101
|
Ramsey LB, Prows CA, Tang Girdwood S, Van Driest S. Current Practices in Pharmacogenomics. Pediatr Clin North Am 2023; 70:995-1011. [PMID: 37704356 PMCID: PMC10865383 DOI: 10.1016/j.pcl.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Pharmacogenomics, where genomic information is used to tailor medication management, is a strategy to maximize drug efficacy and minimize toxicity. Although pediatric evidence is less robust than for adults, medications influenced by pharmacogenomics are prescribed to children and adolescents. Evidence-based guidelines and drug label annotations are available from the Clinical Pharmacogenetics Implementation Consortium (CPIC) and the Pharmacogenomics Knowledgebase (PharmGKB). Some pediatric health care facilities use pharmacogenomics to provide dosing recommendations to pediatricians. Herein, we use a case-based approach to illustrate the use of pharmacogenomic data in pediatric clinical care and provide resources for finding and using pharmacogenomic guidelines.
Collapse
Affiliation(s)
- Laura B Ramsey
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, MLC 6018, Cincinnati, OH 45229, USA; Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, MLC 6018, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 9016, Cincinnati, OH 45529, USA.
| | - Cynthia A Prows
- Division of Human Genetics, Department of Pediatrics and Center for Professional Excellence, Patient Services, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, MLC 6018, Cincinnati, OH 45229, USA
| | - Sonya Tang Girdwood
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 9016, Cincinnati, OH 45529, USA; Division of Hospital Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 9016, Cincinnati, OH 45529, USA; Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 9016, Cincinnati, OH 45529, USA
| | - Sara Van Driest
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, 8232 DOT, Nashville, TN 37205, USA
| |
Collapse
|
102
|
Kampik L, Schirmer M. Unexpected High Need for Genetic Testing in Rheumatology: A Cross-Sectional Cohort Study. Genes (Basel) 2023; 14:1858. [PMID: 37895207 PMCID: PMC10606470 DOI: 10.3390/genes14101858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Genetic testing may provide information for diagnostic, prognostic and pharmacogenetic purposes. The PREPARE study recently showed that the number of clinically relevant adverse drug reactions could be reduced via genotype-guided treatment. The aim of this work was to assess the relevance of genetic testing and its actual use in consecutive rheumatic outpatients. METHODS A retrospective cross-sectional analysis was performed with data from a prospectively designed observational project with outpatients consecutively recruited from a university clinic of rheumatology. RESULTS In this cohort of 2490 patients, the potential need for genetic testing is immense, with 57.3% of patients having the potential to benefit from genetic testing according to their diagnosis and treatment and 53.3% of patients with actually performed genetic testing for diagnostic, prognostic or pharmacogenetic purposes. In detail, patients would potentially benefit from genetic testing especially for therapeutic (28.0%) and diagnostic (26.9%) purposes. Genetic testing was performed for diagnostic purposes in 51.6% of subjects, for pharmacogenetic purposes in 3.7% and for prognostic purposes in 0.1%. The ratio between the number of patients who had had tests performed to those with a potential need for genetic testing decreased with age, from 127.1% for 20 to <30-year-old patients to 46.1% for 80 to <90-year-old patients. Pharmacogenetic testing was only performed for disease-related medications. CONCLUSIONS Genetic testing is frequently needed in patients with rheumatic diseases. The value of pharmacogenetic testing is certainly underestimated, especially in case of medications for comorbidities.
Collapse
Affiliation(s)
| | - Michael Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
103
|
van der Drift D, Simoons M, Koch BCP, Brufau G, Bindels P, Matic M, van Schaik RHN. Implementation of Pharmacogenetics in First-Line Care: Evaluation of Its Use by General Practitioners. Genes (Basel) 2023; 14:1841. [PMID: 37895189 PMCID: PMC10606701 DOI: 10.3390/genes14101841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Pharmacogenetics (PGx) can explain/predict drug therapy outcomes. There is, however, unclarity about the use and usefulness of PGx in primary care. In this study, we investigated PGx tests ordered by general practitioners (GPs) in 2021 at Dept. Clinical Chemistry, Erasmus MC, and analyzed the gene tests ordered, drugs/drug groups, reasons for testing and single-gene versus panel testing. Additionally, a survey was sent to 90 GPs asking about their experiences and barriers to implementing PGx. In total, 1206 patients and 6300 PGx tests were requested by GPs. CYP2C19 was requested most frequently (17%), and clopidogrel was the most commonly indicated drug (23%). Regarding drug groups, antidepressants (51%) were the main driver for requesting PGx, followed by antihypertensives (26%). Side effects (79%) and non-response (27%) were the main indicators. Panel testing was preferred over single-gene testing. The survey revealed knowledge on when and how to use PGx as one of the main barriers. In conclusion, PGx is currently used by GPs in clinical practice in the Netherlands. Side effects are the main reason for testing, which mostly involves antidepressants. Lack of knowledge is indicated as a major barrier, indicating the need for more education on PGx for GPs.
Collapse
Affiliation(s)
- Denise van der Drift
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Mirjam Simoons
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Birgit C. P. Koch
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Gemma Brufau
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Clinical Chemistry, Result Laboratory, 3318 AT Dordrecht, The Netherlands
| | - Patrick Bindels
- Department of General Practice, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Maja Matic
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
104
|
Shannon ML, Muhammad A, James NT, Williams ML, Breeyear J, Edwards T, Mosley JD, Choi L, Kannankeril P, Van Driest S. Variant-based heritability assessment of dexmedetomidine and fentanyl clearance in pediatric patients. Clin Transl Sci 2023; 16:1628-1638. [PMID: 37353859 PMCID: PMC10499425 DOI: 10.1111/cts.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023] Open
Abstract
Despite complex pathways of drug disposition, clinical pharmacogenetic predictors currently rely on only a few high effect variants. Quantification of the polygenic contribution to variability in drug disposition is necessary to prioritize target drugs for pharmacogenomic approaches and guide analytic methods. Dexmedetomidine and fentanyl, often used in postoperative care of pediatric patients, have high rates of inter-individual variability in dosing requirements. Analyzing previously generated population pharmacokinetic parameters, we used Bayesian hierarchical mixed modeling to measure narrow-sense (additive) heritability (h SNP 2 ) of dexmedetomidine and fentanyl clearance in children and identify relative contributions of small, moderate, and large effect-size variants toh SNP 2 . We used genome-wide association studies (GWAS) to identify variants contributing to variation in dexmedetomidine and fentanyl clearance, followed by functional analyses to identify associated pathways. For dexmedetomidine, median clearance was 33.0 L/h (interquartile range [IQR] 23.8-47.9 L/h) andh SNP 2 was estimated to be 0.35 (90% credible interval 0.00-0.90), with 45% ofh SNP 2 attributed to large-, 32% to moderate-, and 23% to small-effect variants. The fentanyl cohort had median clearance of 8.2 L/h (IQR 4.7-16.7 L/h), with estimatedh SNP 2 of 0.30 (90% credible interval 0.00-0.84). Large-effect variants accounted for 30% ofh SNP 2 , whereas moderate- and small-effect variants accounted for 37% and 33%, respectively. As expected, given small sample sizes, no individual variants or pathways were significantly associated with dexmedetomidine or fentanyl clearance by GWAS. We conclude that clearance of both drugs is highly polygenic, motivating the future use of polygenic risk scores to guide appropriate dosing of dexmedetomidine and fentanyl.
Collapse
Affiliation(s)
| | - Ayesha Muhammad
- School of MedicineVanderbilt UniversityNashvilleTennesseeUSA
| | - Nathan T. James
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
- Present address:
Berry Consultants, LLCAustinTexasUSA
| | - Michael L. Williams
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
- Present address:
Department of Clinical Pharmacology and Quantitative PharmacologyAstraZenecaGothenburgSweden
| | - Joseph Breeyear
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Todd Edwards
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jonathan D. Mosley
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Leena Choi
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Prince Kannankeril
- Center for Pediatric Precision Medicine, Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sara Van Driest
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Center for Pediatric Precision Medicine, Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
- Present address:
All of Us Research ProgramNational Institutes of HealthWashingtonDCUSA
| |
Collapse
|
105
|
Ostrenga AR, Thackray J, McLearan HMH, Mulieri KM, Bisaccia E, Militano O, Dupuis LL, Bernhardt MB. Children's Oncology Group's 2023 blueprint for research: Pharmacy. Pediatr Blood Cancer 2023; 70 Suppl 6:e30581. [PMID: 37460409 PMCID: PMC10529855 DOI: 10.1002/pbc.30581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Children's Oncology Group (COG) pharmacists and pharmacy technicians from more than 200 COG-member institutions comprise the COG Pharmacy Discipline. Discipline members serve an essential role in the design and execution of COG clinical trials. Core activities include study drug management, study drug access, clinical trial operations, protocol harmonization, and direct patient care. Discipline members are also actively involved in continuing education, membership engagement, and research across other COG committees/domains. Future areas of committed growth for the discipline include pharmacogenomics, pharmacokinetics, pharmacoeconomics, pharmaceutics, and implementation science.
Collapse
Affiliation(s)
- Andrew R Ostrenga
- Department of Pharmacy, University of Mississippi Medical Center, Children's of Mississippi, Jackson, Mississippi, USA
| | - Jennifer Thackray
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ha-Mill H McLearan
- Department of Pharmacy, University of California Davis Medical Center and Children's Hospital, Sacramento, California, USA
| | - Kevin M Mulieri
- Department of Pharmacy, Penn State Children's Hospital, Hershey, Pennsylvania, USA
| | - Elizabeth Bisaccia
- Department of Pharmacy, Advocate Children's Hospital-Park Ridge, Park Ridge, Illinois, USA
| | - Olga Militano
- Study Development Office, Children's Oncology Group, Monrovia, California, USA
| | - L Lee Dupuis
- Department of Pharmacy, The Hospital for Sick Children, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - M Brooke Bernhardt
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Texas Children's Cancer and Hematology Center, Houston, Texas, USA
| |
Collapse
|
106
|
Matišić V, Brlek P, Bulić L, Molnar V, Dasović M, Primorac D. Population Pharmacogenomics in Croatia: Evaluating the PGx Allele Frequency and the Impact of Treatment Efficiency. Int J Mol Sci 2023; 24:13498. [PMID: 37686303 PMCID: PMC10487565 DOI: 10.3390/ijms241713498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Adverse drug reactions (ADRs) are a significant cause of mortality, and pharmacogenomics (PGx) offers the potential to optimize therapeutic efficacy while minimizing ADRs. However, there is a lack of data on the Croatian population, highlighting the need for investigating the most common alleles, genotypes, and phenotypes to establish national guidelines for drug use. METHODS A single-center retrospective cross-sectional study was performed to examine the allele, genotype, and phenotype frequencies of drug-metabolizing enzymes, receptors, and other proteins in a random sample of 522 patients from Croatia using a 28-gene PGx panel. RESULTS Allele frequencies, genotypes, and phenotypes for the investigated genes were determined. No statistically significant differences were found between the Croatian and European populations for most analyzed genes. The most common genotypes observed in the patients resulted in normal metabolism rates. However, some genes showed higher frequencies of altered metabolism rates. CONCLUSIONS This study provides insights into the allele, genotype, and phenotype frequencies of drug-metabolizing enzymes, receptors, and other associated proteins in the Croatian population. The findings contribute to optimizing drug use guidelines, potentially reducing ADRs, and improving therapeutic efficacy. Further research is needed to tailor population-specific interventions based on these findings and their long-term benefits.
Collapse
Affiliation(s)
- Vid Matišić
- St Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (P.B.); (V.M.)
| | - Petar Brlek
- St Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (P.B.); (V.M.)
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Luka Bulić
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (M.D.)
| | - Vilim Molnar
- St Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (P.B.); (V.M.)
| | - Marina Dasović
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (M.D.)
| | - Dragan Primorac
- St Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (P.B.); (V.M.)
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Medical School REGIOMED, 96450 Coburg, Germany
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- National Forensic Sciences University, Gujarat 382007, India
| |
Collapse
|
107
|
Martínez-Iglesias O, Naidoo V, Carrera I, Carril JC, Cacabelos N, Cacabelos R. Influence of Metabolic, Transporter, and Pathogenic Genes on Pharmacogenetics and DNA Methylation in Neurological Disorders. BIOLOGY 2023; 12:1156. [PMID: 37759556 PMCID: PMC10525670 DOI: 10.3390/biology12091156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023]
Abstract
Pharmacogenetics and DNA methylation influence therapeutic outcomes and provide insights into potential therapeutic targets for brain-related disorders. To understand the effect of genetic polymorphisms on drug response and disease risk, we analyzed the relationship between global DNA methylation, drug-metabolizing enzymes, transport genes, and pathogenic gene phenotypes in serum samples from two groups of patients: Group A, which showed increased 5-methylcytosine (5mC) levels during clinical follow-up, and Group B, which exhibited no discernible change in 5mC levels. We identified specific SNPs in several metabolizing genes, including CYP1A2, CYP2C9, CYP4F2, GSTP1, and NAT2, that were associated with differential drug responses. Specific SNPs in CYP had a significant impact on enzyme activity, leading to changes in phenotypic distribution between the two patient groups. Group B, which contained a lower frequency of normal metabolizers and a higher frequency of ultra-rapid metabolizers compared to patients in Group A, did not show an improvement in 5mC levels during follow-up. Furthermore, there were significant differences in phenotype distribution between patient Groups A and B for several SNPs associated with transporter genes (ABCB1, ABCC2, SLC2A9, SLC39A8, and SLCO1B1) and pathogenic genes (APOE, NBEA, and PTGS2). These findings appear to suggest that the interplay between pharmacogenomics and DNA methylation has important implications for improving treatment outcomes in patients with brain-related disorders.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain; (V.N.); (I.C.); (J.C.C.); (N.C.); (R.C.)
| | | | | | | | | | | |
Collapse
|
108
|
V J, M S, Alsharif KF, Halawani IF, Ahmed SSSJ, Patil S. Comparative assessment of anti-cancer drugs against NUDT15 variants to prevent leucopenia side effect in leukemia patients. J Genet Eng Biotechnol 2023; 21:82. [PMID: 37556043 PMCID: PMC10412517 DOI: 10.1186/s43141-023-00538-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Human nucleotide triphosphate diphosphatase (NUDT15) is one of the essential proteins involved in the hydrolysis of anti-cancer drugs against leukemia. Polymorphisms in NUDT15 significantly affect the hydrolysis activity that leads to side effects, including leucopenia. Drugs having a better affinity with NUDT15 protein and contributing stable conformation may benefit patients from leucopenia. Most frequent NUDT15 polymorphisms causing structure variability and their association with leukemia were screened. The selected protein variants and anti-cancer drug structures were collected. Further, molecular docking was performed between drugs and NUDT15 variants along with the wild-type. Finally, molecular dynamics were executed for 100 ns to understand the stability of the protein with the anti-cancer drug based on molecular trajectories. RESULTS Three-dimensional structures of NUDT15 wild, the most frequent variants (Val18Ile, Arg139Cys, and Arg139), and the anti-cancer drugs (azathioprine, mercaptopurine, and thioguanine) were selected and retrieved from structure databases. On molecular docking the binding energies of anti-cancer drugs against NUDT15 structures ranged from - 5.0 to - 5.9 kcal/mol. Among them, azathioprine showed the highest affinities (- 7.3 kcal/mol) for the wild and variant structures. Additionally, the molecular dynamics suggest all analyzed NUDT15 were stable with azathioprine based on the dynamic trajectories. CONCLUSION Our results suggest azathioprine could be the preferable anti-cancer drug for the population with NUDT15 variants that could effectively be hydrolyzed as evidenced by molecular docking and dynamic simulation.
Collapse
Affiliation(s)
- Janakiraman V
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Sudhan M
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Shiek S S J Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| |
Collapse
|
109
|
Cook KJ, Grusauskas V, Gloe L, Duong BQ, Gresh RC, Kolb EA, Bansal M, Bechtel AS, Nagasubramanian R, Kirwin SM, Blake KV, Seligson ND. Comparison of variants in TPMT and NUDT15 between sequencing and genotyping methods in a multistate pediatric institution. Clin Transl Sci 2023; 16:1352-1358. [PMID: 37415296 PMCID: PMC10432880 DOI: 10.1111/cts.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 04/23/2023] [Indexed: 07/08/2023] Open
Abstract
The risk of severe adverse events related to thiopurine therapy can be reduced by personalizing dosing based on TPMT and NUDT15 genetic polymorphisms. However, the optimal genetic testing platform has not yet been established. In this study, we report on the TPMT and NUDT15 genotypes and phenotypes generated from 320 patients from a multicenter pediatric healthcare system using both Sanger sequencing and polymerase chain reaction genotyping (hereafter: genotyping) methods to determine the appropriateness of genotyping in our patient population. Sanger sequencing identified variant TPMT alleles including *3A (8, 3.2% of alleles), *3C (4, 1.6%), and *2 (1, 0.4%), and NUDT15 alleles including *2 (5, 3.6%) and *3 (1, 0.7%). For genotyped patients, variants identified in TPMT included *3A (12, 3.1%), *3C (4, 1%), *2 (2, 0.5%), and *8 (1, 0.25%), whereas NUDT15 included *4 (2, 1.9%) and *2 or *3 (1, 1%). Between Sanger sequencing and genotyping, no significant difference in allele, genotype, or phenotype frequency was identified for either TPMT or NUDT15. All patients who were tested using Sanger sequencing would have been accurately phenotyped for either TPMT (124/124), NUDT15 (69/69), or both genes (68/68) if they were assayed using the genotyping method. Considering 193 total TPMT and NUDT15 Sanger Sequencing tests reviewed, all tests would have resulted in an appropriate clinical recommendation if the test had instead been conducted using the comparison genotyping platforms. These results suggest that, in this study population, genotyping would be sufficient to provide accurate phenotype calls and clinical recommendations.
Collapse
Affiliation(s)
- Kelsey J. Cook
- Precision MedicineNemours Children's HealthJacksonvilleFloridaUSA
- Department of Pharmacotherapy and Translational ResearchThe University of Florida College of PharmacyJacksonvilleFloridaUSA
| | - Victoria Grusauskas
- Precision MedicineNemours Children's HealthJacksonvilleFloridaUSA
- Department of Pharmacotherapy and Translational ResearchThe University of Florida College of PharmacyJacksonvilleFloridaUSA
| | - Lucy Gloe
- Precision MedicineNemours Children's HealthJacksonvilleFloridaUSA
- Department of Pharmacotherapy and Translational ResearchThe University of Florida College of PharmacyJacksonvilleFloridaUSA
| | | | - Renee C. Gresh
- Department of Pediatric Hematology/OncologyNemours Children's HealthWilmingtonDelawareUSA
| | - E. Anders Kolb
- Department of Pediatric Hematology/OncologyNemours Children's HealthWilmingtonDelawareUSA
| | - Manisha Bansal
- Department of Pediatric Hematology/OncologyNemours Children's HealthJacksonvilleFloridaUSA
| | - Allison S. Bechtel
- Department of Pediatric Hematology/OncologyNemours Children's HealthJacksonvilleFloridaUSA
| | | | - Susan M. Kirwin
- Molecular Diagnostics LaboratoryNemours Children's HealthWilmingtonDelawareUSA
| | - Kathryn V. Blake
- Precision MedicineNemours Children's HealthJacksonvilleFloridaUSA
| | - Nathan D. Seligson
- Precision MedicineNemours Children's HealthJacksonvilleFloridaUSA
- Department of Pharmacotherapy and Translational ResearchThe University of Florida College of PharmacyJacksonvilleFloridaUSA
| |
Collapse
|
110
|
Seligson ND, Kolesar JM, Alam B, Baker L, Lamba JK, Fridley BL, Salahudeen AA, Hertz DL, Hicks JK. Integrating pharmacogenomic testing into paired germline and somatic genomic testing in patients with cancer. Pharmacogenomics 2023; 24:731-738. [PMID: 37702060 DOI: 10.2217/pgs-2023-0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Precision medicine has revolutionized clinical care for patients with cancer through the development of targeted therapy, identification of inherited cancer predisposition syndromes and the use of pharmacogenetics to optimize pharmacotherapy for anticancer drugs and supportive care medications. While germline (patient) and somatic (tumor) genomic testing have evolved separately, recent interest in paired germline/somatic testing has led to an increase in integrated genomic testing workflows. However, paired germline/somatic testing has generally lacked the incorporation of germline pharmacogenomics. Integrating pharmacogenomics into paired germline/somatic genomic testing would be an efficient method for increasing access to pharmacogenomic testing. In this perspective, the authors argue for the benefits of implementing a comprehensive approach integrating somatic and germline testing that is inclusive of pharmacogenomics in clinical practice.
Collapse
Affiliation(s)
- Nathan D Seligson
- Department of Pharmacotherapy & Translational Research, The University of Florida, Jacksonville, FL 32209, USA
- Center for Pharmacogenomics & Translational Research, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Jill M Kolesar
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY 40536, USA
| | - Benish Alam
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Laura Baker
- Nemours Center for Cancer & Blood Disorders, Nemours Children's Health, Wilmington, DE 19803, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy & Translational Research, The University of Florida, Gainesville, FL 32611, USA
| | - Brooke L Fridley
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ameen A Salahudeen
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Tempus Labs Inc., Chicago, IL 60654, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - J Kevin Hicks
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
111
|
Alsultan A, Alalwan AA, Alshehri B, Jeraisy MA, Alghamdi J, Alqahtani S, Albassam AA. Interethnic differences in drug response: projected impact of genetic variations in the Saudi population. Pharmacogenomics 2023; 24:685-696. [PMID: 37610881 DOI: 10.2217/pgs-2023-0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Ethnicity is known to have an impact on drug responses. This is particularly important for drugs that have a narrow therapeutic window, nonlinearity in pharmacokinetics and are metabolized by enzymes that demonstrate genetic polymorphisms. However, most clinical trials are conducted among Caucasians, which might limit the usefulness of the findings of such studies for other ethnicities. The representation of participants from Saudi Arabia in global clinical trials is low. Therefore, there is a paucity of evidence to assess the impact of ethnic variability in the Saudi population on drug response. In this article, the authors assess the projected impact of genetic polymorphisms in drug-metabolizing enzymes and drug targets on drug response in the Saudi population.
Collapse
Affiliation(s)
- Abdullah Alsultan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Alalwan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Bashayer Alshehri
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Majed Al Jeraisy
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Jahad Alghamdi
- Saudi Food and Drug Authority, Drug Sector, Riyadh, Saudi Arabia
| | - Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Albassam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
112
|
Valdez-Acosta S, Zubiaur P, Casado MA, Novalbos J, Casajús A, Campodónico D, Oyagüez I, Abad-Santos F. Preemptive TPMT Genotyping and Adherence to Genotype-Based Therapeutic Recommendations Reduces the Healthcare Cost in Patients Receiving Azathioprine or 6-Mercaptopurine for Autoimmune Diseases. J Pers Med 2023; 13:1208. [PMID: 37623459 PMCID: PMC10455787 DOI: 10.3390/jpm13081208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
A cost analysis of thiopurine treatment was carried out in 257 patients, with 153 preemptively genotyped for TPMT and 104 retrospectively genotyped in a Spanish setting. The healthcare cost was significantly higher in patients retrospectively genotyped compared to those who were preemptively genotyped (p < 0.001). TPMT intermediate metabolizers (IMs) (n = 23) showed a 3.3-fold higher healthcare cost when compared to normal metabolizers (NMs) (p < 0.001). The healthcare cost in patients with a TPMT IM phenotype whose physician adhered to the genotype-informed recommendation was similar than the cost in TPMT NMs and was significantly lower than IMs whose physician did not adhere to the therapeutic recommendation (3.8-fold, p = 0.016). Myelotoxicity occurrence was significantly lower in patients preemptively vs. retrospectively genotyped (2.0% and 21.2%, respectively, p < 0.001). Patients who developed myelotoxicity showed a significantly higher healthcare cost than those who did not (4.10-fold, p < 0.001). Overall, 87% of patients whose dose was not adjusted despite being TPMT IMs suffered myelotoxicity, while only one of the eight patients (13%) whose dose was adjusted suffered myelotoxicity (p < 0.001). In conclusion, TPMT preemptive genotyping and physician adherence to genotype-informed therapeutic recommendations prevents myelotoxicity and significantly reduces the healthcare cost, and it is therefore essential for the sustainability of the Spanish healthcare system.
Collapse
Affiliation(s)
- Sarahí Valdez-Acosta
- Ethics Committee for Investigation with Medicinal Products (CEIm), Fundación de Investigación Biomédica (FIBH12O), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Pharmacology Department of Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain; (J.N.); (A.C.); (D.C.)
| | - Miguel Angel Casado
- Pharmacoeconomics & Outcomes Research Iberia S.L. (PORIB), Pozuelo de Alarcón, 28224 Madrid, Spain; (M.A.C.); (I.O.)
| | - Jesús Novalbos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Pharmacology Department of Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain; (J.N.); (A.C.); (D.C.)
| | - Ana Casajús
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Pharmacology Department of Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain; (J.N.); (A.C.); (D.C.)
| | - Diana Campodónico
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Pharmacology Department of Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain; (J.N.); (A.C.); (D.C.)
| | - Itziar Oyagüez
- Pharmacoeconomics & Outcomes Research Iberia S.L. (PORIB), Pozuelo de Alarcón, 28224 Madrid, Spain; (M.A.C.); (I.O.)
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Pharmacology Department of Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain; (J.N.); (A.C.); (D.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28006 Madrid, Spain
| |
Collapse
|
113
|
Turolo S, Edefonti A, Syren ML, Montini G. Pharmacogenomics of Old and New Immunosuppressive Drugs for Precision Medicine in Kidney Transplantation. J Clin Med 2023; 12:4454. [PMID: 37445489 DOI: 10.3390/jcm12134454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Kidney transplantation is the preferred therapeutic option for end-stage kidney disease, but, despite major therapeutic advancements, allograft rejection continues to endanger graft survival. Every patient is unique due to his or her clinical history, drug metabolism, genetic background, and epigenetics. For this reason, examples of "personalized medicine" and "precision medicine" have steadily increased in recent decades. The final target of precision medicine is to maximize drug efficacy and minimize toxicity for each individual patient. Immunosuppressive drugs, in the setting of kidney transplantation, require a precise dosage to avoid either adverse events (overdosage) or a lack of efficacy (underdosage). In this review, we will explore the knowledge regarding the pharmacogenomics of the main immunosuppressive medications currently utilized in kidney transplantation. We will focus on clinically relevant pharmacogenomic data, that is, the polymorphisms of the genes that metabolize immunosuppressive drugs.
Collapse
Affiliation(s)
- Stefano Turolo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
| | - Alberto Edefonti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
| | - Marie Luise Syren
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Giovanni Montini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
114
|
Desai D, Jena A, Sharma V, Hibi T. Time to incorporate preemptive NUDT15 testing before starting thiopurines in inflammatory bowel disease in Asia and beyond: a review. Expert Rev Clin Pharmacol 2023; 16:643-653. [PMID: 37387532 DOI: 10.1080/17512433.2023.2232300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Thiopurine toxicity is related to genetic polymorphism. Thiopurine methyltransferase (TPMT) variants do not explain thiopurine toxicity in more than half of patients. Asians, despite the low prevalence of TPMT variants, are more susceptible to thiopurine toxicity. Since 2014, studies from many Asian countries have shown a strong association between nucleoside diphosphate-linked moiety X-type motif (NUDT) 15 polymorphism and thiopurine-induced myelotoxicity. AREAS COVERED An English language literature search was performed for TPMT and NUDT15 genetic variants in inflammatory bowel disease and other diseases. This article discusses the merits of preemptive NUDT15 and TPMT testing in Asian and non-Asian IBD populations. EXPERT OPINION The NUDT polymorphism occurs in up to 27% of the Asian and Hispanic population. Hematological toxicity occurs in up to one-third of patients with this genetic variant. Given this, preemptive testing for NUDT15 variant is worthwhile and is probably more cost-effective than TPMT testing in these groups. Prevalence of NUDT15 variants is low in non-Finnish European population, but NUDT15 variants have been linked to myelotoxicity along with TPMT genetic variants. NUDT15 preemptive testing should be considered in the migrant Asian population in Europe and North America and in Caucasian populations who develop myelotoxicity.
Collapse
Affiliation(s)
- Devendra Desai
- Division of Gastroenterology, P D Hinduja Hospital, Mumbai, India
| | - Anuraag Jena
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato Institute Hospital, Kitasato University, Tokyo, Japan
| |
Collapse
|
115
|
Liu J, Zhang C, Song J, Zhang Q, Zhang R, Zhang M, Han D, Tan W. Unlocking Genetic Profiles with a Programmable DNA-Powered Decoding Circuit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206343. [PMID: 37116171 PMCID: PMC10369254 DOI: 10.1002/advs.202206343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Human genetic architecture provides remarkable insights into disease risk prediction and personalized medication. Advances in genomics have boosted the fine-mapping of disease-associated genetic variants across human genome. In healthcare practice, interpreting intricate genetic profiles into actionable medical decisions can improve health outcomes but remains challenging. Here an intelligent genetic decoder is engineered with programmable DNA computation to automate clinical analyses and interpretations. The DNA-based decoder recognizes multiplex genetic information by one-pot ligase-dependent reactions and interprets implicit genetic profiles into explicit decision reports. It is shown that the DNA decoder implements intended computation on genetic profiles and outputs a corresponding answer within hours. Effectiveness in 30 human genomic samples is validated and it is shown that it achieves desirable performance on the interpretation of CYP2C19 genetic profiles into drug responses, with accuracy equivalent to that of Sanger sequencing. Circuit modules of the DNA decoder can also be readily reprogrammed to interpret another pharmacogenetics genes, provide drug dosing recommendations, and implement reliable molecular calculation of polygenic risk score (PRS) and PRS-informed cancer risk assessment. The DNA-powered intelligent decoder provides a general solution to the translation of complex genetic profiles into actionable healthcare decisions and will facilitate personalized healthcare in primary care.
Collapse
Affiliation(s)
- Junlan Liu
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Chao Zhang
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Jinxing Song
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Qing Zhang
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Rongjun Zhang
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Mingzhi Zhang
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Da Han
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringCollege of BiologyAptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| |
Collapse
|
116
|
The Korean Association for the Study of the Liver (KASL). KASL clinical practice guidelines for management of autoimmune hepatitis 2022. Clin Mol Hepatol 2023; 29:542-592. [PMID: 37137334 PMCID: PMC10366804 DOI: 10.3350/cmh.2023.0087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
|
117
|
Jena A, Birda CL, Choudhury A, Sharma V. Safety and efficacy of personalized versus standard initial dosing of thiopurines: Systematic review and meta-analysis of randomized trials. Expert Opin Drug Saf 2023; 22:1253-1263. [PMID: 37436005 DOI: 10.1080/14740338.2023.2236554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Pretherapy assessment of specific genetic polymorphism (TPMT, NUDT15, FTO, RUNX1, etc) or enzyme levels (for TPMT) may help personalize the dose of thiopurines and avoid adverse effects. RESEARCH DESIGN AND METHODS A systematic review of randomized controlled trials (RCTs) comparing personalized versus standard strategy for initial thiopurine dosing was performed. The electronic databases were searched on 27 September 2022. The outcomes were overall adverse effects, myelotoxicity, drug interruptions, and therapeutic efficacy with either strategy. The certainty of evidence was assessed using GRADE methodology. RESULTS We included six randomized trials, done dominantly in patients with inflammatory bowel disease (IBD). The personalized strategies were genotype testing in 4 trials (TPMT in three trials, NUDT15 in two) and enzyme levels for TPMT in two trials. The pooled risk of myelotoxicity in personalized dosing was lower [RR = 0.72 (95%CI, 0.55-0.94, I2 = 0%)]. The pooled risk of pancreatitis (RR = 1.10I, 0.78-1.56, I2 = 0%), hepatotoxicity (RR = 1.13, 0.69-1.88, I2 = 45), and GI intolerance (RR = 1.01, 0.92-1.10, I2 = 0) were similar in two groups. The pooled risk of drug interruption in individualized dosing was similar to the standard dosing group (RR = 0.97, I2 = 68%). CONCLUSION Personalized testing-based initial thiopurine dosing is protective against myelotoxicity as compared to standard weight-based dosing.
Collapse
Affiliation(s)
- Anuraag Jena
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chhagan L Birda
- Department of Medical Gastroenterology, All India Institute of Medical Sciences, Jodhpur, India
| | - Arup Choudhury
- Department of Medicine, Nagaon Medical College, Nagaon, Assam, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
118
|
Padmanabhan S, du Toit C, Dominiczak AF. Cardiovascular precision medicine - A pharmacogenomic perspective. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e28. [PMID: 38550953 PMCID: PMC10953758 DOI: 10.1017/pcm.2023.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 05/16/2024]
Abstract
Precision medicine envisages the integration of an individual's clinical and biological features obtained from laboratory tests, imaging, high-throughput omics and health records, to drive a personalised approach to diagnosis and treatment with a higher chance of success. As only up to half of patients respond to medication prescribed following the current one-size-fits-all treatment strategy, the need for a more personalised approach is evident. One of the routes to transforming healthcare through precision medicine is pharmacogenomics (PGx). Around 95% of the population is estimated to carry one or more actionable pharmacogenetic variants and over 75% of adults over 50 years old are on a prescription with a known PGx association. Whilst there are compelling examples of pharmacogenomic implementation in clinical practice, the case for cardiovascular PGx is still evolving. In this review, we shall summarise the current status of PGx in cardiovascular diseases and look at the key enablers and barriers to PGx implementation in clinical practice.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Clea du Toit
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Anna F. Dominiczak
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
119
|
Li P, Chao K, Hu Z, Qin L, Yang T, Mao J, Zhu X, Hu P, Wang X, Gao X, Huang M. Plasma lipidomic profiling of thiopurine-induced leukopenia after NUDT15 genotype-guided dosing in Chinese IBD patients. Front Nutr 2023; 10:1138506. [PMID: 37441519 PMCID: PMC10333543 DOI: 10.3389/fnut.2023.1138506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/10/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Thiopurines, azathiopurine (AZA) and mercaptopurine (6-MP) have been regularly used in the treatment of inflammatory bowel disease (IBD). Despite optimized dosage adjustment based on the NUDT15 genotypes, some patients still discontinue or change treatment regimens due to thiopurine-induced leukopenia. Methods We proposed a prospective observational study of lipidomics to reveal the lipids perturbations associated with thiopurine-induced leukopenia. One hundred and twenty-seven IBD participants treated with thiopurine were enrolled, twenty-seven of which have developed thiopurine-induced leucopenia. Plasma lipid profiles were measured using Ultra-High-Performance Liquid Chromatography-Tandem Q-Exactive. Lipidomic alterations were validated with an independent validation cohort (leukopenia n = 26, non-leukopenia n = 74). Results Using univariate and multivariate analysis, there were 16 lipid species from four lipid classes, triglyceride (n = 11), sphingomyelin (n = 1), phosphatidylcholine (n = 1) and lactosylceramide (n = 3) identified. Based on machine learning feature reduction and variable screening strategies, the random forest algorithm established by six lipids showed an excellent performance to distinguish the leukopenia group from the normal group, with a model accuracy of 95.28% (discovery cohort), 79.00% (validation cohort) and an area under the receiver operating characteristic (ROC) curve (ROC-AUC) of 0.9989 (discovery cohort), 0.8098 (validation cohort). Discussion Our novel findings suggested that lipidomic provided unique insights into formulating individualized medication strategies for thiopurines in IBD patients.
Collapse
Affiliation(s)
- Pan Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kang Chao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, China
| | - Zhanhua Hu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lulu Qin
- School of Pharmaceutical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Mao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xia Zhu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, China
| | - Pinjin Hu
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, China
| | - Xueding Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiang Gao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
120
|
Sandritter T, Chevalier R, Abt R, Shakhnovich V. Pharmacogenetic Testing for the Pediatric Gastroenterologist: Actionable Drug-Gene Pairs to Know. Pharmaceuticals (Basel) 2023; 16:889. [PMID: 37375836 DOI: 10.3390/ph16060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Gastroenterologists represent some of the earlier adopters of precision medicine through pharmacogenetic testing by embracing upfront genotyping for thiopurine S-methyltransferase nucleotide diphosphatase (TPMT) before prescribing 6-mercaptopurine or azathioprine for the treatment of inflammatory bowel disease. Over the last two decades, pharmacogenetic testing has become more readily available for other genes relevant to drug dose individualization. Common medications prescribed by gastroenterologists for conditions other than inflammatory bowel disease now have actionable guidelines, which can improve medication efficacy and safety; however, a clear understanding of how to interpret the results remains a challenge for many clinicians, precluding wide implementation of genotype-guided dosing for drugs other than 6-mercaptopurine and azathioprine. Our goal is to provide a practical tutorial on the currently available pharmacogenetic testing options and a results interpretation for drug-gene pairs important to medications commonly used in pediatric gastroenterology. We focus on evidence-based clinical guidelines published by the Clinical Pharmacogenetics Implementation Consortium (CPIC®) to highlight relevant drug-gene pairs, including proton pump inhibitors and selective serotonin reuptake inhibitors and cytochrome P450 (CYP) 2C19, ondansetron and CYP2D6, 6-mercaptopurine and TMPT and Nudix hydrolase 15 (NUDT15), and budesonide and tacrolimus and CYP3A5.
Collapse
Affiliation(s)
- Tracy Sandritter
- Division of Clinical Pharmacology/Medical Toxicology and Therapeutic Innovation, Children's Mercy Hospital, 2401 Gillham Road, Kansas City, MO 64108, USA
- Department of Pharmacy Practice, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Rachel Chevalier
- Division of Gastroenterology, Children's Mercy Hospital, 2401 Gillham Rd., Kansas City, MO 64108, USA
- Department of Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Rebecca Abt
- ProPharma Group, Overland Park, KS 66210, USA
| | - Valentina Shakhnovich
- Division of Clinical Pharmacology/Medical Toxicology and Therapeutic Innovation, Children's Mercy Hospital, 2401 Gillham Road, Kansas City, MO 64108, USA
- Department of Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
121
|
Dodson C, Layman L. Interdisciplinary Collaboration Among Nursing and Computer Science to Refine a Pharmacogenetics Clinical Decision Support Tool Via Mobile Application. Comput Inform Nurs 2023; 41:442-448. [PMID: 36731048 DOI: 10.1097/cin.0000000000000960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In previous work, a prototype clinical decision support mobile application was created that accepts a patient's genomic profile information and provides information and rationale for the prescription of certain oncology medications. The response to the instrument was overwhelmingly positive by healthcare providers in the oncology field who tested the instrument. This article reports on the interdisciplinary collaboration among nursing and computer science to redesign and reimplement a new version of the instrument with expanded functionality and improved usability. This article describes the functionality, usability considerations, and usability evaluation of the instrument over three versions. The current version is Web-based and responsive to different screen sizes (desktop, tablet, mobile), features improved usability, and expands the number of gene-drug recommendations provided based on Clinical Pharmacogenetics Implementation Consortium dosing guidelines. This project represents a successful new collaboration between the nursing and computer science disciplines.
Collapse
Affiliation(s)
- Crystal Dodson
- Author Affiliation: University of North Carolina Wilmington
| | | |
Collapse
|
122
|
Chikondowa P, Munkombwe D, Chikwambi Z, Kuona P, Masimirembwa C. Pharmacogenetics of 6-mercaptopurine in a black Zimbabwean cohort treated for acute lymphoblastic leukaemia. Pharmacogenomics 2023; 24:449-457. [PMID: 37248698 PMCID: PMC10463210 DOI: 10.2217/pgs-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Background: 6-mercaptopurine usage is associated with myelotoxicity and increased risk in patients carrying metabolism-related genetic variations. This study aimed to determine the frequency of candidate gene polymorphisms and their association with 6-mercaptopurine intolerance. Methods: A total of 41 patients on acute lymphoblastic leukaemia treatment were genotyped for TPMT and NUDT15 (rs116855232) alleles, and their association with dose intensity was analyzed. Results: The defective TPMT*3C allele frequency was 9.8%. The median maintenance dose intensity for TPMT*1/*3C participants was considerably lower (47%) when compared with the TPMT*1/*1 wild-type (77%), although not statistically significant. Conclusion: This is the first pharmacogenetics study carried out in a black Zimbabwean leukemia patient cohort. The high defective TPMT*3C (9.8%) allele frequency points to the potential utility of pharmacogenetics testing for safe usage of 6-mercaptopurine in this population.
Collapse
Affiliation(s)
- Pageneck Chikondowa
- Department of Genomic Medicine, African Institute of Biomedical Science & Technology (AiBST), Harare, Zimbabwe
- Department of Biotechnology, School of Health Science & Technology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Derick Munkombwe
- Department of Genomic Medicine, African Institute of Biomedical Science & Technology (AiBST), Harare, Zimbabwe
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, 10101, Zambia
| | - Zedias Chikwambi
- Department of Genomic Medicine, African Institute of Biomedical Science & Technology (AiBST), Harare, Zimbabwe
- Department of Biotechnology, School of Health Science & Technology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Patience Kuona
- Department of Paediatrics, Faculty of Medicine & Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Collen Masimirembwa
- Department of Genomic Medicine, African Institute of Biomedical Science & Technology (AiBST), Harare, Zimbabwe
| |
Collapse
|
123
|
Elford AT, Dimovski S, Christensen B. Tricks and traps of thioguanine: a case report of myelotoxicity. Intern Med J 2023; 53:1089-1090. [PMID: 37349276 DOI: 10.1111/imj.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/04/2023] [Indexed: 06/24/2023]
Affiliation(s)
- Alexander T Elford
- Royal Melbourne Hospital, Melbourne, Victoria, Australia
- University of Tasmania, Hobart, Tasmania, Australia
| | | | - Britt Christensen
- Royal Melbourne Hospital, Melbourne, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
124
|
Samarasinghe SR, Hoy W, Jadhao S, McMorran BJ, Guchelaar HJ, Nagaraj SH. The pharmacogenomic landscape of an Indigenous Australian population. Front Pharmacol 2023; 14:1180640. [PMID: 37284308 PMCID: PMC10241071 DOI: 10.3389/fphar.2023.1180640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Population genomic studies of individuals of Indigenous ancestry have been extremely limited comprising <0.5% of participants in international genetic databases and genome-wide association studies, contributing to a "genomic gap" that limits their access to personalised medicine. While Indigenous Australians face a high burden of chronic disease and associated medication exposure, corresponding genomic and drug safety datasets are sorely lacking. Methods: To address this, we conducted a pharmacogenomic study of almost 500 individuals from a founder Indigenous Tiwi population. Whole genome sequencing was performed using short-read Illumina Novaseq6000 technology. We characterised the pharmacogenomics (PGx) landscape of this population by analysing sequencing results and associated pharmacological treatment data. Results: We observed that every individual in the cohort carry at least one actionable genotype and 77% of them carry at least three clinically actionable genotypes across 19 pharmacogenes. Overall, 41% of the Tiwi cohort were predicted to exhibit impaired CYP2D6 metabolism, with this frequency being much higher than that for other global populations. Over half of the population predicted an impaired CYP2C9, CYP2C19, and CYP2B6 metabolism with implications for the processing of commonly used analgesics, statins, anticoagulants, antiretrovirals, antidepressants, and antipsychotics. Moreover, we identified 31 potentially actionable novel variants within Very Important Pharmacogenes (VIPs), five of which were common among the Tiwi. We further detected important clinical implications for the drugs involved with cancer pharmacogenomics such as thiopurines and tamoxifen, immunosuppressants like tacrolimus and certain antivirals used in the hepatitis C treatment due to potential differences in their metabolic processing. Conclusion: The pharmacogenomic profiles generated in our study demonstrate the utility of pre-emptive PGx testing and have the potential to help guide the development and application of precision therapeutic strategies tailored to Tiwi Indigenous patients. Our research provides valuable insights on pre-emptive PGx testing and the feasibility of its use in ancestrally diverse populations, emphasizing the need for increased diversity and inclusivity in PGx investigations.
Collapse
Affiliation(s)
| | - Wendy Hoy
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Sudhir Jadhao
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brendan J McMorran
- John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
125
|
Gu J, Lin Y, Wang Y. Case report: NUDT15 polymorphism and severe azathioprine-induced myelosuppression in a young Chinese female with systematic lupus erythematosus: a case analysis and literature review. Front Pharmacol 2023; 14:1001559. [PMID: 37229272 PMCID: PMC10203499 DOI: 10.3389/fphar.2023.1001559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Azathioprine is clinically used as an immunosuppressant for treating autoimmune diseases. However it has narrow therapeutic indices due to frequent myelosuppression. Polymorphic variants of genes coding for thiopurine S-methyltransferase (TPMT) and nucleoside diphosphate-linked moiety X motif 15 (NUDT15) are critical determinants of AZA intolerance, and the differences in frequencies of the two genetic variants exist among people of different ethnicities. Most reports regarding NUDT15 variant, AZA-induced myelosuppression occurred in patients with inflammatory bowel disease and acute lymphoblastic leukemia. Moreover, detailed clinical characteristics were not frequently reported. Here we present the case of a young Chinese female with the NUDT15 c.415C>T (rs116855232, TT) homozygous variant and wild-type TPMT*2 (rs1800462), TPMT*3B (rs1800460), and TPMT*3C (rs1142345) who received high doses of AZA (2.3 mg/kg/d) for systematic lupus erythematosus and had not been told to undergo routine blood cell counts during AZA ingestion. The patient had suffered from severe AZA-induced myelosuppression and alopecia. Moreover, dynamic changes in blood cell counts and responses to treatment were observed. We also conducted a systematic review of published case reports of patients exclusively with NUDT15 c.415C>T homozygous or heterozygous variants to review the characteristics of dynamic changes in blood cells so as to provide reference information for clinical treatment.
Collapse
Affiliation(s)
- Juan Gu
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yupei Lin
- Department of Rheumatology and Immunology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuhe Wang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
126
|
Ali AM, Adam H, Hailu D, Engidawork E, Howe R, Abula T, Coenen MJH. Genetic variants of genes involved in thiopurine metabolism pathway are associated with 6-mercaptopurine toxicity in pediatric acute lymphoblastic leukemia patients from Ethiopia. Front Pharmacol 2023; 14:1159307. [PMID: 37251339 PMCID: PMC10214954 DOI: 10.3389/fphar.2023.1159307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Genetic variation in the thiopurine S-methyltransferase (TPMT) gene by and large predicts variability in 6-mercaptopurine (6-MP) related toxicities. However, some individuals without genetic variants in TPMT still develop toxicity that necessitates 6-MP dose reduction or interruption. Genetic variants of other genes in the thiopurine pathway have been linked to 6-MP related toxicities previously. Objective: The aim of this study was to evaluate the effect of genetic variants in ITPA, TPMT, NUDT15, XDH, and ABCB1 on 6-MP related toxicities in patients with acute lymphoblastic leukemia (ALL) from Ethiopia. Methods: Genotyping of ITPA, and XDH was performed using KASP genotyping assay, while that of TPMT, NUDT15, and ABCB1 with TaqMan® SNP genotyping assays. Clinical profile of the patients was collected for the first 6 months of the maintenance phase treatment. The primary outcome was the incidence of grade 4 neutropenia. Bivariable followed by multivariable cox regression analysis was performed to identify genetic variants associated with the development of grade 4 neutropenia within the first 6 months of maintenance treatment. Results: In this study, genetic variants in XDH and ITPA were associated with 6-MP related grade 4 neutropenia and neutropenic fever, respectively. Multivariable analysis revealed that patients who are homozygous (CC) for XDH rs2281547 were 2.956 times (AHR 2.956, 95% CI = 1.494-5.849, p = 0.002) more likely to develop grade 4 neutropenia than those with the TT genotype. Conclusion: In conclusion, in this cohort, XDH rs2281547 was identified as a genetic risk factor for grade 4 hematologic toxicities in ALL patients treated with 6-MP. Genetic polymorphisms in enzymes other than TPMT involved in the 6-mercaptopurine pathway should be considered during its use to avoid hematological toxicity.
Collapse
Affiliation(s)
- Awol Mekonnen Ali
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Haileyesus Adam
- Department of Pediatrics and Child Health, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Hailu
- Department of Pediatrics and Child Health, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Teferra Abula
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Marieke J. H. Coenen
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
127
|
Suarez-Kurtz G, Almeida CW, Chapchap E, Schramm MT, Ikoma-Coltutato MRV, Lins MM, Fonseca TCC, Aguiar TF, Emerenciano M. Pharmacogenetic testing for thiopurine drugs in Brazilian acute lymphoblastic leukemia patients. Clinics (Sao Paulo) 2023; 78:100214. [PMID: 37156205 DOI: 10.1016/j.clinsp.2023.100214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Affiliation(s)
- Guilherme Suarez-Kurtz
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil.
| | - Cristina Wiggers Almeida
- Hospital Federal da Lagoa (HFL), Rio de Janeiro, RJ, Brazil; Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | | | - Márcia Trindade Schramm
- Hospital do Câncer I, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil; Prontobaby Hospital da Criança Ltda, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Thais Ferraz Aguiar
- Instituto Estadual de Hematologia Arthur Siqueira Cavalcanti, Rio de Janeiro, RJ, Brazil
| | - Mariana Emerenciano
- Divisão de Pesquisa Básica e Experimental, Instituto Nacional de Câncer Rio de Janeiro, RJ, Brazil
| |
Collapse
|
128
|
Nunez-Torres R, Pita G, Peña-Chilet M, López-López D, Zamora J, Roldán G, Herráez B, Álvarez N, Alonso MR, Dopazo J, Gonzalez-Neira A. A Comprehensive Analysis of 21 Actionable Pharmacogenes in the Spanish Population: From Genetic Characterisation to Clinical Impact. Pharmaceutics 2023; 15:pharmaceutics15041286. [PMID: 37111771 PMCID: PMC10140932 DOI: 10.3390/pharmaceutics15041286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The implementation of pharmacogenetics (PGx) is a main milestones of precision medicine nowadays in order to achieve safer and more effective therapies. Nevertheless, the implementation of PGx diagnostics is extremely slow and unequal worldwide, in part due to a lack of ethnic PGx information. We analysed genetic data from 3006 Spanish individuals obtained by different high-throughput (HT) techniques. Allele frequencies were determined in our population for the main 21 actionable PGx genes associated with therapeutical changes. We found that 98% of the Spanish population harbours at least one allele associated with a therapeutical change and, thus, there would be a need for a therapeutical change in a mean of 3.31 of the 64 associated drugs. We also identified 326 putative deleterious variants that were not previously related with PGx in 18 out of the 21 main PGx genes evaluated and a total of 7122 putative deleterious variants for the 1045 PGx genes described. Additionally, we performed a comparison of the main HT diagnostic techniques, revealing that after whole genome sequencing, genotyping with the PGx HT array is the most suitable solution for PGx diagnostics. Finally, all this information was integrated in the Collaborative Spanish Variant Server to be available to and updated by the scientific community.
Collapse
Affiliation(s)
- Rocio Nunez-Torres
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Guillermo Pita
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - María Peña-Chilet
- Computational Medicine Platform, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 41013 Sevilla, Spain
- Computational Systems Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Seville, Spain
| | - Daniel López-López
- Computational Medicine Platform, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 41013 Sevilla, Spain
- Computational Systems Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Seville, Spain
| | - Jorge Zamora
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Gema Roldán
- Computational Medicine Platform, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Belén Herráez
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Nuria Álvarez
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - María Rosario Alonso
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Joaquín Dopazo
- Computational Medicine Platform, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 41013 Sevilla, Spain
- Computational Systems Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Seville, Spain
- Functional Genomics Node, FPS/ELIXIR-ES, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Anna Gonzalez-Neira
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER-U706), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
129
|
The influence of NUDT15 variants on 6-mercaptopurine-induced neutropenia in Vietnamese pediatric acute lymphoblastic leukemia. HGG ADVANCES 2023; 4:100183. [PMID: 36873097 PMCID: PMC9974434 DOI: 10.1016/j.xhgg.2023.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
6-Mercaptopurine (6-MP) serves as the backbone of maintenance therapy in acute lymphoblastic leukemia. The nucleoside diphosphate-linked moiety X-type motif 15 genes (NUDT15) affects the metabolism of 6-MP and thiopurine-related neutropenia in the Asian population. This study reports the influence of these variants on 6MP-induced neutropenia in children with acute lymphoblastic leukemia (ALL). A total of 102 children were enrolled in this retrospective cohort study. NUDT15 variants on exon 1 and exon 3 were identified by Sanger sequencing. We divided the intermediate metabolizer group and the normal metabolizer group base on NUDT15 diplotypes. During the first 3 months of maintenance treatment, medical reports measured treatment-related toxicity (neutropenia) and 6-MP dose decreases. NUDT15 genotyping showed two categories of mutations: wild type (75.5%) and heterozygous variant (24.5%). Neutropenia during the early phase of maintenance therapy in the intermediate metabolizer group (68%) was significantly higher than the normal metabolizer group (18.2%) with 10-fold greater odds. Especially, the c.415C>T heterozygous variant was extremely associated with neutropenia compared with the C>C genotype (odds ratio [OR]: 12; 95% confidence interval [CI]: 3.5-41.7). The tolerated doses of 6-MP after the first 3 months of maintenance therapy related to the intermediate metabolizer group and the normal metabolizer group were 48.7 and 64.3 mg/m2/day, respectively (p < 0.001). One-fourth of individuals had NUDT15 variations. All NUDT15 heterozygous mutations cause neutropenia and need 6-MP dose optimization. Given the frequency of NUDT15 mutations in Vietnamese children and their connection with early neutropenia, testing is indicated.
Collapse
|
130
|
Kilpatrick MC, Givens SK, Watts Alexander CS. What Is Precision Medicine? PHYSICIAN ASSISTANT CLINICS 2023. [DOI: 10.1016/j.cpha.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
131
|
Mora Y, Villegas C, Mora YM, Moreno N. TPMT gene polymorphisms (c.238G>C, c.460G>A and c.719A>G) in a healthy Venezuelan population. Pharmacogenomics 2023; 24:219-225. [PMID: 36946340 DOI: 10.2217/pgs-2022-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Background: The presence of polymorphisms in the TPMT gene is associated with adverse effects in patients treated with standard doses of thiopurine drugs. Scientific evidence recognizes significant ethnic differences in their frequencies and how their early identification can prevent clinical complications. Methods: 150 healthy residents of Aragua, Venezuela were enrolled. The SNPs c.460G>A and c.719A>G were detected by PCR-restriction fragment length polymorphism assay and c.238G>C by allele-specific PCR. Results: All genotype polymorphisms were heterozygous. TPMT*1/*3A, TPMT*1/*3C and TPMT*1/*2 genotypes were found in 4.0, 2.0 and 0.7%, respectively. Conclusion: 6.7% of individuals have an intermediate TPMT activity. These findings support the importance of prior genotyping of TPMT in Venezuelan patients who require thiopurine drug therapy.
Collapse
Affiliation(s)
- Yuselin Mora
- Instituto de Investigaciones Biomédicas 'Dr. Francisco J. Triana Alonso' (BIOMED) - Sección de Polimorfismos Genómicos, Facultad de Ciencias de la Salud, Universidad de Carabobo, Sede Aragua, Maracay, 2102, Venezuela
| | - Cecilia Villegas
- Instituto de Investigaciones Biomédicas 'Dr. Francisco J. Triana Alonso' (BIOMED) - Sección de Polimorfismos Genómicos, Facultad de Ciencias de la Salud, Universidad de Carabobo, Sede Aragua, Maracay, 2102, Venezuela
| | - Yamile M Mora
- Instituto de Investigaciones Biomédicas 'Dr. Francisco J. Triana Alonso' (BIOMED) - Sección de Polimorfismos Genómicos, Facultad de Ciencias de la Salud, Universidad de Carabobo, Sede Aragua, Maracay, 2102, Venezuela
| | - Nancy Moreno
- Instituto de Investigaciones Biomédicas 'Dr. Francisco J. Triana Alonso' (BIOMED) - Sección de Polimorfismos Genómicos, Facultad de Ciencias de la Salud, Universidad de Carabobo, Sede Aragua, Maracay, 2102, Venezuela
| |
Collapse
|
132
|
Levine AE, Mark D, Smith L, Zheng HB, Suskind DL. Pharmacologic Management of Monogenic and Very Early Onset Inflammatory Bowel Diseases. Pharmaceutics 2023; 15:969. [PMID: 36986830 PMCID: PMC10059893 DOI: 10.3390/pharmaceutics15030969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is treated with a variety of immunomodulating and immunosuppressive therapies; however, for the majority of cases, these therapies are not targeted for specific disease phenotypes. Monogenic IBD with causative genetic defect is the exception and represents a disease cohort where precision therapeutics can be applied. With the advent of rapid genetic sequencing platforms, these monogenic immunodeficiencies that cause inflammatory bowel disease are increasingly being identified. This subpopulation of IBD called very early onset inflammatory bowel disease (VEO-IBD) is defined by an age of onset of less than six years of age. Twenty percent of VEO-IBDs have an identifiable monogenic defect. The culprit genes are often involved in pro-inflammatory immune pathways, which represent potential avenues for targeted pharmacologic treatments. This review will provide an overview of the current state of disease-specific targeted therapies, as well as empiric treatment for undifferentiated causes of VEO-IBD.
Collapse
Affiliation(s)
- Anne E. Levine
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dominique Mark
- Department of Pharmacy, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Laila Smith
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Hengqi B. Zheng
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - David L. Suskind
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
133
|
Huang Q, Liao Y, Yu T, Lei W, Liang H, Wen J, Liu Q, Chen Y, Huang K, Jing L, Huang X, Liu Y, Yu X, Su K, Liu T, Yang L, Huang M. A retrospective analysis of preemptive pharmacogenomic testing in 22,918 individuals from China. J Clin Lab Anal 2023; 37:e24855. [PMID: 36916827 PMCID: PMC10098050 DOI: 10.1002/jcla.24855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Pharmacogenomics (PGx) examines the influence of genetic variation on drug responses. With more and more Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines published, PGx is gradually shifting from the reactive testing of single gene toward the preemptive testing of multiple genes. But the profile of PGx genes, especially for the intra-country diversity, is not well understood in China. METHODS We retrospectively collected preemptive PGx testing data of 22,918 participants from 20 provinces of China, analyzed frequencies of alleles, genotypes and phenotypes of pharmacogenes, predicted drug responses for each participant, and performed comparisons between different provinces. RESULTS AND CONCLUSION After analyzing 15 pharmacogenes from CPIC guidelines of 31 drugs, we found that 99.97% of individuals may have an atypical response to at least one drug; the participants carry actionable genotypes leading to atypical dosage recommendation for a median of eight drugs. Over 99% of the participants were recommended a decreased warfarin dose based on genetic factors. There were 20 drugs with high-risk ratios from 0.18% to 58.25%, in which clopidogrel showed the highest high-risk ratio. In addition, the high-risk ratio of rasburicase in GUANGDONG (risk ratio (RR) = 13.17, 95%CI:4.06-33.22, p < 0.001) and GUANGXI (RR = 23.44, 95%CI:8.83-52.85, p < 0.001) were significantly higher than that in all provinces. Furthermore, the diversity we observed among 20 provinces suggests that preemptive PGx testing in different geographical regions in China may need to pay more attention to specific genes. These results emphasize the importance of preemptive PGx testing and provide essential evidence for promoting clinical implementation in China.
Collapse
Affiliation(s)
- Quanfei Huang
- Institute of Clinical PharmacologySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yuwei Liao
- Precision Medical Lab CenterPeople's Hospital of YangjiangYangjiangChina
| | - Tao Yu
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Wei Lei
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Hongfeng Liang
- Precision Medical Lab CenterPeople's Hospital of YangjiangYangjiangChina
| | - Jianxin Wen
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Qing Liu
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Yu Chen
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Kaisheng Huang
- CapitalBio Technology Co. Ltd.BeijingChina
- Guangdong CapitalBio Medical LaboratoryDongguanChina
| | - Lifang Jing
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Xiaoyan Huang
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Yuanru Liu
- CapitalBio Technology Co. Ltd.BeijingChina
- Guangdong CapitalBio Medical LaboratoryDongguanChina
| | - Xiaokang Yu
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Kaichan Su
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Tengfei Liu
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Liye Yang
- Precision Medical Lab CenterPeople's Hospital of YangjiangYangjiangChina
| | - Min Huang
- Institute of Clinical PharmacologySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
134
|
Larkin T, Kashif R, Elsayed AH, Greer B, Mangrola K, Raffiee R, Nguyen N, Shastri V, Horn B, Lamba JK. Polygenic Pharmacogenomic Markers as Predictors of Toxicity Phenotypes in the Treatment of Acute Lymphoblastic Leukemia: A Single-Center Study. JCO Precis Oncol 2023; 7:e2200580. [PMID: 36952646 PMCID: PMC10309546 DOI: 10.1200/po.22.00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/31/2023] [Indexed: 03/25/2023] Open
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) is the most prevalent cause of childhood cancer and requires a long course of therapy consisting of three primary phases with interval intensification blocks. Although these phases are necessary to achieve remission, the primary chemotherapeutic agents have potentially serious toxicities, which may lead to delays or discontinuations of therapy. The purpose of this study was to perform a comprehensive pharmacogenomic evaluation of common antileukemic agents and develop a polygenic toxicity risk score predictive of the most common toxicities observed during ALL treatment. METHODS This cross-sectional study included 75 patients with pediatric ALL treated between 2012 and 2020 at the University of Florida. Toxicity data were collected within 100 days of initiation of therapy using CTCAE v4.0 for toxicity grading. For pharmacogenomic evaluation, single-nucleotide polymorphisms (SNPs) and genes were selected from previous reports or PharmGKB database. 116 unique SNPs were evaluated for incidence of various toxicities. A multivariable multi-SNP modeling for up to 3-SNP combination was performed to develop a polygenic toxicity risk score of prognostic value. RESULTS We identified several SNPs predictive of toxicity phenotypes in univariate analysis. Further multivariable SNP-SNP combination analysis suggest that susceptibility to chemotherapy-induced toxicities is likely multigenic in nature. For 3-SNPscore models, patients with high scores experienced increased risk of GI (P = 2.07E-05, 3 SNPs: TYMS-rs151264360/FPGS-rs1544105/GSTM1-GSTM5-rs3754446), neurologic (P = .0005, 3 SNPs: DCTD-rs6829021/SLC28A3-rs17343066/CTPS1-rs12067645), endocrine (P = 4.77E-08, 3 SNPs: AKR1C3-rs1937840/TYMS-rs2853539/CTH-rs648743), and heme toxicities (P = .053, 3 SNPs: CYP3A5-rs776746/ABCB1-rs4148737/CTPS1-rs12067645). CONCLUSION Our results imply that instead of a single-SNP approach, SNP-SNP combinations in multiple genes in drug pathways increases the robustness of prediction of toxicity. These results further provide promising SNP models that can help establish clinically relevant biomarkers allowing for greater individualization of cancer therapy to maximize efficacy and minimize toxicity for each patient.
Collapse
Affiliation(s)
- Trisha Larkin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
- St Joseph's Children's Hospital/BayCare Medical Group, Tampa, FL
| | - Reema Kashif
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| | - Abdelrahman H. Elsayed
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Beate Greer
- Pediatrics Division, UF Health Cancer Center, University of Florida, Gainesville, FL
| | - Karna Mangrola
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| | - Roya Raffiee
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Nam Nguyen
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Vivek Shastri
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Biljana Horn
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| | - Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| |
Collapse
|
135
|
Zudeh G, Franca R, Lucafò M, Bonten EJ, Bramuzzo M, Sgarra R, Lagatolla C, Franzin M, Evans WE, Decorti G, Stocco G. PACSIN2 as a modulator of autophagy and mercaptopurine cytotoxicity: mechanisms in lymphoid and intestinal cells. Life Sci Alliance 2023; 6:e202201610. [PMID: 36596605 PMCID: PMC9811133 DOI: 10.26508/lsa.202201610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
PACSIN2 variants are associated with gastrointestinal effects of thiopurines and thiopurine methyltransferase activity through an uncharacterized mechanism that is postulated to involve autophagy. This study aims to clarify the role of PACSIN2 in autophagy and in thiopurine cytotoxicity in leukemic and intestinal models. Higher autophagy and lower PACSIN2 levels were observed in inflamed compared with non-inflamed colon biopsies of inflammatory bowel disease pediatric patients at diagnosis. PACSIN2 was identified as an inhibitor of autophagy, putatively through inhibition of autophagosome formation by a protein-protein interaction with LC3-II, mediated by a LIR motif. Moreover, PACSIN2 resulted a modulator of mercaptopurine-induced cytotoxicity in intestinal cells, suggesting that PACSIN2-regulated autophagy levels might influence thiopurine sensitivity. However, PACSIN2 modulates cellular thiopurine methyltransferase activity via mechanisms distinct from its modulation of autophagy.
Collapse
Affiliation(s)
- Giulia Zudeh
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Raffaella Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Marianna Lucafò
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Erik J Bonten
- Department of Chemical Biology and Therapeutics, Saint Jude Children's Research Hospital, Memphis, TN, USA
| | - Matteo Bramuzzo
- Department of Gastroenterology, Digestive Endoscopy and Nutrition Unit, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Martina Franzin
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - William E Evans
- Department of Pharmaceutical Sciences, Saint Jude Children's Research Hospital, Memphis, TN, USA
| | - Giuliana Decorti
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
136
|
Kim JK. [Treatment of Autoimmune Hepatitis]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 81:72-85. [PMID: 36824035 DOI: 10.4166/kjg.2023.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Autoimmune hepatitis (AIH) is a chronic liver disease, characterized by elevated levels of transaminases, immunoglobulin G, and positive autoantibodies. The disease course is dynamic and presents heterogeneous disease manifestations at diagnosis. This review summarizes the issues regarding the treatment and monitoring of AIH in adult patients. Glucocorticoids and azathioprine are the first line of treatment. Alternative first-line treatments include budesonide or mycophenolate mofetil (MMF). Although no randomized controlled trials have been performed, MMF, cyclosporine, tacrolimus, 6-mercaptopurine, 6-thioguanine, allopurinol, sirolimus, everolimus, infliximab, or rituximab have been attempted in patients not responding to or intolerant to first-line treatments. Most patients require life-long special monitoring, with or without maintenance treatment.
Collapse
Affiliation(s)
- Ja Kyung Kim
- Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| |
Collapse
|
137
|
Veluvolu SM, Grohar PJ. Importance of pharmacologic considerations in the development of targeted anticancer agents for children. Curr Opin Pediatr 2023; 35:91-96. [PMID: 36562272 DOI: 10.1097/mop.0000000000001208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe key pharmacologic considerations to inform strategies in drug development for pediatric cancer. RECENT FINDINGS Main themes that will be discussed include considering patient specific factors, epigenetic/genetic tumor context, and drug schedule when optimizing protocols to treat pediatric cancers. SUMMARY Considering these factors will allow us to more effectively translate novel targeted therapies to benefit pediatric patients.
Collapse
Affiliation(s)
- Sridhar M Veluvolu
- Division of Oncology, Center of Childhood Cancer Research, Children's Hospital of Philadelphia
| | - Patrick J Grohar
- Division of Oncology, Center of Childhood Cancer Research, Children's Hospital of Philadelphia
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
138
|
Eltantawy N, El-Zayyadi IAEH, Elberry AA, Salah LM, Abdelrahim MEA, Kassem AB. Association of genetic polymorphism of NUDT15, TPMT and ITPA gene in the toxicity and efficacy of azathioprine-based regimen in Egyptian inflammatory bowel disease patients. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1186/s43088-023-00340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Abstract
Background
Inflammatory Bowel disease (IBD) is a chronic progressive condition that prompts generous physical and mental morbidity. Choosing the best kind of management and medication dosage prevents new episodes of high disease activity during therapy because of adverse drug reactions (ADRs). This can lead to cessation or inefficacy of the treatment, or complete non-responsiveness to specific medications. Pharmacogenetics (PGx) is a well-established aspect in IBD. One of the exemplary instances of PGx is thiopurines, which are frequently utilized as IBD therapy. This study aimed to evaluate specific gene polymorphism involved in the toxicity and efficacy of Azathioprine (AZA) use in the management in Egyptian patients and to find the correlation between the polymorphism of Nudix Hydrolase15 (NUDT15) gene (rs116855232), The Thiopurine methyltransferase (TPMT) gene (rs1800460) and Inosine Triphosphatase (ITPA) gene (rs1127354) which are involved in the metabolism of the medications utilized in IBD management.
Methods
This prospective study was performed in 150 patients with IBD. All patients were treated with 2 mg/kg per day AZA (Imuran, GlaxoSmithKline®) for at least 3 months at therapeutic doses to induce remission. Subsequent treatment of AZA. The minimum follow-up period for those who did not experience ADR was one year. Among the studied patients, one hundred twenty-nine patients were treated with combination regimen of steroids (oral prednisone 1 mg/kg/day).
Also, treatment failure was considered among the patients who could not tolerate AZA side effects, or there was no improvement after dose modification.
Results
The most identifiable adverse effect among the studied population was anemia followed by leukopenia and myelosuppression. SNPs genotype TPMT (rs1800460) and ITPA gene (rs1127354) were significantly related to adverse effects among IBD patients receiving Azathioprine treatment. There was a lack of any variants in the NUDT15 genotype among the Egyptian population.
Conclusion
Further research is required in to clarify the relationship between NUDT15 PGx and AZA-ADRs. The effect of NUDT15 PGx on toxicity and ADRs as yet necessitates to be elucidated. Studies with a larger sample size and involving different ethnicities are also necessary.
Collapse
|
139
|
Abstract
Inter-individual variability in drug response, be it efficacy or safety, is common and likely to become an increasing problem globally given the growing elderly population requiring treatment. Reasons for this inter-individual variability include genomic factors, an area of study called pharmacogenomics. With genotyping technologies now widely available and decreasing in cost, implementing pharmacogenomics into clinical practice - widely regarded as one of the initial steps in mainstreaming genomic medicine - is currently a focus in many countries worldwide. However, major challenges of implementation lie at the point of delivery into health-care systems, including the modification of current clinical pathways coupled with a massive knowledge gap in pharmacogenomics in the health-care workforce. Pharmacogenomics can also be used in a broader sense for drug discovery and development, with increasing evidence suggesting that genomically defined targets have an increased success rate during clinical development.
Collapse
|
140
|
Pharmacogenetic Aspects of Drug Metabolizing Enzymes and Transporters in Pediatric Medicine: Study Progress, Clinical Practice and Future Perspectives. Paediatr Drugs 2023; 25:301-319. [PMID: 36707496 DOI: 10.1007/s40272-023-00560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
As the activity of certain drug metabolizing enzymes or transporter proteins can vary with age, the effect of ontogenetic and genetic variation on the activity of these enzymes is critical for the accurate prediction of treatment outcomes and toxicity in children. This makes pharmacogenetic research in pediatrics particularly important and urgently needed, but also challenging. This review summarizes pharmacogenetic studies on the effects of genetic polymorphisms on pharmacokinetic parameters and clinical outcomes in pediatric populations for certain drugs, which are commonly prescribed by clinicians across multiple therapeutic areas in a general hospital, organized from those with the most to the least pediatric evidence among each drug category. We also further discuss the research status of the gene-guided dosing regimens and clinical implementation of pediatric pharmacogenetics. More and more drug-gene interactions are demonstrated to have clinical validity for children, and pharmacogenomics in pediatrics have shown evidence-based benefits to enhance the efficacy and precision of existing drug dosing regimens in several therapeutic areas. However, the most important limitation to the implementation is the lack of high-quality, rigorous pediatric prospective clinical studies, so adequately powered interventional clinical trials that support incorporation of pharmacogenetics into the care of children are still needed.
Collapse
|
141
|
Liu Y, Lin Z, Chen Q, Chen Q, Sang L, Wang Y, Shi L, Guo L, Yu Y. PAnno: A pharmacogenomics annotation tool for clinical genomic testing. Front Pharmacol 2023; 14:1008330. [PMID: 36778023 PMCID: PMC9909284 DOI: 10.3389/fphar.2023.1008330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: Next-generation sequencing (NGS) technologies have been widely used in clinical genomic testing for drug response phenotypes. However, the inherent limitations of short reads make accurate inference of diplotypes still challenging, which may reduce the effectiveness of genotype-guided drug therapy. Methods: An automated Pharmacogenomics Annotation tool (PAnno) was implemented, which reports prescribing recommendations and phenotypes by parsing the germline variant call format (VCF) file from NGS and the population to which the individual belongs. Results: A ranking model dedicated to inferring diplotypes, developed based on the allele (haplotype) definition and population allele frequency, was introduced in PAnno. The predictive performance was validated in comparison with four similar tools using the consensus diplotype data of the Genetic Testing Reference Materials Coordination Program (GeT-RM) as ground truth. An annotation method was proposed to summarize prescribing recommendations and classify drugs into avoid use, use with caution, and routine use, following the recommendations of the Clinical Pharmacogenetics Implementation Consortium (CPIC), etc. It further predicts phenotypes of specific drugs in terms of toxicity, dosage, efficacy, and metabolism by integrating the high-confidence clinical annotations in the Pharmacogenomics Knowledgebase (PharmGKB). PAnno is available at https://github.com/PreMedKB/PAnno. Discussion: PAnno provides an end-to-end clinical pharmacogenomics decision support solution by resolving, annotating, and reporting germline variants.
Collapse
Affiliation(s)
- Yaqing Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zipeng Lin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qingwang Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qiaochu Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Leqing Sang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yunjin Wang
- Department of Breast Surgery, Precision Cancer Medicine Center, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Li Guo
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Li Guo, ; Ying Yu,
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China,*Correspondence: Li Guo, ; Ying Yu,
| |
Collapse
|
142
|
Junk SV, Schaeffeler E, Zimmermann M, Möricke A, Beier R, Schütte P, Fedders B, Alten J, Hinze L, Klein N, Kulozik A, Muckenthaler MU, Koehler R, Borkhardt A, Vijayakrishnan J, Ellinghaus D, Forster M, Franke A, Wintering A, Kratz CP, Schrappe M, Schwab M, Houlston RS, Cario G, Stanulla M. Chemotherapy-related hyperbilirubinemia in pediatric acute lymphoblastic leukemia: a genome-wide association study from the AIEOP-BFM ALL study group. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:21. [PMID: 36639636 PMCID: PMC9838013 DOI: 10.1186/s13046-022-02585-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Characterization of clinical phenotypes in context with tumor and host genomic information can aid in the development of more effective and less toxic risk-adapted and targeted treatment strategies. To analyze the impact of therapy-related hyperbilirubinemia on treatment outcome and to identify contributing genetic risk factors of this well-recognized adverse effect we evaluated serum bilirubin levels in 1547 pediatric patients with acute lymphoblastic leukemia (ALL) and conducted a genome-wide association study (GWAS). PATIENTS AND METHODS Patients were treated in multicenter trial AIEOP-BFM ALL 2000 for pediatric ALL. Bilirubin toxicity was graded 0 to 4 according to the Common Toxicity Criteria (CTC) of the National Cancer Institute. In the GWAS discovery cohort, including 650 of the 1547 individuals, genotype frequencies of 745,895 single nucleotide variants were compared between 435 patients with hyperbilirubinemia (CTC grades 1-4) during induction/consolidation treatment and 215 patients without it (grade 0). Replication analyses included 224 patients from the same trial. RESULTS Compared to patients with no (grade 0) or moderate hyperbilirubinemia (grades 1-2) during induction/consolidation, patients with grades 3-4 had a poorer 5-year event free survival (76.6 ± 3% versus 87.7 ± 1% for grades 1-2, P = 0.003; 85.2 ± 2% for grade 0, P < 0.001) and a higher cumulative incidence of relapse (15.6 ± 3% versus 9.0 ± 1% for grades 1-2, P = 0.08; 11.1 ± 1% for grade 0, P = 0.007). GWAS identified a strong association of the rs6744284 variant T allele in the UGT1A gene cluster with risk of hyperbilirubinemia (allelic odds ratio (OR) = 2.1, P = 7 × 10- 8). TT-homozygotes had a 6.5-fold increased risk of hyperbilirubinemia (grades 1-4; 95% confidence interval (CI) = 2.9-14.6, P = 7 × 10- 6) and a 16.4-fold higher risk of grade 3-4 hyperbilirubinemia (95% CI 6.1-43.8, P = 2 × 10- 8). Replication analyses confirmed these associations with joint analysis yielding genome-wide significance (allelic OR = 2.1, P = 6 × 10- 11; 95% CI 1.7-2.7). Moreover, rs6744284 genotypes were strongly linked to the Gilbert's syndrome-associated UGT1A1*28/*37 allele (r2 = 0.70), providing functional support for study findings. Of clinical importance, the rs6744284 TT genotype counterbalanced the adverse prognostic impact of high hyperbilirubinemia on therapy outcome. CONCLUSIONS Chemotherapy-related hyperbilirubinemia is a prognostic factor for treatment outcome in pediatric ALL and genetic variation in UGT1A aids in predicting the clinical impact of hyperbilirubinemia. TRIAL REGISTRATION http://www. CLINICALTRIALS gov ; #NCT00430118.
Collapse
Affiliation(s)
- Stefanie V. Junk
- grid.10423.340000 0000 9529 9877Department of Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Elke Schaeffeler
- Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Martin Zimmermann
- grid.10423.340000 0000 9529 9877Department of Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anja Möricke
- grid.412468.d0000 0004 0646 2097Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Rita Beier
- grid.10423.340000 0000 9529 9877Department of Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Peter Schütte
- grid.10423.340000 0000 9529 9877Department of Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Birthe Fedders
- grid.412468.d0000 0004 0646 2097Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Julia Alten
- grid.412468.d0000 0004 0646 2097Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Laura Hinze
- grid.10423.340000 0000 9529 9877Department of Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Norman Klein
- grid.10423.340000 0000 9529 9877Department of Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andreas Kulozik
- grid.7700.00000 0001 2190 4373Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martina U. Muckenthaler
- grid.7700.00000 0001 2190 4373Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Rolf Koehler
- grid.7700.00000 0001 2190 4373Department of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Arndt Borkhardt
- grid.411327.20000 0001 2176 9917Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jayaram Vijayakrishnan
- grid.18886.3fDivision of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, UK
| | - David Ellinghaus
- grid.9764.c0000 0001 2153 9986Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Michael Forster
- grid.9764.c0000 0001 2153 9986Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- grid.9764.c0000 0001 2153 9986Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Astrid Wintering
- grid.10423.340000 0000 9529 9877Department of Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christian P. Kratz
- grid.10423.340000 0000 9529 9877Department of Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Martin Schrappe
- grid.412468.d0000 0004 0646 2097Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Schwab
- Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany ,grid.10392.390000 0001 2190 1447Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University of Tuebingen, Tuebingen, Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany ,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
| | - Richard S. Houlston
- grid.18886.3fDivision of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Gunnar Cario
- grid.412468.d0000 0004 0646 2097Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Martin Stanulla
- grid.10423.340000 0000 9529 9877Department of Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
143
|
Davis A, Dickson AL, Daniel LL, Nepal P, Zanussi J, Miller-Fleming TW, Straub PS, Wei WQ, Liu G, Cox NJ, Hung AM, Feng Q, Stein CM, Chung CP. Association Between Genetically Predicted Expression of TPMT and Azathioprine Adverse Events. RESEARCH SQUARE 2023:rs.3.rs-2444787. [PMID: 36711487 PMCID: PMC9882694 DOI: 10.21203/rs.3.rs-2444787/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Polymorphisms thiopurine-S-methyltransferase (TPMT) and nudix hydrolase 15 (NUDT15) can increase the risk of azathioprine myelotoxicity, but little is known about other genetic factors that increase risk for azathioprine-associated side effects. PrediXcan is a gene-based association method that estimates the expression of individuals' genes and examines their correlation to specified phenotypes. As proof of concept for using PrediXcan as a tool to define the association between genetic factors and azathioprine side effects, we aimed to determine whether the genetically predicted expression of TPMT or NUDT15 was associated with leukopenia or other known side effects. In a retrospective cohort of 1364 new users of azathioprine with EHR-reported White race, we used PrediXcan to impute expression in liver tissue, tested its association with pre-specified phecodes representing known side effects (e.g., skin cancer), and completed chart review to confirm cases. Among confirmed cases, patients in the lowest tertile (i.e., lowest predicted) of TPMT expression had significantly higher odds of developing leukopenia (OR=3.30, 95%CI: 1.07-10.20, p=0.04) versus those in the highest tertile; no other side effects were significant. The results suggest that this methodology could be deployed on a larger scale to uncover associations between genetic factors and drug side effects for more personalized care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ge Liu
- Vanderbilt University Medical Center
| | | | | | | | | | | |
Collapse
|
144
|
Allele-specific polymerase chain reaction can determine the diplotype of NUDT15 variants in patients with childhood acute lymphoblastic Leukemia. Sci Rep 2023; 13:490. [PMID: 36627439 PMCID: PMC9832159 DOI: 10.1038/s41598-023-27720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Mercaptopurine intolerance is an adverse effect of mercaptopurine administration in pediatric patients with acute lymphoblastic leukemia (ALL). NUDT15 variants have emerged as major determinants of mercaptopurine intolerance, especially in the Asian population. Two variants, c.55_56insGAGTCG in exon 1 and c.415C > T in exon 3, were commonly detected in the same allele, named NUDT15*1/*2. Although rare, compound heterozygous mutations also occur, with the two variants on different alleles (NUDT15*3/*6), which may confer tolerance to considerably lesser mercaptopurine dosage. Sanger sequencing or pyrosequencing can determine the NUDT15 variants but not the phase. Here, we designed an allele-specific PCR (AS-PCR) with locked nucleic acid-modified primers. A cohort of 63 patients harboring heterozygous c.55_56insGAGTCG and c.415C > T NUDT15 variations was selected for haplotyping using AS-PCR. Of the 63 patients, 60 harbored the NUDT15*1/*2 variant and three harbored compound heterozygous mutations, including two NUDT15*3/*6 and one NUDT15*2/*7 variants. These findings suggest that AS-PCR can determine NUDT15 diplotype and identify patients with compound heterozygous NUDT15 variants, which may enable precise genetic diagnosis of NUDT15. Nevertheless, a larger clinical trial is required to understand the clinical significance of NUDT15*3/*6 in pediatric patients with ALL because of its low incidence rate and challenges in detecting this variant.
Collapse
|
145
|
McKenzie PL, Chao Y, Pathak S, Kazi S. Azathioprine-induced hypersensitivity reaction mimicking sepsis in a patient with systemic lupus erythematosus. Mod Rheumatol Case Rep 2023; 7:74-77. [PMID: 35975549 DOI: 10.1093/mrcr/rxac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 01/07/2023]
Abstract
A 21-year-old woman with a history of systemic lupus erythematosus presented to the emergency department with acute-onset nausea, vomiting, and fevers. Two weeks prior, she was started on azathioprine 50 mg daily by her outpatient rheumatologist; the dose was up-titrated to 100 mg when repeat blood work showed no drug toxicity. The morning after increasing her dose, she was awoken by recurrent emesis. At presentation, she was febrile, tachycardic, and hypotensive. Her exam showed mild, generalised abdominal tenderness but was otherwise unremarkable. Lab work demonstrated elevated inflammatory markers, elevated liver transaminases, and stable hypocomplementemia. Chest X-ray and computed tomography abdomen/pelvis were unrevealing. She was given intravenous fluids and broad-spectrum antibiotics, and azathioprine was held. A thorough infectious workup returned negative. A flare of her systemic lupus erythematosus was considered but deemed an unlikely explanation of her systemic inflammatory response syndrome. With azathioprine discontinuation, she made a rapid, near-complete recovery within 24 h of admission, suggesting a diagnosis of azathioprine hypersensitivity syndrome. This case exemplifies the difficulty in distinguishing azathioprine hypersensitivity from mimickers such as infection and underlying autoimmune disease flare. Prompt recognition of hypersensitivity can lead to appropriate discontinuation of the drug and prevent future morbidity.
Collapse
Affiliation(s)
- Paige L McKenzie
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yusuf Chao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sapna Pathak
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Salahuddin Kazi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
146
|
Vieujean S, Louis E. Precision medicine and drug optimization in adult inflammatory bowel disease patients. Therap Adv Gastroenterol 2023; 16:17562848231173331. [PMID: 37197397 PMCID: PMC10184262 DOI: 10.1177/17562848231173331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/16/2023] [Indexed: 05/19/2023] Open
Abstract
Inflammatory bowel diseases (IBD) encompass two main entities including ulcerative colitis and Crohn's disease. Although having a common global pathophysiological mechanism, IBD patients are characterized by a significant interindividual heterogeneity and may differ by their disease type, disease locations, disease behaviours, disease manifestations, disease course as well as treatment needs. Indeed, although the therapeutic armamentarium for these diseases has expanded rapidly in recent years, a proportion of patients remains with a suboptimal response to medical treatment due to primary non-response, secondary loss of response or intolerance to currently available drugs. Identifying, prior to treatment initiation, which patients are likely to respond to a specific drug would improve the disease management, avoid unnecessary side effects and reduce the healthcare expenses. Precision medicine classifies individuals into subpopulations according to clinical and molecular characteristics with the objective to tailor preventative and therapeutic interventions to the characteristics of each patient. Interventions would thus be performed only on those who will benefit, sparing side effects and expense for those who will not. This review aims to summarize clinical factors, biomarkers (genetic, transcriptomic, proteomic, metabolic, radiomic or from the microbiota) and tools that could predict disease progression to guide towards a step-up or top-down strategy. Predictive factors of response or non-response to treatment will then be reviewed, followed by a discussion about the optimal dose of drug required for patients. The time at which these treatments should be administered (or rather can be stopped in case of a deep remission or in the aftermath of a surgery) will also be addressed. IBD remain biologically complex, with multifactorial etiopathology, clinical heterogeneity as well as temporal and therapeutic variabilities, which makes precision medicine especially challenging in this area. Although applied for many years in oncology, it remains an unmet medical need in IBD.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
| | | |
Collapse
|
147
|
Isono T, Hira D, Ikeda Y, Kawahara M, Noda S, Nishida A, Inatomi O, Fujimoto N, Andoh A, Terada T, Morita SY. Single-Nucleotide Polymorphisms, c.415C > T (Arg139Cys) and c.416G > A (Arg139His), in the NUDT15 Gene Are Associated with Thiopurine-Induced Leukopenia. Biol Pharm Bull 2023; 46:412-418. [PMID: 36858569 DOI: 10.1248/bpb.b22-00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
While nucleoside diphosphate-linked moiety X-type motif 15 (NUDT15) gene polymorphism Arg139Cys (rs116855232) is known to be a risk factor for thiopurine-induced severe leukopenia, association with the NUDT15 gene polymorphism Arg139His (rs147390019) has not yet been clarified. In addition, the accuracy of TaqMan PCR to assess these two polymorphisms has not been investigated. In this study, we evaluated TaqMan PCR for detection of the NUDT15 single-nucleotide polymorphisms (SNPs) and examined the clinical impact of Arg139His on thiopurine-induced leukopenia. First, we demonstrated that a TaqMan PCR assay successfully detected the Arg139His polymorphism of NUDT15 in clinical samples. Next, the NUDT15 gene polymorphisms (Arg139Cys and Arg139His) were separately analyzed by TaqMan Real-Time PCR in 189 patients from August 2018 to July 2019. The incidences of leukopenia within 2 years were 16.2, 57.9, and 100% for arginine (Arg)/Arg, Arg/cysteine (Cys), and Arg/histidine (His), respectively. The leukopenia was significantly increased in Arg/Cys and Arg/His compared with Arg/Arg. This retrospective clinical study indicated that, in addition to Arg139Cys, Arg139His may be clinically associated with a high risk of leukopenia. Pharmacogenomics will help in selecting drugs and determining the individualized dosage of thiopurine drugs.
Collapse
Affiliation(s)
- Tetsuichiro Isono
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Daiki Hira
- Department of Pharmacy, Shiga University of Medical Science Hospital.,Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital.,College of Pharmaceutical Sciences, Ritsumeikan University
| | - Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Masahiro Kawahara
- Department of Gastroenterology and Hematology, Shiga University of Medical Science
| | - Satoshi Noda
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Atsushi Nishida
- Department of Gastroenterology and Hematology, Shiga University of Medical Science
| | - Osamu Inatomi
- Department of Gastroenterology and Hematology, Shiga University of Medical Science
| | - Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science
| | - Akira Andoh
- Department of Gastroenterology and Hematology, Shiga University of Medical Science
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital.,Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital
| |
Collapse
|
148
|
Chan AP, Choi Y, Rangan A, Zhang G, Podder A, Berens M, Sharma S, Pirrotte P, Byron S, Duggan D, Schork NJ. Interrogating the Human Diplome: Computational Methods, Emerging Applications, and Challenges. Methods Mol Biol 2023; 2590:1-30. [PMID: 36335489 DOI: 10.1007/978-1-0716-2819-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Human DNA sequencing protocols have revolutionized human biology, biomedical science, and clinical practice, but still have very important limitations. One limitation is that most protocols do not separate or assemble (i.e., "phase") the nucleotide content of each of the maternally and paternally derived chromosomal homologs making up the 22 autosomal pairs and the chromosomal pair making up the pseudo-autosomal region of the sex chromosomes. This has led to a dearth of studies and a consequent underappreciation of many phenomena of fundamental importance to basic and clinical genomic science. We discuss a few protocols for obtaining phase information as well as their limitations, including those that could be used in tumor phasing settings. We then describe a number of biological and clinical phenomena that require phase information. These include phenomena that require precise knowledge of the nucleotide sequence in a chromosomal segment from germline or somatic cells, such as DNA binding events, and insight into unique cis vs. trans-acting functionally impactful variant combinations-for example, variants implicated in a phenotype governed by compound heterozygosity. In addition, we also comment on the need for reliable and consensus-based diploid-context computational workflows for variant identification as well as the need for laboratory-based functional verification strategies for validating cis vs. trans effects of variant combinations. We also briefly describe available resources, example studies, as well as areas of further research, and ultimately argue that the science behind the study of human diploidy, referred to as "diplomics," which will be enabled by nucleotide-level resolution of phased genomes, is a logical next step in the analysis of human genome biology.
Collapse
Affiliation(s)
- Agnes P Chan
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Yongwook Choi
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Aditya Rangan
- Courant Institute of Mathematical Sciences at New York University, New York, NY, USA
| | - Guangfa Zhang
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Avijit Podder
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Michael Berens
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Sunil Sharma
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Patrick Pirrotte
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Sara Byron
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Dave Duggan
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Nicholas J Schork
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA.
- The City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
149
|
ITPA Polymorphisms and the Incidence of Toxicities in Children with Acute Lymphoblastic Leukemia. Mediterr J Hematol Infect Dis 2023; 15:e2023024. [PMID: 36908869 PMCID: PMC10000882 DOI: 10.4084/mjhid.2023.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Background 6-Mercaptopurine (6-MP), a thiopurine agent, is a essential medication for treating pediatric acute lymphoblastic leukemia (ALL). However, its side effects of neutropenia and hepatotoxicity might interrupt treatment, resulting in poor outcomes. Inosine triphosphate pyrophosphatase (ITPA), an enzyme in the thiopurine pathway, may prevent the accumulation of toxic thiopurine metabolites. Studies on ITPA and thiopurine-associated toxicities are scarce. Methods This study retrospectively investigated 1- to 15-year-old children with ALL who received 6-MP during the maintenance phase of treatment between 2000 and 2020. Toxicity during the first year of maintenance therapy and the mean dose of 6-MP were analyzed. Results The 209 patients had a median age of 4.8 (0.3-14.8) years. Of these, 124 patients (59.3%) had wild-type ITPA, 73 patients (34.9%) had heterozygous ITPA 94C>A (hetITPA), and 12 patients (5.7%) had homozygous ITPA 94C>A (homITPA), with an allele frequency of 0.23. The incidence of neutropenia among ITPA polymorphisms did not significantly differ (P = 0.813). In patients harboring homITPA, transaminitis was more frequent than other polymorphisms but without a significant difference (P = 0.063). The mean dose of 6-MP for patients with homITPA was significantly lower than that for patients with hetITPA or wild-type ITPA (P = 0.016). Conclusions HomITPA had a higher incidence of transaminitis and required a significantly larger dose reduction of 6-MP than wild-type ITPA. Further study is warranted to elucidate the effects of ITPA polymorphisms on toxicity in patients with ALL treated with 6-MP.
Collapse
|
150
|
Selvestrel D, Stocco G, Aloi M, Arrigo S, Cardile S, Cecchin E, Congia M, Curci D, Gatti S, Graziano F, Langefeld CD, Lucafò M, Martelossi S, Martinelli M, Pagarin S, Scarallo L, Stacul EF, Strisciuglio C, Thompson S, Zuin G, Decorti G, Bramuzzo M. DNA methylation of the TPMT gene and azathioprine pharmacokinetics in children with very early onset inflammatory bowel disease. Biomed Pharmacother 2023; 157:113901. [PMID: 36462311 DOI: 10.1016/j.biopha.2022.113901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Thiopurine methyltransferase (TPMT) is a crucial enzyme for azathioprine biotransformation and its activity is higher in very early onset inflammatory bowel disease (VEO-IBD) patients than in adolescents with IBD (aIBD). AIMS The aims of this pharmacoepigenetic study were to evaluate differences in peripheral blood DNA methylation of the TPMT gene and in azathioprine pharmacokinetics in patients with VEO-IBD compared to aIBD. METHODS The association of age with whole genome DNA methylation profile was evaluated in a pilot group of patients and confirmed by a meta-analysis on 3 cohorts of patients available on the public functional genomics data repository. Effects of candidate CpG sites in the TPMT gene were validated in a larger cohort using pyrosequencing. TPMT activity and azathioprine metabolites (TGN) were measured in patients' erythrocytes by HPLC and associated with patients' age group and TPMT DNA methylation. RESULTS Whole genome DNA methylation pilot analysis, combined with the meta-analysis revealed cg22736354, located on TPMT downstream neighboring region, as the only statistically significant CpG whose methylation increases with age, resulting lower in VEO-IBD patients compared to aIBD (median 9.6% vs 12%, p = 0.029). Pyrosequencing confirmed lower cg22736354 methylation in VEO-IBD patients (median 4.0% vs 6.0%, p = 4.6 ×10-5). No differences in TPMT promoter methylation were found. Reduced cg22736354 methylation was associated with lower TGN concentrations (rho = 0.31, p = 0.01) in patients with VEO-IBD and aIBD. CONCLUSION Methylation of cg22736354 in TPMT gene neighborhood is lower in patients with VEO-IBD and is associated with reduced azathioprine inactivation and increased TGN concentrations.
Collapse
Affiliation(s)
| | - Gabriele Stocco
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Marina Aloi
- Women's and Children's Health Department, Pediatric Gastroenterology and Hepatology Unit, Sapienza University of Rome, Rome, Italy
| | - Serena Arrigo
- Pediatric Gastroenterology and Endoscopy Unit, Institute 'Giannina Gaslini', Genoa, Italy
| | - Sabrina Cardile
- Hepatology and Gastroenterology Unit, Bambino Gesù Hospital, Rome, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Mauro Congia
- Pediatric Clinic and Rare Diseases, Microcitemic Pediatric Hospital Antonio Cao, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Debora Curci
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Simona Gatti
- Department of Pediatrics, Università Politecnica delle Marche, Ancona, Italy
| | | | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Marianna Lucafò
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Massimo Martinelli
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Sofia Pagarin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Luca Scarallo
- University of Florence-Meyer Hospital, Florence, Italy
| | | | - Caterina Strisciuglio
- Departement of Woman, Child and General and Specialistic Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Susan Thompson
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Giovanna Zuin
- Department of Pediatrics, University of Milano-Bicocca, Foundation MBBM/San Gerardo Hospital, Monza, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| | - Matteo Bramuzzo
- Gastroenterology, Digestive Endoscopy and Nutrition Unit, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|