas is a frequent cause of the hyperglycemia associated with diabetes. Here we show that microRNA-375 (miR-375), which is highly expressed in pancreatic islets, is required for normal glucose homeostasis. Mice lacking miR-375 (375KO) are hyperglycemic, exhibit increased total pancreatic alpha-cell numbers, fasting and fed plasma glucagon levels, and increased gluconeogenesis and hepatic glucose output. Furthermore, pancreatic beta-cell mass is decreased in 375KO mice as a result of impaired proliferation. In contrast, pancreatic islets of obese mice (ob/ob), a model of increased beta-cell mass, exhibit increased expression of miR-375. Genetic deletion of miR-375 from these animals (375/ob) profoundly diminished the proliferative capacity of the endocrine pancreas and resulted in a severely diabetic state. Bioinformatic analysis of transcript data from 375KO islets revealed that miR-375 regulates a cluster of genes controlling cellular growth and proliferation. These data provide evidence that miR-375 is essential for normal glucose homeostasis, alpha- and beta-cell turnover, and adaptive beta-cell expansion in response to increasing insulin demand in insulin resistance.
Collapse
|
1445
|
Abstract
MicroRNAs (miRNAs) are tiny, endogenous, conserved, non-coding RNAs that negatively modulate gene expression by either promoting the degradation of mRNA or down-regulating the protein production by translational repression. They maintain optimal dose of cellular proteins and thus play a crucial role in the regulation of biological functions. Recent discovery of miRNAs in the heart and their differential expressions in pathological conditions provide glimpses of undiscovered regulatory mechanisms underlying cardiovascular diseases. Nearly 50 miRNAs are overexpressed in mouse heart. The implication of several miRNAs in cardiovascular diseases has been well documented such as miRNA-1 in arrhythmia, miRNA-29 in cardiac fibrosis, miRNA-126 in angiogenesis and miRNA-133 in cardiac hypertrophy. Aberrant expression of Dicer (an enzyme required for maturation of all miRNAs) during heart failure indicates its direct involvement in the regulation of cardiac diseases. MiRNAs and Dicer provide a particular layer of network of precise gene regulation in heart and vascular tissues in a spatiotemporal manner suggesting their implications as a powerful intervention tool for therapy. The combined strategy of manipulating miRNAs in stem cells for their target directed differentiation and optimizing the mode of delivery of miRNAs to the desired cells would determine the future potential of miRNAs to treat a disease. This review embodies the recent progress made in microRNomics of cardiovascular diseases and the future of miRNAs as a potential therapeutic target - the putative challenges and the approaches to deal with it.
Collapse
Affiliation(s)
- Paras Kumar Mishra
- Department of Physiology & Biophysics, University of Louisville School of Medicine, KY, USA
| | | | | | | |
Collapse
|
1446
|
Abstract
MicroRNAs are short noncoding RNAs that function as negative regulators of gene expression. Posttranscriptional regulation by miRNAs is important for many aspects of development, homeostasis, and disease. Endothelial cells are key regulators of different aspects of vascular biology, including the formation of new blood vessels (angiogenesis). Here, we review the approaches and current experimental evidence for the involvement of miRNAs in the regulation of the angiogenic process and their potential therapeutic applications for vascular diseases associated with abnormal angiogenesis.
Collapse
Affiliation(s)
- Yajaira Suárez
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - William C. Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
1447
|
Abstract
Activation of the angiogenic program in endothelial cells is vital for normal embryonic development and for physiological angiogenesis in the adult. In addition, angiogenesis is an important therapeutic target: Formation of new blood vessels is desirable for regenerative purposes, such as during tissue healing or transplantation, but can be pathological, as in diabetic retinopathy and cancer. The response of the vascular endothelium to angiogenic stimuli is modulated by noncoding RNAs called microRNAs. The endothelial cell-specific microRNA microRNA-126 (miR-126) promotes angiogenesis in response to angiogenic growth factors, such as vascular endothelial growth factor or basic fibroblast growth factor, by repressing negative regulators of signal transduction pathways. Additional microRNAs have been implicated in the regulation of various aspects of angiogenesis. Thus, targeting the expression of microRNAs may be a novel therapeutic approach for diseases involving excess or insufficient vasculature.
Collapse
Affiliation(s)
- Jason E. Fish
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA, and Department of Pediatrics and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA, and Department of Pediatrics and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
1448
|
|
1449
|
Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen CZ, Kuo CJ. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 2008; 135:3989-93. [DOI: 10.1242/dev.029736] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intronic microRNAs have been proposed to complicate the design and interpretation of mouse knockout studies. The endothelial-expressed Egfl7/miR-126 locus contains miR-126 within Egfl7intron 7, and angiogenesis deficits have been previously ascribed to Egfl7 gene-trap and lacZ knock-in mice. Surprisingly,selectively floxed Egfl7Δ and miR-126Δ alleles revealed that Egfl7Δ/Δ mice were phenotypically normal, whereas miR-126Δ/Δ mice bearing a 289-nt microdeletion recapitulated previously described Egfl7 embryonic and postnatal retinal vascular phenotypes. Regulation of angiogenesis by miR-126 was confirmed by endothelial-specific deletion and in the adult cornea micropocket assay. Furthermore, miR-126 deletion inhibited VEGF-dependent Akt and Erk signaling by derepression of the p85β subunit of PI3 kinase and of Spred1,respectively. These studies demonstrate the regulation of angiogenesis by an endothelial miRNA, attribute previously described Egfl7 vascular phenotypes to miR-126, and document inadvertent miRNA dysregulation as a complication of mouse knockout strategies.
Collapse
Affiliation(s)
- Frank Kuhnert
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, CCSR 1155, 269 Campus Drive, Stanford, CA 94305, USA
| | - Michael R. Mancuso
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, CCSR 1155, 269 Campus Drive, Stanford, CA 94305, USA
| | - Jessica Hampton
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, CCSR 1155, 269 Campus Drive, Stanford, CA 94305, USA
| | - Kryn Stankunas
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, CCSR 1155, 269 Campus Drive, Stanford, CA 94305, USA
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553,Japan
| | - Chang-Zheng Chen
- Baxter Laboratory and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J. Kuo
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, CCSR 1155, 269 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
1450
|
Abstract
Recent studies have suggested a potentially important role for a family of tiny regulatory RNAs, known as microRNAs (miRNAs or miRs), in the control of diverse aspects of cardiac function in health and disease. Although the field of miRNA biology is relatively new, there is emerging evidence that miRNAs may play an important role in the pathogenesis of heart failure through their ability to regulate the expression levels of genes that govern the process of adaptive and maladaptive cardiac remodeling. Here, we review the biology of miRNAs in relation to their role in modulating various aspects of the process of cardiac remodeling, as well as discuss the potential application of miRNA biology to the field of heart failure.
Collapse
Affiliation(s)
- Vijay Divakaran
- Winters Center for Heart Failure Research, Section of Cardiology, Department of Medicine, Baylor College of Medicine, and Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, Tex., USA
| | | |
Collapse
|