101
|
Abstract
Twin and family studies in autistic disorders (AD) have elucidated a high heritability of the narrow and broad phenotype of AD. In this review on the genetics of AD, we will initially delineate the phenotype of AD and discuss aspects of differential diagnosis, which are particularly relevant with regard to the genetics of autism. Cytogenetic and molecular genetic studies will be presented in detail, and the possibly involved aetiopathological pathways will be described. Implications of the different genetic findings for genetic counselling will be mentioned.
Collapse
Affiliation(s)
- C M Freitag
- Department of Child and Adolescent Psychiatry, Saarland University Hospital, Homburg, Germany.
| |
Collapse
|
102
|
Feng J, Schroer R, Yan J, Song W, Yang C, Bockholt A, Cook EH, Skinner C, Schwartz CE, Sommer SS. High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neurosci Lett 2006; 409:10-3. [PMID: 17034946 DOI: 10.1016/j.neulet.2006.08.017] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/07/2006] [Accepted: 08/08/2006] [Indexed: 11/24/2022]
Abstract
Neuroligins are postsynaptic membrane cell-adhesion molecules which bind to beta-neurexins, a family of proteins that act as neuronal cell surface receptors. To explore the possibility that structural variants in the beta-neurexin genes predispose to autism, the coding regions and associated splice junctions of three beta-neurexin genes were scanned with detection of virtually all mutations-SSCP (DOVAM-S) in 72 Caucasian patients with autism. In addition, segments of the neurexin 1beta gene were sequenced in 131 additional Caucasian and 61 Afro-American patients with autism from South Carolina and the Midwest. Two putative missense structural variants were identified in the neurexin 1beta gene in four Caucasian patients with autism and not in 535 healthy Caucasian controls (4/203 vs. 0/535, P=0.0056). Initial family data suggest that incomplete penetrance may occur. In addition, no structural variant was found in the neurexin 2beta gene and the neurexin 3beta gene. In the context of all available data, we conclude that mutations of the neurexin 1beta gene may contribute to autism susceptibility.
Collapse
Affiliation(s)
- Jinong Feng
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, CA 91010-3000, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Persico AM, Bourgeron T. Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci 2006; 29:349-358. [PMID: 16808981 DOI: 10.1016/j.tins.2006.05.010] [Citation(s) in RCA: 419] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 04/18/2006] [Accepted: 05/26/2006] [Indexed: 12/21/2022]
Abstract
Our understanding of human disorders that affect higher cognitive functions has greatly advanced in recent decades, and over 20 genes associated with non-syndromic mental retardation have been identified during the past 15 years. However, proteins encoded by "cognition genes" have such diverse neurodevelopmental functions that delineating specific pathogenetic pathways still poses a tremendous challenge. In this review, we summarize genetic, epigenetic and environmental contributions to neurodevelopmental alterations that either cause or confer vulnerability to autism, a disease primarily affecting social cognition. Taken together, these results begin to provide a unifying view of complex pathogenetic pathways that are likely to lead to autism spectrum disorders through altered neurite morphology, synaptogenesis and cell migration. This review is part of the INMED/TINS special issue "Nature and nurture in brain development and neurological disorders", based on presentations at the annual INMED/TINS symposium (http://inmednet.com/).
Collapse
Affiliation(s)
- Antonio M Persico
- Laboratory of Molecular Psychiatry and Neurogenetics, University 'Campus Bio-Medico', Via Longoni 83, I-00155, Rome, Italy; IRCCS 'Fondazione Santa Lucia', Department of Experimental Neurosciences, Via del Fosso di Fiorano 64/65, I-00143, Rome, Italy.
| | - Thomas Bourgeron
- Laboratory of Human Genetics and Cognitive Functions, Institut Pasteur, 25 Rue du Docteur Roux 75015, Paris, France; University Paris VII, 2 Place Jussieu 75013, Paris, France
| |
Collapse
|
104
|
Giampietro PF, Schowalter DB, Merchant S, Campbell LR, Swink T, Roa BB. Widened clinical spectrum of the Q128P MECP2 mutation in Rett syndrome. Childs Nerv Syst 2006; 22:320-4. [PMID: 15875198 DOI: 10.1007/s00381-005-1155-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 12/02/2004] [Indexed: 10/25/2022]
Abstract
CASE REPORT We describe a female patient with Arnold Chiari type I malformation, atypical Rett syndrome characterized by postnatal onset microcephaly, stereotypic hand movements, ataxia, severe developmental delay, intractable tonic-clonic seizures, and a MECP2 mutation with a unique set of clinical findings. Implementation of a ketogenic diet resulted in decreased seizure activity and an improvement in the patient's degree of social relatedness with her family members. DISCUSSION An early diagnosis of Rett syndrome allows families to maximize utilization of existing treatment modalities and seek appropriate genetic counseling and prenatal diagnoses. This case also provides further evidence for the treatment benefit of ketogenic diets for seizures in patients with Rett syndrome.
Collapse
Affiliation(s)
- P F Giampietro
- Department of Medical Genetic Services, Marshfield Clinic, Marshfield, WI, USA.
| | | | | | | | | | | |
Collapse
|
105
|
Moy SS, Nadler JJ, Magnuson TR, Crawley JN. Mouse models of autism spectrum disorders: The challenge for behavioral genetics. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2006; 142C:40-51. [PMID: 16419099 DOI: 10.1002/ajmg.c.30081] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autism is a severe neurodevelopmental disorder, which typically emerges early in childhood. The core symptoms of autism include deficits in social interaction, impaired communication, and aberrant repetitive behavior, including self-injury. Despite the strong genetic component for the disease, most cases of autism have not been linked to mutations in a specific gene, and the etiology of the disorder has yet to be established. At the present time, there is no generally accepted therapeutic strategy to treat the core symptoms of autism, and there remains a critical need for appropriate animal models and relevant behavioral assays to promote the understanding and treatment of the clinical syndrome. Challenges for the development of valid mouse models include complex genetic interactions underlying the high heritability of the disease in humans, diagnosis based on deficits in social interaction and communication, and the lack of confirmatory neuropathological markers to provide validation for genetic models of the disorder. Research focusing on genes that mediate social behavior in mice may help identify neural circuitry essential for normal social interaction, and lead to novel genetic animal models of the autism behavioral phenotype.
Collapse
Affiliation(s)
- Sheryl S Moy
- Neurodevelopmental Disorders Research Center, CB #7146, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
106
|
Gauthier J, Joober R, Dubé MP, St-Onge J, Bonnel A, Gariépy D, Laurent S, Najafee R, Lacasse H, St-Charles L, Fombonne E, Mottron L, Rouleau GA. Autism spectrum disorders associated with X chromosome markers in French-Canadian males. Mol Psychiatry 2006; 11:206-213. [PMID: 16261168 DOI: 10.1038/sj.mp.4001756] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 08/26/2005] [Accepted: 08/29/2005] [Indexed: 11/08/2022]
Abstract
It is now well established that genetic factors play an important role in the pathogenesis of autism disorder and converging lines of evidence suggest the implication of the X chromosome. Using a sample of subjects diagnosed with autism spectrum disorders, exclusively composed of males from French-Canadian (FC) origin, we tested markers covering the entire X chromosome using a family-based association study. Our initial analysis revealed the presence of association at two loci: DXS6789 (P=0.026) and DXS8043 (P=0.0101). In a second step, we added support to the association at DXS8043 using additional markers, additional subjects and a haplotype-based analysis (best obtained P-value=0.00001). These results provide support for the existence of a locus on the X chromosome that predisposes the FC to autism spectrum disorders.
Collapse
Affiliation(s)
- J Gauthier
- Centre Hospitalier de l'Université de Montréal, Research Centre, Notre Dame Hospital, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Kaufmann WE, Johnston MV, Blue ME. MeCP2 expression and function during brain development: implications for Rett syndrome's pathogenesis and clinical evolution. Brain Dev 2005; 27 Suppl 1:S77-S87. [PMID: 16182491 DOI: 10.1016/j.braindev.2004.10.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 10/15/2004] [Indexed: 02/06/2023]
Abstract
Most cases of Rett syndrome (RTT) are associated with mutations of the transcriptional regulator MeCP2. On the basis of molecular structure, ontogeny, and subcellular and regional distribution, MeCP2 appears to be a link between synaptic activity and neuronal transcription. Integrating data on MeCP2 neurobiology, RTT neurobiology, MeCP2 mutational patterns in RTT and other disorders, histone profiles of relevance to RTT, and genotype-phenotype correlations in RTT, we update here our synaptic hypothesis of RTT. We postulate that MeCP2 dysfunction leads to abnormal brain development through maladjustment of neuronal gene expression to synaptic and other extra-cellular signals, mainly during the critical period of synaptic maturation. RTT phenotype will develop, only if severe MeCP2 dysfunction is present during early neuronal differentiation. Two models are proposed for explaining general and regional neuronal abnormalities in RTT and the phenotypical outcome of MeCP2 dysfunction, respectively.
Collapse
Affiliation(s)
- Walter E Kaufmann
- Center for Genetic Disorders of Cognition and Behavior, Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA.
| | | | | |
Collapse
|
108
|
Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB, Rose MF, Kang D, Richman R, Johnson JM, Berget S, Zoghbi HY. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A 2005; 102:17551-8. [PMID: 16251272 PMCID: PMC1266160 DOI: 10.1073/pnas.0507856102] [Citation(s) in RCA: 348] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rett syndrome (RTT) is a postnatal neurodevelopmental disorder characterized by the loss of acquired motor and language skills, autistic features, and unusual stereotyped movements. RTT is caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). Mutations in MECP2 cause a variety of neurodevelopmental disorders including X-linked mental retardation, psychiatric disorders, and some cases of autism. Although MeCP2 was identified as a methylation-dependent transcriptional repressor, transcriptional profiling of RNAs from mice lacking MeCP2 did not reveal significant gene expression changes, suggesting that MeCP2 does not simply function as a global repressor. Changes in expression of a few genes have been observed, but these alterations do not explain the full spectrum of Rett-like phenotypes, raising the possibility that additional MeCP2 functions play a role in pathogenesis. In this study, we show that MeCP2 interacts with the RNA-binding protein Y box-binding protein 1 and regulates splicing of reporter minigenes. Importantly, we found aberrant alternative splicing patterns in a mouse model of RTT. Thus, we uncovered a previously uncharacterized function of MeCP2 that involves regulation of splicing, in addition to its role as a transcriptional repressor.
Collapse
Affiliation(s)
- Juan I Young
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
Mutations in the X-linked gene encoding the methyl-CpG binding protein MeCP2 are the primary cause of classic and atypical Rett syndrome and have recently been shown to contribute to other neurodevelopmental disorders of varying severity. To determine whether there are molecular correlates to the phenotypic heterogeneity, numerous groups have performed genotype-phenotype correlation studies. These studies have yielded conflicting results, in part because they used different criteria for determining severity and classifying mutations. Evolution of the phenotype with age and variable expressivity arising from individual variability in X-chromosome inactivation patterns are among other reasons the findings varied. Nonetheless, evidence of differences in the phenotypic consequences of specific types of mutations is emerging. This review analyzes the available literature and makes recommendations for future studies.
Collapse
Affiliation(s)
- Andrea L Ham
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | | | | |
Collapse
|
110
|
Abstract
In 1999, mutations in the MECP2 gene were identified as the primary cause of Rett syndrome. MECP2 mutations can be found in 70% to 80% of all clinically defined Rett syndrome cases; in classic Rett syndrome, this frequency is even higher. In most cases, missense and nonsense mutations affecting functionally important domains can be found. Additionally, a hot spot for small deletions has been defined, and several gross rearrangements have also been described. Among female individuals with Rett syndrome, the spectrum of clinical phenotypes is broad, but most fulfill the diagnostic criteria. In contrast, male individuals with mutations in the MECP2 gene are rare, and only a minority have clinical symptoms resembling Rett syndrome.
Collapse
Affiliation(s)
- Peter Huppke
- Department of Pediatrics and Pediatric Neurology, Georg August University, Göttingen, Germany.
| | | |
Collapse
|
111
|
Bibliography. Current world literature. Child and Adolescent psychiatry. Curr Opin Psychiatry 2005; 18:455-66. [PMID: 16639142 DOI: 10.1097/01.yco.0000172068.09144.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
112
|
Abstract
PURPOSE OF REVIEW Nearly 70 reports on Rett syndrome were published in 2004. We have selected 51 articles, including clinical reports, on pathophysiology, genotype-phenotype correlation, and clinical and basic molecular biology studies. These articles explain how mutation of the gene (MECP2) for methyl-CpG-binding protein 2 causes the particular disorders of Rett syndrome, and also induces other neurodevelopmental disorders, clarifying the situation for future studies. RECENT FINDINGS The role of X-chromosome inactivation has been clarified in animal experiments. New isoforms of MeCP2 have been discovered and its functional characteristics are under research. Understanding of the influence of the MECP2 mutation on other neurodevelopmental disorders has increased. However, there is no apparent progress in neurophysiological studies. SUMMARY Clinical studies included the pathophysiology of stereotyped movement, and cardiac and respiratory disturbances, and there were four therapeutic trials including one for epilepsy. For genotype-phenotype correlation the role of X-chromosome inactivation was looked at and its basic mechanisms were studied extensively in animals. Characteristics of mutations in the C-terminus and the biological function of the new isoform, exon 1, were introduced. In studies on related neurodevelopmental disorders, a relationship is suggested between the MECP2 gene and autism-related gene, with overlapping pathways, but this is not common to other neurodevelopmental disorders. Developmental studies suggest an important role for MeCP2 in the formation and/or maintenance of synapses, and clarify the molecular biological aspects of Rett syndrome. However, early involvement of the aminergic neurons, suggested as the basic, pathognomonic lesion of Rett syndrome, has unfortunately not been investigated with the MECP2 mutation.
Collapse
Affiliation(s)
- Masaya Segawa
- Segawa Neurological Clinic for Children, Tokyo, Japan.
| | | |
Collapse
|
113
|
Abstract
Of the recently discovered group of proteins that interpret DNA methylation signals by preferentially associating with methylated CpG dinucleotides, the methyl-CpG-binding protein 2 (MeCP2) has attracted considerable attention in view of its ability to repress transcription. The interest in MeCP2 dramatically increased following the discovery of mutated forms of the protein in patients with Rett syndrome, a neurodevelopmental disease. A connection with carcino-genesis has also been established. This review attempts to bring together and critically discuss recently acquired information about the molecular biology of the protein and its mechanism of action. A careful overview of the literature reveals the complexity of its activity, which goes well beyond the recognized chromatin connections. Finally, the newly established facts concerning the connection of MeCP2 to human disease are presented. Key words: methyl-CpG-binding proteins, MeCP2, transcription repression, chromatin modification, Rett syndrome, cancer.
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, College of Agriculture, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
114
|
Pelka GJ, Watson CM, Christodoulou J, Tam PPL. Distinct expression profiles of Mecp2 transcripts with different lengths of 3′UTR in the brain and visceral organs during mouse development. Genomics 2005; 85:441-52. [PMID: 15780747 DOI: 10.1016/j.ygeno.2004.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 12/09/2004] [Indexed: 11/17/2022]
Abstract
Four different transcripts of the Mecp2 gene can be distinguished by the length of the 3' untranslated region generated by usage of alternative polyadenylation sites. In situ hybridization analyses encompassing embryonic to 20-week postnatal age showed that transcripts are expressed in the central nervous system, with a progressive restriction during development culminating in localized strong expression in the cerebral cortex, olfactory bulb, hippocampal formation, and internal granule and Purkinje layer of the cerebellum. Real-time RT-PCR measurements of Mecp2 transcript levels showed variations with mouse age in two distinctive patterns that are unique to the central nervous system and the visceral organs, respectively. The 10-kb mRNA is the predominant form expressed in the brain in contrast to the shorter species expressed in the lung and liver. The developmental profile of Mecp2 mRNA highlights a potential tissue-specific function of the 3'UTR in the regulation of MeCP2 protein synthesis in response to the age-specific requirement of MeCP2 function during the life of the mouse.
Collapse
Affiliation(s)
- Gregory J Pelka
- Embryology Unit, Children's Medical Research Institute, Sydney, NSW 2145, Australia
| | | | | | | |
Collapse
|