101
|
Yang A, Wang Z, Zhu Y. Facile preparation and adsorption performance of low-cost MOF@cotton fibre composite for uranium removal. Sci Rep 2020; 10:19271. [PMID: 33159151 PMCID: PMC7648642 DOI: 10.1038/s41598-020-76173-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
A novel composite MOF@cotton fibre (HCF) was prepared and characterized by FTIR, SEM, XPS and TGA. The effect of various parameters on the adsorption efficiency, such as the solution pH, contact time, initial U(VI) concentration and temperature, was studied. The maximal sorption capacity (Qm) is 241.28 mg g-1 at pH 3.0 for U(VI) according to the Langmuir isotherm adsorption model, and the kinetic and thermodynamic data reveal a relatively fast entropy-driven process (ΔH0 = 13.47 kJ mol-1 and ΔS0 = 75.47 J K-1 mol-1). The removal efficiency of U(VI) by HCF is comparable with that of pure cotton fibre and as-prepared MOF (noted as HST). However, the HST composite with cotton fibre significantly improved the treatment process of U(VI) from aqueous solutions in view of higher removal efficiency, lower cost and faster solid-liquid separation. Recycling experiments showed that HCF can be used up to five times with less than 10% efficiency loss.
Collapse
Affiliation(s)
- Aili Yang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou Sichuan, 621907, China.
| | - Zhijun Wang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou Sichuan, 621907, China
| | - Yukuan Zhu
- Institute of Materials, China Academy of Engineering Physics, Jiangyou Sichuan, 621907, China
| |
Collapse
|
102
|
Jin L, Lv S, Miao Y, Liu D, Song F. Recent Development of Porous Porphyrin‐based Nanomaterials for Photocatalysis. ChemCatChem 2020. [DOI: 10.1002/cctc.202001179] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lin Jin
- Institute of Molecular Science and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 P. R. China
| | - Shibo Lv
- Institute of Molecular Science and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 P. R. China
| | - Yuyang Miao
- Institute of Molecular Science and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 P. R. China
| | - Dapeng Liu
- Institute of Molecular Science and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 P. R. China
| | - Fengling Song
- Institute of Molecular Science and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 P. R. China
| |
Collapse
|
103
|
Li Q, Li C, Baryshnikov G, Ding Y, Zhao C, Gu T, Sha F, Liang X, Zhu W, Wu X, Ågren H, Sessler JL, Xie Y. Twisted-Planar-Twisted expanded porphyrinoid dimer as a rudimentary reaction-based methanol indicator. Nat Commun 2020; 11:5289. [PMID: 33082348 PMCID: PMC7576827 DOI: 10.1038/s41467-020-19118-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/24/2020] [Indexed: 12/23/2022] Open
Abstract
Directly linked porphyrin dimers have attracted considerable attention because of their intriguing electronic features. Most emphasis has been placed on either dimers with large dihedral angles between the constituent planar monomeric subunits or those with overall planarity, referred to as "Planar-Twisted-Planar" and "Planar-Planar-Planar", respectively. Herein, we report a "Twisted-Planar-Twisted" framework, the hexaphyrin dimer D that exists in a trans configuration. Treatment of D with MeOH affords two isomeric dimers, MD1 and MD2, both of which incorporate a methoxy moiety and exist in cis orientations with respect to the tethering linkage. The methanol-promoted conversion is accompanied by a readily discernible color change from green to brown and is not induced to an appreciable level by other alcohols. Dimer D thus acts as a rudimentary, albeit highly selective, reaction-based methanol indicator. This work provides a promising approach for constructing reaction-based chemosensors using porphyrinoid dimers of nonplanar subunits with biased reactivity.
Collapse
Affiliation(s)
- Qizhao Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Glib Baryshnikov
- School of Biotechnology, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Yubin Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Tingting Gu
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Xu Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Weihua Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Hans Ågren
- School of Biotechnology, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA.
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, China.
| |
Collapse
|
104
|
Huang W, Tang J, Diao F, Engelbrekt C, Ulstrup J, Xiao X, Mølhave K. Recent Progress of Two‐Dimensional Metal‐Organic Frameworks and Their Derivatives for Oxygen Evolution Electrocatalysis. ChemElectroChem 2020. [DOI: 10.1002/celc.202001137] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wei Huang
- Department of Chemistry Technical University of Denmark 2800 Kongens Lyngby Denmark
- DTU Nanolab – National Center for Nanofabrication and Characterization Technical University of Denmark 2800 Kongens Lyngby Denmark
| | - Jing Tang
- Department of Chemistry Technical University of Denmark 2800 Kongens Lyngby Denmark
| | - Fangyuan Diao
- Department of Chemistry Technical University of Denmark 2800 Kongens Lyngby Denmark
| | - Christian Engelbrekt
- Department of Chemistry Technical University of Denmark 2800 Kongens Lyngby Denmark
| | - Jens Ulstrup
- Department of Chemistry Technical University of Denmark 2800 Kongens Lyngby Denmark
| | - Xinxin Xiao
- Department of Chemistry Technical University of Denmark 2800 Kongens Lyngby Denmark
| | - Kristian Mølhave
- DTU Nanolab – National Center for Nanofabrication and Characterization Technical University of Denmark 2800 Kongens Lyngby Denmark
| |
Collapse
|
105
|
Tan X, Li C, Li M. Synthesis of a two‐dimensional porphyrin framework connected by 1,
3‐diyne
linkages via
in situ
deprotection of trimethylsilicon at a water/oil interface. POLYM INT 2020. [DOI: 10.1002/pi.6120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xianyang Tan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry‐of‐Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering Hubei University Wuhan China
| | - Chan Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry‐of‐Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering Hubei University Wuhan China
| | - Ming Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry‐of‐Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering Hubei University Wuhan China
| |
Collapse
|
106
|
Xu W, Kang Y, Jiao L, Wu Y, Yan H, Li J, Gu W, Song W, Zhu C. Tuning Atomically Dispersed Fe Sites in Metal-Organic Frameworks Boosts Peroxidase-Like Activity for Sensitive Biosensing. NANO-MICRO LETTERS 2020; 12:184. [PMID: 34138213 PMCID: PMC7770903 DOI: 10.1007/s40820-020-00520-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 05/16/2023]
Abstract
Although nanozymes have been widely developed, accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges. Herein, two functional groups with opposite electron modulation abilities (nitro and amino) were introduced into the metal-organic frameworks (MIL-101(Fe)) to tune the atomically dispersed metal sites and thus regulate the enzyme-like activity. Notably, the functionalization of nitro can enhance the peroxidase (POD)-like activity of MIL-101(Fe), while the amino is poles apart. Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) with a low reaction energy barrier for the HO* formation exhibits a superior POD-like activity. As a concept of the application, a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2-50 mU mL-1 with a limit of detection of 0.14 mU mL-1. Moreover, the detection of organophosphorus pesticides was also achieved. This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.
Collapse
Affiliation(s)
- Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yikun Kang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Jinli Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China.
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
107
|
Shao B, Wan S, Yang C, Shen J, Li Y, You H, Chen D, Fan C, Liu K, Zhang H. Engineered Anisotropic Fluids of Rare‐Earth Nanomaterials. Angew Chem Int Ed Engl 2020; 59:18213-18217. [DOI: 10.1002/anie.202007676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Baiqi Shao
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Sikang Wan
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Chenjing Yang
- Institute of Process Equipment College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 China
| | - Jianlei Shen
- Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Yiwen Li
- National Center for Protein Science Shanghai Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Hongpeng You
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Dong Chen
- Institute of Process Equipment College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- Department of Chemistry Tsinghua University Beijing 100084 China
- University of Science and Technology of China Hefei 230026 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- Department of Chemistry Tsinghua University Beijing 100084 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
108
|
Shao B, Wan S, Yang C, Shen J, Li Y, You H, Chen D, Fan C, Liu K, Zhang H. Engineered Anisotropic Fluids of Rare‐Earth Nanomaterials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Baiqi Shao
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Sikang Wan
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Chenjing Yang
- Institute of Process Equipment College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 China
| | - Jianlei Shen
- Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Yiwen Li
- National Center for Protein Science Shanghai Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Hongpeng You
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Dong Chen
- Institute of Process Equipment College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- Department of Chemistry Tsinghua University Beijing 100084 China
- University of Science and Technology of China Hefei 230026 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- Department of Chemistry Tsinghua University Beijing 100084 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
109
|
Du J, Feng S, Qin P, Zhang Y, Zhang Z, Xu L. Theoretical calculation on the substituent effect of strontium para-tetraphenyl porphyrins. Struct Chem 2020. [DOI: 10.1007/s11224-020-01539-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
110
|
Monteiro JHSK. Recent Advances in Luminescence Imaging of Biological Systems Using Lanthanide(III) Luminescent Complexes. Molecules 2020; 25:E2089. [PMID: 32365719 PMCID: PMC7248892 DOI: 10.3390/molecules25092089] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
The use of luminescence in biological systems allows one to diagnose diseases and understand cellular processes. Molecular systems, particularly lanthanide(III) complexes, have emerged as an attractive system for application in cellular luminescence imaging due to their long emission lifetimes, high brightness, possibility of controlling the spectroscopic properties at the molecular level, and tailoring of the ligand structure that adds sensing and therapeutic capabilities. This review aims to provide a background in luminescence imaging and lanthanide spectroscopy and discuss selected examples from the recent literature on lanthanide(III) luminescent complexes in cellular luminescence imaging, published in the period 2016-2020. Finally, the challenges and future directions that are pointing for the development of compounds that are capable of executing multiple functions and the use of light in regions where tissues and cells have low absorption will be discussed.
Collapse
|