1401
|
Jighly A, Joukhadar R, Sehgal D, Singh S, Ogbonnaya FC, Daetwyler HD. Population-dependent reproducible deviation from natural bread wheat genome in synthetic hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:801-812. [PMID: 31355965 DOI: 10.1111/tpj.14480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 05/15/2023]
Abstract
Sequence elimination is one of the main mechanisms that increases the divergence among homoeologous chromosomes after allopolyploidization to enhance the stability of recently established lineages, but it can cause a loss of some economically important genes. Synthetic hexaploid wheat (SHW) is an important source of genetic variation to the natural hexaploid wheat (NHW) genepool that has low genetic diversity. Here, we investigated the change between SHW and NHW genomes by utilizing a large germplasm set of primary synthetics and synthetic derivatives. Reproducible segment elimination (RSE) was declared if a large chromosomal chunk (>5 cM) produced no aligned reads in more than five SHWs. RSE in five genomic regions was the major source of variation between SHW and NHW. One RSE eliminated almost the complete short arm of chromosome 1B, which contains major genes for flour quality, disease resistance and different enzymes. The occurrence of RSE was highly dependent on the choice of diploid and tetraploid parental lines, their ancestral subpopulation and admixture, e.g. SHWs derived from Triticum dicoccon or from one of two Aegilops tauschii subpopulations were almost free of RSE, while highly admixed parents had higher RSE rates. The rate of RSE in synthetic derivatives was almost double that in primary synthetics. Genome-wide association analysis detected four loci with minor effects on the occurrence of RSE, indicating that both parental lines and genetic factors were affecting the occurrence of RSE. Therefore, pre-pre-breeding strategies should be applied before introducing SHW into pre-breeding programs to ensure genomic stability and avoid undesirable gene loss.
Collapse
Affiliation(s)
- Abdulqader Jighly
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Reem Joukhadar
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Hans D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
1402
|
Domb K, Keidar-Friedman D, Kashkush K. A novel miniature transposon-like element discovered in the coding sequence of a gene that encodes for 5-formyltetrahydrofolate in wheat. BMC PLANT BIOLOGY 2019; 19:461. [PMID: 31675912 PMCID: PMC6824096 DOI: 10.1186/s12870-019-2034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/12/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Transposable elements (TEs) comprise over 80% of the wheat genome and usually possess unique features for specific super-families and families. However, the role of TEs in wheat evolution and reshaping the wheat genome remains largely unclear. RESULTS In this study, we discovered a miniature (307 bp in length) TE-like sequence in exon 6 of a gene that encodes for 5-formyltetrahydrofolate, in two accessions of wild emmer wheat (T. turgidum ssp. dicoccoides) and has interfered with the gene translation by creating a shorter reading frame as a result of a stop codon. The sequence that was termed Mariam, does not show any structural similarity to known TEs. It does not possess terminal inverted repeats (TIRs) that would allow us to assign this element to one of the TIR DNA super-families, and it does not possess characteristic features of SINE, such as a Pol-III promotor or a poly-A tail. In-silico analysis of five publicly available genome drafts of Triticum and Aegilops species revealed that Mariam element appears in a very low copy number (1-3 insertions) in diploid wheat species and ~ 12 insertions in tetraploid and hexaploidy wheat species. In addition, Mariam element was found to be unique to wheat, as it was not found in other plant genomes. The dynamic nature of Mariam in the wheat genome was assessed by site-specific PCR analysis and revealed that it retained activity in wild emmer populations in a population-specific manner. CONCLUSIONS This study provides additional insight into the evolutionary impact of TEs in wheat.
Collapse
Affiliation(s)
- Katherine Domb
- Present Address: Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel Aviv, Israel
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, 84105, Beer-Sheva, Israel.
| |
Collapse
|
1403
|
Cseh A, Megyeri M, Yang C, Hubbart-Edwards S, Scholefield D, Ashling SS, King IP, King J, Grewal S. Development of a New A m -Genome-Specific Single Nucleotide Polymorphism Marker Set for the Molecular Characterization of Wheat-Triticum monococcum Introgression Lines. THE PLANT GENOME 2019; 12:1-7. [PMID: 33016586 DOI: 10.3835/plantgenome2018.12.0098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/24/2019] [Indexed: 06/11/2023]
Abstract
We identified 1247 polymorphic single nucleotide polymorphisms between Triticum monococcum and wheat. We identified 191 markers validated across all seven chromosomes of T. monococcum. Detected a T. monococcum introgression in leaf-rust-resistant lines. Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum, 2n = 2x = 14, Am Am ) and its wild relative T. monococcum subsp. aegilopoides are important sources of economically useful genes that can be exploited for wheat (Triticum aestivum L.) breeding. Einkorn has excellent resistance to fungal diseases and gene transfer is relatively simple via standard breeding methods. To fulfill the growing demand by modern prebreeding programs for a cost-effective high-throughput procedure for accurately detecting introgressed chromosomes or chromosome segments from T. monococcum into wheat, we used the Axiom Wheat-Relative Genotyping Array and developed a set of Am genome-specific exome-based single nucleotide polymorphism (SNP) markers suitable for rapid identification of T. monococcum chromatin in a wheat background. We identified 1247 polymorphic SNPs between T. monococcum and wheat. We identified 191 markers across all seven chromosomes of T. monococcum that are also present on an existing Triticum urartu Thum. ex Gandil. genetic map and potentially ordered them on the basis of the high macrocollinearity and conservation of marker order between T. monococcum and T. urartu. The marker set has been tested on leaf-rust-resistant BC3 F4 progenies of wheat-T. monococcum hybrids. Two markers (AX-94492165, AX-95073542) placed on the distal end of the chromosome arm 7AL detected a T. monococcum introgression into wheat. The SNP marker set thus proved highly effective in the identification of T. monococcum chromatin in a wheat background, offering a reliable method for screening and selecting wheat-T. monococcum introgression lines, a procedure that could significantly speed up prebreeding programs.
Collapse
Affiliation(s)
- Andras Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, PO Box 19, 2462, Martonvasar, Hungary
| | - Maria Megyeri
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, PO Box 19, 2462, Martonvasar, Hungary
| | - Caiyun Yang
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Stephen S Ashling
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Ian P King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
1404
|
Kumar A, Sharma M, Gahlaut V, Nagaraju M, Chaudhary S, Kumar A, Tyagi P, Gajula MP, Singh KP. Genome-wide identification, characterization, and expression profiling of SPX gene family in wheat. Int J Biol Macromol 2019; 140:17-32. [DOI: 10.1016/j.ijbiomac.2019.08.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/11/2023]
|
1405
|
Muqaddasi QH, Jayakodi M, Börner A, Röder MS. Identification of consistent QTL with large effect on anther extrusion in doubled haploid populations developed from spring wheat accessions in German Federal ex situ Genebank. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3035-3045. [PMID: 31377817 DOI: 10.1007/s00122-019-03404-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Novel large-effect consistent QTL for anther extrusion (AE) to improve cross-pollination were mapped in doubled haploid populations derived from IPK gene bank spring wheat accessions. TaAP2-D, an ortholog of Cleistogamy1 in barley, is a likely candidate gene for AE in wheat. To establish a robust hybrid wheat breeding system, male lines harboring alleles that promote outcrossing should be developed. In this study, we developed two doubled haploid (DH) populations of hexaploid spring wheat (Triticum aestivum L.) by crossing accessions taken from IPK gene bank. In both populations, the phenotypic data of anther extrusion (AE) based on three years of field trials showed a wide variation and approximated a normal distribution. Both populations were genotyped with a 15 k Infinium single nucleotide polymorphism (SNP) array resulting in 3567 and 3457 polymorphic SNP markers for DH population-1 and DH population-2, respectively. Composite interval mapping identified quantitative trait loci (QTL) on chromosomes 1D, 2D, 4A, 4B, 5A, 5D, 6A, and 6B; with consistent QTL (that are identified in all the years) on chromosome 4A in DH population-1, and on chromosomes 2D and 6B in DH population-2. The consistent QTL explained 17.2%, 32.9%, and 12.3% of the phenotypic variances, respectively. Genic scan of the chromosome 2D-QTL showed that the wheat gene TaAP2-D, an ortholog of Cleistogamy1 which promotes AE via swelling of the lodicules in barley, lies within the QTL region. A diagnostic marker was developed for TaAP2-D that showed co-segregation with the AE phenotype. This study shows the use of gene bank diversity reservoir to find alleles which are otherwise difficult to detect in elite populations. The identification of large-effect consistent QTL for AE is expected to help form efficient male parental lines suitable for hybrid wheat seed production and serve as a source for map-based cloning.
Collapse
Affiliation(s)
- Quddoos H Muqaddasi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466, Stadt Seeland, OT Gatersleben, Germany.
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| | - Marion S Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| |
Collapse
|
1406
|
Scott MF, Botigué LR, Brace S, Stevens CJ, Mullin VE, Stevenson A, Thomas MG, Fuller DQ, Mott R. A 3,000-year-old Egyptian emmer wheat genome reveals dispersal and domestication history. NATURE PLANTS 2019; 5:1120-1128. [PMID: 31685951 PMCID: PMC6858886 DOI: 10.1038/s41477-019-0534-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/22/2019] [Indexed: 05/05/2023]
Abstract
Tetraploid emmer wheat (Triticum turgidum ssp. dicoccon) is a progenitor of the world's most widely grown crop, hexaploid bread wheat (Triticum aestivum), as well as the direct ancestor of tetraploid durum wheat (T. turgidum subsp. turgidum). Emmer was one of the first cereals to be domesticated in the old world; it was cultivated from around 9700 BC in the Levant1,2 and subsequently in south-western Asia, northern Africa and Europe with the spread of Neolithic agriculture3,4. Here, we report a whole-genome sequence from a museum specimen of Egyptian emmer wheat chaff, 14C dated to the New Kingdom, 1130-1000 BC. Its genome shares haplotypes with modern domesticated emmer at loci that are associated with shattering, seed size and germination, as well as within other putative domestication loci, suggesting that these traits share a common origin before the introduction of emmer to Egypt. Its genome is otherwise unusual, carrying haplotypes that are absent from modern emmer. Genetic similarity with modern Arabian and Indian emmer landraces connects ancient Egyptian emmer with early south-eastern dispersals, whereas inferred gene flow with wild emmer from the Southern Levant signals a later connection. Our results show the importance of museum collections as sources of genetic data to uncover the history and diversity of ancient cereals.
Collapse
Affiliation(s)
- Michael F Scott
- Genetics Institute, Research Department of Genetics, Evolution and Environment, University College London, London, UK.
| | - Laura R Botigué
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Chris J Stevens
- Institute of Archaeology, University College London, London, UK
| | | | - Alice Stevenson
- Institute of Archaeology, University College London, London, UK
| | - Mark G Thomas
- Genetics Institute, Research Department of Genetics, Evolution and Environment, University College London, London, UK
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Dorian Q Fuller
- Institute of Archaeology, University College London, London, UK
| | - Richard Mott
- Genetics Institute, Research Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
1407
|
Xu D, Wen W, Fu L, Li F, Li J, Xie L, Xia X, Ni Z, He Z, Cao S. Genetic dissection of a major QTL for kernel weight spanning the Rht-B1 locus in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3191-3200. [PMID: 31515582 DOI: 10.1007/s00122-019-03418-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/28/2019] [Accepted: 08/27/2019] [Indexed: 05/18/2023]
Abstract
Genetic dissection uncovered a major QTL QTKW.caas-4BS corresponding with a 483 kb deletion that included genes ZnF, EamA and Rht-B1. This deletion was associated with increased grain weight and semi-dwarf phenotype. Previous studies identified quantitative trait loci (QTL) for thousand kernel weight (TKW) in the region spanning the Rht-B1 locus in wheat (Triticum aestivum L.). We recently mapped a major QTL QTKW.caas-4BS for TKW spanning the Rht-B1 locus in a recombinant inbred line (RIL) population derived from Doumai/Shi 4185 using the wheat 90K array. The allele from Doumai at QTKW.caas-4BS significantly increased TKW and kernel number per spike, and conferred semi-dwarf trait, which was beneficial to improve grain yield without a penalty to lodging. To further dissect QTKW.caas-4BS, we firstly re-investigated the genotypes and phenotypes of the RILs and confirmed the QTL using cleaved amplified polymorphic sequence (CAPS) markers developed from flanking SNP markers IWA102 and IWB54814. The target sequences of the CAPS markers were used as queries to BLAST the wheat reference genome RefSeq v1.0 and hit an approximate 10.4 Mb genomic region. Based on genomic mining and SNP loci from the wheat 660K SNP array in the above genomic region, we developed eight new markers and narrowed QTKW.caas-4BS to a genetic interval of 1.5 cM. A 483 kb deletion in Doumai corresponded with QTKW.caas-4BS genetically, including three genes ZnF, EamA and Rht-B1. The other 15 genes with either differential expressions and/or sequence variations between parents were also potential candidate genes for QTKW.caas-4BS. The findings not only provide a toolkit for marker-assisted selection of QTKW.caas-4BS but also defined candidate genes for further functional analysis.
Collapse
Affiliation(s)
- Dengan Xu
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- Department of Plant Genetics & Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100094, China
| | - Weie Wen
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Luping Fu
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Faji Li
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jihu Li
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Li Xie
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhongfu Ni
- Department of Plant Genetics & Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100094, China
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Shuanghe Cao
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
1408
|
Ma J, Ding P, Liu J, Li T, Zou Y, Habib A, Mu Y, Tang H, Jiang Q, Liu Y, Chen G, Wang J, Deng M, Qi P, Li W, Pu Z, Zheng Y, Wei Y, Lan X. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3155-3167. [PMID: 31435704 DOI: 10.1007/s00122-019-03415-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/14/2019] [Indexed: 05/19/2023]
Abstract
A major and stably expressed QTL for spikelet number per spike identified in a 2-cM interval on chromosome arm 2DS was validated using two populations with different genetic backgrounds. Spikelet number per spike (SNS) plays a key role in wheat yield improvement. Numerous genetic and environmental factors influencing SNS have been documented, but the number of major, stably expressed and validated loci underlying SNS is still limited. In this study, a recombinant inbred line (RIL) population derived from a normal spikelet cultivar and a multiple-spikelet wheat line (with a longer spike with more canonically oriented apical spikelets) was genotyped using a Wheat55K single-nucleotide polymorphism (SNP) array and simple sequence repeat (SSR) markers. SNS was measured for this RIL population in eight environments. Five QTL were each identified in two or more environments. One of them, QSns.sau-2D (LOD = 3.47-38.24, PVE = 10.16-45.68%), was detected in all the eight environments. The QTL was located in a 2-cM interval on chromosome arm 2DS flanked by the markers AX-109836946 and AX-111956072. This QTL, QSns.sau-2D, significantly increased SNS by up to 14.72%. Several genes associated with plant growth and development were identified in the physical interval of QSns.sau-2D. This QTL was further validated by the tightly linked Kompetitive Allele Specific PCR (KASP) marker, KASP-AX-94721936, in two other populations with different genetic backgrounds. The significant correlation between SNS and anthesis date, plant height, spike length, grain number per spike and thousand-grain weight were detected and discussed. These results lay the foundation for fine mapping and cloning gene(s) underlying QSns.sau-2D.
Collapse
Affiliation(s)
- Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Puyang Ding
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiajun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaya Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
1409
|
Zhu Y, Wang S, Wei W, Xie H, Liu K, Zhang C, Wu Z, Jiang H, Cao J, Zhao L, Lu J, Zhang H, Chang C, Xia X, Xiao S, Ma C. Genome-wide association study of pre-harvest sprouting tolerance using a 90K SNP array in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2947-2963. [PMID: 31324930 DOI: 10.1007/s00122-019-03398-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 05/06/2023]
Abstract
Three major loci for pre-harvest sprouting tolerance (PHST) were mapped on chromosomes 1AL, 3BS, and 6BL, and two CAPS and one dCAPS markers were validated. Sixteen lines with favorable alleles and increased PHST were identified. Pre-harvest sprouting (PHS) significantly affects wheat grain yield and quality. In the present study, the PHS tolerance (PHST) of 192 wheat varieties (lines) was evaluated by assessment of field sprouting, seed germination index, and period of dormancy in different environments. A high-density Illumina iSelect 90K SNP array was used to genotype the panel. A genome-wide association study (GWAS) based on single- and multi-locus mixed linear models was used to detect loci for PHST. The single-locus model identified 23 loci for PHST (P < 0.0001) and explained 6.0-18.9% of the phenotypic variance. Twenty loci were consistent with known quantitative trait loci (QTLs). Three single-nucleotide polymorphism markers closely linked with three major loci (Qphs.ahau-1A, Qphs.ahau-3B, and Qphs.ahau-6B) on chromosomes 1AL, 3BS, and 6BL, respectively, were converted to two cleaved amplified polymorphic sequences (CAPS) and one derived-CAPS markers, and validated in 374 wheat varieties (lines). The CAPS marker EX06323 for Qphs.ahau-6B co-segregated with a novel major QTL underlying PHST in a recombinant inbred line population raised from the cross Jing 411 × Wanxianbaimaizi. Linear regression showed a clear dependence of PHST on the number of favorable alleles. Sixteen varieties showing an elevated degree of PHST were identified and harbored more than 16 favorable alleles. The multi-locus model detected 39 marker-trait associations for PHST (P < 0.0001), of which five may be novel. Six loci common to the two models were identified. The combination of the two GWAS methods contributes to efficient dissection of the complex genetic mechanism of PHST.
Collapse
Affiliation(s)
- Yulei Zhu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Shengxing Wang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Wenxin Wei
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Hongyong Xie
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Kai Liu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Can Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Zengyun Wu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Hao Jiang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Liangxia Zhao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China.
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China.
| | - Xianchun Xia
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shihe Xiao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| |
Collapse
|
1410
|
Li T, Sun Y, Liu T, Wu H, An P, Shui Z, Wang J, Zhu Y, Li C, Wang Y, Jetter R, Wang Z. TaCER1-1A is involved in cuticular wax alkane biosynthesis in hexaploid wheat and responds to plant abiotic stresses. PLANT, CELL & ENVIRONMENT 2019; 42:3077-3091. [PMID: 31306498 DOI: 10.1111/pce.13614] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/17/2019] [Accepted: 07/11/2019] [Indexed: 05/19/2023]
Abstract
To protect above-ground plant organs from excessive water loss, their surfaces are coated by waxes. The genes involved in wax formation have been investigated in detail in Arabidopsis but scarcely in crop species. Here, we aimed to isolate and characterize a CER1 enzyme responsible for formation of the very long-chain alkanes present in high concentrations especially during late stages of wheat development. On the basis of comparative wax and transcriptome analyses of various wheat organs, we selected TaCER1-1A as a primary candidate and demonstrated that it was located to the endoplasmic reticulum, the subcellular compartment for wax biosynthesis. A wheat nullisomic-tetrasomic substitution line lacking TaCER1-1A had significantly reduced amounts of C33 alkane, whereas rice plants overexpressing TaCER1-1A showed substantial increases of C25 -C33 alkanes relative to wild type control. Similarly, heterologous expression of TaCER1-1A in Arabidopsis wild type and the cer1 mutant resulted in increased levels of unbranched alkanes, iso-branched alkanes and alkenes. Finally, the expression of TaCER1-1A was found activated by abiotic stresses and abscisic acid treatment, resulting in increased production of alkanes in wheat. Taken together, our results demonstrate that TaCER1-1A plays an important role in wheat wax alkane biosynthesis and involved in responding to drought and other environmental stresses.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Hongqi Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Peipei An
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Zhijie Shui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Jiahuan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yidan Zhu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
1411
|
Dabab Nahas L, Al-Husein N, Lababidi G, Hamwieh A. In-silico prediction of novel genes responsive to drought and salinity stress tolerance in bread wheat (Triticum aestivum). PLoS One 2019; 14:e0223962. [PMID: 31671113 PMCID: PMC6822720 DOI: 10.1371/journal.pone.0223962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/02/2019] [Indexed: 11/19/2022] Open
Abstract
Common wheat (Triticum aestivum) is the most widely grown cereal crop and is cultivated extensively in dry regions. Water shortage, resulting from either drought or salinity, leads to slow growth and loss of wheat yield. In order to predict new genes responsive to the drought and salt stresses in wheat, 6,717 expressed sequence tags (ESTs), expressed in drought and salinity stress conditions were collected from the National Center for Biotechnology Information (NCBI). The downloaded ESTs were clustered and assembled into 354 contigs; 14 transcription factor families in 29 contigs were identified. In addition, 119 contigs were organized in five enzyme classes. Biological functions were obtained for only 324 of the 354 contigs using gene ontology. In addition, using Kyoto Encyclopedia of Genes and Genomes database, 191 metabolic pathways were identified. The remaining contigs were used for further analysis and the search for new genes responsive to drought and salt stresses. These contigs were mapped on the International Wheat Genome Sequencing Consortium RefSeq v1.0 assembly, the most complete version of the reference sequence of the bread wheat variety Chinese Spring. They were found to have from one to three locations on the subgenomes A, B, and D. Full-length gene sequences were designed for these contigs, which were further validated using promoter analysis. These predicted genes may have applications in molecular breeding programs and wheat drought and salinity research.
Collapse
Affiliation(s)
- Laila Dabab Nahas
- Biotechnology Engineering Dept/Technological Engineering Faculty/University of Aleppo, Aleppo, Syria
- General Commission for Scientific Agricultural Research (GCSAR)/Ministry of Agriculture, Aleppo, Syria
| | - Naim Al-Husein
- General Commission for Scientific Agricultural Research (GCSAR)/Ministry of Agriculture, Aleppo, Syria
| | - Ghinwa Lababidi
- Biotechnology Engineering Dept/Technological Engineering Faculty/University of Aleppo, Aleppo, Syria
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Cairo, Egypt
- * E-mail:
| |
Collapse
|
1412
|
Rubio MB, Martínez de Alba AE, Nicolás C, Monte E, Hermosa R. Early Root Transcriptomic Changes in Wheat Seedlings Colonized by Trichoderma harzianum Under Different Inorganic Nitrogen Supplies. Front Microbiol 2019; 10:2444. [PMID: 31749777 PMCID: PMC6842963 DOI: 10.3389/fmicb.2019.02444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/10/2019] [Indexed: 12/02/2022] Open
Abstract
Wheat is one of the most important crops worldwide. The use of plant growth promoting microorganisms, such as those of the genus Trichoderma, constitutes an alternative to chemical fertilizers, since they are cheaper and are not detrimental to the environment. However, the interaction between Trichoderma and wheat plants has been scarcely studied, at least at a molecular level. In the present work, a microarray approach was used to study the early transcriptomic changes induced in wheat roots by Trichoderma harzianum, applied alone or in combination with different concentrations of calcium nitrate [Ca(NO3)2], which was last used as nitrogen (N) source. Our results show that T. harzianum causes larger transcriptomic changes than Ca(NO3)2 in wheat roots, and such changes are different when plants are challenged with Trichoderma alone or treated with a combination of T. harzianum and Ca(NO3)2. Overall, T. harzianum activates the expression of defense-related genes at early stages of the interaction with the roots, while this fungus reduces the expression of genes related to plant growth and development. Moreover, the current study in wheat roots, subjected to the different T. harzianum and Ca(NO3)2 combinations, reveals that the number of transcriptomic changes was higher when compared against those caused by the different Ca(NO3)2 concentrations than when it was compared against those caused by T. harzianum. N metabolism gene expression changes were in agreement with the levels of nitrate reductase activity measured in plants from Trichoderma plus Ca(NO3)2 conditions. Results were also concordant with plant phenotypes, which showed reduced growth at early interaction stages when inoculated with T. harzianum or with its combination with Ca(NO3)2 at the lowest dosage. These results were in a good agreement with the recognized role of Trichoderma as an inducer of plant defense.
Collapse
Affiliation(s)
- M Belén Rubio
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - A Emilio Martínez de Alba
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Carlos Nicolás
- Department of Botany and Plant Pathology, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
1413
|
Sievers S, Rohrbach A, Beyer K. Wheat-induced food allergy in childhood: ancient grains seem no way out. Eur J Nutr 2019; 59:2693-2707. [DOI: 10.1007/s00394-019-02116-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022]
|
1414
|
Nemacheck JA, Schemerhorn BJ, Scofield SR, Subramanyam S. Phenotypic and molecular characterization of Hessian fly resistance in diploid wheat, Aegilops tauschii. BMC PLANT BIOLOGY 2019; 19:439. [PMID: 31640550 PMCID: PMC6805508 DOI: 10.1186/s12870-019-2058-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The Hessian fly (Mayetiola destructor), belonging to the gall midge family (Cecidomyiidae), is a devastating pest of wheat (Triticum aestivum) causing significant yield losses. Despite identification and characterization of numerous Hessian fly-responsive genes and associated biological pathways involved in wheat defense against this dipteran pest, their functional validation has been challenging. This is largely attributed to the large genome, polyploidy, repetitive DNA, and limited genetic resources in hexaploid wheat. The diploid progenitor Aegilops tauschii, D-genome donor of modern-day hexaploid wheat, offers an ideal surrogate eliminating the need to target all three homeologous chromosomes (A, B and D) individually, and thereby making the functional validation of candidate Hessian fly-responsive genes plausible. Furthermore, the well-annotated sequence of Ae. tauschii genome and availability of genetic resources amenable to manipulations makes the functional assays less tedious and time-consuming. However, prior to utilization of this diploid genome for downstream studies, it is imperative to characterize its physical and molecular responses to Hessian fly. RESULTS In this study we screened five Ae. tauschii accessions for their response to the Hessian fly biotypes L and vH13. Two lines were identified that exhibited a homozygous resistance response to feeding by both Hessian fly biotypes. Studies using physical measurements and neutral red staining showed that the resistant Ae. tauschii accessions resembled hexaploid wheat in their phenotypic responses to Hessian fly, that included similarities in larval developmental stages, leaf and plant growth, and cell wall permeability. Furthermore, molecular responses, characterized by gene expression profiling using quantitative real-time PCR, in select resistant Ae. tauschii lines also revealed similarities with resistant hexaploid wheat. CONCLUSIONS Phenotypic and molecular characterization of Ae. tauschii to Hessian fly infestation revealed resistant accessions that shared similarities to hexaploid wheat. Resembling the resistant hexaploid wheat, the Ae. tauschii accessions mount an early defense strategy involving defense proteins including lectins, secondary metabolites and reactive oxygen species (ROS) radicals. Our results reveal the suitability of the diploid progenitor for use as an ideal tool for functional genomics research in deciphering the wheat-Hessian fly molecular interactions.
Collapse
Affiliation(s)
- Jill A Nemacheck
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Brandon J Schemerhorn
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Steven R Scofield
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Subhashree Subramanyam
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA.
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
1415
|
Characterization of genetic diversity and population structure in wheat using array based SNP markers. Mol Biol Rep 2019; 47:293-306. [PMID: 31630318 DOI: 10.1007/s11033-019-05132-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/09/2019] [Indexed: 01/09/2023]
Abstract
Genetic diversity is crucial for successful adaptation and sustained improvement in crops. India is bestowed with diverse agro-climatic conditions which makes it rich in wheat germplasm adapted to various niches. Germplasm repository consists of local landraces, trait specific genetic stocks including introgressions from wild relatives, exotic collections, released varieties, and improved germplasm. Characterization of genetic diversity is done using morpho-physiological characters as well as by analyzing variations at DNA level. However, there are not many reports on array based high throughput SNP markers having characteristics of genome wide coverage employed in Indian spring wheat germplasm. Amongst wheat SNP arrays, 35K Axiom Wheat Breeder's Array has the highest SNP polymorphism efficiency suitable for genetic mapping and genetic diversity characterization. Therefore, genotyping was done using 35K in 483 wheat genotypes resulting in 14,650 quality filtered SNPs, that were distributed across the B (~ 50%), A (~ 39%), and D (~ 10%) genomes. The total genetic distance coverage was 4477.85 cM with 3.27 SNP/cM and 0.49 cM/SNP as average marker density and average inter-marker distance, respectively. The PIC ranged from 0.09 to 0.38 with an average of 0.29 across genomes. Population structure and Principal Coordinate Analysis resulted in two subpopulations (SP1 and SP2). The analysis of molecular variance revealed the genetic variation of 2% among and 98% within subpopulations indicating high gene flow between SP1 and SP2. The subpopulation SP2 showed high level of genetic diversity based on genetic diversity indices viz. Shannon's information index (I) = 0.648, expected heterozygosity (He) = 0.456 and unbiased expected heterozygosity (uHe) = 0.456. To the best of our knowledge, this study is the first to include the largest set of Indian wheat genotypes studied exclusively for genetic diversity. These findings may serve as a potential source for the identification of uncharacterized QTL/gene using genome wide association studies and marker assisted selection in wheat breeding programs.
Collapse
|
1416
|
Alabdullah AK, Borrill P, Martin AC, Ramirez-Gonzalez RH, Hassani-Pak K, Uauy C, Shaw P, Moore G. A Co-Expression Network in Hexaploid Wheat Reveals Mostly Balanced Expression and Lack of Significant Gene Loss of Homeologous Meiotic Genes Upon Polyploidization. FRONTIERS IN PLANT SCIENCE 2019; 10:1325. [PMID: 31681395 PMCID: PMC6813927 DOI: 10.3389/fpls.2019.01325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/24/2019] [Indexed: 05/05/2023]
Abstract
Polyploidization has played an important role in plant evolution. However, upon polyploidization, the process of meiosis must adapt to ensure the proper segregation of increased numbers of chromosomes to produce balanced gametes. It has been suggested that meiotic gene (MG) duplicates return to a single copy following whole genome duplication to stabilize the polyploid genome. Therefore, upon the polyploidization of wheat, a hexaploid species with three related (homeologous) genomes, the stabilization process may have involved rapid changes in content and expression of MGs on homeologous chromosomes (homeologs). To examine this hypothesis, sets of candidate MGs were identified in wheat using co-expression network analysis and orthology informed approaches. In total, 130 RNA-Seq samples from a range of tissues including wheat meiotic anthers were used to define co-expressed modules of genes. Three modules were significantly correlated with meiotic tissue samples but not with other tissue types. These modules were enriched for GO terms related to cell cycle, DNA replication, and chromatin modification and contained orthologs of known MGs. Overall, 74.4% of genes within these meiosis-related modules had three homeologous copies which was similar to other tissue-related modules. Amongst wheat MGs identified by orthology, rather than co-expression, the majority (93.7%) were either retained in hexaploid wheat at the same number of copies (78.4%) or increased in copy number (15.3%) compared to ancestral wheat species. Furthermore, genes within meiosis-related modules showed more balanced expression levels between homeologs than genes in non-meiosis-related modules. Taken together, our results do not support extensive gene loss nor changes in homeolog expression of MGs upon wheat polyploidization. The construction of the MG co-expression network allowed identification of hub genes and provided key targets for future studies.
Collapse
Affiliation(s)
| | - Philippa Borrill
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | - Keywan Hassani-Pak
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Peter Shaw
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
1417
|
Ma J, Zhang H, Li S, Zou Y, Li T, Liu J, Ding P, Mu Y, Tang H, Deng M, Liu Y, Jiang Q, Chen G, Kang H, Li W, Pu Z, Wei Y, Zheng Y, Lan X. Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC Genet 2019; 20:77. [PMID: 31619163 PMCID: PMC6796374 DOI: 10.1186/s12863-019-0782-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 12/01/2022] Open
Abstract
Background Kernel length (KL), kernel width (KW) and thousand-kernel weight (TKW) are key agronomic traits in wheat breeding. Chuannong16 (‘CN16’) is a commercial cultivar with significantly longer kernels than the line ‘20828’. To identify and characterize potential alleles from CN16 controlling KL, the previously developed recombinant inbred line (RIL) population derived from the cross ‘20828’ × ‘CN16’ and the genetic map constructed by the Wheat55K SNP array and SSR markers were used to perform quantitative trait locus/loci (QTL) analyses for kernel traits. Results A total of 11 putative QTL associated with kernel traits were identified and they were located on chromosomes 1A (2 QTL), 2B (2 QTL), 2D (3 QTL), 3D, 4A, 6A, and 7A, respectively. Among them, three major QTL, QKL.sicau-2D, QKW.sicau-2D and QTKW.sicau-2D, controlling KL, KW and TKW, respectively, were detected in three different environments. Respectively, they explained 10.88–18.85%, 17.21–21.49% and 10.01–23.20% of the phenotypic variance. Further, they were genetically mapped in the same interval on chromosome 2DS. A previously developed kompetitive allele-specific PCR (KASP) marker KASP-AX-94721936 was integrated in the genetic map and QTL re-mapping finally located the three major QTL in a 1- cM region flanked by AX-111096297 and KASP-AX-94721936. Another two co-located QTL intervals for KL and TKW were also identified. A few predicted genes involved in regulation of kernel growth and development were identified in the intervals of these identified QTL. Significant relationships between kernel traits and spikelet number per spike and anthesis date were detected and discussed. Conclusions Three major and stably expressed QTL associated with KL, KW, and TKW were identified. A KASP marker tightly linked to these three major QTL was integrated. These findings provide information for subsequent fine mapping and cloning the three co-localized major QTL for kernel traits.
Collapse
Affiliation(s)
- Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Han Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuiqin Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaya Zou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiajun Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Puyang Ding
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Mu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaping Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
1418
|
Tanner G, Juhász A, Florides CG, Nye-Wood M, Békés F, Colgrave ML, Russell AK, Hardy MY, Tye-Din JA. Preparation and Characterization of Avenin-Enriched Oat Protein by Chill Precipitation for Feeding Trials in Celiac Disease. Front Nutr 2019; 6:162. [PMID: 31681788 PMCID: PMC6803533 DOI: 10.3389/fnut.2019.00162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
The safety of oats for people with celiac disease remains unresolved. While oats have attractive nutritional properties that can improve the quality and palatability of the restrictive, low fiber gluten-free diet, rigorous feeding studies to address their safety in celiac disease are needed. Assessing the oat prolamin proteins (avenins) in isolation and controlling for gluten contamination and other oat components such as fiber that can cause non-specific effects and symptoms is crucial. Further, the avenin should contain all reported immunogenic T cell epitopes, and be deliverable at a dose that enables biological responses to be correlated with clinical effects. To date, isolation of a purified food-grade avenin in sufficient quantities for feeding studies has not been feasible. Here, we report a new gluten isolation technique that enabled 2 kg of avenin to be extracted from 400 kg of wheat-free oats under rigorous gluten-free and food grade conditions. The extract consisted of 85% protein of which 96% of the protein was avenin. The concentration of starch (1.8% dry weight), β-glucan (0.2% dry weight), and free sugars (1.8% dry weight) were all low in the final avenin preparation. Other sugars including oligosaccharides, small fructans, and other complex sugars were also low at 2.8% dry weight. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the proteins in these preparations showed they consisted only of oat proteins and were uncontaminated by gluten containing cereals including wheat, barley or rye. Proteomic analysis of the avenin enriched samples detected more avenin subtypes and fewer other proteins compared to samples obtained using other extraction procedures. The identified proteins represented five main groups, four containing known immune-stimulatory avenin peptides. All five groups were identified in the 50% (v/v) ethanol extract however the group harboring the epitope DQ2.5-ave-1b was less represented. The avenin-enriched protein fractions were quantitatively collected by reversed phase HPLC and analyzed by MALDI-TOF mass spectrometry. Three reverse phase HPLC peaks, representing ~40% of the protein content, were enriched in proteins containing DQ2.5-ave-1a epitope. The resultant high quality avenin will facilitate controlled and definitive feeding studies to establish the safety of oat consumption by people with celiac disease.
Collapse
Affiliation(s)
- Greg Tanner
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Angéla Juhász
- School of Science, Edith Cowan University, Joondalup, WA, Australia
| | | | | | | | | | - Amy K. Russell
- Immunology Division, The Walter and Eliza Hall Institute, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Melinda Y. Hardy
- Immunology Division, The Walter and Eliza Hall Institute, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jason A. Tye-Din
- Immunology Division, The Walter and Eliza Hall Institute, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
1419
|
Zhao Y, Ma R, Xu D, Bi H, Xia Z, Peng H. Genome-Wide Identification and Analysis of the AP2 Transcription Factor Gene Family in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1286. [PMID: 31681381 PMCID: PMC6797823 DOI: 10.3389/fpls.2019.01286] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/13/2019] [Indexed: 05/23/2023]
Abstract
The AP2 transcription factors play important roles in regulating plant growth and development. However, limited data are available on the contributions of AP2 transcription factors in wheat (Triticum aestivum L.). In the present study, a total of 62 AP2 genes were identified in wheat from a genome-wide search against the latest wheat genome data. Phylogenetic and sequence alignment analyses divided the wheat AP2 genes into 3 clusters, euAP2, euANT, and basalANT. Chromosomal distribution, gene structure and duplication, and motif composition were subsequently investigated. The 62 TaAP2 genes were unevenly distributed on 21 chromosomes. Twenty-four homologous gene sets among A, B, and D sub-genomes were detected, which contributed to the expansion of the wheat AP2 gene family. The expression levels of TaAP2 genes were examined using the WheatExp database; most detected genes exhibited tissue-specific expression patterns. The transcript levels of 9 randomly selected TaAP2 genes were validated through qPCR analyses. Overexpression of TaAP2-10-5D, the most likely homolog of Arabidopsis ANT gene, increased organ sizes in Arabidopsis. Our results extend our knowledge of the AP2 gene family in wheat, and contribute to further functional characterization of AP2s during wheat development with the ultimate goal of improving crop production.
Collapse
Affiliation(s)
- Yue Zhao
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Renyi Ma
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Dongliang Xu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Huihui Bi
- College of Agronomy/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
1420
|
Fruzangohar M, Kalashyan E, Kalambettu P, Ens J, Wiebe K, Pozniak CJ, Tricker PJ, Baumann U. Novel Informatic Tools to Support Functional Annotation of the Durum Wheat Genome. FRONTIERS IN PLANT SCIENCE 2019; 10:1244. [PMID: 31649706 PMCID: PMC6795695 DOI: 10.3389/fpls.2019.01244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Seed mutagenesis is one strategy to create a population with thousands of useful mutations for the direct selection of desirable traits, to introduce diversity into varietal improvement programs, or to generate a mutant collection to support gene functional analysis. However, phenotyping such large collections, where each individual may carry many mutations, is a bottleneck for downstream analysis. Targeting Induced Local Lesions in Genomes (TILLinG), when coupled with next-generation sequencing allows high-throughput mutation discovery and selection by genotyping. We mutagenized an advanced durum breeding line, UAD0951096_F2:5 and performed short-read (2x125 bp) Illumina sequencing of the exome of 100 lines using an available exome capture platform. To improve variant calling, we generated a consolidated exome reference using the recently available genome sequences of the cultivars Svevo and Kronos to facilitate the alignment of reads from the UAD0951096_F2:5 derived mutants. The resulting exome reference was 484.4 Mbp. We also developed a user-friendly, searchable database and bioinformatic analysis pipeline that allowed us to predict zygosity of the mutations discovered and extracts flanking sequences for rapid marker development. Here, we present these tools with the aim of allowing researchers fast and accurate downstream selection of mutations discovered by TILLinG by sequencing to support functional annotation of the durum wheat genome.
Collapse
Affiliation(s)
- Mario Fruzangohar
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Elena Kalashyan
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Priyanka Kalambettu
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Jennifer Ens
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Krysta Wiebe
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Curtis J. Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Penny J. Tricker
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
1421
|
Su Y, Liu J, Liang W, Dou Y, Fu R, Li W, Feng C, Gao C, Zhang D, Kang Z, Li H. Wheat AGAMOUS LIKE 6 transcription factors function in stamen development by regulating the expression of Ta APETALA3. Development 2019; 146:dev.177527. [PMID: 31540915 DOI: 10.1242/dev.177527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/11/2019] [Indexed: 11/20/2022]
Abstract
Previous studies have revealed the functions of rice and maize AGAMOUS LIKE 6 (AGL6) genes OsMADS6 and ZAG3, respectively, in floral development; however, the functions of three wheat (Triticum aestivum) AGL6 genes are still unclear. Here, we report the main functions of wheat AGL6 homoeologous genes in stamen development. In RNAi plants, stamens showed abnormality in number and morphology, and a tendency to transform into carpels. Consistently, the expression of the B-class gene TaAPETALA3 (AP3) and the auxin-responsive gene TaMGH3 was downregulated, whereas the wheat ortholog of the rice carpel identity gene DROOPING LEAF was ectopically expressed in RNAi stamens. TaAGL6 proteins bind to the promoter of TaAP3 directly. Yeast one-hybrid and transient expression assays further showed that TaAGL6 positively regulates the expression of TaAP3 in vivo. Wheat AGL6 transcription factors interact with TaAP3, TaAGAMOUS and TaMADS13. Our findings indicate that TaAGL6 transcription factors play an essential role in stamen development through transcriptional regulation of TaAP3 and other related genes. We propose a model to illustrate the function and probable mechanism of this regulation. This study extends our understanding of AGL6 genes.
Collapse
Affiliation(s)
- Yali Su
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Jinxing Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanqi Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanhua Dou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Ruifeng Fu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Cuizhu Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Caixia Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
1422
|
Li T, Ma J, Zou Y, Chen G, Ding P, Zhang H, Yang C, Mu Y, Tang H, Liu Y, Jiang Q, Chen G, Qi P, Wei Y, Zheng Y, Lan X. Quantitative trait loci for seeding root traits and the relationships between root and agronomic traits in common wheat. Genome 2019; 63:27-36. [PMID: 31580743 DOI: 10.1139/gen-2019-0116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A completely developed and vigorous root system can provide a stable platform for aboveground plant organs. To identify loci controlling root traits that could be used in wheat (Triticum aestivum L.) breeding, 199 recombinant inbred lines were used to measure and analyze eight root traits. A total of 18 quantitative trait loci (QTL) located on chromosomes 1A, 2A, 2B, 2D, 4B, 4D, 6A, 7A, and 7B were identified. The phenotypic variation explained by these 18 QTL ranged from 3.27% to 11.75%, and the logarithm of odds scores ranged from 2.50 to 6.58. A comparison of physical intervals indicated several new QTL for root traits were identified. In addition, significant correlations between root and agronomic traits were detected and discussed. The results presented in this study, along with those of previous reports, suggest that chromosomes 2 and 7 likely play important roles in the growth and development of wheat roots.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yaya Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Puyang Ding
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Han Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Congcong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| |
Collapse
|
1423
|
Touzy G, Rincent R, Bogard M, Lafarge S, Dubreuil P, Mini A, Deswarte JC, Beauchêne K, Le Gouis J, Praud S. Using environmental clustering to identify specific drought tolerance QTLs in bread wheat (T. aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2859-2880. [PMID: 31324929 DOI: 10.1007/s00122-019-03393-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 07/06/2019] [Indexed: 05/03/2023]
Abstract
Environmental clustering helps to identify QTLs associated with grain yield in different water stress scenarios. These QTLs could be useful for breeders to improve grain yields and increase genetic resilience in marginal environments. Drought is one of the main abiotic stresses limiting winter bread wheat growth and productivity around the world. The acquisition of new high-yielding and stress-tolerant varieties is therefore necessary and requires improved understanding of the physiological and genetic bases of drought resistance. A panel of 210 elite European varieties was evaluated in 35 field trials. Grain yield and its components were scored in each trial. A crop model was then run with detailed climatic data and soil water status to assess the dynamics of water stress in each environment. Varieties were registered from 1992 to 2011, allowing us to test timewise genetic progress. Finally, a genome-wide association study (GWAS) was carried out using genotyping data from a 280 K SNP chip. The crop model simulation allowed us to group the environments into four water stress scenarios: an optimal condition with no water stress, a post-anthesis water stress, a moderate-anthesis water stress and a high pre-anthesis water stress. Compared to the optimal water condition, grain yield losses in the stressed conditions were 3.3%, 12.4% and 31.2%, respectively. This environmental clustering improved understanding of the effect of drought on grain yields and explained 20% of the G × E interaction. The greatest genetic progress was obtained in the optimal condition, mostly represented in France. The GWAS identified several QTLs, some of which were specific of the different water stress patterns. Our results make breeding for improved drought resistance to specific environmental scenarios easier and will facilitate genetic progress in future environments, i.e., water stress environments.
Collapse
Affiliation(s)
- Gaëtan Touzy
- Arvalis-Institut du végétal, Biopôle Clermont Limagne, 63360, Saint-Beauzire, France
- Centre de recherche de Chappes, Biogemma, Route d'Ennezat CS90216, 63720, Chappes, France
| | - Renaud Rincent
- INRA, UCA UMR 1095, Génétique, Diversité et Ecophysiologie des Céréales, 24 Avenue des Landais, 63177, Aubière Cedex, France
| | - Matthieu Bogard
- Arvalis-Institut du végétal, 6 Chemin de la côte vieille, 31450, Baziège, France
| | - Stephane Lafarge
- Centre de recherche de Chappes, Biogemma, Route d'Ennezat CS90216, 63720, Chappes, France
| | - Pierre Dubreuil
- Centre de recherche de Chappes, Biogemma, Route d'Ennezat CS90216, 63720, Chappes, France
| | - Agathe Mini
- INRA, UCA UMR 1095, Génétique, Diversité et Ecophysiologie des Céréales, 24 Avenue des Landais, 63177, Aubière Cedex, France
| | - Jean-Charles Deswarte
- Arvalis-Institut du végétal, Route de Châteaufort, ZA des graviers, 91190, Villiers-le-Bâcle, France
| | - Katia Beauchêne
- Arvalis-Institut du végétal, 45 voie Romaine, Ouzouer Le Marché, 41240, Beauce La Romaine, France
| | - Jacques Le Gouis
- INRA, UCA UMR 1095, Génétique, Diversité et Ecophysiologie des Céréales, 24 Avenue des Landais, 63177, Aubière Cedex, France
| | - Sébastien Praud
- Centre de recherche de Chappes, Biogemma, Route d'Ennezat CS90216, 63720, Chappes, France.
| |
Collapse
|
1424
|
Zhao J, Hao W, Tang C, Yao H, Li B, Zheng Q, Li Z, Zhang X. Plasticity in Triticeae centromere DNA sequences: a wheat × tall wheatgrass (decaploid) model. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:314-327. [PMID: 31259444 DOI: 10.1111/tpj.14444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Centromeres mediate chromosome attachment to microtubules and maintain the integrity of chromosomes for proper segregation of the sister chromatids during cell division. Advances in the assembly of Triticeae genome sequences combined with the capacity to recover hybrid species derived from very distantly related species provides potential experimental systems for linking retrotransposon amplification and repositioning of centromeres via non-mendelian inheritance in partial amphiploid breeds. The decaploid tall wheatgrass (Thinopyrum ponticum) is one of the most successfully used perennial species in wheat breeding for generating translocation lines with valuable agronomic traits. We found that wheat centromere retrotransposons CRW and Quinta widely occur within the tall wheatgrass genome. In addition, one of the genome donors to Th. ponticum, Pseudoroegneria stipifolia (StSt), has been shown to have Abigail and a satellite repeat, CentSt. We also found two other centromeric retrotransposons, Abia and CL135 in Th. ponticum by ChIP-seq. Examination of partial amphiploid lines that were generated in the 1970s demonstrated extensive modification in centromere sequences using CentSt, Abigail and Abia as probes. We also detected that St-genome chromosomes were more enriched with Abigail and CentSt, whereas E-genome chromosomes were enriched with CRW and Quinta in tall wheatgrass and its closer relatives. It can be concluded that bursts of transposition of retrotransposons and repositioning of centromeres via non-mendelian segregation are common in partial amphiploids derived from interspecific hybrids. Practically speaking, our study reveals that the existence of homologous centromere functional sequences in both a donor and its receptor can substantially contribute to the successful transfer of alien genes into crop species. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://www.ncbi.nlm.nih.gov/sra/SRR9089557; https://www.ncbi.nlm.nih.gov/sra/SRR9089558; https://www.ncbi.nlm.nih.gov/sra/SRR9089559; https://www.ncbi.nlm.nih.gov/sra/SRR9089560; https://www.ncbi.nlm.nih.gov/sra/SRR9089561; https://www.ncbi.nlm.nih.gov/sra/SRR9089562; https://www.ncbi.nlm.nih.gov/sra/SRR9089563; https://www.ncbi.nlm.nih.gov/sra/SRR9089564; https://www.ncbi.nlm.nih.gov/nuccore/MK999394; https://www.ncbi.nlm.nih.gov/nuccore/MK999395; https://www.ncbi.nlm.nih.gov/nuccore/MK999396.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Applied Plant Genomics Laboratory, Crop Genomics and Bioinformatics Centre, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Weiwei Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Caiguo Tang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Han Yao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baochun Li
- Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development of Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development of Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| |
Collapse
|
1425
|
Swarbreck SM, Wang M, Wang Y, Kindred D, Sylvester-Bradley R, Shi W, Bentley AR, Griffiths H. A Roadmap for Lowering Crop Nitrogen Requirement. TRENDS IN PLANT SCIENCE 2019; 24:892-904. [PMID: 31285127 DOI: 10.1016/j.tplants.2019.06.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 05/03/2023]
Abstract
Increasing nitrogen fertilizer applications have sustained a growing world population in the 20th century. However, to avoid any further associated environmental damage, new sustainable agronomic practices together with new cultivars must be developed. To date the concept of nitrogen use efficiency (NUE) has been useful in quantifying the processes of nitrogen uptake and utilization, but we propose a shift in focus to consider nitrogen responsiveness as a more appropriate trait to select varieties with lower nitrogen requirements. We provide a roadmap to integrate the regulation of nitrogen uptake and assimilation into varietal selection and crop breeding programs. The overall goal is to reduce nitrogen inputs by farmers growing crops in contrasting cropping systems around the world, while sustaining yields and reducing greenhouse gas (GHG) emissions.
Collapse
Affiliation(s)
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | | | | | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Alison R Bentley
- The John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge CB3 0LE, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
1426
|
Said M, Parada AC, Gaál E, Molnár I, Cabrera A, Doležel J, Vrána J. Uncovering homeologous relationships between tetraploid Agropyron cristatum and bread wheat genomes using COS markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2881-2898. [PMID: 31312850 PMCID: PMC6763527 DOI: 10.1007/s00122-019-03394-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Using COS markers, the study reveals homeologous relationships between tetraploid Agropyron cristatum and bread wheat to support alien introgression breeding of wheat. Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat that possesses many genes that are potentially useful in wheat improvement. The species comprises a complex of diploid, tetraploid and hexaploid forms. In this study, wheat-A. cristatum chromosome, telosome and translocation lines were used to characterize syntenic relationships between tetraploid A. cristatum and bread wheat. Prior to mapping COS markers, the cytogenetic stock lines were characterized for fertility and by FISH and GISH for karyotype stability. Out of 328 COS markers selected for the study, 279 consistently amplified products in tetraploid A. cristatum, and, out of these, 139 were polymorphic between tetraploid crested wheatgrass and wheat. Sixty-nine markers were found to be suitable for the detection of tetraploid A. cristatum chromosomes 1P-6P in wheat, ranging from 6 to 17 markers per chromosome. BLASTn of the source ESTs resulted in significant hits for 67 markers on the wheat pseudomolecules. Generally, COS markers of the same homeologous group were detected on similar arms in both Agropyron and wheat. However, some intragenomic duplications and chromosome rearrangements were detected in tetraploid A. cristatum. These results provide new insights into the structure and evolution of the tetraploid A. cristatum genome and will facilitate the exploitation of the wild species for introgression breeding of bread wheat.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Alejandro Copete Parada
- Genetics Department, ETSIAM, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, 14071, Córdoba, Spain
| | - Eszter Gaál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary
| | - István Molnár
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary
| | - Adoración Cabrera
- Genetics Department, ETSIAM, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, 14071, Córdoba, Spain
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic.
| |
Collapse
|
1427
|
Wang W, Pan Q, Tian B, He F, Chen Y, Bai G, Akhunova A, Trick HN, Akhunov E. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:251-264. [PMID: 31219637 PMCID: PMC6851855 DOI: 10.1111/tpj.14440] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/02/2019] [Accepted: 06/10/2019] [Indexed: 05/08/2023]
Abstract
Grain size and weight are important components of a suite of yield-related traits in crops. Here, we showed that the CRISPR-Cas9 gene editing of TaGW7, a homolog of rice OsGW7 encoding a TONNEAU1-recruiting motif (TRM) protein, affects grain shape and weight in allohexaploid wheat. By editing the TaGW7 homoeologs in the B and D genomes, we showed that mutations in either of the two or both genomes increased the grain width and weight but reduced the grain length. The effect sizes of mutations in the TaGW7 gene homoeologs coincided with the relative levels of their expression in the B and D genomes. The effects of gene editing on grain morphology and weight traits were dosage dependent with the double-copy mutant showing larger effect than the respective single copy mutants. The TaGW7-centered gene co-expression network indicated that this gene is involved in the pathways regulating cell division and organ growth, also confirmed by the cellular co-localization of TaGW7 with α- and β-tubulin proteins, the building blocks of microtubule arrays. The analyses of exome capture data in tetraploid domesticated and wild emmer, and hexaploid wheat revealed the loss of diversity around TaGW7-associated with domestication selection, suggesting that TaGW7 is likely to play an important role in the evolution of yield component traits in wheat. Our study showed how integrating CRISPR-Cas9 system with cross-species comparison can help to uncover the function of a gene fixed in wheat for allelic variants targeted by domestication selection and select targets for engineering new gene variants for crop improvement.
Collapse
Affiliation(s)
- Wei Wang
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Qianli Pan
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Bin Tian
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Fei He
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Yueying Chen
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Guihua Bai
- USDA‐ARS Hard Winter Wheat Genetics Research UnitManhattanKSUSA
| | - Alina Akhunova
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Integrated Genomics FacilityKansas State UniversityManhattanKSUSA
| | - Harold N. Trick
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Eduard Akhunov
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| |
Collapse
|
1428
|
Jiang YF, Chen Q, Wang Y, Guo ZR, Xu BJ, Zhu J, Zhang YZ, Gong X, Luo CH, Wu W, Liu CH, Kong L, Deng M, Jiang QT, Lan XJ, Wang JR, Chen GY, Zheng YL, Wei YM, Qi PF. Re-acquisition of the brittle rachis trait via a transposon insertion in domestication gene Q during wheat de-domestication. THE NEW PHYTOLOGIST 2019; 224:961-973. [PMID: 31168798 DOI: 10.1111/nph.15977] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/28/2019] [Indexed: 05/18/2023]
Abstract
De-domestication is a unique evolutionary process during which crops re-acquire wild-like traits to survive and persist in agricultural fields without the need for human cultivation. The re-acquisition of seed dispersal mechanisms is crucial for crop de-domestication. Common wheat is an important cereal crop worldwide. Tibetan semi-wild wheat is a potential de-domesticated common wheat subspecies. However, the crucial genes responsible for its brittle rachis trait have not been identified. Genetic mapping, functional analyses and phylogenetic analyses were completed to identify the gene associated with Qbr.sau-5A, which is a major locus for the brittle rachis trait of Tibetan semi-wild wheat. The cloned Qbr.sau-5A gene is a new Q allele (Qt ) with a 161-bp transposon insertion in exon 5. Although Qt is expressed normally, its encoded peptide lacks some key features of the APETALA2 family. The abnormal functions of Qt in developing wheat spikes result in brittle rachises. Phylogenetic and genotyping analyses confirmed that Qt originated from Q in common wheat and is naturally distributed only in Tibetan semi-wild wheat populations. The identification of Qt provides new evidence regarding the origin of Tibetan semi-wild wheat, and new insights into the re-acquisition of wild traits during crop de-domestication.
Collapse
Affiliation(s)
- Yun-Feng Jiang
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yan Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhen-Ru Guo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bin-Jie Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ya-Zhou Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xi Gong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Cui-Hua Luo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wang Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Cai-Hong Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Li Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qian-Tao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiu-Jin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ji-Rui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guo-Yue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu-Ming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Peng-Fei Qi
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
1429
|
TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Sci Rep 2019; 9:13853. [PMID: 31554871 PMCID: PMC6761172 DOI: 10.1038/s41598-019-50331-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
We dissected the genetic basis of total spikelet number (TSN) along with other traits, viz. spike length (SL) and flowering time (FT) in a panel of 518 elite European winter wheat varieties. Genome-wide association studies (GWAS) based on 39,908 SNP markers revealed highly significant quantitative trait loci (QTL) for TSN on chromosomes 2D, 7A, and 7B, for SL on 5A, and FT on 2D, with 2D-QTL being the functional marker for the gene Ppd-D1. The physical region of the 7A-QTL for TSN revealed the presence of a wheat ortholog (TaAPO-A1) to APO1–a rice gene that positively controls the spikelet number on the panicles. Interspecific analyses of the TaAPO-A1 orthologs showed that it is a highly conserved gene important for floral development and present in a wide range of terrestrial plants. Intraspecific studies of the TaAPO-A1 across wheat genotypes revealed a polymorphism in the conserved F-box domain, defining two haplotypes. A KASP marker developed on the polymorphic site showed a highly significant association of TaAPO-A1 with TSN, explaining 23.2% of the total genotypic variance. Also, the TaAPO-A1 alleles showed weak but significant differences for SL and grain yield. Our results demonstrate the importance of wheat sequence resources to identify candidate genes for important traits based on genetic analyses.
Collapse
|
1430
|
Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat Genet 2019; 51:1530-1539. [DOI: 10.1038/s41588-019-0496-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/13/2019] [Indexed: 01/11/2023]
|
1431
|
Martin SL, Parent JS, Laforest M, Page E, Kreiner JM, James T. Population Genomic Approaches for Weed Science. PLANTS (BASEL, SWITZERLAND) 2019; 8:E354. [PMID: 31546893 PMCID: PMC6783936 DOI: 10.3390/plants8090354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
Genomic approaches are opening avenues for understanding all aspects of biological life, especially as they begin to be applied to multiple individuals and populations. However, these approaches typically depend on the availability of a sequenced genome for the species of interest. While the number of genomes being sequenced is exploding, one group that has lagged behind are weeds. Although the power of genomic approaches for weed science has been recognized, what is needed to implement these approaches is unfamiliar to many weed scientists. In this review we attempt to address this problem by providing a primer on genome sequencing and provide examples of how genomics can help answer key questions in weed science such as: (1) Where do agricultural weeds come from; (2) what genes underlie herbicide resistance; and, more speculatively, (3) can we alter weed populations to make them easier to control? This review is intended as an introduction to orient weed scientists who are thinking about initiating genome sequencing projects to better understand weed populations, to highlight recent publications that illustrate the potential for these methods, and to provide direction to key tools and literature that will facilitate the development and execution of weed genomic projects.
Collapse
Affiliation(s)
- Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Jean-Sebastien Parent
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada.
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada.
| | - Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
1432
|
Kumar A, Mantovani EE, Simsek S, Jain S, Elias EM, Mergoum M. Genome wide genetic dissection of wheat quality and yield related traits and their relationship with grain shape and size traits in an elite × non-adapted bread wheat cross. PLoS One 2019; 14:e0221826. [PMID: 31532783 PMCID: PMC6750600 DOI: 10.1371/journal.pone.0221826] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022] Open
Abstract
The genetic gain in yield and quality are two major targets of wheat breeding programs around the world. In this study, a high density genetic map consisting of 10,172 SNP markers identified a total of 43 genomic regions associated with three quality traits, three yield traits and two agronomic traits in hard red spring wheat (HRSW). When compared with six grain shape and size traits, the quality traits showed mostly independent genetic control (~18% common loci), while the yield traits showed moderate association (~53% common loci). Association of genomic regions for grain area (GA) and thousand-grain weight (TGW), with yield suggests that targeting an increase in GA may help enhancing wheat yield through an increase in TGW. Flour extraction (FE), although has a weak positive phenotypic association with grain shape and size, they do not share any common genetic loci. A major contributor to plant height was the Rht8 locus and the reduced height allele was associated with significant increase in grains per spike (GPS) and FE, and decrease in number of spikes per square meter and test weight. Stable loci were identified for almost all the traits. However, we could not find any QTL in the region of major known genes like GPC-B1, Ha, Rht-1, and Ppd-1. Epistasis also played an important role in the genetics of majority of the traits. In addition to enhancing our knowledge about the association of wheat quality and yield with grain shape and size, this study provides novel loci, genetic information and pre-breeding material (combining positive alleles from both parents) to enhance the cultivated gene pool in wheat germplasm. These resources are valuable in facilitating molecular breeding for wheat quality and yield improvement.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States of America
| | - Eder E. Mantovani
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States of America
| | - Senay Simsek
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States of America
| | - Shalu Jain
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States of America
| | - Elias M. Elias
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States of America
| | - Mohamed Mergoum
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States of America
| |
Collapse
|
1433
|
Othmeni M, Grewal S, Hubbart-Edwards S, Yang C, Scholefield D, Ashling S, Yahyaoui A, Gustafson P, Singh PK, King IP, King J. The Use of Pentaploid Crosses for the Introgression of Amblyopyrum muticum and D-Genome Chromosome Segments Into Durum Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:1110. [PMID: 31620148 PMCID: PMC6760530 DOI: 10.3389/fpls.2019.01110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/13/2019] [Indexed: 05/25/2023]
Abstract
The wild relatives of wheat provide an important source of genetic variation for wheat improvement. Much of the work in the past aimed at transferring genetic variation from wild relatives into wheat has relied on the exploitation of the ph1b mutant, located on the long arm of chromosome 5B. This mutation allows homologous recombination to occur between chromosomes from related but different genomes, e.g. between the chromosomes of wheat and related chromosomes from a wild relative resulting in the generation of interspecific recombinant chromosomes. However, the ph1b mutant also enables recombination to occur between the homologous genomes of wheat, e.g. A/B, A/D, B/D, resulting in the generation of wheat intergenomic recombinant chromosomes. In this work we report on the presence of wheat intergenomic recombinants in the genomic background of hexaploid wheat/Amblyopyrum muticum introgression lines. The transfer of genomic rearrangements involving the D-genome through pentaploid crosses provides a strategy by which the D-genome of wheat can be introgressed into durum wheat. Hence, a pentaploid crossing strategy was used to transfer D-genome segments, introgressed with either the A- and/or the B-genome, into the tetraploid background of two durum wheat genotypes Karim and Om Rabi 5 in either the presence or absence of different Am. muticum (2n = 2x = 14, TT) introgressions. Introgressions were monitored in backcross generations to the durum wheat parents via multi-color genomic in situ hybridization (mc-GISH). Tetraploid lines carrying homozygous D-genome introgressions, as well as simultaneous homozygous D- and T-genome introgressions, were developed. Introgression lines were characterized via Kompetitive Allele-Specific PCR (KASP) markers and multi-color fluorescence in situ hybridization (FISH). Results showed that new wheat sub-genomic translocations were generated at each generation in progeny that carried any Am. muticum chromosome introgression irrespective of the linkage group that the segment was derived from. The highest frequencies of homologous recombination were observed between the A- and the D-genomes. Results indicated that the genotype Karim had a higher tolerance to genomic rearrangements and T-genome introgressions compared to Om Rabi 5. This indicates the importance of the selection of the parental genotype when attempting to transfer/develop introgressions into durum wheat from pentaploid crosses.
Collapse
Affiliation(s)
- Manel Othmeni
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Caiyun Yang
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Amor Yahyaoui
- International Maize and Wheat Improvement Center (CIMMYT) Mexico, Mexico City, Mexico
| | - Perry Gustafson
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT) Mexico, Mexico City, Mexico
| | - Ian P. King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
1434
|
Harrington SA, Overend LE, Cobo N, Borrill P, Uauy C. Conserved residues in the wheat (Triticum aestivum) NAM-A1 NAC domain are required for protein binding and when mutated lead to delayed peduncle and flag leaf senescence. BMC PLANT BIOLOGY 2019; 19:407. [PMID: 31533618 PMCID: PMC6749658 DOI: 10.1186/s12870-019-2022-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/06/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND NAC transcription factors contain five highly conserved subdomains which are required for protein dimerisation and DNA binding. Few residues within these subdomains have been identified as essential for protein function, and fewer still have been shown to be of biological relevance in planta. Here we use a positive regulator of senescence in wheat, NAM-A1, to test the impact of missense mutations at specific, highly conserved residues of the NAC domain on protein function. RESULTS We identified missense mutations in five highly conserved residues of the NAC domain of NAM-A1 in a tetraploid TILLING population. TILLING lines containing these mutations, alongside synonymous and non-conserved mutation controls, were grown under glasshouse conditions and scored for senescence. Four of the five mutations showed a significant and consistent delay in peduncle senescence but had no consistent effects on flag leaf senescence. All four mutant alleles with the delayed senescence phenotype also lost the ability to interact with the homoeolog NAM-B1 in a yeast two-hybrid assay. Two of these residues were previously shown to be involved in NAC domain function in Arabidopsis, suggesting conservation of residue function between species. Three of these four alleles led to an attenuated cell death response compared to wild-type NAM-A1 when transiently over-expressed in Nicotiana benthamiana. One of these mutations was further tested under field conditions, in which there was a significant and consistent delay in both peduncle and leaf senescence. CONCLUSIONS We combined field and glasshouse studies of a series of mutant alleles with biochemical analyses to identify four residues of the NAC domain which are required for NAM-A1 function and protein interaction. We show that mutations in these residues lead to a gradient of phenotypes, raising the possibility of developing allelic series of mutations for traits of agronomic importance. We also show that mutations in NAM-A1 more severely impact peduncle senescence, compared to the more commonly studied flag leaf senescence, highlighting this as an area deserving of further study. The results from this integrated approach provide strong evidence that conserved residues within the functional domains of NAC transcription factors have biological significance in planta.
Collapse
Affiliation(s)
| | | | - Nicolas Cobo
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Philippa Borrill
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
- School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
1435
|
Harrington SA, Overend LE, Cobo N, Borrill P, Uauy C. Conserved residues in the wheat (Triticum aestivum) NAM-A1 NAC domain are required for protein binding and when mutated lead to delayed peduncle and flag leaf senescence. BMC PLANT BIOLOGY 2019; 19:407. [PMID: 31533618 DOI: 10.1101/573881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/06/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND NAC transcription factors contain five highly conserved subdomains which are required for protein dimerisation and DNA binding. Few residues within these subdomains have been identified as essential for protein function, and fewer still have been shown to be of biological relevance in planta. Here we use a positive regulator of senescence in wheat, NAM-A1, to test the impact of missense mutations at specific, highly conserved residues of the NAC domain on protein function. RESULTS We identified missense mutations in five highly conserved residues of the NAC domain of NAM-A1 in a tetraploid TILLING population. TILLING lines containing these mutations, alongside synonymous and non-conserved mutation controls, were grown under glasshouse conditions and scored for senescence. Four of the five mutations showed a significant and consistent delay in peduncle senescence but had no consistent effects on flag leaf senescence. All four mutant alleles with the delayed senescence phenotype also lost the ability to interact with the homoeolog NAM-B1 in a yeast two-hybrid assay. Two of these residues were previously shown to be involved in NAC domain function in Arabidopsis, suggesting conservation of residue function between species. Three of these four alleles led to an attenuated cell death response compared to wild-type NAM-A1 when transiently over-expressed in Nicotiana benthamiana. One of these mutations was further tested under field conditions, in which there was a significant and consistent delay in both peduncle and leaf senescence. CONCLUSIONS We combined field and glasshouse studies of a series of mutant alleles with biochemical analyses to identify four residues of the NAC domain which are required for NAM-A1 function and protein interaction. We show that mutations in these residues lead to a gradient of phenotypes, raising the possibility of developing allelic series of mutations for traits of agronomic importance. We also show that mutations in NAM-A1 more severely impact peduncle senescence, compared to the more commonly studied flag leaf senescence, highlighting this as an area deserving of further study. The results from this integrated approach provide strong evidence that conserved residues within the functional domains of NAC transcription factors have biological significance in planta.
Collapse
Affiliation(s)
| | | | - Nicolas Cobo
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Philippa Borrill
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
1436
|
Mohler V, Stadlmeier M. Dynamic QTL for adult plant resistance to powdery mildew in common wheat (Triticum aestivum L.). J Appl Genet 2019; 60:291-300. [PMID: 31506777 DOI: 10.1007/s13353-019-00518-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 01/21/2023]
Abstract
Agriculture will benefit from a rigorous characterization of genes for adult plant resistance (APR) since this gene class was recognized to provide more durable protection from plant diseases. The present study reports the identification of APR loci to powdery mildew in German winter wheat cultivars Cortez and Atlantis. Cortez was previously shown to carry all-stage resistance gene Pm3e. To avoid interference of Pm3e in APR studies, line 6037 that lacked Pm3e but showed field resistance from doubled-haploid (DH) population Atlantis/Cortez was used in two backcrosses to Atlantis for the establishment of DH population 6037/Atlantis//Atlantis. APR was assessed in the greenhouse 10, 15, and 20 days after inoculation (dai) from the 4-leaf stage onwards and combined with single-nucleotide polymorphism data in a genome-wide association study (GWAS) and a linkage map-based quantitative trait loci (QTL) analysis. In GWAS, two QTL were detected: one on chromosome 1BL 10 dai, the other on chromosome 2BL 20 dai. In conventional QTL analysis, both QTL were detected with all three disease ratings: the QTL on chromosome 1BL explained a maximum of 35.2% of the phenotypic variation 10 dai, whereas the QTL on chromosome 2BL explained a maximum of 43.5% of the phenotypic variation 20 dai. Compared with GWAS, linkage map-based QTL analysis allowed following the dynamics of QTL action. The two large-effect QTL for APR to powdery mildew with dynamic gene action can be useful for the enhancement of wheat germplasm.
Collapse
Affiliation(s)
- Volker Mohler
- Institute for Crop Science and Plant Breeding, Bavarian State Research Center for Agriculture (LfL), Am Gereuth 6, 85354, Freising, Germany.
| | - Melanie Stadlmeier
- Institute for Crop Science and Plant Breeding, Bavarian State Research Center for Agriculture (LfL), Am Gereuth 6, 85354, Freising, Germany
| |
Collapse
|
1437
|
Liu W, Ni J, Shah FA, Ye K, Hu H, Wang Q, Wang D, Yao Y, Huang S, Hou J, Liu C, Wu L. Genome-wide identification, characterization and expression pattern analysis of APYRASE family members in response to abiotic and biotic stresses in wheat. PeerJ 2019; 7:e7622. [PMID: 31565565 PMCID: PMC6744936 DOI: 10.7717/peerj.7622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
APYRASEs, which directly regulate intra- and extra-cellular ATP homeostasis, play a pivotal role in the regulation of various stress adaptations in mammals, bacteria and plants. In the present study, we identified and characterized wheat APYRASE family members at the genomic level in wheat. The results identified a total of nine APY homologs with conserved ACR domains. The sequence alignments, phylogenetic relations and conserved motifs of wheat APYs were bioinformatically analyzed. Although they share highly conserved secondary and tertiary structures, the wheat APYs could be mainly categorized into three groups, according to phylogenetic and structural analysis. Additionally, these APYs exhibited similar expression patterns in the root and shoot, among which TaAPY3-1, TaAPY3-3 and TaAPY3-4 had the highest expression levels. The time-course expression patterns of the eight APYs in response to biotic and abiotic stress in the wheat seedlings were also investigated. TaAPY3-2, TaAPY3-3, TaAPY3-4 and TaAPY6 exhibited strong sensitivity to all kinds of stresses in the leaves. Some APYs showed specific expression responses, such as TaAPY6 to heavy metal stress, and TaAPY7 to heat and salt stress. These results suggest that the stress-inducible APYs could have potential roles in the regulation of environmental stress adaptations. Moreover, the catalytic activity of TaAPY3-1 was further analyzed in the in vitro system. The results showed that TaAPY3-1 protein exhibited high catalytic activity in the degradation of ATP and ADP, but with low activity in degradation of TTP and GTP. It also has an extensive range of temperature adaptability, but preferred relatively acidic pH conditions. In this study, the genome-wide identification and characterization of APYs in wheat were suggested to be useful for further genetic modifications in the generation of high-stress-tolerant wheat cultivars.
Collapse
Affiliation(s)
- Wenbo Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Jun Ni
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Faheem Afzal Shah
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hao Hu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Qiaojian Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Dongdong Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yuanyuan Yao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shengwei Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jinyan Hou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Lifang Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
1438
|
Liu D, Sun J, Zhu D, Lyu G, Zhang C, Liu J, Wang H, Zhang X, Gao D. Genome-Wide Identification and Expression Profiles of Late Embryogenesis-Abundant (LEA) Genes during Grain Maturation in Wheat ( Triticum aestivum L.). Genes (Basel) 2019; 10:genes10090696. [PMID: 31510067 PMCID: PMC6770980 DOI: 10.3390/genes10090696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Late embryogenesis-abundant (LEA) genes play important roles in plant growth and development, especially the cellular dehydration tolerance during seed maturation. In order to comprehensively understand the roles of LEA family members in wheat, we carried out a series of analyses based on the latest genome sequence of the bread wheat Chinese Spring. 121 Triticum aestivum L. LEA (TaLEA) genes, classified as 8 groups, were identified and characterized. TaLEA genes are distributed in all chromosomes, most of them with a low number of introns (≤3). Expression profiles showed that most TaLEA genes expressed specifically in grains. By qRT-PCR analysis, we confirmed that 12 genes among them showed high expression levels during late stage grain maturation in two spring wheat cultivars, Yangmai16 and Yangmai15. For most genes, the peak of expression appeared earlier in Yangmai16. Statistical analysis indicated that expression level of 8 genes in Yangmai 16 were significantly higher than Yangmai 15 at 25 days after anthesis. Taken together, our results provide more knowledge for future functional analysis and potential utilization of TaLEA genes in wheat breeding.
Collapse
Affiliation(s)
- Datong Liu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Jing Sun
- Yangzhou University, Yangzhou 225009, China.
| | - Dongmei Zhu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Guofeng Lyu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Chunmei Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Jian Liu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Hui Wang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Xiao Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Derong Gao
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| |
Collapse
|
1439
|
Rustgi S, Shewry P, Brouns F, Deleu LJ, Delcour JA. Wheat Seed Proteins: Factors Influencing Their Content, Composition, and Technological Properties, and Strategies to Reduce Adverse Reactions. Compr Rev Food Sci Food Saf 2019; 18:1751-1769. [PMID: 33336954 DOI: 10.1111/1541-4337.12493] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Wheat is the primary source of nutrition for many, especially those living in developing countries, and wheat proteins are among the most widely consumed dietary proteins in the world. However, concerns about disorders related to the consumption of wheat and/or wheat gluten proteins have increased sharply in the last 20 years. This review focuses on wheat gluten proteins and amylase trypsin inhibitors, which are considered to be responsible for eliciting most of the intestinal and extraintestinal symptoms experienced by susceptible individuals. Although several approaches have been proposed to reduce the exposure to gluten or immunogenic peptides resulting from its digestion, none have proven sufficiently effective for general use in coeliac-safe diets. Potential approaches to manipulate the content, composition, and technological properties of wheat proteins are therefore discussed, as well as the effects of using gluten isolates in various food systems. Finally, some aspects of the use of gluten-free commodities are discussed.
Collapse
Affiliation(s)
- Sachin Rustgi
- Dept. of Plant and Environmental Sciences, School of Health Research, Clemson Univ. Pee Dee Research and Education Centre, Florence, SC, U.S.A.,Dept. of Crop and Soil Sciences, Washington State Univ., Pullman, WA, U.S.A
| | - Peter Shewry
- Rothamsted Research, Harpenden, Hertfordshire, U.K
| | - Fred Brouns
- Dept. of Human Biology, School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht Univ., Universiteitssingel 50, 6200, MD, Maastricht, the Netherlands
| | - Lomme J Deleu
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
1440
|
Zhang Y, Xu K, Yu D, Liu Z, Peng C, Li X, Zhang J, Dong Y, Zhang Y, Tian P, Guo T, Li C. The Highly Conserved Barley Powdery Mildew Effector BEC1019 Confers Susceptibility to Biotrophic and Necrotrophic Pathogens in Wheat. Int J Mol Sci 2019; 20:ijms20184376. [PMID: 31489906 PMCID: PMC6770355 DOI: 10.3390/ijms20184376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/11/2023] Open
Abstract
Effector proteins secreted by plant pathogens play important roles in promoting colonization. Blumeria effector candidate (BEC) 1019, a highly conserved metalloprotease of Blumeria graminis f. sp. hordei (Bgh), is essential for fungal haustorium formation, and silencing BEC1019 significantly reduces Bgh virulence. In this study, we found that BEC1019 homologs in B. graminis f. sp. tritici (Bgt) and Gaeumannomyces graminis var. tritici (Ggt) have complete sequence identity with those in Bgh, prompting us to investigate their functions. Transcript levels of BEC1019 were abundantly induced concomitant with haustorium formation in Bgt and necrosis development in Ggt-infected plants. BEC1019 overexpression considerably increased wheat susceptibility to Bgt and Ggt, whereas silencing this gene using host-induced gene silencing significantly enhanced wheat resistance to Bgt and Ggt, which was associated with hydrogen peroxide accumulation, cell death, and pathogenesis-related gene expression. Additionally, we found that the full and partial sequences of BEC1019 can trigger cell death in Nicotiana benthamiana leaves. These results indicate that Bgt and Ggt can utilize BEC1019 as a virulence effector to promote plant colonization, and thus these genes represent promising new targets in breeding wheat cultivars with broad-spectrum resistance.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| | - Deshui Yu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| | - Zhihui Liu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| | - Chunfeng Peng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| | - Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| | - Ju Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| | - Yinghui Dong
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| | - Yazhen Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| | - Pan Tian
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| | - Tiancai Guo
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Chengwei Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Engineering Research Center of Grain Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China.
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| |
Collapse
|
1441
|
Zhang C, Huang L, Zhang H, Hao Q, Lyu B, Wang M, Epstein L, Liu M, Kou C, Qi J, Chen F, Li M, Gao G, Ni F, Zhang L, Hao M, Wang J, Chen X, Luo MC, Zheng Y, Wu J, Liu D, Fu D. An ancestral NB-LRR with duplicated 3'UTRs confers stripe rust resistance in wheat and barley. Nat Commun 2019; 10:4023. [PMID: 31492844 PMCID: PMC6731223 DOI: 10.1038/s41467-019-11872-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 11/25/2022] Open
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a global threat to wheat production. Aegilops tauschii, one of the wheat progenitors, carries the YrAS2388 locus for resistance to Pst on chromosome 4DS. We reveal that YrAS2388 encodes a typical nucleotide oligomerization domain-like receptor (NLR). The Pst-resistant allele YrAS2388R has duplicated 3’ untranslated regions and is characterized by alternative splicing in the nucleotide-binding domain. Mutation of the YrAS2388R allele disrupts its resistance to Pst in synthetic hexaploid wheat; transgenic plants with YrAS2388R show resistance to eleven Pst races in common wheat and one race of P. striiformis f. sp. hordei in barley. The YrAS2388R allele occurs only in Ae. tauschii and the Ae. tauschii-derived synthetic wheat; it is absent in 100% (n = 461) of common wheat lines tested. The cloning of YrAS2388R will facilitate breeding for stripe rust resistance in wheat and other Triticeae species. Stripe rust is a serious threat to wheat production. Here, the authors reveal that the resistance gene, only present in the wheat progenitor Aegilops tauschii and its derived synthetic wheat, encodes a nucleotide oligomerization domain-like receptor and confers resistance in common wheat and barley.
Collapse
Affiliation(s)
- Chaozhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 271018, Tai'an, Shandong, China.,Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Huifei Zhang
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Qunqun Hao
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Bo Lyu
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Lynn Epstein
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Miao Liu
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Chunlan Kou
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Juan Qi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Fengjuan Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Mengkai Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Ge Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Fei Ni
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Xianming Chen
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, 99164, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 271018, Tai'an, Shandong, China.
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China. .,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.
| | - Daolin Fu
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
1442
|
Shorinola O, Kaye R, Golan G, Peleg Z, Kepinski S, Uauy C. Genetic Screening for Mutants with Altered Seminal Root Numbers in Hexaploid Wheat Using a High-Throughput Root Phenotyping Platform. G3 (BETHESDA, MD.) 2019; 9:2799-2809. [PMID: 31352407 PMCID: PMC6723138 DOI: 10.1534/g3.119.400537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/23/2019] [Indexed: 12/23/2022]
Abstract
Roots are the main channel for water and nutrient uptake in plants. Optimization of root architecture provides a viable strategy to improve nutrient and water uptake efficiency and maintain crop productivity under water-limiting and nutrient-poor conditions. We know little, however, about the genetic control of root development in wheat, a crop supplying 20% of global calorie and protein intake. To improve our understanding of the genetic control of seminal root development in wheat, we conducted a high-throughput screen for variation in seminal root number using an exome-sequenced mutant population derived from the hexaploid wheat cultivar Cadenza. The screen identified seven independent mutants with homozygous and stably altered seminal root number phenotypes. One mutant, Cadenza0900, displays a recessive extra seminal root number phenotype, while six mutants (Cadenza0062, Cadenza0369, Cadenza0393, Cadenza0465, Cadenza0818 and Cadenza1273) show lower seminal root number phenotypes most likely originating from defects in the formation and activation of seminal root primordia. Segregation analysis in F2 populations suggest that the phenotype of Cadenza0900 is controlled by multiple loci whereas the Cadenza0062 phenotype fits a 3:1 mutant:wild-type segregation ratio characteristic of dominant single gene action. This work highlights the potential to use the sequenced wheat mutant population as a forward genetic resource to uncover novel variation in agronomic traits, such as seminal root architecture.
Collapse
Affiliation(s)
- Oluwaseyi Shorinola
- Bioscience Eastern and Central Africa - International Livestock Research Institute, Nairobi, PO Box 30709, Kenya
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ryan Kaye
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK, and
| | - Guy Golan
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK, and
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
1443
|
Chen Y, Sidhu HS, Kaviani M, McElroy MS, Pozniak CJ, Navabi A. Application of image-based phenotyping tools to identify QTL for in-field winter survival of winter wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2591-2604. [PMID: 31177292 DOI: 10.1007/s00122-019-03373-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/03/2019] [Indexed: 05/26/2023]
Abstract
Genome-wide association on winter survival was conducted using data from image-based phenotyping method. Nine QTL were observed and three of them with candidate gene identified. Winter survival is an essential trait of winter wheat (Triticum aestivum L.) grown in regions with high risk of winterkill. We characterized a diversity panel of 450 Canadian wheat varieties that included mostly winter-growth habit wheats to identify key genetic factors that contribute to higher winter survival under field conditions. To more accurately quantify winter survival differences among varieties, image-based phenotyping methods, captured by unmanned aerial vehicle (UAV) and on ground level, were used to estimate the winter survival of each varieties. Winter survival index was developed to correct for emergence when evaluating winter survival. Winter survival measurement estimated by visual estimation, UAV imagery and ground imagery showed strong correlation with each other and had comparable broad-sense heritability. Genome-wide association studies resulted in the identification of seven quantitative trait loci (QTL) for winter survival including Vrn-A1. By using the recently released annotated sequence of the wheat genome and the available RNA-Seq data, two putative candidate genes underlying the QTL for winter survival were identified. However, our study showed that certain QTL was unique to specific winter survival measurement. Collectively, our study demonstrated the feasibility of using UAV-based imagery for the identification of loci associated with winter survival in wheat. The complexity of in-field condition make our result a valuable complement to indoor frost-tolerance studies in the identification of genetic factors not directly linked to freezing tolerance.
Collapse
Affiliation(s)
- Yi Chen
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Harwinder S Sidhu
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Mina Kaviani
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Michel S McElroy
- Centre de recherche sur les grains (CÉROM), 740 Chemin Trudeau, Saint-Mathieu-de-Beloeil, QC, J3G 0E2, Canada
| | - Curtis J Pozniak
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Alireza Navabi
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
1444
|
Ibl V. ESCRTing in cereals: still a long way to go. SCIENCE CHINA. LIFE SCIENCES 2019; 62:1144-1152. [PMID: 31327097 DOI: 10.1007/s11427-019-9572-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2019] [Indexed: 01/28/2023]
Abstract
The multivesicular body (MVB) sorting pathway provides a mechanism for the delivery of cargo destined for degradation to the vacuole or lysosome. The endosomal sorting complex required for transport (ESCRT) is essential for the MVB sorting pathway by driving the cargo sorting to its destination. Many efforts in plant research have identified the ESCRT machinery and functionally characterised the first plant ESCRT proteins. However, most studies have been performed in the model plant Arabidopsis thaliana that is genetically and physiologically different to crops. Cereal crops are important for animal feed and human nutrition and have further been utilized as promising candidates for recombinant protein production. In this review, I summarize the role of plant ESCRT components in cereals that are involved in efficient adaptation to environmental stress and grain development. A special focus is on barley (Hordeum vulgare L.) ESCRT proteins, where recent studies show their quantitative mapping during grain development, e.g. associating HvSNF7.1 with protein trafficking to protein bodies (PBs) in starchy endosperm. Thus, it is indispensable to identify the molecular key-players within the endomembrane system including ESCRT proteins to optimize and possibly enhance tolerance to environmental stress, grain yield and recombinant protein production in cereal grains.
Collapse
Affiliation(s)
- Verena Ibl
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
1445
|
Zhang W, Zhu X, Zhang M, Shi G, Liu Z, Cai X. Chromosome engineering-mediated introgression and molecular mapping of novel Aegilops speltoides-derived resistance genes for tan spot and Septoria nodorum blotch diseases in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2605-2614. [PMID: 31183521 DOI: 10.1007/s00122-019-03374-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
We identified, mapped and introduced novel Aegilops speltoides-derived resistance genes for tan spot and SNB diseases into wheat, enhancing understanding and utilization of host resistance to both diseases in wheat. Tan spot and Septoria nodorum blotch (SNB) are two important fungal diseases of wheat. Resistance to these diseases is often observed as the lack of sensitivity to the necrotrophic effectors (NE) produced by the fungal pathogens and thus exhibits a recessive inheritance pattern. In this study, we identified novel genes for resistance to tan spot and SNB on Aegilops speltoides (2n = 2x = 14, genome SS) chromosome 2S. These genes confer dominant resistance in the wheat background, indicating a distinct NE-independent mechanism of resistance. Ae. speltoides chromosome 2S was engineered for resistance gene introgression and molecular mapping by inducing meiotic homoeologous recombination with wheat chromosome 2B. Twenty representative 2B-2S recombinants were evaluated for reaction to tan spot and SNB and were delineated by genomic in situ hybridization and high-throughput wheat 90 K SNP assay. The resistance genes physically mapped to the sub-telomeric region (~ 8 Mb) on the short arm of chromosome 2S and designated TsrAes1 for tan spot resistance and SnbAes1 for SNB resistance. In addition, we developed SNP-derived PCR markers closely linked to TsrAes1/SnbAes1 for marker-assisted selection in wheat breeding. TsrAes1 and SnbAes1 are the first set of NE-independent tan spot, and SNB resistance genes are identified from Ae. speltoides. The 2SS-2BS·2BL recombinants with minimal amounts of Ae. speltoides chromatin containing TsrAes1/SnbAes1 were produced for germplasm development, making the wild species-derived resistance genes usable in wheat breeding. This will strengthen and diversify resistance of wheat to tan spot and SNB and facilitate understanding of resistance to these two diseases.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Mingyi Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
1446
|
Li L, Mao X, Wang J, Chang X, Reynolds M, Jing R. Genetic dissection of drought and heat-responsive agronomic traits in wheat. PLANT, CELL & ENVIRONMENT 2019; 42:2540-2553. [PMID: 31077401 PMCID: PMC6851630 DOI: 10.1111/pce.13577] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/06/2019] [Indexed: 05/18/2023]
Abstract
High yield and wide adaptation are principal targets of wheat breeding but are hindered by limited knowledge on genetic basis of agronomic traits and abiotic stress tolerances. In this study, 277 wheat accessions were phenotyped across 30 environments with non-stress, drought-stressed, heat-stressed, and drought-heat-stressed treatments and were subjected to genome-wide association study using 395 681 single nucleotide polymorphisms. We detected 295 associated loci including consistent loci for agronomic traits across different treatments and eurytopic loci for multiple abiotic stress tolerances. A total of 22 loci overlapped with quantitative trait loci identified by biparental quantitative trait loci mapping. Six loci were simultaneously associated with agronomic traits and abiotic stress tolerance, four of which fell within selective sweep regions. Selection in Chinese wheat has increased the frequency of superior marker alleles controlling yield-related traits in the four loci during past decades, which conversely diminished favourable genetic variation controlling abiotic stress tolerance in the same loci; two promising candidate paralogous genes colocalized with such loci, thereby providing potential targets for studying the molecular mechanism of stress tolerance-productivity trade-off. These results uncovering promising alleles controlling agronomic traits and/or multiple abiotic stress tolerances, providing insights into heritable covariation between yield and abiotic stress tolerance, will accelerate future efforts for wheat improvement.
Collapse
Affiliation(s)
- Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Matthew Reynolds
- International Maize and Wheat Improvement CenterTexcoco56237Mexico
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
1447
|
Hamid A, Mallick SA, Moni G, Sachin G, Haq MRU. Amelioration in gliadin antigenicity and maintenance of viscoelastic properties of wheat ( Triticum aestivum L.) cultivars with mixed probiotic fermentation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:4282-4295. [PMID: 31477999 PMCID: PMC6706494 DOI: 10.1007/s13197-019-03898-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/01/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023]
Abstract
Sourdough fermentation of twenty wheat cultivars was carried out using mixed probiotic culture (Lactobacillus acidophilus UNI, Lactobacillus brevis LR/5 and Lactobacillus plantarum ATCC 8014). The gliadin antigenicity was expressed in terms of its content in twenty different wheat cultivars. The gliadin proteins were characterized by SDS-PAGE and structural changes analyzed on FTIR spectrophotometer. Moreover, changes in the viscoelastic character of fermented and non-fermented dough were studied by rheometry. The results showed a remarkable reduction in antigenicity by 60% (average) in all wheat cultivars on sourdough fermentation. This reduction may be due to the synergistic effect of protease secretion by mixed lactobacilli, responsible for gliadin degradation. These changes in gliadins by mixed culture proteolysis were confirmed on SDS-PAGE on observing new gliadin-derived low molecular weight peptides. The results were further validated by FTIR spectroscopy where structural changes of gliadins were analyzed in the fermented dough. The rheological data indicated a higher storage modulus (G') compared to loss modulus (G″) in both control and fermented flour of all wheat cultivars, however, with a lower efficacy in sourdoughs. The present study thus establishes that mixed culture sourdough fermentation decreases the antigenic potential of gliadins without any change in the rheology and thereby maintaining the baking or viscoelastic properties of the wheat flour.
Collapse
Affiliation(s)
- Asima Hamid
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Main Campus, Chatha, Jammu and Kashmir India
| | - S. A. Mallick
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Main Campus, Chatha, Jammu and Kashmir India
| | - Gupta Moni
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Main Campus, Chatha, Jammu and Kashmir India
| | - Gupta Sachin
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Main Campus, Chatha, Jammu and Kashmir India
| | - Mohammad Raies Ul Haq
- Department of Biochemistry, Cluster University Srinagar, Srinagar, Jammu and Kashmir India
| |
Collapse
|
1448
|
Li G, Cowger C, Wang X, Carver BF, Xu X. Characterization of Pm65, a new powdery mildew resistance gene on chromosome 2AL of a facultative wheat cultivar. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2625-2632. [PMID: 31214740 DOI: 10.1007/s00122-019-03377-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/09/2019] [Indexed: 05/18/2023]
Abstract
A new powdery mildew resistance gene that can be readily used in wheat breeding, Pm65, was identified in the facultative wheat cultivar Xinmai 208 and mapped to the terminal region of chromosome 2AL. Wheat powdery mildew, a widely occurring disease caused by the biotrophic fungus Blumeriagraminis f. sp. tritici (Bgt), poses a serious threat to wheat production. A high breeding priority is to identify powdery mildew resistance genes that can be readily used either alone or in gene complexes involving other disease resistance genes. An F2 population and 227 F2:3 families derived from the cross Xinmai 208 × Stardust were generated to map a powdery mildew resistance gene in Xinmai 208, a high-yielding Chinese wheat cultivar. Genetic analysis indicated that Xinmai 208 carries a single dominant powdery mildew resistance gene, designated herein Pm65, and linkage analysis delimited Pm65 to a 0.5 cM interval covering 531.8 Kb (763,289,667-763,821,463 bp) on chromosome 2AL in the Chinese Spring reference sequence. An allelism test indicated that Pm65 is a new gene about 10.3 cM distal to the Pm4 locus. Pm65 was 0.3 cM proximal to Xstars355 and 0.2 cM distal to Xstars356. It conferred near-immunity to 19 of 20 Bgt isolates collected from different wheat-growing regions of the USA. Coming from a high-yield potential cultivar, Pm65 can be directly used to enhance powdery mildew resistance in wheat. The newly developed SSR markers Xstars355 and Xstars356 have the potential to tag Pm65 for wheat improvement.
Collapse
Affiliation(s)
- Genqiao Li
- Wheat, Peanut, and Other Field Crops Research Unit, USDA-ARS, Stillwater, OK, 74075, USA
- Plant and Soil Science Department, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Xuewen Wang
- Genetics Department, The University of Georgia, Athens, GA, 30602, USA
| | - Brett F Carver
- Plant and Soil Science Department, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiangyang Xu
- Wheat, Peanut, and Other Field Crops Research Unit, USDA-ARS, Stillwater, OK, 74075, USA.
| |
Collapse
|
1449
|
Kristensen PS, Jensen J, Andersen JR, Guzmán C, Orabi J, Jahoor A. Genomic Prediction and Genome-Wide Association Studies of Flour Yield and Alveograph Quality Traits Using Advanced Winter Wheat Breeding Material. Genes (Basel) 2019; 10:E669. [PMID: 31480460 PMCID: PMC6770321 DOI: 10.3390/genes10090669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/02/2022] Open
Abstract
Use of genetic markers and genomic prediction might improve genetic gain for quality traits in wheat breeding programs. Here, flour yield and Alveograph quality traits were inspected in 635 F6 winter wheat breeding lines from two breeding cycles. Genome-wide association studies revealed single nucleotide polymorphisms (SNPs) on chromosome 5D significantly associated with flour yield, Alveograph P (dough tenacity), and Alveograph W (dough strength). Additionally, SNPs on chromosome 1D were associated with Alveograph P and W, SNPs on chromosome 1B were associated with Alveograph P, and SNPs on chromosome 4A were associated with Alveograph L (dough extensibility). Predictive abilities based on genomic best linear unbiased prediction (GBLUP) models ranged from 0.50 for flour yield to 0.79 for Alveograph W based on a leave-one-out cross-validation strategy. Predictive abilities were negatively affected by smaller training set sizes, lower genetic relationship between lines in training and validation sets, and by genotype-environment (G×E) interactions. Bayesian Power Lasso models and genomic feature models resulted in similar or slightly improved predictions compared to GBLUP models. SNPs with the largest effects can be used for screening large numbers of lines in early generations in breeding programs to select lines that potentially have good quality traits. In later generations, genomic predictions might be used for a more accurate selection of high quality wheat lines.
Collapse
Affiliation(s)
| | - Just Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | | | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, CeiA3, 14071 Córdoba, Spain
| | | | - Ahmed Jahoor
- Nordic Seed A/S, 8300 Odder, Denmark
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden
| |
Collapse
|
1450
|
Genetic Contribution of Synthetic Hexaploid Wheat to CIMMYT's Spring Bread Wheat Breeding Germplasm. Sci Rep 2019; 9:12355. [PMID: 31451719 PMCID: PMC6710277 DOI: 10.1038/s41598-019-47936-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/15/2019] [Indexed: 11/08/2022] Open
Abstract
Synthetic hexaploid (SH) wheat (AABBD'D') is developed by artificially generating a fertile hybrid between tetraploid durum wheat (Triticum turgidum, AABB) and diploid wild goat grass (Aegilops tauschii, D'D'). Over three decades, the International Maize and Wheat Improvement Center (CIMMYT) has developed and utilized SH wheat to bridge gene transfer from Ae. tauschii and durum wheat to hexaploid bread wheat. This is a unique example of success utilizing wild relatives in mainstream breeding at large scale worldwide. Our study aimed to determine the genetic contribution of SH wheat to CIMMYT's global spring bread wheat breeding program. We estimated the theoretical and empirical contribution of D' to synthetic derivative lines using the ancestral pedigree and marker information using over 1,600 advanced lines and their parents. The average marker-estimated D' contribution was 17.5% with difference in genome segments suggesting application of differential selection pressure. The pedigree-based contribution was correlated with marker-based estimates without providing chromosome segment specific variation. Results from international yield trials showed that 20% of the lines were synthetic derived with an average D' contribution of 15.6%. Our results underline the importance of SH wheat in maintaining and enhancing genetic diversity and genetic gain over years and is important for development of a more targeted introgression strategy. The study provides retrospective view into development and utilization of SH in the CIMMYT Global Wheat Program.
Collapse
|