101
|
Al-Asmari AK, Islam M, Al-Zahrani AM. In vitro analysis of the anticancer properties of scorpion venom in colorectal and breast cancer cell lines. Oncol Lett 2015; 11:1256-1262. [PMID: 26893728 DOI: 10.3892/ol.2015.4036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/18/2015] [Indexed: 12/17/2022] Open
Abstract
Scorpion venom contains various types of proteins and peptides that are able to act as inhibitors of neurotransmitter molecules. This is achieved primarily via the inhibition of ion channels. In addition, scorpion venom has been demonstrated to exhibit anticancer properties in prostate and breast cancer, as well as leukemia. The anticancer properties of scorpion venom are due to its inhibitory effect on matrix metalloproteinase (MMP) activity, which leads to reduced motility and invasion in tumor cells. The inhibitory effects of venom on MMPs additionally lead to a reduction in the metastatic potential of malignant tumors. In the present study, the effect of venom obtained from a local serpentarium facility was examined in colorectal and breast cancer cell lines. Cell motility and clonogenic survival assays revealed a significant decrease (60-90%) in cell motility and colony formation, two significant hallmarks of cancer survival, following treatment with various concentrations of venom. These results were in agreement with previous studies demonstrating the anticancer activity of scorpion venom. In conclusion, the venom utilized at the Research Center of Prince Sultan Military Medical City Hospital (Riyadh, Saudi Arabia) possesses significant anticancer potential against colorectal and breast cancer cell lines.
Collapse
Affiliation(s)
| | - Mozaffarul Islam
- Research Center, Prince Sultan Military Medical City Hospital, Riyadh 11159, Kingdom of Saudi Arabia
| | - Ali Mater Al-Zahrani
- Department of Oncology, Prince Sultan Military Medical City Hospital, Riyadh 11159, Kingdom of Saudi Arabia
| |
Collapse
|
102
|
Chang JH, Huang YH, Cunningham CM, Han KY, Chang M, Seiki M, Zhou Z, Azar DT. Matrix metalloproteinase 14 modulates signal transduction and angiogenesis in the cornea. Surv Ophthalmol 2015; 61:478-97. [PMID: 26647161 DOI: 10.1016/j.survophthal.2015.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 11/16/2022]
Abstract
The cornea is transparent and avascular, and retention of these characteristics is critical to maintaining vision clarity. Under normal conditions, wound healing in response to corneal injury occurs without the formation of new blood vessels; however, neovascularization may be induced during corneal wound healing when the balance between proangiogenic and antiangiogenic mediators is disrupted to favor angiogenesis. Matrix metalloproteinases (MMPs), which are key factors in extracellular matrix remodeling and angiogenesis, contribute to the maintenance of this balance, and in pathologic instances, can contribute to its disruption. Here, we elaborate on the facilitative role of MMPs, specifically MMP-14, in corneal neovascularization. MMP-14 is a transmembrane MMP that is critically involved in extracellular matrix proteolysis, exosome transport, and cellular migration and invasion, processes that are critical for angiogenesis. To aid in developing efficacious therapies that promote healing without neovascularization, it is important to understand and further investigate the complex pathways related to MMP-14 signaling, which can also involve vascular endothelial growth factor, basic fibroblast growth factor, Wnt/β-catenin, transforming growth factor, platelet-derived growth factor, hepatocyte growth factor or chemokines, epidermal growth factor, prostaglandin E2, thrombin, integrins, Notch, Toll-like receptors, PI3k/Akt, Src, RhoA/RhoA kinase, and extracellular signal-related kinase. The involvement and potential contribution of these signaling molecules or proteins in neovascularization are the focus of the present review.
Collapse
Affiliation(s)
- Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yu-Hui Huang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Christy M Cunningham
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Motoharu Seiki
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhongjun Zhou
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
103
|
Development of PEGylated peptide probes conjugated with (18)F-labeled BODIPY for PET/optical imaging of MT1-MMP activity. J Control Release 2015; 220:476-483. [PMID: 26578437 DOI: 10.1016/j.jconrel.2015.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/03/2015] [Accepted: 11/11/2015] [Indexed: 11/21/2022]
Abstract
Since the processing activity of the matrix metalloproteinase MT1-MMP regulates various cellular functions such as motility, invasion, growth, differentiation and apoptosis, precise in vivo evaluation of MT1-MMP activity in cancers can provide beneficial information for both basic and clinical studies. For this purpose, we designed a cleavable Positron Emission Tomography (PET)/optical imaging probe consisting of BODIPY650/665 and polyethylene glycol (PEG) conjugated to opposite ends of MT1-MMP substrate peptides. We used in vitro and in vivo fluorescence experiments to select suitable substrate peptide sequences and PEG sizes for the MT1-MMP probes and obtained an optimized structure referred to here as MBP-2k. Radiofluorinated MBP-2k ([(18)F]MBP-2k) was then successfully synthesized via an (18)F-(19)F isotopic exchange reaction in BODIPY650/665. After intravenous injection into mice with xenografted tumors, [(18)F]MBP-2k showed significantly higher accumulation in HT1080 tumors with high MT1-MMP activity than in A549 tumors that have low MT1-MMP activity. Moreover, PET images showed better contrast in HT1080 tumors. These results show that [(18)F]MBP-2k can be used as a hybrid PET/optical imaging agent and is a promising probe for non-invasive monitoring of MT1-MMP activity in cancers. This probe may also efficiently combine targeted tumor imaging with image-guided surgery that could be beneficial for patients in the future.
Collapse
|
104
|
Eiseler T, Wille C, Koehler C, Illing A, Seufferlein T. Protein Kinase D2 Assembles a Multiprotein Complex at the Trans-Golgi Network to Regulate Matrix Metalloproteinase Secretion. J Biol Chem 2015; 291:462-77. [PMID: 26507660 DOI: 10.1074/jbc.m115.673582] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/06/2022] Open
Abstract
Vesicle formation and fission are tightly regulated at the trans-Golgi network (TGN) during constitutive secretion. Two major protein families regulate these processes: members of the adenosyl-ribosylation factor family of small G-proteins (ARFs) and the protein kinase D (PKD) family of serine/threonine kinases. The functional relationship between these two key regulators of protein transport from the TGN so far is elusive. We here demonstrate the assembly of a novel functional protein complex at the TGN and its key members: cytosolic PKD2 binds ARF-like GTPase (ARL1) and shuttles ARL1 to the TGN. ARL1, in turn, localizes Arfaptin2 to the TGN. At the TGN, where PKD2 interacts with active ARF1, PKD2, and ARL1 are required for the assembly of a complex comprising of ARF1 and Arfaptin2 leading to secretion of matrix metalloproteinase-2 and -7. In conclusion, our data indicate that PKD2 is a core factor in the formation of this multiprotein complex at the TGN that controls constitutive secretion of matrix metalloproteinase cargo.
Collapse
Affiliation(s)
- Tim Eiseler
- From the Department of Internal Medicine I, Ulm University, Albert Einstein Allee 23, D-89081 Ulm, Germany and
| | - Christoph Wille
- From the Department of Internal Medicine I, Ulm University, Albert Einstein Allee 23, D-89081 Ulm, Germany and
| | - Conny Koehler
- the Department of Internal Medicine I, Martin-Luther University Halle-Wittenberg, Ernst-Grube, Strasse 40, D-06120 Halle (Saale), Germany
| | - Anett Illing
- From the Department of Internal Medicine I, Ulm University, Albert Einstein Allee 23, D-89081 Ulm, Germany and
| | - Thomas Seufferlein
- From the Department of Internal Medicine I, Ulm University, Albert Einstein Allee 23, D-89081 Ulm, Germany and
| |
Collapse
|
105
|
Hochreiter B, Garcia AP, Schmid JA. Fluorescent proteins as genetically encoded FRET biosensors in life sciences. SENSORS 2015; 15:26281-314. [PMID: 26501285 PMCID: PMC4634415 DOI: 10.3390/s151026281] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022]
Abstract
Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them.
Collapse
Affiliation(s)
- Bernhard Hochreiter
- Institute for Vascular Biology and Thrombosis Research, Medical University Vienna, Schwarzspanierstraße17, Vienna A-1090, Austria.
| | - Alan Pardo Garcia
- Institute for Vascular Biology and Thrombosis Research, Medical University Vienna, Schwarzspanierstraße17, Vienna A-1090, Austria.
| | - Johannes A Schmid
- Institute for Vascular Biology and Thrombosis Research, Medical University Vienna, Schwarzspanierstraße17, Vienna A-1090, Austria.
| |
Collapse
|
106
|
Ohkawara H, Ikeda K, Ogawa K, Takeishi Y. MEMBRANE TYPE 1-MATRIX METALLOPROTEINASE (MT1-MMP) IDENTIFIED AS A MULTIFUNCTIONAL REGULATOR OF VASCULAR RESPONSES. Fukushima J Med Sci 2015; 61:91-100. [PMID: 26370683 DOI: 10.5387/fms.2015-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) functions as a signaling molecules in addition to a transmembrane metalloprotease, which degrades interstitial collagens and extracellular matrix components. This review focuses on the multifunctional roles of MT1-MMP as a signaling molecule in vascular responses to pro-atherosclerotic stimuli in the pathogenesis of cardiovascular diseases. First, the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1)-MT1-MMP signaling axis contributes to endothelial dysfunction, which is mediated via small GTP-binding protein RhoA and Rac1 activation. Second, MT1-MMP plays a crucial role in reactive oxygen species (ROS) generation through the activation of receptor for advanced glycation end products (AGEs) in smooth muscle cells, indicating that MT1-MMP may be a therapeutic target for diabetic vascular complications. Third, MT1-MMP is involved in RhoA/Rac1 activation and Ca(2+) signaling in the mechanism of thrombin-stimulated endothelial dysfunction and oxidant stress. Fourth, the inhibition of the MT1-MMP/Akt signaling pathway may be an attractive strategy for treating endothelial disordered hemostasis in the development of vascular diseases linked to TNF-α-induced inflammation. Fifth, MT1-MMP through RAGE induced RhoA/Rac1 activation and tissue factor protein upregulation through NF-κB phosphorylation in endothelial cells stimulated by high-mobility group box-1, which plays a key role in the systemic inflammation. These findings suggest that the MT1-MMP-mediated signaling axis may be a promising target for treating atherosclerosis and subsequent cardiovascular diseases.
Collapse
Affiliation(s)
- Hiroshi Ohkawara
- Department of Cardiology and Hematology, Fukushima Medical University
| | | | | | | |
Collapse
|
107
|
Brown GT, Murray GI. Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol 2015; 237:273-81. [PMID: 26174849 DOI: 10.1002/path.4586] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 12/12/2022]
Abstract
The purpose of this review is to highlight the recent mechanistic developments elucidating the role of matrix metalloproteinases (MMPs) in tumour invasion and metastasis. The ability of tumour cells to invade, migrate, and subsequently metastasize is a fundamental characteristic of cancer. Tumour invasion and metastasis are increasingly being characterized by the dynamic relationship between cancer cells and their microenvironment and developing a greater understanding of these basic pathological mechanisms is crucial. While MMPs have been strongly implicated in these processes as a result of extensive circumstantial evidence--for example, increased expression of individual MMPs in tumours and association of specific MMPs with prognosis--the underpinning mechanisms are only now being elucidated. Recent studies are now providing a mechanistic basis, highlighting and reinforcing the catalytic and non-catalytic roles of specific MMPs as key players in tumour invasion and metastasis.
Collapse
Affiliation(s)
- Gordon T Brown
- Pathology, Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Graeme I Murray
- Pathology, Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
108
|
Mendes DE, Wong-On-Wing A, Berkman CE. Phosphoramidate-based peptidomimetic inhibitors of membrane type-1 matrix metalloproteinase. J Enzyme Inhib Med Chem 2015; 31:167-71. [PMID: 25815671 DOI: 10.3109/14756366.2015.1010528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Membrane-type I matrix metalloproteinases (MT1-MMP) is an enzyme critical to the remodeling and homeostasis of extracellular matrix, and when over expressed it contributes to metastasis and cancer cell progression. Because of its role and implication as a biomarker that is upregulated in various cancers, MT1-MMP has become an attractive target for drug discovery. A small pilot library of peptidomimetics containing a phosphoramidate core as a zinc-binding group was synthesized and tested for inhibitory potency against MT1-MMP. From this library, a novel two residue peptidomimetic scaffold was identified that confers potency against MT1-MMP at submicromolar concentrations. The results of this study confirm that for this scaffold, valine is favored as a P1 residue and leucine in the P1' position. Furthermore, steric tolerance was observed for the N-terminus, thus implicating that a second-generation library could be constructed to extend the scaffold to P2 without concomitant loss of affinity within the MT1-MMP catalytic domain.
Collapse
Affiliation(s)
- Desiree E Mendes
- a Department of Chemistry , Washington State University , Pullman , Washington , DC , USA
| | - Annie Wong-On-Wing
- a Department of Chemistry , Washington State University , Pullman , Washington , DC , USA
| | - Clifford E Berkman
- a Department of Chemistry , Washington State University , Pullman , Washington , DC , USA
| |
Collapse
|
109
|
Zhang J, Sun X, Liu J, Liu J, Shen B, Nie L. The role of matrix metalloproteinase 14 polymorphisms in susceptibility to intervertebral disc degeneration in the Chinese Han population. Arch Med Sci 2015; 11:801-6. [PMID: 26322093 PMCID: PMC4548033 DOI: 10.5114/aoms.2015.53301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/03/2013] [Accepted: 08/18/2013] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Matrix metalloproteinase 14 (MMP14) plays an important role in the pathophysiology of intervertebral disc degeneration (IVDD). The present study aimed to determine whether two single nucleotide polymorphisms (-378 T/C and -364 G/T) of MMP14 were associated with the risk and severity of IVDD in the Chinese Han population. MATERIAL AND METHODS A total of 908 patients with IVDD and 906 healthy controls were enrolled in this study. The grade of disc degeneration was determined according to Schneiderman's classification for magnetic resonance imaging. The polymorphisms of MMP14 were genotyped using polymerase chain reaction and direct sequencing. RESULTS The genotype distribution of -364G/T did not show a significant difference between IVDD patients and healthy controls. The frequencies of the -378T/C and CC genotypes were significantly lower among IVDD patients compared with healthy controls (p < 0.001); unconditional logistic regression analysis revealed that the CT and CC genotypes were significantly associated with a decreased risk of IVDD compared with the TT genotype (p < 0.001). Patients with IVDD showed significantly higher frequencies of the T allele at -378T/C than healthy controls (p < 0.001). In addition, the -375 CC genotype, as well as the C allele, was associated with lower degenerative grades of IVDD compared with the TT genotype and the T allele, respectively (both p < 0.001). CONCLUSIONS The -378T/C polymorphism of MMP14 may be associated with the risk and severity of IVDD in the Chinese Han population. It shows potential to become a biomarker to predict risk and severity of IVDD.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, JiNan City, Shandong Province, China
- Department of Spine Surgery, Yantaishan Hospital, YanTai City, Shandong Province, China
| | - Xiujiang Sun
- Department of Bone and Joint, Yantaishan Hospital, YanTai City, Shandong Province, China
| | - Jing Liu
- Department of Basic Research, Occupation College of Yantai, YanTai City, Shandong Province, China
| | - Jianqing Liu
- Department of Spine Surgery, Yantaishan Hospital, YanTai City, Shandong Province, China
| | - Binghua Shen
- Department of Bone and Joint, Yantaishan Hospital, YanTai City, Shandong Province, China
| | - Lin Nie
- Department of Orthopedics, Qilu Hospital of Shandong University, JiNan City, Shandong Province, China
| |
Collapse
|
110
|
Chung EY, Ochs CJ, Wang Y, Lei L, Qin Q, Smith AM, Strongin AY, Kamm R, Qi YX, Lu S, Wang Y. Activatable and Cell-Penetrable Multiplex FRET Nanosensor for Profiling MT1-MMP Activity in Single Cancer Cells. NANO LETTERS 2015; 15:5025-5032. [PMID: 26203778 PMCID: PMC4675668 DOI: 10.1021/acs.nanolett.5b01047] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We developed a quantum-dot-based fluorescence resonance energy transfer (QD-FRET) nanosensor to visualize the activity of matrix metalloproteinase (MT1-MMP) at cell membrane. A bended peptide with multiple motifs was engineered to position the FRET pair at a close proximity to allow energy transfer, which can be cleaved by active MT1-MMP to result in FRET changes and the exposure of cell penetrating sequence. Via FRET and penetrated QD signals, the nanosensor can profile cancer cells.
Collapse
Affiliation(s)
- Eddie Y. Chung
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
| | - Christopher J. Ochs
- Singapore-MIT Alliance for Research and Technology, BioSystems and Micromechanics, Singapore 138602
| | - Yi Wang
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| | - Lei Lei
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| | - Qin Qin
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
| | - Andrew M. Smith
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| | - Alex Y. Strongin
- Sanford Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - Roger Kamm
- Singapore-MIT Alliance for Research and Technology, BioSystems and Micromechanics, Singapore 138602
| | - Ying-Xin Qi
- Institute of Mechanobiology and Medical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoying Lu
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| | - Yingxiao Wang
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| |
Collapse
|
111
|
Lu S, Zhu Q, Zhang Y, Song W, Wilson MJ, Liu P. Dual-Functions of miR-373 and miR-520c by Differently Regulating the Activities of MMP2 and MMP9. J Cell Physiol 2015; 230:1862-70. [PMID: 25545756 DOI: 10.1002/jcp.24914] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 12/18/2014] [Indexed: 01/07/2023]
Abstract
MicroRNA-520c (miR-520c) and microRNA-373 (miR-373) are originally characterized as both oncogenes and tumor suppressors in different types of human cancers. In this study, we found that translation of mRNA of MT1-MMP, an oncogene related to tumor metastasis, was well inhibited by miR-520c and miR-373 in several types of human cancer cells. Our experimental data demonstrated that these two microRNAs inhibited the translation of mRNA of MT1-MMP and down-regulated its proteolytic enzyme activities via targeting 3'UTR of mRNA of MT1-MMP, further decreased activating proMMP2 into active MMP2 in fibrosarcoma HT1080, benign prostatic hyperplasia epithelial cell BPH-1 and glioblastoma U87GM. More interestingly, from the effects of microRNAs on cell functions, we found that cell growth were all blocked on fibronectin and type IV collagen coated plates and also in three-dimension type I collagen lattice but enhanced only in HT1080 cells on type IV collagen coated plates and in three-dimension type I collagen lattice; cell migration results showed the same effect as that of cell growth. The difference was due to up-regulating the expression of MMP9 gene by miR-520c and miR-373 in HT1080 cells but not in BPH-1 and U87GM cells. Our findings suggest that miR-520c and miR-373, which have different roles in different type of cancer via regulating the translation of mRNA of MT1-MMP and the expression of MMP9 gene, might have an important clue on clinic when selecting the therapeutic regimen and finding new drugs for intervention in different kinds of cancer.
Collapse
Affiliation(s)
- Shan Lu
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, Life Science College, Nanjing Normal University, Nanjing, Jiangsu, P.R. China
| | | | | | | | | | | |
Collapse
|
112
|
Wiesner C, Le-Cabec V, El Azzouzi K, Maridonneau-Parini I, Linder S. Podosomes in space: macrophage migration and matrix degradation in 2D and 3D settings. Cell Adh Migr 2015; 8:179-91. [PMID: 24713854 DOI: 10.4161/cam.28116] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Migration of macrophages is a key process for a variety of physiological functions, such as pathogen clearance or tissue homeostasis. However, it can also be part of pathological scenarios, as in the case of tumor-associated macrophages. This review presents an overview of the different migration modes macrophages can adopt, depending on the physical and chemical properties of specific environments, and the constraints they impose upon cells. We discuss the importance of these environmental and also of cellular parameters, as well as their relative impact on macrophage migration and on the formation of matrix-lytic podosomes in 2D and 3D. Moreover, we present an overview of routinely used and also newly developed assays for the study of macrophage migration in both 2D and 3D contexts, their respective advantages and limitations, and also their potential to reliably mimic in vivo situations.
Collapse
Affiliation(s)
- Christiane Wiesner
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany
| | - Véronique Le-Cabec
- CNRS UMR 5089; IPBS (Institut de Pharmacologie et de Biologie Structurale), BP64182, 205 route de Narbonne, 31077 Toulouse Cedex 04, France; Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Karim El Azzouzi
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany
| | - Isabelle Maridonneau-Parini
- CNRS UMR 5089; IPBS (Institut de Pharmacologie et de Biologie Structurale), BP64182, 205 route de Narbonne, 31077 Toulouse Cedex 04, France; Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France; These authors contributed equally to this work
| | - Stefan Linder
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany; These authors contributed equally to this work
| |
Collapse
|
113
|
Revach OY, Geiger B. The interplay between the proteolytic, invasive, and adhesive domains of invadopodia and their roles in cancer invasion. Cell Adh Migr 2015; 8:215-25. [PMID: 24714132 DOI: 10.4161/cam.27842] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Invadopodia are actin-based protrusions of the plasma membrane that penetrate into the extracellular matrix (ECM), and enzymatically degrade it. Invadopodia and podosomes, often referred to, collectively, as "invadosomes," are actin-based membrane protrusions that facilitate matrix remodeling and cell invasion across tissues, processes that occur under specific physiological conditions such as bone remodeling, as well as under pathological states such as bone, immune disorders, and cancer metastasis. In this review, we specifically focus on the functional architecture of invadopodia in cancer cells; we discuss here three functional domains of invadopodia responsible for the metalloproteinase-based degradation of the ECM, the cytoskeleton-based mechanical penetration into the matrix, and the integrin adhesome-based adhesion to the ECM. We will describe the structural and molecular organization of each domain and the cross-talk between them during the invasion process.
Collapse
Affiliation(s)
- Or-Yam Revach
- Department of Molecular Cell Biology; Weizmann Institute of Science; Rehovot, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology; Weizmann Institute of Science; Rehovot, Israel
| |
Collapse
|
114
|
Abstract
Heightened matrix metalloproteinase (MMP) activity has been noted in the context of the tumor microenvironment for many years, and causal roles for MMPs have been defined across the spectrum of cancer progression. This is primarily due to the ability of the MMPs to process extracellular matrix (ECM) components and to regulate the bioavailability/activity of a large repertoire of cytokines and growth factors. These characteristics made MMPs an attractive target for therapeutic intervention but notably clinical trials performed in the 1990s did not fulfill the promise of preclinical studies. The reason for the failure of early MMP inhibitor (MMPI) clinical trials that are multifold but arguably principal among them was the inability of early MMP-based inhibitors to selectively target individual MMPs and to distinguish between MMPs and other members of the metzincin family. In the decades that have followed the MMP inhibitor trials, innovations in chemical design, antibody-based strategies, and nanotechnologies have greatly enhanced our ability to specifically target and measure the activity of MMPs. These advances provide us with the opportunity to generate new lines of highly selective MMPIs that will not only extend the overall survival of cancer patients, but will also afford us the ability to utilize heightened MMP activity in the tumor microenvironment as a means by which to deliver MMPIs or MMP activatable prodrugs.
Collapse
|
115
|
Sathyamoorthy T, Tezera LB, Walker NF, Brilha S, Saraiva L, Mauri FA, Wilkinson RJ, Friedland JS, Elkington PT. Membrane Type 1 Matrix Metalloproteinase Regulates Monocyte Migration and Collagen Destruction in Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2015; 195:882-91. [PMID: 26091717 PMCID: PMC4505956 DOI: 10.4049/jimmunol.1403110] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/24/2015] [Indexed: 12/28/2022]
Abstract
Tuberculosis (TB) remains a global pandemic and drug resistance is rising. Multicellular granuloma formation is the pathological hallmark of Mycobacterium tuberculosis infection. The membrane type 1 matrix metalloproteinase (MT1-MMP or MMP-14) is a collagenase that is key in leukocyte migration and collagen destruction. In patients with TB, induced sputum MT1-MMP mRNA levels were increased 5.1-fold compared with matched controls and correlated positively with extent of lung infiltration on chest radiographs (r = 0.483; p < 0.05). M. tuberculosis infection of primary human monocytes increased MT1-MMP surface expression 31.7-fold and gene expression 24.5-fold. M. tuberculosis-infected monocytes degraded collagen matrix in an MT1-MMP-dependent manner, and MT1-MMP neutralization decreased collagen degradation by 73%. In human TB granulomas, MT1-MMP immunoreactivity was observed in macrophages throughout the granuloma. Monocyte-monocyte networks caused a 17.5-fold increase in MT1-MMP surface expression dependent on p38 MAPK and G protein-coupled receptor-dependent signaling. Monocytes migrating toward agarose beads impregnated with conditioned media from M. tuberculosis-infected monocytes expressed MT1-MMP. Neutralization of MT1-MMP activity decreased this M. tuberculosis network-dependent monocyte migration by 44%. Taken together, we demonstrate that MT1-MMP is central to two key elements of TB pathogenesis, causing collagen degradation and regulating monocyte migration.
Collapse
Affiliation(s)
| | - Liku B Tezera
- National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Naomi F Walker
- Infectious Diseases and Immunity, Imperial College London, London W12 0NN, United Kingdom; Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Sara Brilha
- Infectious Diseases and Immunity, Imperial College London, London W12 0NN, United Kingdom
| | - Luisa Saraiva
- Infectious Diseases and Immunity, Imperial College London, London W12 0NN, United Kingdom
| | - Francesco A Mauri
- Department of Histopathology, Imperial College London, London W12 0NN, United Kingdom
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Jon S Friedland
- Infectious Diseases and Immunity, Imperial College London, London W12 0NN, United Kingdom
| | - Paul T Elkington
- Infectious Diseases and Immunity, Imperial College London, London W12 0NN, United Kingdom; National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
116
|
Ma Y, Zou F, Xiong J, Wan W, Yin L, Li X, Bei Z, Yuan L, Meng S, Wang J, Song G. Effect of Matrine on HPAC cell migration by down-regulating the expression of MT1-MMP via Wnt signaling. Cancer Cell Int 2015; 15:59. [PMID: 26113801 PMCID: PMC4480578 DOI: 10.1186/s12935-015-0210-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 06/01/2015] [Indexed: 12/31/2022] Open
Abstract
Aim This study sought to explore the exact mechanism of Matrine inhibited migration and invasion of human pancreatic cancer cells. Methods HPAC or Capan-1 cells were cultured in completed RPMI-1640 medium, contained with 50 μg/ml Matrine or 0.05 μg/ml docetaxel, respectively. Cell viability was evaluated by spectrophotometric analysis using MTT assay. Wound healing assay and transwell approach were used to detect the effects of Matrine on HPAC cell migration and invasion. Western Blot and RT-PCR were performed to detect the expressions of MT1-MMP, Wnt and β-Catenin. CHIP assay was used to detect whether the MT1-MMP transcription activity correlated with Wnt signaling pathway. Results MTT results indicated that cell proliferration was inhibited by Matrine at a range of concentrations, especially at high dose. We further found that Matrine treatment significantly induced cell migration and invasion decreased. Interestingly, the expression of MT1-MMP decreased evidently upon Matrine treatment, paralleled with the expressions of Wnt and β-Catenin detected by Western Blot and RT-PCR assay. Further analysis of MT1-MMP transcription activity revealed that Matrine reduced the expression of MT1-MMP mediated by Wnt signaling pathway. Conclusion Matrine play a vital role in inhibiting HPAC cellular migration and invasion through down-regulating the expression of MT1-MMP via Wnt signaling pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0210-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongchao Ma
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China.,Key lab, of BioMedicine of Luohe City, Luohe, China
| | - Fazhang Zou
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China.,Key lab, of BioMedicine of Luohe City, Luohe, China
| | - Junping Xiong
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| | - Wei Wan
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| | - Li Yin
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| | - Xianjia Li
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| | - Zhanyu Bei
- Chengde Nursing Vocational College, Chengde, China
| | - Lei Yuan
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| | - Song Meng
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| | - Jianguo Wang
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| | - Guohua Song
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| |
Collapse
|
117
|
Prideaux M, Staines KA, Jones ER, Riley GP, Pitsillides AA, Farquharson C. MMP and TIMP temporal gene expression during osteocytogenesis. Gene Expr Patterns 2015; 18:29-36. [PMID: 25982959 DOI: 10.1016/j.gep.2015.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 01/01/2023]
Abstract
Osteocytes within bone differentiate from osteoblast precursors which reside in a mineralised extracellular matrix (ECM). Fully differentiated osteocytes are critical for bone development and function but the factors that regulate this differentiation process are unknown. The enzymes primarily responsible for ECM remodelling are matrix metalloproteinases (MMP); however, the expression and role of MMPs during osteocytogenesis is undefined. Here we used MLO-A5 cells to determine the temporal gene expressions of the MMP family and their endogenous inhibitors--tissue inhibitors of metalloproteinases (TIMPs) during osteocytogenesis. RT-qPCR revealed expression of 14 Mmps and 3 Timps in MLO-A5 cells. Mmp2, Mmp23 and Mmp28 were decreased concurrent with mineralisation onset (P < 0.05*). Mmp14 and Mmp19 mRNAs were also significantly increased at day 3 (P < 0.05*) before returning to baseline levels at day 6. Decreased expressions of Timp1, Timp2 and Timp3 mRNA were observed by day 6 compared to day 0 (P < 0.05*). To examine whether these changes are linked to osteocytogenesis, we determined Mmp/Timp mRNA expressions in mineralisation-limited conditions. RT-qPCR revealed that the previously observed decreases in Mmp2, Mmp23 and Mmp28 were not observed in these mineralisation-limited cultures, therefore closely linking these MMPs with osteocyte differentiation. Similarly, we found differential expression of Timp1, Timp2 and Timp3 mRNA in mineralisation-restricted cultures (P < 0.05*). In conclusion, we have identified several members of the MMP/TIMP families as regulators of ECM remodelling necessary for the acquisition of the osteocyte phenotype.
Collapse
Affiliation(s)
- M Prideaux
- The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - K A Staines
- Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG.
| | - E R Jones
- University of East Anglia, Norwich NR4 7TJ, UK
| | - G P Riley
- University of East Anglia, Norwich NR4 7TJ, UK
| | - A A Pitsillides
- Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - C Farquharson
- Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG
| |
Collapse
|
118
|
Kirui DK, Celia C, Molinaro R, Bansal SS, Cosco D, Fresta M, Shen H, Ferrari M. Mild hyperthermia enhances transport of liposomal gemcitabine and improves in vivo therapeutic response. Adv Healthc Mater 2015; 4:1092-103. [PMID: 25721343 PMCID: PMC4433418 DOI: 10.1002/adhm.201400738] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/17/2015] [Indexed: 12/11/2022]
Abstract
Obstructive biological barriers limit the transport and efficacy of cancer nanotherapeutics. Creative manipulation of tumor microenvironment provides promising avenues towards improving chemotherapeutic response. Such strategies include the use of mechanical stimuli to overcome barriers, and increase drug delivery and therapeutic efficacy. The rational use of gold nanorod-mediated mild hyperthermia treatment (MHT) alters tumor transport properties, increases liposomal gemcitabine (Gem Lip) delivery, and antitumor efficacy in pancreatic cancer CAPAN-1 tumor model. MHT treatment leads to a threefold increase in accumulation of 80-nm liposomes and enhances spatial interstitial distribution. I.v. injection of Gem Lip and MHT treatment lead to a threefold increase in intratumor gemcitabine concentration compared to chemotherapeutic infusion alone. Furthermore, combination of MHT treatment with infusion of 12 mg kg(-1) Gem Lip leads to a twofold increase in therapeutic efficacy and inhibition of CAPAN-1 tumor growth when compared to equimolar chemotherapeutic treatment alone. Enhanced therapeutic effect is confirmed by reduction in tumor size and increase in apoptotic index where MHT treatment combined with 12 mg kg(-1) Gem Lip achieves similar therapeutic efficacy as the use of 60 mg kg(-1) free gemcitabine. In conclusion, improvements in vivo efficacy are demonstrated resulting from MHT treatment that overcome transport barriers, promote delivery, improve efficacy of nanomedicines.
Collapse
Affiliation(s)
- Dickson K Kirui
- Department of NanoMedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas, 77030, USA
| | - Christian Celia
- Department of NanoMedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas, 77030, USA
- Department of Pharmacy, University of Chieti – Pescara “G. d’Annunzio”, Chieti, 66013, Italy
| | - Roberto Molinaro
- Department of NanoMedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas, 77030, USA
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Germaneto – Catanzaro, 88100, Italy
| | - Shyam S. Bansal
- Department of NanoMedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas, 77030, USA
| | - Donato Cosco
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Germaneto – Catanzaro, 88100, Italy
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Germaneto – Catanzaro, 88100, Italy
| | - Haifa Shen
- Department of NanoMedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas, 77030, USA
- Department of Cell and Development Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Mauro Ferrari
- Department of NanoMedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas, 77030, USA
- Department of Biomedical Engineering in Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
119
|
Chatterjee S, Fujiwara K, Pérez NG, Ushio-Fukai M, Fisher AB. Mechanosignaling in the vasculature: emerging concepts in sensing, transduction and physiological responses. Am J Physiol Heart Circ Physiol 2015; 308:H1451-62. [PMID: 25862828 DOI: 10.1152/ajpheart.00105.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/23/2015] [Indexed: 01/08/2023]
Abstract
Cells are constantly exposed to mechanical forces that play a role in modulating cellular structure and function. The cardiovascular system experiences physical forces in the form of shear stress and stretch associated with blood flow and contraction, respectively. These forces are sensed by endothelial cells and cardiomyocytes and lead to responses that control vascular and cardiac homeostasis. This was highlighted at the Pan American Physiological Society meeting at Iguassu Falls, Brazil, in a symposium titled "Mechanosignaling in the Vasculature." This symposium presented recent research that showed the existence of a vital link between mechanosensing and downstream redox sensitive signaling cascades. This link helps to transduce and transmit the physical force into an observable physiological response. The speakers showcased how mechanosensors such as ion channels, membrane receptor kinases, adhesion molecules, and other cellular components transduce the force via redox signals (such as reactive oxygen species and nitric oxide) to receptors (transcription factors, growth factors, etc.). Receptor activated pathways then lead to cellular responses including cellular proliferation, contraction, and remodeling. These responses have major relevance to the physiology and pathophysiology of various cardiovascular diseases. Thus an understanding of the complex series of events, from the initial sensing through the final response, is essential for progress in this field. Overall, this symposium addressed some important emerging concepts in the field of mechanosignaling and the eventual pathophysiological responses.
Collapse
Affiliation(s)
- Shampa Chatterjee
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania;
| | - Keigi Fujiwara
- Department of Cardiology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Néstor Gustavo Pérez
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Argentina; and
| | - Masuko Ushio-Fukai
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
120
|
Myochin T, Hanaoka K, Iwaki S, Ueno T, Komatsu T, Terai T, Nagano T, Urano Y. Development of a series of near-infrared dark quenchers based on Si-rhodamines and their application to fluorescent probes. J Am Chem Soc 2015; 137:4759-65. [PMID: 25764154 DOI: 10.1021/jacs.5b00246] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Near-infrared (NIR) fluorescent probes based on the Förster resonance energy transfer (FRET) mechanism have various practical advantages, and their molecular design is generally based on the use of NIR dark quenchers, which are nonfluorescent dyes, as cleavable FRET acceptors. However, few NIR dark quenchers can quench fluorescence in the Cy7 region (over 780 nm). Here, we describe Si-rhodamine-based NIR dark quenchers (SiNQs), which show broad absorption covering this region. They are nonfluorescent independently of solvent polarity and pH, probably due to free rotation of the bond between the N atom and the xanthene moiety. SiNQs can easily be structurally modified to tune their water-solubility and absorption spectra, enabling flexible design of appropriate FRET pair for various NIR fluorescent dyes. To demonstrate the usefulness of SiNQs, we designed and synthesized a NIR fluorescent probe for matrix metalloproteinase (MMP) activity using SiNQ780. This probe 1 could detect MMP activity in vitro, in cultured cells and in a tumor-bearing mouse, in which the tumor was clearly visualized, by NIR fluorescence. We believe SiNQs will be useful for the development of a wide range of practical NIR fluorescent probes.
Collapse
Affiliation(s)
- Takuya Myochin
- †Graduate School of Pharmaceutical Sciences, ‡Open Innovation Center for Drug Discovery, and §Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,¶PRESTO and ⊥CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Kenjiro Hanaoka
- †Graduate School of Pharmaceutical Sciences, ‡Open Innovation Center for Drug Discovery, and §Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,¶PRESTO and ⊥CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Shimpei Iwaki
- †Graduate School of Pharmaceutical Sciences, ‡Open Innovation Center for Drug Discovery, and §Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,¶PRESTO and ⊥CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Tasuku Ueno
- †Graduate School of Pharmaceutical Sciences, ‡Open Innovation Center for Drug Discovery, and §Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,¶PRESTO and ⊥CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Toru Komatsu
- †Graduate School of Pharmaceutical Sciences, ‡Open Innovation Center for Drug Discovery, and §Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,¶PRESTO and ⊥CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Takuya Terai
- †Graduate School of Pharmaceutical Sciences, ‡Open Innovation Center for Drug Discovery, and §Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,¶PRESTO and ⊥CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Tetsuo Nagano
- †Graduate School of Pharmaceutical Sciences, ‡Open Innovation Center for Drug Discovery, and §Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,¶PRESTO and ⊥CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Yasuteru Urano
- †Graduate School of Pharmaceutical Sciences, ‡Open Innovation Center for Drug Discovery, and §Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,¶PRESTO and ⊥CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
121
|
Itoh Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol 2015; 44-46:207-23. [PMID: 25794647 DOI: 10.1016/j.matbio.2015.03.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/22/2022]
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) form a subgroup of the matrix metalloproteinase (MMP) family, and there are 6 MT-MMPs in humans. MT-MMPs are further sub-classified into type I transmembrane-type (MT1, -MT2-, MT3- and MT5-MMPs) and glycosylphosphatidylinositol (GPI)-anchored type (MT4- and MT6-MMPs). In either case MT-MMPs are tethered to the plasma membrane, and this cell surface expression provides those enzymes with unique functionalities affecting various cellular behaviours. Among the 6 MT-MMPs, MT1-MMP is the most investigated enzyme and many of its roles and regulations have been revealed to date, but the potential roles and regulatory mechanisms of other MT-MMPs are gradually getting clearer as well. Further investigations of MT-MMPs are likely to reveal novel pathophysiological mechanisms and potential therapeutic strategies for different diseases in the future.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK.
| |
Collapse
|
122
|
Dong Y, Chen G, Gao M, Tian X. Increased expression of MMP14 correlates with the poor prognosis of Chinese patients with gastric cancer. Gene 2015; 563:29-34. [PMID: 25748728 DOI: 10.1016/j.gene.2015.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 01/31/2023]
Abstract
The role of matrix metalloproteinase 14 (MMP14) has been identified to involve tumor progression and prognosis. The purpose of this study is to investigate the role of MMP14 in tumor progression and prognosis of gastric cancer. This study indicated that MMP14 mRNA and protein were overexpressed in gastric cancer tissue (P<0.001 and P=0.037, respectively) and significantly associated with clinical stage (P=0.005), lymph node metastasis (P=0.003), and distant metastasis (P=0.017). Moreover, we found that the overexpression of MMP14 was a significant predictor of poor prognosis for gastric cancer patients (P<0.001). Furthermore, we performed a meta-analysis which included 594 cases from 3 studies and showed that MMP14 overexpression was a significantly poor prognostic factor in Chinese patients with gastric cancer and HR (95% CI) was 2.17 (1.64-2.86). In conclusion, MMP14 plays an important role on gastric cancer progression and prognosis and acts as a convictive biomarker for prognostic prediction for Chinese patients with gastric cancer.
Collapse
Affiliation(s)
- Yichen Dong
- Department of General Surgery, Laiwu People's Hospital, Laiwu 271100, Shandong, China
| | - Guohua Chen
- Shandong University, Jinan 250100, Shandong, China
| | - Mingming Gao
- Second Department of Health, Laiwu People's Hospital, Laiwu 271100, Shandong, China
| | - Xia Tian
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, Jining 272011, Shandong, China.
| |
Collapse
|
123
|
Klein G, Schmal O, Aicher WK. Matrix metalloproteinases in stem cell mobilization. Matrix Biol 2015; 44-46:175-83. [PMID: 25617493 DOI: 10.1016/j.matbio.2015.01.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 01/05/2023]
Abstract
Hematopoietic stem cells (HSCs) have the capability to migrate back and forth between their preferred microenvironment in bone marrow niches and the peripheral blood, but under steady-state conditions only a marginal number of stem cells can be found in the circulation. Different mobilizing agents, however, which create a highly proteolytic milieu in the bone marrow, can drastically increase the number of circulating HSCs. Among other proteases secreted and membrane-bound matrix metalloproteinases (MMPs) are known to be involved in the induced mobilization process and can digest niche-specific extracellular matrix components and cytokines responsible for stem cell retention to the niches. Iatrogenic stem cell mobilization and stem cell homing to their niches are clinically employed on a routine basis, although the exact mechanisms of both processes are still not fully understood. In this review we provide an overview on the various roles of MMPs in the induced release of HSCs from the bone marrow.
Collapse
Affiliation(s)
- Gerd Klein
- Center for Medical Research, Department of Internal Medicine, Section for Transplantation Immunology and Immunohematology, University of Tübingen, Germany.
| | - Olga Schmal
- Center for Medical Research, Department of Internal Medicine, Section for Transplantation Immunology and Immunohematology, University of Tübingen, Germany
| | | |
Collapse
|
124
|
Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biol 2015; 42:56-73. [PMID: 25572963 PMCID: PMC4409530 DOI: 10.1016/j.matbio.2014.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 01/06/2023]
Abstract
It is well known that angiogenesis is linked to fibrotic processes in fibroproliferative diseases, but insights into pathophysiological processes are limited, due to lack of understanding of molecular mechanisms controlling endothelial and fibroblastic homeostasis. We demonstrate here that the matrix receptor anthrax toxin receptor 1 (ANTXR1), also known as tumor endothelial marker 8 (TEM8), is an essential component of these mechanisms. Loss of TEM8 function in mice causes reduced synthesis of endothelial basement membrane components and hyperproliferative and leaky blood vessels in skin. In addition, endothelial cell alterations in mutants are almost identical to those of endothelial cells in infantile hemangioma lesions, including activated VEGF receptor signaling in endothelial cells, increased expression of the downstream targets VEGF and CXCL12, and increased numbers of macrophages and mast cells. In contrast, loss of TEM8 in fibroblasts leads to increased rates of synthesis of fiber-forming collagens, resulting in progressive fibrosis in skin and other organs. Compromised interactions between TEM8-deficient endothelial and fibroblastic cells cause dramatic reduction in the activity of the matrix-degrading enzyme MMP2. In addition to insights into mechanisms of connective tissue homeostasis, our data provide molecular explanations for vascular and connective tissue abnormalities in GAPO syndrome, caused by loss-of-function mutations in ANTXR1. Furthermore, the loss of MMP2 activity suggests that fibrotic skin abnormalities in GAPO syndrome are, in part, the consequence of pathophysiological mechanisms underlying syndromes (NAO, Torg and Winchester) with multicentric skin nodulosis and osteolysis caused by homozygous loss-of-function mutations in MMP2.
Collapse
|
125
|
Zhang Z. Chondrons and the pericellular matrix of chondrocytes. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:267-77. [PMID: 25366980 DOI: 10.1089/ten.teb.2014.0286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In cartilage, chondrocytes are embedded within an abundant extracellular matrix (ECM). A typical chondron consists of a chondrocyte and the immediate surrounding pericellular matrix (PCM). The PCM has a patent structure, defined molecular composition, and unique physical properties that support the chondrocyte. Given this spatial position, the PCM is pivotal in mediating communication between chondrocytes and the ECM and, thus, plays a critical role in cartilage homeostasis. The biological function and mechanical properties of the PCM have been extensively studied, mostly in the form of chondrons. This review intends to summarize recent progress in chondron and chondrocyte PCM research, with emphasis on the re-establishment of the PCM by isolated chondrocytes or mesenchymal stem cells during chondrogenic differentiation, and the effects of the PCM on cartilage tissue formation.
Collapse
Affiliation(s)
- Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| |
Collapse
|
126
|
Ito-Kureha T, Koshikawa N, Yamamoto M, Semba K, Yamaguchi N, Yamamoto T, Seiki M, Inoue JI. Tropomodulin 1 expression driven by NF-κB enhances breast cancer growth. Cancer Res 2014; 75:62-72. [PMID: 25398440 DOI: 10.1158/0008-5472.can-13-3455] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancers (TNBC), which include the basal-like and claudin-low disease subtypes, are aggressive malignancies for which effective therapeutic targets are lacking. NF-κB activation has an established role in breast malignancy, and it is higher in TNBC than other breast cancer subtypes. On this basis, we hypothesized that proteins derived from NF-κB target genes might be molecular targets for TNBC therapy. In this study, we conducted a microarray-based screen for novel NF-κB-inducible proteins as candidate therapeutic targets, identifying tropomodulin 1 (TMOD1) as a lead candidate. TMOD1 expression was regulated directly by NF-κB and was significantly higher in TNBC than other breast cancer subtypes. TMOD1 elevation is associated with enhanced tumor growth in a mouse tumor xenograft model and in a 3D type I collagen culture. TMOD1-dependent tumor growth was correlated with MMP13 induction, which was mediated by TMOD1-dependent accumulation of β-catenin. Overall, our study highlighted a novel TMOD1-mediated link between NF-κB activation and MMP13 induction, which accounts in part for the NF-κB-dependent malignant phenotype of TNBC.
Collapse
Affiliation(s)
- Taku Ito-Kureha
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan. Cell Signal Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Naohiko Koshikawa
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Mizuki Yamamoto
- Department of Life Science and Medical Bio-science, Waseda University, Tokyo, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bio-science, Waseda University, Tokyo, Japan
| | - Noritaka Yamaguchi
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Motoharu Seiki
- Graduate School of Medicine, Kochi University, Kochi, Japan
| | - Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
127
|
Trudel D, Desmeules P, Turcotte S, Plante M, Grégoire J, Renaud MC, Orain M, Bairati I, Têtu B. Visual and automated assessment of matrix metalloproteinase-14 tissue expression for the evaluation of ovarian cancer prognosis. Mod Pathol 2014; 27:1394-404. [PMID: 24603589 DOI: 10.1038/modpathol.2014.32] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to evaluate whether the membrane type 1 matrix metalloproteinase-14 (or MT1-MMP) tissue expression, as assessed visually on digital slides and by digital image analysis, could predict outcomes in women with ovarian carcinoma. Tissue microarrays from a cohort of 211 ovarian carcinoma women who underwent a debulking surgery between 1993 and 2006 at the CHU de Québec (Canada) were immunostained for matrix metalloproteinase-14. The percentage of MMP-14 staining was assessed visually and with the Calopix software. Progression was evaluated using the CA-125 and/or the RECIST criteria according to the GCIG criteria. Dates of death were obtained by record linkage with the Québec mortality files. Adjusted hazard ratios of death and progression with their 95% confidence intervals were estimated using the Cox model. Comparisons between the two modalities of MMP-14 assessment were done using the box plots and the Kruskal-Wallis test. The highest levels of MMP-14 immunostaining were associated with nonserous histology, early FIGO stage, and low preoperative CA-125 levels (P<0.05). In bivariate analyses, the higher level of MMP-14 expression (>40% of MMP-14-positive cells) was inversely associated with progression using visual assessment (hazard ratio=0.39; 95% confidence interval: 0.18-0.82). A similar association was observed with the highest quartile of MMP-14-positive area assessed by digital image analysis (hazard ratio=0.48; 95% confidence interval: 0.28-0.82). After adjustment for standard prognostic factors, these associations were no longer significant in the ovarian carcinoma cohort. However, in women with serous carcinoma, the highest quartile of MMP-14-positive area was associated with progression (adjusted hazard ratio=0.48; 95% confidence interval: 0.24-0.99). There was no association with overall survival. The digital image analysis of MMP-14-positive area matched the visual assessment using three categories (>40% vs 21-40 vs <20%). Higher levels of MMP-14 immunostaining were associated with standard factors of better ovarian carcinoma prognosis. In women with serous carcinoma, high expression of MMP-14 was associated with lower progression.
Collapse
Affiliation(s)
- Dominique Trudel
- 1] Laval University Cancer Research Center and Research Center of the Centre Hospitalier Universitaire (CHU) de Québec, Québec, Canada [2] Department of Pathology/Applied Molecular Oncology, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Patrice Desmeules
- Anatomic Pathology and Cytology Department, Hôpital du St-Sacrement, Centre Hospitalier Universitaire (CHU) de Québec, Laval University, Québec, Canada
| | - Stéphane Turcotte
- Laval University Cancer Research Center and Research Center of the Centre Hospitalier Universitaire (CHU) de Québec, Québec, Canada
| | - Marie Plante
- 1] Laval University Cancer Research Center and Research Center of the Centre Hospitalier Universitaire (CHU) de Québec, Québec, Canada [2] Gynecologic Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec, Québec, Canada
| | - Jean Grégoire
- Gynecologic Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec, Québec, Canada
| | - Marie-Claude Renaud
- Gynecologic Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec, Québec, Canada
| | - Michèle Orain
- Anatomic Pathology and Cytology Department, Hôpital du St-Sacrement, Centre Hospitalier Universitaire (CHU) de Québec, Laval University, Québec, Canada
| | - Isabelle Bairati
- Laval University Cancer Research Center and Research Center of the Centre Hospitalier Universitaire (CHU) de Québec, Québec, Canada
| | - Bernard Têtu
- 1] Laval University Cancer Research Center and Research Center of the Centre Hospitalier Universitaire (CHU) de Québec, Québec, Canada [2] Anatomic Pathology and Cytology Department, Hôpital du St-Sacrement, Centre Hospitalier Universitaire (CHU) de Québec, Laval University, Québec, Canada
| |
Collapse
|
128
|
Frittoli E, Palamidessi A, Marighetti P, Confalonieri S, Bianchi F, Malinverno C, Mazzarol G, Viale G, Martin-Padura I, Garré M, Parazzoli D, Mattei V, Cortellino S, Bertalot G, Di Fiore PP, Scita G. A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination. ACTA ACUST UNITED AC 2014; 206:307-28. [PMID: 25049275 PMCID: PMC4107781 DOI: 10.1083/jcb.201403127] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The mechanisms by which tumor cells metastasize and the role of endocytic proteins in this process are not well understood. We report that overexpression of the GTPase RAB5A, a master regulator of endocytosis, is predictive of aggressive behavior and metastatic ability in human breast cancers. RAB5A is necessary and sufficient to promote local invasion and distant dissemination of various mammary and nonmammary tumor cell lines, and this prometastatic behavior is associated with increased intratumoral cell motility. Specifically, RAB5A is necessary for the formation of invadosomes, membrane protrusions specialized in extracellular matrix (ECM) degradation. RAB5A promotes RAB4- and RABENOSYN-5-dependent endo/exocytic cycles (EECs) of critical cargos (membrane-type 1 matrix metalloprotease [MT1-MMP] and β3 integrin) required for invadosome formation in response to motogenic stimuli. This trafficking circuitry is necessary for spatially localized hepatocyte growth factor (HGF)/MET signaling that drives invasive, proteolysis-dependent chemotaxis in vitro and for conversion of ductal carcinoma in situ to invasive ductal carcinoma in vivo. Thus, RAB5A/RAB4 EECs promote tumor dissemination by controlling a proteolytic, mesenchymal invasive program.
Collapse
Affiliation(s)
- Emanuela Frittoli
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy
| | - Andrea Palamidessi
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy
| | - Paola Marighetti
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy
| | - Stefano Confalonieri
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | - Fabrizio Bianchi
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | - Chiara Malinverno
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy
| | - Giovanni Mazzarol
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | - Giuseppe Viale
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | - Ines Martin-Padura
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | | | - Dario Parazzoli
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy
| | - Valentina Mattei
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | | | - Giovanni Bertalot
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | - Pier Paolo Di Fiore
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giorgio Scita
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
129
|
Zhang Y, Lin Z, Foolen J, Schoen I, Santoro A, Zenobi-Wong M, Vogel V. Disentangling the multifactorial contributions of fibronectin, collagen and cyclic strain on MMP expression and extracellular matrix remodeling by fibroblasts. Matrix Biol 2014; 40:62-72. [PMID: 25217861 DOI: 10.1016/j.matbio.2014.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/06/2023]
Abstract
Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was thus to gain insight into the ECM-driven functional regulation of human foreskin fibroblasts (HFFs) being either anchored to a fibronectin (Fn) or to a collagen-decorated matrix, in the absence or presence of cyclic mechanical strain. While the cells reoriented in response to the onset of uniaxial cyclic strain, cells assembled exogenously added Fn with a preferential Fn-fiber alignment along their new orientation. Exposure of HFFs to exogenous Fn resulted in an increase in matrix metalloproteinase (MMP) expression levels, i.e. MMP-15 (RT-qPCR), and MMP-9 activity (zymography), while subsequent exposure to collagen slightly reduced MMP-15 expression and MMP-9 activity compared to Fn-exposure alone. Cyclic strain upregulated Fn fibrillogenesis and actin stress fiber formation, but had comparatively little effect on MMP activity. We thus propose that the appearance of collagen might start to steer HFFs towards homeostasis, as it decreased both MMP secretion and the tension of Fn matrix fibrils as assessed by Fluorescence Resonance Energy Transfer. These results suggest that HFFs might have a high ECM remodeling or repair capacity in contact with Fn alone (early event), which is reduced in the presence of Col1 (later event), thereby down-tuning HFF activity, a processes which would be required in a tissue repair process to finally reach tissue homeostasis.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Zhe Lin
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jasper Foolen
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Ingmar Schoen
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Alberto Santoro
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Marcy Zenobi-Wong
- Cartilage Engineering+Regeneration, Department of Health Sciences and Technology, ETH Zurich, Otto-Stern-Weg 7, CH-8093 Zurich, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.
| |
Collapse
|
130
|
Wu D, Chen K, Bai Y, Zhu X, Chen Z, Wang C, Zhao Y, Li M. Screening of diagnostic markers for osteosarcoma. Mol Med Rep 2014; 10:2415-20. [PMID: 25199469 DOI: 10.3892/mmr.2014.2546] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/14/2014] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma, which is the most common type of highly malignant bone tumor in children and adolescents, has poor diagnosis and 2-year survival rates of 15-20% following surgery or radiotherapy, and has therefore generated marked attention. In order to investigate the potential biomarkers for diagnosing osteosarcoma, the expression profiling data from normal and disease tissues were compared, respectively, and the differentially‑expressed genes were analyzed by three different statistical tests. Interacting proteins were determined and an interaction network was constructed by Search Tool for the Retrieval of Interacting Genes database. Subsequently, the protein interaction network was decomposed and Gene Otology annotation using Cytoscape, Mcode and Bingo, was conducted on the function modules. Finally, three differentially‑expressed genes GJA1, COL1A2 and COL5A2 were identified, and an interaction network was successfully generated with COL1A2 and COL5A2 at the core. From the results, it was observed that COL1A2 and COL5A2 interact with a number of genes of the matrix metalloprotease (MMP) family, including MMP1, MMP2, MMP3 and MMP14, TGFβ and RUNX2. Furthermore, these genes have been confirmed to be important in the tumorigenesis of osteosarcoma. It was hypothesized that the upregulation of the COL gene family may be considered as a diagnostic marker for osteosarcoma and collagen may be administered as a therapy.
Collapse
Affiliation(s)
- Dajiang Wu
- Department of Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| | - Kai Chen
- Department of Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| | - Yushu Bai
- Department of Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| | - Xiaodong Zhu
- Department of Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| | - Chuanfeng Wang
- Department of Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| | - Yingchuan Zhao
- Department of Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| | - Ming Li
- Department of Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
131
|
MT1-MMP is not a good prognosticator of cancer survival: evidence from 11 studies. Tumour Biol 2014; 35:12489-95. [PMID: 25195136 DOI: 10.1007/s13277-014-2567-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023] Open
Abstract
MT1-MMP exhibits diverse expressions in patients with cancer and could be considered as potential prognostic biomarker of cancer. We performed a meta-analysis aiming to provide more sufficient evidence that MT1-MMP expression is associated with poor overall survival in several types of cancers. We systematically searched the studies from databases and carefully identified based on eligibility criteria. The association between MT1-MMP expression and overall survival in cancers was estimated using Review Manager. A total of 11 literatures which included 1,918 cancer patients were combined in the final analysis. Meta-analysis revealed that MT1-MMP overexpression was associated with an unfavorable overall survival and the pooled hazard ratio (HR) and corresponding 95 % confidence interval (CI) was 2.46 (95 % CI 1.75-3.47). From subgroup analyses, we identified that MT1-MMP was an independent prognostic factor for lung cancer and gastric cancer, and HRs (95 % CI) were 3.73 (95 % CI 2.67-5.21) and 2.46 (95 % CI 1.69-3.59), respectively. In conclusion, MT1-MMP is a potential prognostic factor in human cancers.
Collapse
|
132
|
Ohkawara H, Ishibashi T, Sugimoto K, Ikeda K, Ogawa K, Takeishi Y. Membrane type 1-matrix metalloproteinase/Akt signaling axis modulates TNF-α-induced procoagulant activity and apoptosis in endothelial cells. PLoS One 2014; 9:e105697. [PMID: 25162582 PMCID: PMC4146507 DOI: 10.1371/journal.pone.0105697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
Membrane type 1–matrix metalloproteinase (MT1-MMP) functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt) in tumor necrosis factor (TNF)-α-induced signaling pathways of vascular responses, including tissue factor (TF) procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs). TNF-α (10 ng/mL) induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA)-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM) antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1)-dependent signaling pathway and nuclear factor-kB (NF-kB) activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs.
Collapse
Affiliation(s)
- Hiroshi Ohkawara
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
- * E-mail:
| | - Toshiyuki Ishibashi
- Department of Cardiovascular Medicine, Ohara General Hospital Medical Center, Fukushima, Japan
| | - Koichi Sugimoto
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Kazuhiko Ikeda
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Kazuei Ogawa
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Yasuchika Takeishi
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
133
|
Ulasov I, Yi R, Guo D, Sarvaiya P, Cobbs C. The emerging role of MMP14 in brain tumorigenesis and future therapeutics. Biochim Biophys Acta Rev Cancer 2014; 1846:113-20. [DOI: 10.1016/j.bbcan.2014.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/12/2014] [Accepted: 03/15/2014] [Indexed: 02/08/2023]
|
134
|
Buache E, Thai R, Wendling C, Alpy F, Page A, Chenard MP, Dive V, Ruff M, Dejaegere A, Tomasetto C, Rio MC. Functional relationship between matrix metalloproteinase-11 and matrix metalloproteinase-14. Cancer Med 2014; 3:1197-210. [PMID: 25081520 PMCID: PMC4302670 DOI: 10.1002/cam4.290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/16/2014] [Accepted: 05/31/2014] [Indexed: 01/14/2023] Open
Abstract
MMP-11 is a key factor in physiopathological tissue remodeling. As an active form is secreted, its activity must be tightly regulated to avoid detrimental effects. Although TIMP-1 and TIMP-2 reversibly inhibit MMP-11, another more drastic scenario, presumably via hydrolysis, could be hypothesized. In this context, we have investigated the possible implication of MMP-14, since it exhibits a spatiotemporal localization similar to MMP-11. Using native HFL1-produced MMP-11 and HT-1080-produced MMP-14 as well as recombinant proteins, we show that MMP-11 is a MMP-14 substrate. MMP-14 cleaves MMP-11 catalytic domain at the PGG(P1)-I(P1′)LA and V/IQH(P1)-L(P1′)YG scissile bonds, two new cleavage sites. Interestingly, a functional test showed a dramatical reduction in MMP-11 enzymatic activity when incubated with active MMP-14, whereas inactive point-mutated MMP-14 had no effect. This function is conserved between human and mouse. Thus, in addition to the canonical reversible TIMP-dependent inhibitory system, irreversible MMP proteolytic inactivation might occur by cleavage of the catalytic domain in a MMP-dependent manner. Since MMP-14 is produced by HT-1080 cancer cells, whereas MMP-11 is secreted by HFL1 stromal cells, our findings support the emerging importance of tumor-stroma interaction/cross-talk. Moreover, they highlight a Janus-faced MMP-14 function in the MMP cascade, favoring activation of several pro-MMPs, but limiting MMP-11 activity. Finally, both MMPs are active at the cell periphery. Since MMP-14 is present at the cell membrane, whereas MMP-11 is soluble into the cellular microenvironment, this MMP-14 function might represent one critical regulatory mechanism to control the extent of pericellular MMP-11 bioavailability and protect cells from excessive/inappropriate MMP-11 function.
Collapse
Affiliation(s)
- Emilie Buache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Chaperone nanobodies protect gelsolin against MT1-MMP degradation and alleviate amyloid burden in the gelsolin amyloidosis mouse model. Mol Ther 2014; 22:1768-78. [PMID: 25023329 DOI: 10.1038/mt.2014.132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/07/2014] [Indexed: 01/11/2023] Open
Abstract
Gelsolin amyloidosis is an autosomal dominant incurable disease caused by a point mutation in the GSN gene (G654A/T), specifically affecting secreted plasma gelsolin. Incorrect folding of the mutant (D187N/Y) second gelsolin domain leads to a pathological proteolytic cascade. D187N/Y gelsolin is first cleaved by furin in the trans-Golgi network, generating a 68 kDa fragment (C68). Upon secretion, C68 is cleaved by MT1-MMP-like proteases in the extracellular matrix, releasing 8 kDa and 5 kDa amyloidogenic peptides which aggregate in multiple tissues and cause disease-associated symptoms. We developed nanobodies that recognize the C68 fragment, but not native wild type gelsolin, and used these as molecular chaperones to mitigate gelsolin amyloid buildup in a mouse model that recapitulates the proteolytic cascade. We identified gelsolin nanobodies that potently reduce C68 proteolysis by MT1-MMP in vitro. Converting these nanobodies into an albumin-binding format drastically increased their serum half-life in mice, rendering them suitable for intraperitoneal injection. A 12-week treatment schedule of heterozygote D187N gelsolin transgenic mice with recombinant bispecific gelsolin-albumin nanobody significantly decreased gelsolin buildup in the endomysium and concomitantly improved muscle contractile properties. These findings demonstrate that nanobodies may be of considerable value in the treatment of gelsolin amyloidosis and related diseases.
Collapse
|
136
|
Golubkov VS, Prigozhina NL, Zhang Y, Stoletov K, Lewis JD, Schwartz PE, Hoffman RM, Strongin AY. Protein-tyrosine pseudokinase 7 (PTK7) directs cancer cell motility and metastasis. J Biol Chem 2014; 289:24238-49. [PMID: 25006253 DOI: 10.1074/jbc.m114.574459] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well established that widely expressed PTK7 is essential for vertebrate tissue morphogenesis. In cancer, the functionality of PTK7 is selectively regulated by membrane type-1 matrix metalloproteinase (MT1-MMP), ADAMs (a disintegrin domain and metalloproteinases), and γ-secretase proteolysis. Here, we established that the full-length membrane PTK7, its Chuzhoi mutant with the two functional MT1-MMP cleavage sites, and its L622D mutant with the single inactivated MT1-MMP cleavage site differentially regulate cell motility in a two-dimensional versus three-dimensional environment. We also demonstrated that in polarized cancer cells, the levels of PTK7 expression and proteolysis were directly linked to the structure and kinetics of cell protrusions, including lamellipodia and invadopodia. In the functionally relevant and widely accepted animal models of metastasis, mouse and chick embryo models, both the overexpression and knock-out of PTK7 in HT1080 cells abrogated metastatic dissemination. Our analysis of human tissue specimens confirmed intensive proteolysis of PTK7 in colorectal cancer tumors, but not in matching normal tissue. Our results provide convincing evidence that both PTK7 expression and proteolysis, rather than the level of the cellular full-length PTK7 alone, contribute to efficient directional cell motility and metastasis in cancer.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
| | | | - Yong Zhang
- AntiCancer, Inc., San Diego, California 92111
| | | | - John D Lewis
- the Department of Oncology, University of Alberta, Edmonton T6G 2E1, Canada
| | | | - Robert M Hoffman
- AntiCancer, Inc., San Diego, California 92111, the Department of Surgery, University of California, San Diego, California 92103
| | - Alex Y Strongin
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
| |
Collapse
|
137
|
Zhang TT, Jiang YY, Shang L, Shi ZZ, Liang JW, Wang Z, Zhang Y, Hao JJ, Jia XM, Xu X, Cai Y, Zhan QM, Wang MR. Overexpression of DNAJB6 promotes colorectal cancer cell invasion through an IQGAP1/ERK-dependent signaling pathway. Mol Carcinog 2014; 54:1205-13. [PMID: 25044025 DOI: 10.1002/mc.22194] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/18/2014] [Accepted: 05/22/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Tong-Tong Zhang
- State Key Laboratory of Molecular Oncology; Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Yan-Yi Jiang
- State Key Laboratory of Molecular Oncology; Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Li Shang
- State Key Laboratory of Molecular Oncology; Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Zhi-Zhou Shi
- State Key Laboratory of Molecular Oncology; Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Jian-Wei Liang
- State Key Laboratory of Molecular Oncology; Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Zheng Wang
- State Key Laboratory of Molecular Oncology; Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology; Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology; Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Xue-Mei Jia
- Department of Histology and Embryology; Anhui Medical University; Hefei China
| | - Xin Xu
- State Key Laboratory of Molecular Oncology; Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology; Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Qi-Min Zhan
- State Key Laboratory of Molecular Oncology; Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology; Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| |
Collapse
|
138
|
HSPC117 is regulated by epigenetic modification and is involved in the migration of JEG-3 cells. Int J Mol Sci 2014; 15:10936-49. [PMID: 24941254 PMCID: PMC4100190 DOI: 10.3390/ijms150610936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 01/12/2023] Open
Abstract
The human hematopoietic stem/progenitor cell 117 (HSPC117) protein is an essential component of protein complexes and has been identified to be involved in many important functions. However, how this gene expression is regulated and whether the HSPC117 gene affects cell migration is still unknown. The aim of this study was to identify whether HSPC117 mRNA expression is regulated by epigenetic modification and whether HSPC117 expression level affects the expression of matrix metalloproteinase 2 (MMP 2), matrix metalloproteinase 14 (MMP 14), and tissue inhibitor of metalloproteinases 2 (TIMP 2), and further affects human placenta choriocarcinoma cell (JEG-3) migration speed. In our epigenetic modification experiment, JEG-3 cells were cultured in medium with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dC), the histone deacetylase (HDAC) inhibitor trichostatin A (TSA), or both inhibitors. Then, the HSPC117 mRNA and protein expressions were assessed using real-time quantitative PCR (qPCR) and Western blot assay. The results showed that, compared to the control, HSPC117 mRNA expression was increased by TSA or 5-aza-dC. The highest HSPC117 expression level was found after treatment with both 5-aza-dC and TSA. Further, in order to investigate the effect of HSPC117 on MMP 2, MMP 14, and TIMP 2 mRNA expressions, pEGFP-C1-HSPC117 plasmids were transfected into JEG-3 cells to improve the expression of HSPC117 in the JEG-3 cells. Then, the mRNA expression levels of MMP 2, MMP 14, TIMP 2, and the speed of cell migration were assessed using the scratch wound assay. The results showed that over-expression of HSPC117 mRNA reduced MMP 2 and MMP 14 mRNA expression, while TIMP 2 mRNA expression was up-regulated. The scratch wound assay showed that the migration speed of JEG-3 cells was slower than the non-transfected group and the C1-transfected group. All of these results indicate that HSPC117 mRNA expression is regulated by epigenetic modification; over-expression of HSPC117 decreases MMP 2 and MMP 14 transcription, reduces cell migration speed, and increases TIMP 2 transcription.
Collapse
|
139
|
Birukawa NK, Murase K, Sato Y, Kosaka A, Yoneda A, Nishita H, Fujita R, Nishimura M, Ninomiya T, Kajiwara K, Miyazaki M, Nakashima Y, Ota S, Murakami Y, Tanaka Y, Minomi K, Tamura Y, Niitsu Y. Activated hepatic stellate cells are dependent on self-collagen, cleaved by membrane type 1 matrix metalloproteinase for their growth. J Biol Chem 2014; 289:20209-21. [PMID: 24867951 DOI: 10.1074/jbc.m113.544494] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stellate cells are distributed throughout organs, where, upon chronic damage, they become activated and proliferate to secrete collagen, which results in organ fibrosis. An intriguing property of hepatic stellate cells (HSCs) is that they undergo apoptosis when collagen is resolved by stopping tissue damage or by treatment, even though the mechanisms are unknown. Here we disclose the fact that HSCs, normal diploid cells, acquired dependence on collagen for their growth during the transition from quiescent to active states. The intramolecular RGD motifs of collagen were exposed by cleavage with their own membrane type 1 matrix metalloproteinase (MT1-MMP). The following evidence supports this conclusion. When rat activated HSCs (aHSCs) were transduced with siRNA against the collagen-specific chaperone gp46 to inhibit collagen secretion, the cells underwent autophagy followed by apoptosis. Concomitantly, the growth of aHSCs was suppressed, whereas that of quiescent HSCs was not. These in vitro results are compatible with the in vivo observation that apoptosis of aHSCs was induced in cirrhotic livers of rats treated with siRNAgp46. siRNA against MT1-MMP and addition of tissue inhibitor of metalloproteinase 2 (TIMP-2), which mainly inhibits MT1-MMP, also significantly suppressed the growth of aHSCs in vitro. The RGD inhibitors echistatin and GRGDS peptide and siRNA against the RGD receptor αVβ1 resulted in the inhibition of aHSCs growth. Transduction of siRNAs against gp46, αVβ1, and MT1-MMP to aHSCs inhibited the survival signal of PI3K/AKT/IκB. These results could provide novel antifibrosis strategies.
Collapse
Affiliation(s)
| | | | | | - Akemi Kosaka
- From the Department of Molecular Target Exploration
| | | | | | | | | | - Takafumi Ninomiya
- Department of Basic Medical Science Department of Anatomy (1), Sapporo Medical University School of Medicine, 060-8556 Sapporo, Japan
| | - Keiko Kajiwara
- From the Department of Molecular Target Exploration, the Translational Research Group, Hokkaido Laboratory, Molecular Therapeutics Department, Corporate Business Development Division, Nitto Denko Corporation, Hokkaido, 001-0021 Sapporo, Japan, and
| | - Miyono Miyazaki
- From the Department of Molecular Target Exploration, the Translational Research Group, Hokkaido Laboratory, Molecular Therapeutics Department, Corporate Business Development Division, Nitto Denko Corporation, Hokkaido, 001-0021 Sapporo, Japan, and
| | | | - Sigenori Ota
- From the Department of Molecular Target Exploration
| | | | - Yasunobu Tanaka
- From the Department of Molecular Target Exploration, the Translational Research Group, Hokkaido Laboratory, Molecular Therapeutics Department, Corporate Business Development Division, Nitto Denko Corporation, Hokkaido, 001-0021 Sapporo, Japan, and
| | - Kenjiro Minomi
- From the Department of Molecular Target Exploration, the Translational Research Group, Hokkaido Laboratory, Molecular Therapeutics Department, Corporate Business Development Division, Nitto Denko Corporation, Hokkaido, 001-0021 Sapporo, Japan, and
| | - Yasuaki Tamura
- the Faculty of Advanced Life Science, Hokkaido University, 001-0021 Sapporo, Japan
| | | |
Collapse
|
140
|
Williams KC, McNeilly RE, Coppolino MG. SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) mediate trafficking of membrane type 1-matrix metalloproteinase (MT1-MMP) during invadopodium formation and tumor cell invasion. Mol Biol Cell 2014; 25:2061-70. [PMID: 24807903 PMCID: PMC4072579 DOI: 10.1091/mbc.e13-10-0582] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The SNAREs SNAP23, Syntaxin4, and VAMP7 associate to target the delivery of MT1-MMP to sites of invadopodium formation in breast tumor cells. The interaction of these SNAREs correlates with decreased phosphorylation of Syntaxin4. The targeted delivery of MT1-MMP is required for efficient ECM degradation and cell invasion. Movement through the extracellular matrix (ECM) requires cells to degrade ECM components, primarily through the action of matrix metalloproteinases (MMPs). Membrane type 1–matrix metalloproteinase (MT1-MMP) has an essential role in matrix degradation and cell invasion and localizes to subcellular degradative structures termed invadopodia. Trafficking of MT1-MMP to invadopodia is required for the function of these structures, and here we examine the role of N-ethylmaleimide–sensitive factor–activating protein receptor (SNARE)–mediated membrane traffic in the transport of MT1-MMP to invadopodia. During invadopodium formation in MDA-MB-231 human breast cancer cells, increased association of SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) is detected by coimmunoprecipitation. Blocking the function of these SNAREs perturbs invadopodium-based ECM degradation and cell invasion. Increased level of SNAP23-Syntaxin4-VAMP7 interaction correlates with decreased Syntaxin4 phosphorylation. These results reveal an important role for SNARE-regulated trafficking of MT1-MMP to invadopodia during cellular invasion of ECM.
Collapse
Affiliation(s)
- Karla C Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Rachael E McNeilly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marc G Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
141
|
Abstract
Fibroblast migration is essential to normal wound healing and pathological matrix deposition in fibrosis. This review summarizes our understanding of how fibroblasts navigate 2D and 3D extracellular matrices, how this behavior is influenced by the architecture and mechanical properties of the matrix, and how migration is integrated with the other principle functions of fibroblasts, including matrix deposition, contraction, and degradation.
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Department of Environmental Health, Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts
| |
Collapse
|
142
|
Welch-Reardon KM, Ehsan SM, Wang K, Wu N, Newman AC, Romero-Lopez M, Fong AH, George SC, Edwards RA, Hughes CCW. Angiogenic sprouting is regulated by endothelial cell expression of Slug. J Cell Sci 2014; 127:2017-28. [PMID: 24554431 DOI: 10.1242/jcs.143420] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Snail family of zinc-finger transcription factors are evolutionarily conserved proteins that control processes requiring cell movement. Specifically, they regulate epithelial-to-mesenchymal transitions (EMT) where an epithelial cell severs intercellular junctions, degrades basement membrane and becomes a migratory, mesenchymal-like cell. Interestingly, Slug expression has been observed in angiogenic endothelial cells (EC) in vivo, suggesting that angiogenic sprouting may share common attributes with EMT. Here, we demonstrate that sprouting EC in vitro express both Slug and Snail, and that siRNA-mediated knockdown of either inhibits sprouting and migration in multiple in vitro angiogenesis assays. We find that expression of MT1-MMP, but not of VE-Cadherin, is regulated by Slug and that loss of sprouting as a consequence of reduced Slug expression can be reversed by lentiviral-mediated re-expression of MT1-MMP. Activity of MMP2 and MMP9 are also affected by Slug expression, likely through MT1-MMP. Importantly, we find enhanced expression of Slug in EC in human colorectal cancer samples compared with normal colon tissue, suggesting a role for Slug in pathological angiogenesis. In summary, these data implicate Slug as an important regulator of sprouting angiogenesis, particularly in pathological settings.
Collapse
Affiliation(s)
- Katrina M Welch-Reardon
- The Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Pahwa S, Stawikowski MJ, Fields GB. Monitoring and Inhibiting MT1-MMP during Cancer Initiation and Progression. Cancers (Basel) 2014; 6:416-35. [PMID: 24549119 PMCID: PMC3980612 DOI: 10.3390/cancers6010416] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 12/14/2022] Open
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent type-I transmembrane metalloproteinase involved in pericellular proteolysis, migration and invasion. Numerous substrates and binding partners have been identified for MT1-MMP, and its role in collagenolysis appears crucial for tumor invasion. However, development of MT1-MMP inhibitors must consider the substantial functions of MT1-MMP in normal physiology and disease prevention. The present review examines the plethora of MT1-MMP activities, how these activities relate to cancer initiation and progression, and how they can be monitored in real time. Examination of MT1-MMP activities and cell surface behaviors can set the stage for the development of unique, selective MT1-MMP inhibitors.
Collapse
Affiliation(s)
- Sonia Pahwa
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA.
| | - Maciej J Stawikowski
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA.
| | - Gregg B Fields
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA.
| |
Collapse
|
144
|
Alcantara MB, Dass CR. Pigment epithelium-derived factor as a natural matrix metalloproteinase inhibitor: a comparison with classical matrix metalloproteinase inhibitors used for cancer treatment. J Pharm Pharmacol 2014; 66:895-902. [PMID: 24697787 DOI: 10.1111/jphp.12218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/23/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVES In the 1990s, the discovery of the important role of matrix metalloproteinases (MMPs) in cancer angiogenesis, growth and metastasis galvanised research efforts to search for ways to inhibit these MMPs. To date, this has resulted in the investigation of approximately 50 MMPIs which have undergone various phases of clinical trials. However, despite a large body of research being devoted to discovery and development of MMPIs, results have largely not been supportive of this approach to anticancer treatment. KEY FINDINGS The reasons for the general failure of these drugs in clinical trials include various unwanted side-effects, the use of healthy volunteers to provide drug dosages which did not correctly reflect dosages for cancer patients, and the exclusion of patients with early stage cancer in clinical trials despite MMPs being determined to be critical for the angiogenic switch, a process associated with early tumour growth. In contrast, a naturally-occurring endogenous protein and a non-functional serine protease inhibitor (serpin), pigment epithelium-derived factor (PEDF), has been proposed for cancer therapy partly due to its ability to regulate specific MMPs central to cancer progression. SUMMARY PEDF has been found to specifically downregulate membrane-type I matrix metalloproteinase (MT1-MMP) and furthermore, potentially matrix metalloproteinase-2 (MMP-2), two of the most commonly implicated MMPs in neoplasia.
Collapse
Affiliation(s)
- Marice B Alcantara
- College of Health and Biomedicine, Victoria University, St Albans, Australia
| | | |
Collapse
|
145
|
Liu B, Li G, Wang X, Liu Y. A furin inhibitor downregulates osteosarcoma cell migration by downregulating the expression levels of MT1-MMP via the Wnt signaling pathway. Oncol Lett 2014; 7:1033-1038. [PMID: 24944664 PMCID: PMC3961323 DOI: 10.3892/ol.2014.1839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/20/2013] [Indexed: 01/25/2023] Open
Abstract
This study aimed to explore the exact mechanism of the effect of a furin inhibitor on the migration and invasion of MG-63 and Saos-2 osteosarcoma cells. MG-63 and Saos-2 osteosarcoma cells were treated with regular culture medium in the presence or absence of 480 nM α1-antitrypsin Portland (α1-PDX). Wound-healing and Transwell assays were used for the detection of the effects of α1-PDX on MG-63 and Saos-2 osteosarcoma cell migration and invasion. Western blot analysis and reverse transcription-polymerase chain reaction were performed to detect the expression levels of membrane type I matrix metalloproteinase (MT1-MMP), Wnt and β-catenin. A chromatin immunoprecipitation assay was used for detection of the levels of MT1-MMP gene transcription activity. The results showed that α1-PDX treatment significantly reduced the migration and invasion ability of the cells. Notably, the expression levels of MT1-MMP decreased evidently upon α1-PDX treatment, paralleled with reductions in the expression levels of Wnt and β-catenin. Further analysis of the transcriptional activity of MT1-MMP revealed that the α1-PDX-induced downregulation of the levels of MT1-MMP was mediated by the Wnt signaling pathway. These data suggest that α1-PDX plays a vital role in inhibiting MG-63 and Saos-2 osteosarcoma cell migration and invasion by downregulating the expression levels of MT1-MMP via the Wnt signaling pathway.
Collapse
Affiliation(s)
- Bingshan Liu
- Department of Orthopaedics, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, P.R. China
| | - Guojun Li
- Department of Orthopaedics, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, P.R. China
| | - Xiao Wang
- Department of Orthopaedics, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, P.R. China
| | - Yang Liu
- Department of Orthopaedics, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, P.R. China
| |
Collapse
|
146
|
Jujo T, Sakao S, Tsukahara M, Kantake M, Kantake S, Maruoka M, Tanabe N, Masuda M, Tatsumi K. The role of matrix metalloproteinase in the intimal sarcoma-like cells derived from endarterectomized tissues from a chronic thromboembolic pulmonary hypertension patient. PLoS One 2014; 9:e87489. [PMID: 24489925 PMCID: PMC3905027 DOI: 10.1371/journal.pone.0087489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/21/2013] [Indexed: 01/26/2023] Open
Abstract
Sarcoma-like cells (SCLs) were derived from endarterectomized tissue of a single chronic thromboembolic pulmonary hypertension (CTEPH) patient during incubation of those thrombi at second passage as described at our previous report. These cells had malignant potential, with an increased expression of matrix metalloproteinase-14 (MMP-14), leading to tumor emboli within pulmonary arteries in in vivo studies. The purpose of this study was to perform a more detailed evaluation of the characteristics of SCLs, and to elucidate the role of the increased expression of MMP-14 expression in the growth and death of these cells. In order to elucidate the characteristics of SCLs and to confirm the protein expression of MMP-14, three-dimentional culture, invasion assays, a Western blot analysis and immunohistochemical studies were performed. To examine the role of MMP-14 in tumorigenesis, the metalloproteinase inhibitor, batimastat, was administered to SCID mice which were subcutaneously injected with SCLs. Those mice were sacrificed on day 14 and the tumor volume was evaluated. A Western blot analysis showed the increased expression of MMP-14 in comparison to the expression in lung adenocarcinoma cells (A549). Immunohistochemistry showed that SCLs were positive for vimentin, MMP-14, MMP-2 and CD44. However, endothelial markers, such as CD31 and von Willebrand factor (vWF), were negative. The in vivo studies demonstrated that batimastat could suppress the growth of the subcutaneous tumors formed by the SCLs. This study suggested that MMPs had critical roles on the pathological activities of SCLs and that batimastat might have anti-proliferative and anti-invasive effects on these cells.
Collapse
Affiliation(s)
- Takayuki Jujo
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Inohana Chuo-Ku, Chiba, Japan
| | - Seiichiro Sakao
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Inohana Chuo-Ku, Chiba, Japan
| | - Masanori Tsukahara
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Inohana Chuo-Ku, Chiba, Japan
| | | | - Seiji Kantake
- Respirology, Kimitsu Chuo Hospital, Sakurai, Kisarazu City, Japan
| | - Miki Maruoka
- Respirology, National Hospital Organization Chiba Medical Center, Tsubakimori, Chuo-ku, Chiba, Japan
| | - Nobuhiro Tanabe
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Inohana Chuo-Ku, Chiba, Japan
| | - Masahisa Masuda
- Cardiovascular Surgery, National Hospital Organization Chiba Medical Center, Tsubakimori, Chuo-ku, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Inohana Chuo-Ku, Chiba, Japan
| |
Collapse
|
147
|
Shaverdashvili K, Wong P, Ma J, Zhang K, Osman I, Bedogni B. MT1-MMP modulates melanoma cell dissemination and metastasis through activation of MMP2 and RAC1. Pigment Cell Melanoma Res 2014; 27:287-96. [PMID: 24387669 DOI: 10.1111/pcmr.12201] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 12/02/2013] [Indexed: 12/11/2022]
Abstract
Metastatic melanoma remains the deadliest of all skin cancers with a survival rate at five years of less than 15%. MT1-MMP is a membrane-associated matrix metalloproteinase that controls pericellular proteolysis and is an important, invasion-promoting, pro-tumorigenic MMP in cancer. We show that deregulation of MT1-MMP expression happens as early as the transition from nevus to primary melanoma and continues to increase during melanoma progression. Furthermore, MT1-MMP expression is associated with poor melanoma patient outcome, underscoring a pivotal role of MT1-MMP in melanoma pathogenesis. We demonstrate that MT1-MMP is directly required for melanoma cells to metastasize, as cells deprived of MT1-MMP fail to form distant metastasis in an orthotopic mouse melanoma model. We show that MT1-MMP affects cell invasion by activating its target MMP2. Importantly, we demonstrate, for the first time, that activation of MMP2 by MT1-MMP is required to sustain RAC1 activity and promote MT1-MMP-dependent cell motility. These data highlight a novel MT1-MMP/MMP2/RAC1 signaling axis in melanoma that may represent an intriguing molecular target for the treatment of invasive melanoma.
Collapse
Affiliation(s)
- Khvaramze Shaverdashvili
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | | | | |
Collapse
|
148
|
Chlorotoxin-Fc fusion inhibits release of MMP-2 from pancreatic cancer cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:152659. [PMID: 24511528 PMCID: PMC3910484 DOI: 10.1155/2014/152659] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/11/2013] [Indexed: 11/18/2022]
Abstract
Chlorotoxin (CTX) is a 36-amino acid peptide derived from Leiurus quinquestriatus (scorpion) venom, which inhibits low-conductance chloride channels in colonic epithelial cells. It has been reported that CTX also binds to matrix metalloproteinase-2 (MMP-2), membrane type-1 MMP, and tissue inhibitor of metalloproteinase-2, as well as CLC-3 chloride ion channels and other proteins. Pancreatic cancer cells require the activation of MMP-2 during invasion and migration. In this study, the fusion protein was generated by joining the CTX peptide to the amino terminus of the human IgG-Fc domain without a hinge domain, the monomeric form of chlorotoxin (M-CTX-Fc). The resulting fusion protein was then used to target pancreatic cancer cells (PANC-1) in vitro. M-CTX-Fc decreased MMP-2 release into the media of PANC-1 cells in a dose-dependent manner. M-CTX-Fc internalization into PANC-1 cells was observed. When the cells were treated with chlorpromazine (CPZ), the internalization of the fusion protein was reduced, implicating a clathrin-dependent internalization mechanism of M-CTX-Fc in PANC-1 cells. Furthermore, M-CTX-Fc clearly exhibited the inhibition of the migration depending on the concentration, but human IgG, as negative control of Fc, was not affected. The M-CTX-Fc may be an effective instrument for targeting pancreatic cancer.
Collapse
|
149
|
Ouyang M, Lu S, Wang Y. Genetically encoded fluorescent biosensors for live-cell imaging of MT1-MMP protease activity. Methods Mol Biol 2014; 1071:163-174. [PMID: 24052388 PMCID: PMC5550515 DOI: 10.1007/978-1-62703-622-1_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The proteolytic activity of Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) is crucial for cancer cell invasion and metastasis. To visualize the protease activity of MT1-MMP with high spatiotemporal resolution at the extracellular plasma membrane surface of live cancer cells, a genetically encoded fluorescent biosensor of MT1-MMP has been developed. Here we describe the design principles of the MT1-MMP biosensor, the characterization of the MT1-MMP biosensor in vitro, and the live-cell imaging protocol used to visualize MT1-MMP activity in mammalian cells. We also provide brief guidelines for observing MT1-MMP subcellular activity by fluorescence resonance energy transfer (FRET) in a cell migration assay.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | | | | |
Collapse
|
150
|
Shiryaev SA, Remacle AG, Golubkov VS, Ingvarsen S, Porse A, Behrendt N, Cieplak P, Strongin AY. A monoclonal antibody interferes with TIMP-2 binding and incapacitates the MMP-2-activating function of multifunctional, pro-tumorigenic MMP-14/MT1-MMP. Oncogenesis 2013; 2:e80. [PMID: 24296749 PMCID: PMC3940861 DOI: 10.1038/oncsis.2013.44] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/29/2013] [Indexed: 01/01/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and, especially membrane type 1 (MT1)-MMP/MMP-14, are promising drug targets in malignancies. In contrast with multiple small-molecule and protein pan-inhibitors of MT1–MMP cleavage activity, the murine 9E8 monoclonal antibody targets the MMP-2-activating function of cellular MT1–MMP alone, rather than the general proteolytic activity and the pro-migratory function of MT1–MMP. Furthermore, the antibody does not interact in any detectable manner with other members of the membrane type (MT)-MMP family. The mechanism of this selectivity remained unknown. Using mutagenesis, binding and activity assays, and modeling in silico, we have demonstrated that the 9E8 antibody recognizes the MT-loop structure, an eight residue insertion that is specific for MT–MMPs and that is distant from the MT1–MMP active site. The binding of the 9E8 antibody to the MT-loop, however, prevents tissue inhibitor of metalloproteinases-2 (TIMP-2) association with MT1–MMP. As a result, the 9E8 antibody incapacitates the TIMP-2-dependent MMP-2-activating function alone rather than the general enzymatic activity of human MT1–MMP. The specific function of the 9E8 antibody we determined directly supports an essential, albeit paradoxical, role of the protein inhibitor (TIMP-2) in MMP-2 activation via a unique membrane-tethered mechanism. In this mechanism, the formation of a tri-molecular MT1–MMPTIMP-2MMP-2 complex is required for both the capture of the soluble MMP-2 proenzyme by cells and then its well-controlled conversion into the mature MMP-2 enzyme. In sum, understanding of the structural requirements for the 9E8 antibody specificity may pave the way for the focused design of the inhibitory antibodies against other individual MMPs.
Collapse
Affiliation(s)
- S A Shiryaev
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|