101
|
Dillon CR, Rieke V, Ghanouni P, Payne A. Thermal diffusivity and perfusion constants from in vivo MR-guided focussed ultrasound treatments: a feasibility study. Int J Hyperthermia 2017; 34:352-362. [DOI: 10.1080/02656736.2017.1340677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Christopher R. Dillon
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Viola Rieke
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
102
|
Zheng Y, Marx M, Miller GW, Butts Pauly K. High sensitivity MR acoustic radiation force imaging using transition band balanced steady-state free precession. Magn Reson Med 2017. [PMID: 28631853 DOI: 10.1002/mrm.26793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE MR acoustic radiation force imaging (MR-ARFI) provides a method to visualize the focal spot of a focused ultrasound (FUS) beam without introducing a significant temperature rise. With conventional spoiled MR-ARFI pulse sequences, the ARFI phase always equals the motion-encoded phase. In this work, MR-ARFI using transition band balanced steady-state free precession (bSSFP) is presented, which improves the sensitivity of MR-ARFI with high acquisition speed. THEORY AND METHODS Motion-encoding gradients (MEG) are inserted into bSSFP sequences for MR-ARFI. By applying an ultrasound pulse during the MEG, motion-encoded phase is generated, which leads to an amplified change in the image phase when operating in the bSSFP transition band. MR-ARFI was performed on a homemade gel phantom using both the proposed technique and a spoiled gradient echo ARFI sequence with identical MEG and FUS, and ARFI images were compared. RESULTS The bSSFP-ARFI sequence generated an ARFI image phase that is more than 5 times larger than the motion-encoded phase in a few seconds with 2DFT readout. By keeping FUS pulses as short as 1.45 ms, temperature rise was insignificant during the measurement. CONCLUSION bSSFP-ARFI has enhanced sensitivity compared with conventional MR-ARFI pulse sequences and could provide an efficient way to visualize the focal spot. Magn Reson Med 79:1532-1537, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yuan Zheng
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Michael Marx
- Department of Radiology, Stanford University, Stanford, California, USA
| | - G Wilson Miller
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
103
|
Kuroda K. MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments. J Magn Reson Imaging 2017; 47:316-331. [PMID: 28580706 DOI: 10.1002/jmri.25770] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/02/2017] [Indexed: 12/17/2022] Open
Abstract
To make full use of the ability of magnetic resonance (MR) to guide high-intensity focused ultrasound (HIFU) treatment, effort has been made to improve techniques for thermometry, motion tracking, and sound beam visualization. For monitoring rapid temperature elevation with proton resonance frequency (PRF) shift, data acquisition and processing can be accelerated with parallel imaging and/or sparse sampling in conjunction with appropriate signal processing methods. Thermometry should be robust against tissue motion, motion-induced magnetic field variation, and susceptibility change. Thus, multibaseline, referenceless, or hybrid techniques have become important. In cases with adipose or bony tissues, for which PRF shift cannot be used, thermometry with relaxation times or signal intensity may be utilized. Motion tracking is crucial not only for thermometry but also for targeting the focus of an ultrasound in moving organs such as the liver, kidney, or heart. Various techniques for motion tracking, such as those based on an anatomical image atlas with optical-flow displacement detection, a navigator echo to seize the diaphragm position, and/or rapid imaging to track vessel positions, have been proposed. Techniques for avoiding the ribcage and near-field heating have also been examined. MR acoustic radiation force imaging (MR-ARFI) is an alternative to thermometry that can identify the location and shape of the focal spot and sound beam path. This technique could be useful for treating heterogeneous tissue regions or performing transcranial therapy. All of these developments, which will be discussed further in this review, expand the applicability of HIFU treatments to a variety of clinical targets while maintaining safety and precision. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018;47:316-331.
Collapse
Affiliation(s)
- Kagayaki Kuroda
- Department of Human and Information Science, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan.,Center for Frontier Medical Engineering, Chiba University, Inage, Chiba, Japan
| |
Collapse
|
104
|
Abstract
Thermal ablation techniques such as radiofrequency, microwave, high intensity focused ultrasound (HIFU) and laser have been used as minimally invasive strategies for the treatment of variety of cancers. MR thermometry methods are readily available for monitoring thermal distribution and deposition in real time, leading to decrease of incidents of normal tissue damage around targeted lesion. HIFU and laser-induced thermal therapy (LITT) are the two widely accepted tumor ablation techniques because of their compatibility with MR systems. MRI provides multiple temperature dependent parameters for thermal imaging, such as signal intensity, T1, T2, diffusion coefficient, magnetization transfer, proton resonance frequency shift (PRFS, including phase imaging and spectroscopy) as well as frequency shift of temperature sensitive contrast agents. Absolute temperature mapping techniques, including both spectroscopic imaging using metabolites as a reference and phase imaging using fat as a reference, are immune to susceptibility effects and are not dependent on phase differences. These techniques are intrinsically more reliable than relative temperature measurement by phase mapping methods. If the limitation of low temporal and spatial resolution could be overcome, these methods may be preferred for MR-guided thermal ablation systems. As of today, the most popular MR thermal imaging method applied in tumor thermal ablation surgery is, however, still PRFS based phase mapping technique, which only provides relative temperature change and is prone to motion artifacts.
Collapse
Affiliation(s)
- Mingming Zhu
- Department of Radiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Ziqi Sun
- Department of Radiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Chin K Ng
- Department of Radiology, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
105
|
Multiparametric quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and algorithms. PLoS One 2017; 12:e0178431. [PMID: 28552959 PMCID: PMC5446178 DOI: 10.1371/journal.pone.0178431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/12/2017] [Indexed: 11/24/2022] Open
Abstract
Processes involving heat generation and dissipation play an important role in the performance of numerous materials. The behavior of (semi-)aqueous materials such as hydrogels during production and application, but also properties of biological tissue in disease and therapy (e.g., hyperthermia) critically depend on heat regulation. However, currently available thermometry methods do not provide quantitative parameters characterizing the overall temperature distribution within a volume of soft matter. To this end, we present here a new paradigm enabling accurate, contactless quantification of thermal heterogeneity based on the line shape of a water proton nuclear magnetic resonance (1H NMR) spectrum. First, the 1H NMR resonance from water serving as a "temperature probe" is transformed into a temperature curve. Then, the digital points of this temperature profile are used to construct a histogram by way of specifically developed algorithms. We demonstrate that from this histogram, at least eight quantitative parameters describing the underlying statistical temperature distribution can be computed: weighted median, weighted mean, standard deviation, range, mode(s), kurtosis, skewness, and entropy. All mathematical transformations and calculations are performed using specifically programmed EXCEL spreadsheets. Our new paradigm is helpful in detailed investigations of thermal heterogeneity, including dynamic characteristics of heat exchange at sub-second temporal resolution.
Collapse
|
106
|
Dallapiazza RF, Timbie KF, Holmberg S, Gatesman J, Lopes MB, Price RJ, Miller GW, Elias WJ. Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J Neurosurg 2017; 128:875-884. [PMID: 28430035 DOI: 10.3171/2016.11.jns16976] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Ultrasound can be precisely focused through the intact human skull to target deep regions of the brain for stereotactic ablations. Acoustic energy at much lower intensities is capable of both exciting and inhibiting neural tissues without causing tissue heating or damage. The objective of this study was to demonstrate the effects of low-intensity focused ultrasound (LIFU) for neuromodulation and selective mapping in the thalamus of a large-brain animal. METHODS Ten Yorkshire swine ( Sus scrofa domesticus) were used in this study. In the first neuromodulation experiment, the lemniscal sensory thalamus was stereotactically targeted with LIFU, and somatosensory evoked potentials (SSEPs) were monitored. In a second mapping experiment, the ventromedial and ventroposterolateral sensory thalamic nuclei were alternately targeted with LIFU, while both trigeminal and tibial evoked SSEPs were recorded. Temperature at the acoustic focus was assessed using MR thermography. At the end of the experiments, all tissues were assessed histologically for damage. RESULTS LIFU targeted to the ventroposterolateral thalamic nucleus suppressed SSEP amplitude to 71.6% ± 11.4% (mean ± SD) compared with baseline recordings. Second, we found a similar degree of inhibition with a high spatial resolution (∼ 2 mm) since adjacent thalamic nuclei could be selectively inhibited. The ventromedial thalamic nucleus could be inhibited without affecting the ventrolateral nucleus. During MR thermography imaging, there was no observed tissue heating during LIFU sonications and no histological evidence of tissue damage. CONCLUSIONS These results suggest that LIFU can be safely used to modulate neuronal circuits in the central nervous system and that noninvasive brain mapping with focused ultrasound may be feasible in humans.
Collapse
Affiliation(s)
| | | | - Stephen Holmberg
- 6Impulse Monitoring, University of Virginia, Charlottesville, Virginia
| | | | | | | | | | | |
Collapse
|
107
|
Abstract
Quantitative and non-invasive temperature mapping using magnetic resonance imaging (MRI) provides a unique way to measure temperature evolution inside biological tissues. The method is widely used in thermal ablation procedures with magnetic fields at or below 3T. In this paper, the sensitivity of the MRI thermometry at 7T was studied using a proton resonance frequency (PRF)-based technique. We first used an agarose gel phantom with MR-compatible thermometry to calibrate the temperature coefficient, and then this temperature coefficient was employed to measure the internal temperature in both ex vivo (beef muscle) and in vivo (rat) experiments using focused ultrasound heating. The temperature coefficient calibrated by the phantom was 0.0095 ppm/°C, and both the ex vivo and in vivo experiments exhibited clear temperature evolution. This quantitative study confirmed the sensitivity (<1 °C) of MR temperature mapping at 7T.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
108
|
Zachiu C, Ries M, Moonen C, de Senneville BD. An Adaptive Non-Local-Means Filter for Real-Time MR-Thermometry. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:904-916. [PMID: 28237922 DOI: 10.1109/tmi.2016.2627221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proton resonance frequency shift-based magnetic resonance thermometry is a currently used technique for monitoring temperature during targeted thermal therapies. However, in order to provide temperature updates with very short latency times, fast MR acquisition schemes are usually employed, which in turn might lead to noisy temperature measurements. This will, in general, have a direct impact on therapy control and endpoint detection. In this paper, we address this problem through an improved non-local filtering technique applied on the temperature images. Compared with previous non-local filtering methods, the proposed approach considers not only spatial information but also exploits temporal redundancies. The method is fully automatic and designed to improve the precision of the temperature measurements while at the same time maintaining output accuracy. In addition, the implementation was optimized in order to ensure real-time availability of the temperature measurements while having a minimal impact on latency. The method was validated in three complementary experiments: a simulation, an ex-vivo and an in-vivo study. Compared to the original non-local means filter and two other previously employed temperature filtering methods, the proposed approach shows considerable improvement in both accuracy and precision of the filtered data. Together with the low computational demands of the numerical scheme, the proposed filtering technique shows great potential for improving temperature measurements during real-time MR thermometry dedicated to targeted thermal therapies.
Collapse
|
109
|
Büntjen L, Voges J, Heinze HJ, Hinrichs H, Schmitt FC. Stereotaktische Laserablation. ZEITSCHRIFT FÜR EPILEPTOLOGIE 2017. [DOI: 10.1007/s10309-016-0099-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
110
|
LaRiviere MJ, Gross RE. Stereotactic Laser Ablation for Medically Intractable Epilepsy: The Next Generation of Minimally Invasive Epilepsy Surgery. Front Surg 2016; 3:64. [PMID: 27995127 PMCID: PMC5136731 DOI: 10.3389/fsurg.2016.00064] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/21/2016] [Indexed: 12/02/2022] Open
Abstract
Epilepsy is a common, disabling illness that is refractory to medical treatment in approximately one-third of patients, particularly among those with mesial temporal lobe epilepsy. While standard open mesial temporal resection is effective, achieving seizure freedom in most patients, efforts to develop safer, minimally invasive techniques have been underway for over half a century. Stereotactic ablative techniques, in particular, radiofrequency (RF) ablation, were first developed in the 1960s, with refinements in the 1990s with the advent of modern computed tomography and magnetic resonance-based imaging. In the past 5 years, the most recent techniques have used MRI-guided laser interstitial thermotherapy (LITT), the development of which began in the 1980s, saw refinements in MRI thermal imaging through the 1990s, and was initially used primarily for the treatment of intracranial and extracranial tumors. The present review describes the original stereotactic ablation trials, followed by modern imaging-guided RF ablation series for mesial temporal lobe epilepsy. The developments of LITT and MRI thermometry are then discussed. Finally, the two currently available MRI-guided LITT systems are reviewed for their role in the treatment of mesial temporal lobe and other medically refractory epilepsies.
Collapse
Affiliation(s)
- Michael J. LaRiviere
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert E. Gross
- Departments of Neurosurgery and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
111
|
Zhang L, Burant A, McCallister A, Zhao V, Koshlap KM, Degan S, Antonacci M, Branca RT. Accurate MR thermometry by hyperpolarized 129 Xe. Magn Reson Med 2016; 78:1070-1079. [PMID: 27759913 DOI: 10.1002/mrm.26506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate the temperature dependence of the resonance frequency of lipid-dissolved xenon (LDX) and to assess the accuracy of LDX-based MR thermometry. METHODS The chemical shift temperature dependence of water protons, methylene protons, and LDX was measured from samples containing tissues with varying fat contents using a high-resolution NMR spectrometer. LDX results were then used to acquire relative and absolute temperature maps in vivo and the results were compared with PRF-based MR thermometry. RESULTS The temperature dependence of proton resonance frequency (PRF) is strongly affected by the specific distribution of water and fat. A redistribution of water and fat compartments can reduce the apparent temperature dependence of the water chemical shift from -0.01 ppm/°C to -0.006 ppm, whereas the LDX chemical shift shows a consistent temperature dependence of -0.21 ppm/°C. The use of the methylene protons resonance frequency as internal reference improves the accuracy of LDX-based MR thermometry, but degrades that of PRF-based MR thermometry, as microscopic susceptibility gradients affected lipid and water spins differently. CONCLUSION The LDX resonance frequency, with its higher temperature dependence, provides more accurate and precise temperature measurements, both in vitro and in vivo. More importantly, the resonance frequency of nearby methylene protons can be used to extract absolute temperature information. Magn Reson Med 78:1070-1079, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Le Zhang
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alex Burant
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew McCallister
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victor Zhao
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Karl M Koshlap
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Simone Degan
- Center for Molecular and Biomolecular Imaging, Department of Radiology and Dermatology, Duke University, Durham, North Carolina, USA
| | - Michael Antonacci
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
112
|
Tovar-Spinoza Z, Choi H. MRI-guided laser interstitial thermal therapy for the treatment of low-grade gliomas in children: a case-series review, description of the current technologies and perspectives. Childs Nerv Syst 2016; 32:1947-56. [PMID: 27659837 DOI: 10.1007/s00381-016-3193-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Pediatric low-grade gliomas (LGGs) account for approximately half of all pediatric central nervous system tumors. The low-grade gliomas' first line of treatment is gross total resection. However, when gross total resection is not possible, options for adjuvant therapy are limited. MRI-guided laser ablation (magnetic resonance-guided laser interstitial thermal therapy (MRgLITT)) offers a new option for treatment in selected cases. We present a description of the current MRgLITT technology and an exemplary case-series review of our experience in its use in LGGs. CASE DESCRIPTION A 19-month-old male was referred to the pediatric neurosurgery clinic with an incidental left temporal lesion discovered on a prenatal ultrasound. An MRI of the brain revealed a diffuse mesial temporal lesion. Electroencephalogram (EEG) showed generalized activity arising from the lesion. The patient underwent a navigation-guided biopsy then, two bolts were secured to the skull, and laser ablation was performed with intraoperative MR guidance. Pathology was consistent with ganglioglioma. Follow-up images 13 months after ablation showed a significant volumetric reduction in size of the tumor. DISCUSSION It is important to achieve maximal resection of low-grade gliomas in children, lessening the need for adjuvant chemotherapy and radiotherapy, while minimizing the length of hospital stay and disruption to the child's life. Of our nine LGGs patients treated with this technology, six had undergone previous surgery and MRgLITT proved itself to be a safe surgical treatment option to achieve further cytoreduction. While most of the cases are pilocytic astrocytomas, the location of the tumors was surgically challenging. Eight of the nine cases required a single trajectory-laser-while our case example requires two lasers. Only a case of a midbrain-thalamic tumor presented a post-ablation significant brain edema as perioperative complication [1]. Eight of the nine tumors did not require any coadjuvant therapy or further surgical treatment to date. CONCLUSION MRIgLITT is a successful option for treatment for selected de novo or recurrent low-grade gliomas in children. It can be combined with other therapies offering the advantages of a minimally invasive procedure. LITT may be added to the current pediatric neuro-oncology protocols, but larger prospective series are needed to show the effectiveness of LITT and to standardize indications and protocols.
Collapse
Affiliation(s)
- Zulma Tovar-Spinoza
- Department of Neurosurgery, SUNY Upstate Medical University, 604 Jacobsen Hall-750 E Adams St, Syracuse, NY, 13210, USA.
| | - Hoon Choi
- Department of Neurosurgery, SUNY Upstate Medical University, 604 Jacobsen Hall-750 E Adams St, Syracuse, NY, 13210, USA
| |
Collapse
|
113
|
Frazier N, Payne A, de Bever J, Dillon C, Panda A, Subrahmanyam N, Ghandehari H. High intensity focused ultrasound hyperthermia for enhanced macromolecular delivery. J Control Release 2016; 241:186-193. [PMID: 27686583 DOI: 10.1016/j.jconrel.2016.09.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/11/2016] [Accepted: 09/24/2016] [Indexed: 12/25/2022]
Abstract
Mild hyperthermia has been used in combination with polymer therapeutics to further increase delivery to solid tumors and enhance efficacy. An attractive method for generating heat is through non-invasive high intensity focused ultrasound (HIFU). HIFU is often used for ablative therapies and must be adapted to produce uniform mild hyperthermia in a solid tumor. In this work a magnetic resonance imaging guided HIFU (MRgHIFU) controlled feedback system was developed to produce a spatially uniform 43°C heating pattern in a subcutaneous mouse tumor. MRgHIFU was employed to create hyperthermic conditions that enhance macromolecular delivery. Using a mouse model with two subcutaneous tumors, it was demonstrated that MRgHIFU enhanced delivery of both Evans blue dye (EBD) and Gadolinium-chelated N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. The EBD accumulation in the heated tumors increased by nearly 2-fold compared to unheated tumors. The Gadolinium-chelated HPMA copolymers also showed significant enhancement in accumulation over control as evaluated through MRI T1-mapping measurements. Results show the potential of HIFU-mediated hyperthermia for enhanced delivery of polymer therapeutics.
Collapse
Affiliation(s)
- Nick Frazier
- Department of Bioengineering, University of Utah, Salt Lake City, 84112, USA; Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, 84112, USA
| | - Allison Payne
- Department of Radiology, University of Utah, Salt Lake City, 84112, USA
| | - Joshua de Bever
- Department of Radiology, University of Utah, Salt Lake City, 84112, USA
| | | | - Apoorva Panda
- Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, 84112, USA
| | - Nithya Subrahmanyam
- Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, 84112, USA
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, 84112, USA; Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, 84112, USA.
| |
Collapse
|
114
|
Odéen H, Almquist S, de Bever J, Christensen DA, Parker DL. MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling. J Ther Ultrasound 2016; 4:23. [PMID: 27688881 PMCID: PMC5032243 DOI: 10.1186/s40349-016-0067-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/02/2016] [Indexed: 12/28/2022] Open
Abstract
Background A major challenge in using magnetic resonance temperature imaging (MRTI) to monitor focused ultrasound (FUS) applications is achieving high spatio-temporal resolution over a large field of view (FOV). This is important to accurately monitor all ultrasound (US) power depositions. Magnetic resonance (MR) subsampling in conjunction with thermal model-based reconstruction of the MRTI utilizing Pennes bioheat transfer equation (PBTE) is one promising approach. The thermal properties used in the thermal model are often estimated from a pre-treatment, low-power sonication. Methods In this proof-of-concept study we investigate the use of US simulations computed using the hybrid angular spectrum (HAS) method to estimate the US power deposition density Q, thereby avoiding the pre-treatment sonication and any potential tissue damage. MRTI reconstructions are performed using a thermal model-based reconstruction method called model predictive filtering (MPF). Experiments are performed in a homogeneous gelatin phantom and in a gelatin phantom with embedded plastic skull. MPF reconstructions are compared to separate sonications imaged with fully sampled data over a smaller FOV. Temperature root-mean-square errors (RMSE) and focal spot positions and shapes are evaluated. Results HAS simulations accurately predict the location of the focal spot (to within 1 mm) in both phantoms. Accurate temperature maps (RMSE below 1 °C), where the location of the focal spot agrees well with fully sampled “truth” (to within 1 mm), are also achieved in both phantoms. Conclusions HAS simulations can be used to accurately predict the focal spot location in homogeneous media and when focusing through an aberrating plastic skull. The HAS simulated power deposition (Q) patterns can be used in the MPF thermal model-based reconstruction to obtain accurate temperature maps with high spatio-temporal resolution over large FOVs.
Collapse
Affiliation(s)
- Henrik Odéen
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT USA
| | - Scott Almquist
- School of Computing, University of Utah, Salt Lake City, UT USA
| | - Joshua de Bever
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT USA
| | - Douglas A Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT USA ; Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT USA
| | - Dennis L Parker
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT USA
| |
Collapse
|
115
|
Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 2016; 61:R206-48. [PMID: 27494561 PMCID: PMC5022373 DOI: 10.1088/0031-9155/61/17/r206] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | |
Collapse
|
116
|
Poorman ME, Chaplin VL, Wilkens K, Dockery MD, Giorgio TD, Grissom WA, Caskey CF. Open-source, small-animal magnetic resonance-guided focused ultrasound system. J Ther Ultrasound 2016; 4:22. [PMID: 27597889 PMCID: PMC5011339 DOI: 10.1186/s40349-016-0066-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/16/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND MR-guided focused ultrasound or high-intensity focused ultrasound (MRgFUS/MRgHIFU) is a non-invasive therapeutic modality with many potential applications in areas such as cancer therapy, drug delivery, and blood-brain barrier opening. However, the large financial costs involved in developing preclinical MRgFUS systems represent a barrier to research groups interested in developing new techniques and applications. We aim to mitigate these challenges by detailing a validated, open-source preclinical MRgFUS system capable of delivering thermal and mechanical FUS in a quantifiable and repeatable manner under real-time MRI guidance. METHODS A hardware and software package was developed that includes closed-loop feedback controlled thermometry code and CAD drawings for a therapy table designed for a preclinical MRI scanner. For thermal treatments, the modular software uses a proportional integral derivative controller to maintain a precise focal temperature rise in the target given input from MR phase images obtained concurrently. The software computes the required voltage output and transmits it to a FUS transducer that is embedded in the delivery table within the magnet bore. The delivery table holds the FUS transducer, a small animal and its monitoring equipment, and a transmit/receive RF coil. The transducer is coupled to the animal via a water bath and is translatable in two dimensions from outside the magnet. The transducer is driven by a waveform generator and amplifier controlled by real-time software in Matlab. MR acoustic radiation force imaging is also implemented to confirm the position of the focus for mechanical and thermal treatments. RESULTS The system was validated in tissue-mimicking phantoms and in vivo during murine tumor hyperthermia treatments. Sonications were successfully controlled over a range of temperatures and thermal doses for up to 20 min with minimal temperature overshoot. MR thermometry was validated with an optical temperature probe, and focus visualization was achieved with acoustic radiation force imaging. CONCLUSIONS We developed an MRgFUS platform for small-animal treatments that robustly delivers accurate, precise, and controllable sonications over extended time periods. This system is an open source and could increase the availability of low-cost small-animal systems to interdisciplinary researchers seeking to develop new MRgFUS applications and technology.
Collapse
Affiliation(s)
- Megan E. Poorman
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
| | - Vandiver L. Chaplin
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
- Chemical and Physical Biology Program, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
| | - Ken Wilkens
- Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
| | - Mary D. Dockery
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
| | - Todd D. Giorgio
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
| | - William A. Grissom
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
- Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
| | - Charles F. Caskey
- Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
- Department of Radiology, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
| |
Collapse
|
117
|
Ferromagnetic particles as magnetic resonance imaging temperature sensors. Nat Commun 2016; 7:12415. [PMID: 27503610 PMCID: PMC4980494 DOI: 10.1038/ncomms12415] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/30/2016] [Indexed: 02/01/2023] Open
Abstract
Magnetic resonance imaging is an important technique for identifying different types of tissues in a body or spatial information about composite materials. Because temperature is a fundamental parameter reflecting the biological status of the body and individual tissues, it would be helpful to have temperature maps superimposed on spatial maps. Here we show that small ferromagnetic particles with a strong temperature-dependent magnetization, can be used to produce temperature-dependent images in magnetic resonance imaging with an accuracy of about 1 °C. This technique, when further developed, could be used to identify inflammation or tumours, or to obtain spatial maps of temperature in various medical interventional procedures such as hyperthermia and thermal ablation. This method could also be used to determine temperature profiles inside nonmetallic composite materials. Magnetic resonance imaging can distinguish between different tissue types by measuring the proton distribution in a living sample. Here, the authors demonstrate how this technique can be extended to provide temperature information by using ferromagnetic particles with temperature-dependent magnetization.
Collapse
|
118
|
Shi YC, Parker DL, Dillon CR. Sensitivity of tissue properties derived from MRgFUS temperature data to input errors and data inclusion criteria: ex vivo study in porcine muscle. Phys Med Biol 2016; 61:N373-85. [PMID: 27385508 DOI: 10.1088/0031-9155/61/15/n373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study evaluates the sensitivity of two magnetic resonance-guided focused ultrasound (MRgFUS) thermal property estimation methods to errors in required inputs and different data inclusion criteria. Using ex vivo pork muscle MRgFUS data, sensitivities to required inputs are determined by introducing errors to ultrasound beam locations (r error = -2 to 2 mm) and time vectors (t error = -2.2 to 2.2 s). In addition, the sensitivity to user-defined data inclusion criteria is evaluated by choosing different spatial (r fit = 1-10 mm) and temporal (t fit = 8.8-61.6 s) regions for fitting. Beam location errors resulted in up to 50% change in property estimates with local minima occurring at r error = 0 and estimate errors less than 10% when r error < 0.5 mm. Errors in the time vector led to property estimate errors up to 40% and without local minimum, indicating the need to trigger ultrasound sonications with the MR image acquisition. Regarding the selection of data inclusion criteria, property estimates reached stable values (less than 5% change) when r fit > 2.5 × FWHM, and were most accurate with the least variability for longer t fit. Guidelines provided by this study highlight the importance of identifying required inputs and choosing appropriate data inclusion criteria for robust and accurate thermal property estimation. Applying these guidelines will prevent the introduction of biases and avoidable errors when utilizing these property estimation techniques for MRgFUS thermal modeling applications.
Collapse
Affiliation(s)
- Y C Shi
- Department of Engineering Physics, Tsinghua University, HaiDian District, Beijing 100084, People's Republic of China
| | | | | |
Collapse
|
119
|
Hartmann J, Gellermann J, Brandt T, Schmidt M, Pyatykh S, Hesser J, Ott O, Fietkau R, Bert C. Optimization of Single Voxel MR Spectroscopy Sequence Parameters and Data Analysis Methods for Thermometry in Deep Hyperthermia Treatments. Technol Cancer Res Treat 2016; 16:470-481. [PMID: 27422012 DOI: 10.1177/1533034616656310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The difference in the resonance frequency of water and methylene moieties of lipids quantifies in magnetic resonance spectroscopy the absolute temperature using a predefined calibration curve. The purpose of this study was the investigation of peak evaluation methods and the magnetic resonance spectroscopy sequence (point-resolved spectroscopy) parameter optimization that enables thermometry during deep hyperthermia treatments. MATERIALS AND METHODS Different Lorentz peak-fitting methods and a peak finding method using singular value decomposition of a Hankel matrix were compared. Phantom measurements on organic substances (mayonnaise and pork) were performed inside the hyperthermia 1.5-T magnetic resonance imaging system for the parameter optimization study. Parameter settings such as voxel size, echo time, and flip angle were varied and investigated. RESULTS Usually all peak analyzing methods were applicable. Lorentz peak-fitting method in MATLAB proved to be the most stable regardless of the number of fitted peaks, yet the slowest method. The examinations yielded an optimal parameter combination of 8 cm3 voxel volume, 55 millisecond echo time, and a 90° excitation pulse flip angle. CONCLUSION The Lorentz peak-fitting method in MATLAB was the most reliable peak analyzing method. Measurements in homogeneous and heterogeneous phantoms resulted in optimized parameters for the magnetic resonance spectroscopy sequence for thermometry.
Collapse
Affiliation(s)
- J Hartmann
- 1 Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - J Gellermann
- 2 Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.,3 Praxis/Zentrum für Strahlentherapie und Radioonkologie, Berlin, Germany
| | - T Brandt
- 1 Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - M Schmidt
- 1 Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - S Pyatykh
- 4 Medical Faculty Mannheim, Experimental Radiation Oncology, Heidelberg University, Mannheim, Germany
| | - J Hesser
- 4 Medical Faculty Mannheim, Experimental Radiation Oncology, Heidelberg University, Mannheim, Germany
| | - O Ott
- 1 Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - R Fietkau
- 1 Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - C Bert
- 1 Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
120
|
Galkin MV. [The use of transcranial focused ultrasound in CNS diseases]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2016; 80:108-118. [PMID: 27331236 DOI: 10.17116/neiro2016802108-118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transcranial focused ultrasound is a modern medical technique, which provides non-invasive impact on the brain. Current development stage of this technique is no longer than 20 years and many possible applications of this technique are still at pre-clinical stage. The greatest progress has been made in the field of functional neurosurgery. Focused ultrasound enables non-invasive MRI-guided formation of small destruction foci in the relevant targets, providing therapeutic neuromodulating effects in patients with Parkinson's disease, essential tremor, pain syndromes, obsessive-compulsive disorders, and other diseases. So far, this treatment was carried out in more than 300 patients. Several cases of ultrasound thermal destruction of intracranial neoplasms were published. There are attempts to perform third ventriculostomy using ultrasound in animals. A separate area focuses on the enhancement of the permeability of the blood-brain barrier to various substances driven by focused ultrasound. The possibilities of enhancing the permeability to chemotherapeutic agents, immune drugs, and other substances are being investigated in laboratories. A large number of studies focus on treatment of Alzheimer's disease. clinical trials aimed at enhancing the permeability of the blood-brain barrier to chemotherapeutic agents have been initiated. Reversible neuromodulating, stimulating, and inhibiting effect of focused ultrasound on the nervous system structures is another non-destructive effect, which is currently being actively investigated in animals. Furthermore, laboratory studies demonstrated the ability of focused ultrasound to destroy blood clots and thrombi. Transcranial focused ultrasound provides numerous unique possibilities for scientific and practical medicine. Large-scale research is required prior to the widespread clinical implementation. Nevertheless, we can already state that implementation of this technique will significantly enhance diagnostic and therapeutic potential of neurosurgery and neurology.
Collapse
Affiliation(s)
- M V Galkin
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|
121
|
Bing C, Staruch RM, Tillander M, Köhler MO, Mougenot C, Ylihautala M, Laetsch TW, Chopra R. Drift correction for accurate PRF-shift MR thermometry during mild hyperthermia treatments with MR-HIFU. Int J Hyperthermia 2016; 32:673-87. [PMID: 27210733 DOI: 10.1080/02656736.2016.1179799] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED There is growing interest in performing hyperthermia treatments with clinical magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) therapy systems designed for tissue ablation. During hyperthermia treatment, however, due to the narrow therapeutic window (41-45 °C), careful evaluation of the accuracy of proton resonant frequency (PRF) shift MR thermometry for these types of exposures is required. PURPOSE The purpose of this study was to evaluate the accuracy of MR thermometry using a clinical MR-HIFU system equipped with a hyperthermia treatment algorithm. METHODS Mild heating was performed in a tissue-mimicking phantom with implanted temperature sensors using the clinical MR-HIFU system. The influence of image-acquisition settings and post-acquisition correction algorithms on the accuracy of temperature measurements was investigated. The ability to achieve uniform heating for up to 40 min was evaluated in rabbit experiments. RESULTS Automatic centre-frequency adjustments prior to image-acquisition corrected the image-shifts in the order of 0.1 mm/min. Zero- and first-order phase variations were observed over time, supporting the use of a combined drift correction algorithm. The temperature accuracy achieved using both centre-frequency adjustment and the combined drift correction algorithm was 0.57° ± 0.58 °C in the heated region and 0.54° ± 0.42 °C in the unheated region. CONCLUSION Accurate temperature monitoring of hyperthermia exposures using PRF shift MR thermometry is possible through careful implementation of image-acquisition settings and drift correction algorithms. For the evaluated clinical MR-HIFU system, centre-frequency adjustment eliminated image shifts, and a combined drift correction algorithm achieved temperature measurements with an acceptable accuracy for monitoring and controlling hyperthermia exposures.
Collapse
Affiliation(s)
- Chenchen Bing
- a Department of Radiology , University of Texas Southwestern Medical Center , Dallas , Texas , USA
| | - Robert M Staruch
- a Department of Radiology , University of Texas Southwestern Medical Center , Dallas , Texas , USA ;,c Clinical Sites Research Program, Philips Research , Cambridge , Massachusetts , USA
| | | | | | | | | | - Theodore W Laetsch
- f Department of Pediatrics , University of Texas Southwestern Medical Center , Dallas , Texas , USA ;,g Pauline Allen Gill Center for Cancer and Blood Disorders, Children's Health System of Texas , Dallas , Texas , USA
| | - Rajiv Chopra
- a Department of Radiology , University of Texas Southwestern Medical Center , Dallas , Texas , USA ;,b Advanced Imaging Research Center, University of Texas Southwestern Medical Center , Dallas , Texas , USA
| |
Collapse
|
122
|
Wang F, Dong Z, Chen S, Chen B, Yang J, Wei X, Wang S, Ying K. Fast temperature estimation from undersampled k-space with fully-sampled center for MR guided microwave ablation. Magn Reson Imaging 2016; 34:1171-80. [PMID: 27211258 DOI: 10.1016/j.mri.2016.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/28/2022]
Abstract
PURPOSE This study aims to accelerate MR temperature imaging using the proton resonance frequency (PRF) shift method for real time temperature monitoring during thermal ablation. MATERIALS AND METHODS The proposed method estimates temperature changes from undersampled k-space with a fully sampled center. This proposed algorithm is based on the hybrid multi-baseline and referenceless treatment image model and can be seen as an extension of the conventional k-space-based hybrid thermometry. The parameters of hybrid model are acquired by utilizing information from low resolution images which are obtained from fully-sampled centers of k-space. Registration is used to correct temperature errors due to the displacement of the subject. Phantom heating simulations, motion simulations, phantom heating and in-vivo experiments were performed to investigate the efficiency of the proposed method. SPIRiT and the conventional k-space estimation reconstruction thermometry were implemented for comparison using the same sampling pattern. RESULTS The phantom heating simulations showed that the proposed method results in lower RMSEs than the conventional k-space hybrid thermometry and SPIRiT at various reduction factors tested. The motion simulations indicated the robustness of the proposed method to displacement of the subject. Phantom heating experiment further demonstrated the ability of the method to reconstruct temperature maps with less computation time and higher accuracy (RMSEs lower than 0.4°C) at a net reduction factor of 3.5 in the presence of large noise caused by a microwave needle. In-vivo experiments validated the feasibility of the proposed method to estimate temperature changes from undersampled k-space (net reduction factor 4.3) in presence of respiratory motion and complicated anatomical structure, while reducing computation time as much as 10-fold compared with the conventional k-space method. CONCLUSION The proposed method accelerates the PRF-shift MR thermometry and provides more accurate temperature maps in presence of motion with relatively short computation time, which may make real time imaging for MR-guided microwave ablation possible.
Collapse
Affiliation(s)
- Fuyixue Wang
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zijing Dong
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Shuo Chen
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Medical Physics and Engineering Institute, Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Bingyao Chen
- Department of Orthopedics, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Jiafei Yang
- Department of Orthopedics, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Xing Wei
- Department of Orthopedics, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Shi Wang
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Medical Physics and Engineering Institute, Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Kui Ying
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Medical Physics and Engineering Institute, Department of Engineering Physics, Tsinghua University, Beijing, China.
| |
Collapse
|
123
|
Kardoulaki EM, Syms RRA, Young IR, Choonee K, Rea M, Gedroyc WMW. Optothermal profile of an ablation catheter with integrated microcoil for MR-thermometry during Nd:YAG laser interstitial thermal therapies of the liver—an in-vitro experimental and theoretical study. Med Phys 2016; 42:1389-97. [PMID: 25735293 DOI: 10.1118/1.4908225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Flexible microcoils integrated with ablation catheters can improve the temperature accuracy during local MR-thermometry in Nd:YAG laser interstitial thermal therapies. Here, the authors are concerned with obtaining a preliminary confirmation of the clinical utility of the modified catheter. They investigate whether the thin-film substrate and copper tracks of the printed coil inductor affect the symmetry of the thermal profile, and hence of the lesion produced. METHODS Transmission spectroscopy in the near infrared was performed to test for the attenuation at 1064 nm through the 25 μm thick Kapton substrate of the microcoil. The radial transmission profile of an infrared high-power, light emitting diode with >80% normalized power at 1064 nm was measured through a cross section of the modified applicator to assess the impact of the copper inductor on the optical profile. The measurements were performed in air, as well as with the applicator surrounded by two types of scattering media; crystals of NaCl and a layer of liver-mimicking gel phantom. A numerical model based on Huygens-Fresnel principle and finite element simulations, using a commercially available package (COMSOL Multiphysics), were employed to compare with the optical measurements. The impact of the modified optical profile on the thermal symmetry was assessed by examining the high resolution microcoil derived thermal maps from a Nd:YAG laser ablation performed on a liver-mimicking gel phantom. RESULTS Less than 30% attenuation through the Kapton film was verified. Shadowing behind the copper tracks was observed in air and the measured radial irradiation correlated well with the diffraction pattern calculated numerically using the Huygens-Fresnel principle. Both optical experiments and simulations, demonstrate that shadowing is mitigated by the scattering properties of a turbid medium. The microcoil derived thermal maps at the end of a Nd:YAG laser ablation performed on a gel phantom in a 3 T scanner confirm that the modified irradiation pattern does not disrupt the thermal symmetry, even though, unlike tissue, the gel is minimally scattering. CONCLUSIONS The results from this initial assessment indicate that microcoils can be safely integrated with ablation catheters and ensure that the complete necrosis of the liver tumor can still be achieved.
Collapse
Affiliation(s)
- Evdokia M Kardoulaki
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard R A Syms
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ian R Young
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kaushal Choonee
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marc Rea
- Department of Radiology, Imperial College Healthcare NHS Trust, Paddington, London W2 1NY, United Kingdom
| | - Wladyslaw M W Gedroyc
- Department of Radiology, Imperial College Healthcare NHS Trust, Paddington, London W2 1NY, United Kingdom
| |
Collapse
|
124
|
Simonis FFJ, Raaijmakers AJE, Lagendijk JJW, van den Berg CAT. Validating subject-specific RF and thermal simulations in the calf muscle using MR-based temperature measurements. Magn Reson Med 2016; 77:1691-1700. [PMID: 27120403 DOI: 10.1002/mrm.26244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/01/2016] [Accepted: 03/25/2016] [Indexed: 02/05/2023]
Abstract
PURPOSE Ongoing discussions occur to translate the safety restrictions on MR scanners from specific absorption rate (SAR) to thermal dose. Therefore, this research focuses on the accuracy of thermal simulations in human subjects during an MR exam, which is fundamental information in that debate. METHODS Radiofrequency (RF) heating experiments were performed on the calves of 13 healthy subjects using a dedicated transmit-receive coil while monitoring the temperature with proton resonance frequency shift (PRFS) thermometry. Subject-specific models and one generic model were used for electromagnetic and thermal simulations using Pennes' bioheat equation, with the blood equilibration constant equaling zero. The simulations were subsequently compared with the experimental results. RESULTS The mean B1+ equaled 15 µT in the center slice of all volunteers, and 95% of the voxels had errors smaller than 2.8 µT between the simulation and measurement. The intersubject variation in RF power to achieve the required B1+ was 11%. The resulting intersubject variation in median temperature rise was 14%. Thermal simulations underestimated the median temperature increase on average, with 34% in subject-specific models and 28% in the generic model. CONCLUSIONS Although thermal measures are directly coupled to tissue damage and therefore suitable for RF safety assessment, insecurities in the applied thermal modeling limit their estimation accuracy. Magn Reson Med 77:1691-1700, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- F F J Simonis
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands
| | - A J E Raaijmakers
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands
| | - J J W Lagendijk
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands
| | - C A T van den Berg
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands
| |
Collapse
|
125
|
Krug R, Do L, Rieke V, Wilson MW, Saeed M. Evaluation of MRI protocols for the assessment of lumbar facet joints after MR-guided focused ultrasound treatment. J Ther Ultrasound 2016; 4:14. [PMID: 27054038 PMCID: PMC4822243 DOI: 10.1186/s40349-016-0057-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/23/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND MR-guided focused ultrasound (MRgFUS) might be a very safe and effective minimally invasive technique to treat facet joint pain caused by arthritis and other degenerative changes. However, there are still safety concerns for this treatment and challenges regarding MR imaging and temperature mapping due to susceptibility effects between the bone and soft tissue near the joint, which has resulted in poor MR image quality. The goal of this research was to evaluate multiple magnetic resonance imaging (MRI) pulse sequences for characterizing ablated lumbar facet joint lesions created by high-intensity focused ultrasound (FUS) and compare the findings to histological tissue assessment. In particular, we investigated the use of T2-weighted MRI to assess treatment effects without contrast administration. METHODS An IACUC approved study (n = 6 pigs) was performed using a 3T widebore MRI system equipped with an MRgFUS system. Facet joints of the lumbar vertebra were ablated using 1-MHz frequency and multiple sonication energies (300-800 J). In addition to T2-weighted MRI for treatment planning, T1-, T2-, and T2*-weighted and perfusion MRI sequences were applied. Signal intensity ratios of the lesions were determined. Histopathology was used to characterize cellular changes. RESULTS Ablation of the facet joint, using MRgFUS, was successful in all animals. T2-weighted images showed high signal intensity in the edematous facet joint and adjacent muscle, while delayed contrast-enhanced T1-weighted images showed an enhanced ring surrounding the target volume. T2*-weighted GRE images revealed inconsistent lesion visualization. Histopathology confirmed the presence of cellular coagulation (shrinkage), extracellular expansion (edema), and hemorrhage in the bone marrow. CONCLUSIONS MRgFUS provided sufficient precision and image quality for visualization and characterization of ablated facet joints directly after ablation. MRI may help in monitoring the efficacy of FUS ablation without contrast after treating patients with back pain.
Collapse
Affiliation(s)
- Roland Krug
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, 185 Berry Street, Suite 350, Campus Box 0946, San Francisco, CA 94107-5705 USA
| | - Loi Do
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, 185 Berry Street, Suite 350, Campus Box 0946, San Francisco, CA 94107-5705 USA
| | - Viola Rieke
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, 185 Berry Street, Suite 350, Campus Box 0946, San Francisco, CA 94107-5705 USA
| | - Mark W Wilson
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, 185 Berry Street, Suite 350, Campus Box 0946, San Francisco, CA 94107-5705 USA
| | - Maythem Saeed
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, 185 Berry Street, Suite 350, Campus Box 0946, San Francisco, CA 94107-5705 USA
| |
Collapse
|
126
|
Cheng CC, Mei CS, Duryea J, Chung HW, Chao TC, Panych LP, Madore B. Dual-pathway multi-echo sequence for simultaneous frequency and T2 mapping. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 265:177-87. [PMID: 26923150 PMCID: PMC4818735 DOI: 10.1016/j.jmr.2016.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
PURPOSE To present a dual-pathway multi-echo steady state sequence and reconstruction algorithm to capture T2, T2(∗) and field map information. METHODS Typically, pulse sequences based on spin echoes are needed for T2 mapping while gradient echoes are needed for field mapping, making it difficult to jointly acquire both types of information. A dual-pathway multi-echo pulse sequence is employed here to generate T2 and field maps from the same acquired data. The approach might be used, for example, to obtain both thermometry and tissue damage information during thermal therapies, or susceptibility and T2 information from a same head scan, or to generate bonus T2 maps during a knee scan. RESULTS Quantitative T2, T2(∗) and field maps were generated in gel phantoms, ex vivo bovine muscle, and twelve volunteers. T2 results were validated against a spin-echo reference standard: A linear regression based on ROI analysis in phantoms provided close agreement (slope/R(2)=0.99/0.998). A pixel-wise in vivo Bland-Altman analysis of R2=1/T2 showed a bias of 0.034 Hz (about 0.3%), as averaged over four volunteers. Ex vivo results, with and without motion, suggested that tissue damage detection based on T2 rather than temperature-dose measurements might prove more robust to motion. CONCLUSION T2, T2(∗) and field maps were obtained simultaneously, from the same datasets, in thermometry, susceptibility-weighted imaging and knee-imaging contexts.
Collapse
Affiliation(s)
- Cheng-Chieh Cheng
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jeffrey Duryea
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Tzu-Cheng Chao
- Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - Lawrence P Panych
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruno Madore
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
127
|
Jones RM, O'Reilly MA, Hynynen K. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections. Med Phys 2016; 42:4385-400. [PMID: 26133635 DOI: 10.1118/1.4922677] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981-5005 (2013)]. METHODS A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11-0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. RESULTS For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors' previous experimental measurements using source-based skull corrections O'Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285-1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood-brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position obtained using source-based corrections. CONCLUSIONS Taken together, these results demonstrate the feasibility of using the method to guide bubble-mediated ultrasound therapies in the brain. The technique may also have application in ultrasound-based cerebral angiography.
Collapse
Affiliation(s)
- Ryan M Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada; and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
128
|
Lam MK, Oerlemans C, Froeling M, Deckers R, Barten-Van Rijbroek AD, Viergever MA, Moonen CTW, Bos C, Bartels LW. DCE-MRI and IVIM-MRI of rabbit Vx2 tumors treated with MR-HIFU-induced mild hyperthermia. J Ther Ultrasound 2016; 4:9. [PMID: 26981241 PMCID: PMC4791929 DOI: 10.1186/s40349-016-0052-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/29/2016] [Indexed: 02/03/2023] Open
Abstract
Background The purpose of this study is to investigate whether changes could be detected in dynamic contrast-enhanced (DCE) and intra-voxel incoherent motion (IVIM) MR parameters upon MR-guided high-intensity focused ultrasound (MR-HIFU)-induced hyperthermia in a rabbit Vx2 tumor model. Methods Five Vx2 tumor-bearing New Zealand white rabbits were treated with hyperthermia using a clinical MR-HIFU system. Data were acquired before and after hyperthermia. For the DCE analysis, the extended Tofts model was used. For the IVIM analysis, a Bayesian approach was used. Maps were reconstructed of the DCE parameters (Ktrans, kep, and vp) and IVIM parameters (Dt, fp, and Dp). Individual parameter histograms and two-dimensional cross-correlation histograms were constructed to analyze changes in the parameters after hyperthermia. Changes in median values were tested for statistical significance with the Mann-Whitney U test. Results The MR temperature measurements confirmed that mild hyperthermia (40 to 42 °C) was successfully achieved in all rabbits. One rabbit died during treatment and was excluded from the analysis. In the remaining four rabbits, an increase in Dt was observed. In three rabbits, an increase in Ktrans was observed, while in the other rabbits, all three DCE parameter values decreased. Mixed changes were seen for vp and fp. Conclusions Changes in DCE and IVIM parameters were detected after hyperthermia and were variable between the rabbits. DCE- and IVIM-MRI may be promising tools to assess tumor responses to hyperthermia. Further research in a larger number of subjects is necessary in order to assess their value for treatment response monitoring.
Collapse
Affiliation(s)
- Mie K Lam
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chris Oerlemans
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel Deckers
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Max A Viergever
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chrit T W Moonen
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Clemens Bos
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lambertus W Bartels
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
129
|
Ciris PA, Cheng CC, Mei CS, Panych LP, Madore B. Dual-Pathway sequences for MR thermometry: When and where to use them. Magn Reson Med 2016; 77:1193-1200. [PMID: 26968318 DOI: 10.1002/mrm.26177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/21/2016] [Accepted: 01/31/2016] [Indexed: 01/23/2023]
Abstract
PURPOSE Dual-pathway sequences have been proposed to help improve the temperature-to-noise ratio (TNR) in MR thermometry. The present work establishes how much of an improvement these so-called "PSIF-FISP" sequences may bring in various organs and tissues. METHODS Simulations and TNR calculations were validated against analytical equations, phantom, abdomen, and brain scans. Relative TNRs for PSIF-FISP, as compared to a dual-FISP reference standard, were calculated for flip angle (FA) = 1 to 85 º and repetition time (TR) = 6 to 60 ms, for gray matter, white matter, cervix, endometrium, myometrium, prostate, kidney medulla and cortex, bone marrow, pancreas, spleen, muscle, and liver tissues. RESULTS PSIF-FISP was TNR superior in the kidney, pelvis, spleen, or gray matter at most tested TR and FA settings, and benefits increased at shorter TRs. PSIF-FISP was TNR superior in other tissues, e.g., liver, muscle, pancreas, for only short TR settings (20 ms or less). The TNR benefits of PSIF-FISP increased slightly with FA, and strongly with decreasing TR. Up to two- to three-fold reductions in TR with 20% TNR gains were achievable. In any given tissue, TNR performance is expected to further improve with heating, due to changes in relaxation rates. CONCLUSION Dual-pathway PSIF-FISP can improve TNR and acquisition speed over standard gradient-recalled echo sequences, but optimal acquisition parameters are tissue dependent. Magn Reson Med 77:1193-1200, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Pelin Aksit Ciris
- Department of Biomedical Engineering, Akdeniz University, Antalya, Turkey.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cheng-Chieh Cheng
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Lawrence P Panych
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruno Madore
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
130
|
Lechner-Greite SM, Hehn N, Werner B, Zadicario E, Tarasek M, Yeo D. Minimizing eddy currents induced in the ground plane of a large phased-array ultrasound applicator for echo-planar imaging-based MR thermometry. J Ther Ultrasound 2016; 4:4. [PMID: 26848391 PMCID: PMC4741031 DOI: 10.1186/s40349-016-0047-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 01/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study aims to investigate different ground plane segmentation designs of an ultrasound transducer to reduce gradient field induced eddy currents and the associated geometric distortion and temperature map errors in echo-planar imaging (EPI)-based MR thermometry in transcranial magnetic resonance (MR)-guided focused ultrasound (tcMRgFUS). METHODS Six different ground plane segmentations were considered and the efficacy of each in suppressing eddy currents was investigated in silico and in operando. For the latter case, the segmented ground planes were implemented in a transducer mockup model for validation. Robust spoiled gradient (SPGR) echo sequences and multi-shot EPI sequences were acquired. For each sequence and pattern, geometric distortions were quantified in the magnitude images and expressed in millimeters. Phase images were used for extracting the temperature maps on the basis of the temperature-dependent proton resonance frequency shift phenomenon. The means, standard deviations, and signal-to-noise ratios (SNRs) were extracted and contrasted with the geometric distortions of all patterns. RESULTS The geometric distortion analysis and temperature map evaluations showed that more than one pattern could be considered the best-performing transducer. In the sagittal plane, the star (d) (3.46 ± 2.33 mm) and star-ring patterns (f) (2.72 ± 2.8 mm) showed smaller geometric distortions than the currently available seven-segment sheet (c) (5.54 ± 4.21 mm) and were both comparable to the reference scenario (a) (2.77 ± 2.24 mm). Contrasting these results with the temperature maps revealed that (d) performs as well as (a) in SPGR and EPI. CONCLUSIONS We demonstrated that segmenting the transducer ground plane into a star pattern reduces eddy currents to a level wherein multi-plane EPI for accurate MR thermometry in tcMRgFUS is feasible.
Collapse
Affiliation(s)
- Silke M Lechner-Greite
- Diagnostics, Imaging and Biomedical Technologies Laboratory, GE Global Research Europe, Garching n., Munich, Germany
| | - Nicolas Hehn
- Diagnostics, Imaging and Biomedical Technologies Laboratory, GE Global Research Europe, Garching n., Munich, Germany ; IMETUM, Technical University Munich, Garching n., Munich, Germany
| | - Beat Werner
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland
| | | | - Matthew Tarasek
- Diagnostics, Imaging and Biomedical Technologies Laboratory, GE Global Research Niskayuna, Albany, NY USA
| | - Desmond Yeo
- Diagnostics, Imaging and Biomedical Technologies Laboratory, GE Global Research Niskayuna, Albany, NY USA
| |
Collapse
|
131
|
Dillon CR, Borasi G, Payne A. Analytical estimation of ultrasound properties, thermal diffusivity, and perfusion using magnetic resonance-guided focused ultrasound temperature data. Phys Med Biol 2016; 61:923-36. [PMID: 26741344 DOI: 10.1088/0031-9155/61/2/923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
For thermal modeling to play a significant role in treatment planning, monitoring, and control of magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies, accurate knowledge of ultrasound and thermal properties is essential. This study develops a new analytical solution for the temperature change observed in MRgFUS which can be used with experimental MR temperature data to provide estimates of the ultrasound initial heating rate, Gaussian beam variance, tissue thermal diffusivity, and Pennes perfusion parameter. Simulations demonstrate that this technique provides accurate and robust property estimates that are independent of the beam size, thermal diffusivity, and perfusion levels in the presence of realistic MR noise. The technique is also demonstrated in vivo using MRgFUS heating data in rabbit back muscle. Errors in property estimates are kept less than 5% by applying a third order Taylor series approximation of the perfusion term and ensuring the ratio of the fitting time (the duration of experimental data utilized for optimization) to the perfusion time constant remains less than one.
Collapse
Affiliation(s)
- C R Dillon
- Department of Radiology, University of Utah, 729 Arapeen Dr, Salt Lake City, UT 84108, USA
| | | | | |
Collapse
|
132
|
Ramaekers P, de Greef M, van Breugel JMM, Moonen CTW, Ries M. Increasing the HIFU ablation rate through an MRI-guided sonication strategy using shock waves: feasibility in thein vivoporcine liver. Phys Med Biol 2016; 61:1057-77. [DOI: 10.1088/0031-9155/61/3/1057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
133
|
Winter L, Oberacker E, Paul K, Ji Y, Oezerdem C, Ghadjar P, Thieme A, Budach V, Wust P, Niendorf T. Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. Int J Hyperthermia 2015; 32:63-75. [DOI: 10.3109/02656736.2015.1108462] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
134
|
Aoki I, Yoneyama M, Hirose J, Minemoto Y, Koyama T, Kokuryo D, Bakalova R, Murayama S, Saga T, Aoshima S, Ishizaka Y, Kono K. Thermoactivatable polymer-grafted liposomes for low-invasive image-guided chemotherapy. Transl Res 2015; 166:660-673.e1. [PMID: 26303887 DOI: 10.1016/j.trsl.2015.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/02/2015] [Accepted: 07/29/2015] [Indexed: 11/28/2022]
Abstract
The objective of this study was to develop a thermotriggered, polymer-based liposomal drug carrier with an activatable magnetic resonance imaging (MRI) contrast property for monitoring the release of substances and for localized tumor therapy. The multimodal thermoactivatable polymer-grafted liposomes (MTPLs) were tested to investigate whether the accumulation of MTPLs in colon-26 grafted tumors could be visualized in vivo using MRI and optical imaging, whether MTPLs induce signal enhancement, reflecting the release of their contents, after triggering by short-term heating (42.5°C for 10 minutes) 9 hours after MTPL administration (late-phase triggering), and whether MTPLs can provide a sufficient antitumor effect. The imaging and therapeutic properties of MTPLs were tested both in vitro and in vivo (BALB/c nude mice: heated group with MTPLs (n = 5), nonheated group with MTPLs (n = 5), heated group with doxorubicin-free MTPLs (n = 5), nonheated group with manganese-free MTPLs (n = 5), and kinetics observation group (n = 3); N = 23). Through in vivo MRI and fluorescent imaging, the MTPLs were shown to have significantly accumulated in the grafted colon-26 tumors 8 hours after administration. Delayed thermotriggering (9 hours after administration) caused MR signal enhancement, reflecting the release of their contents, after a short exposure to tolerable heat. In addition, significant antitumor effects were observed after treatment. The proposed polymer-based activatable MTPLs with a "delayed thermotrigger" provide a promising technology for cancer theranostics that allows minimal adverse effects and rapid interactive therapy.
Collapse
Affiliation(s)
- Ichio Aoki
- Molecular Imaging Center, National Institute of Radiological Sciences (NIRS), Chiba, Japan.
| | - Misao Yoneyama
- Molecular Imaging Center, National Institute of Radiological Sciences (NIRS), Chiba, Japan
| | - Jun Hirose
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| | - Yuzuru Minemoto
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takayoshi Koyama
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Daisuke Kokuryo
- Molecular Imaging Center, National Institute of Radiological Sciences (NIRS), Chiba, Japan
| | - Rumiana Bakalova
- Molecular Imaging Center, National Institute of Radiological Sciences (NIRS), Chiba, Japan
| | - Shuhei Murayama
- Molecular Imaging Center, National Institute of Radiological Sciences (NIRS), Chiba, Japan
| | - Tsuneo Saga
- Molecular Imaging Center, National Institute of Radiological Sciences (NIRS), Chiba, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
135
|
Bazzocchi A, Napoli A, Sacconi B, Battista G, Guglielmi G, Catalano C, Albisinni U. MRI-guided focused ultrasound surgery in musculoskeletal diseases: the hot topics. Br J Radiol 2015; 89:20150358. [PMID: 26607640 DOI: 10.1259/bjr.20150358] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MRI-guided focused ultrasound surgery (MRgFUS) is a minimally invasive treatment guided by the most sophisticated imaging tool available in today's clinical practice. Both the imaging and therapeutic sides of the equipment are based on non-ionizing energy. This technique is a very promising option as potential treatment for several pathologies, including musculoskeletal (MSK) disorders. Apart from clinical applications, MRgFUS technology is the result of long, heavy and cumulative efforts exploring the effects of ultrasound on biological tissues and function, the generation of focused ultrasound and treatment monitoring by MRI. The aim of this article is to give an updated overview on a "new" interventional technique and on its applications for MSK and allied sciences.
Collapse
Affiliation(s)
- Alberto Bazzocchi
- 1 Diagnostic and Interventional Radiology, The "Rizzoli" Orthopaedic Institute, Bologna, Italy
| | - Alessandro Napoli
- 2 Department of Radiology, Sapienza University of Rome, Umberto I Hospital, Rome, Italy
| | - Beatrice Sacconi
- 2 Department of Radiology, Sapienza University of Rome, Umberto I Hospital, Rome, Italy
| | - Giuseppe Battista
- 3 Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Giuseppe Guglielmi
- 4 Department of Radiology, University of Foggia, Foggia, Italy.,5 Department of Radiology, Scientific Institute "Casa Sollievo della Sofferenza" Hospital, Foggia, Italy
| | - Carlo Catalano
- 2 Department of Radiology, Sapienza University of Rome, Umberto I Hospital, Rome, Italy
| | - Ugo Albisinni
- 1 Diagnostic and Interventional Radiology, The "Rizzoli" Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
136
|
Lam MK, de Greef M, Bouwman JG, Moonen CTW, Viergever MA, Bartels LW. Multi-gradient echo MR thermometry for monitoring of the near-field area during MR-guided high intensity focused ultrasound heating. Phys Med Biol 2015; 60:7729-45. [DOI: 10.1088/0031-9155/60/19/7729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
137
|
Buchenberg WB, Wassermann F, Grundmann S, Jung B, Simpson R. Acquisition of 3D temperature distributions in fluid flow using proton resonance frequency thermometry. Magn Reson Med 2015; 76:145-55. [DOI: 10.1002/mrm.25874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/23/2015] [Accepted: 07/16/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Waltraud B. Buchenberg
- Department of Radiology; University Medical Center Freiburg, Medical Physics; Freiburg Germany
| | - Florian Wassermann
- Department of Fluid Mechanics and Aerodynamics; Technische Universität Darmstadt; Darmstadt Germany
| | - Sven Grundmann
- Department of Fluid Mechanics and Aerodynamics; Technische Universität Darmstadt; Darmstadt Germany
| | - Bernd Jung
- Interventional and Pediatric Radiology, University Hospital, Institute of Diagnostic; Bern Switzerland
| | - Robin Simpson
- Department of Radiology; University Medical Center Freiburg, Medical Physics; Freiburg Germany
| |
Collapse
|
138
|
Gaur P, Partanen A, Werner B, Ghanouni P, Bitton R, Butts Pauly K, Grissom WA. Correcting heat-induced chemical shift distortions in proton resonance frequency-shift thermometry. Magn Reson Med 2015; 76:172-82. [PMID: 26301458 DOI: 10.1002/mrm.25899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/07/2015] [Accepted: 07/28/2015] [Indexed: 01/11/2023]
Abstract
PURPOSE To reconstruct proton resonance frequency-shift temperature maps free of chemical shift distortions. THEORY AND METHODS Tissue heating created by thermal therapies such as focused ultrasound surgery results in a change in proton resonance frequency that causes geometric distortions in the image and calculated temperature maps, in the same manner as other chemical shift and off-resonance distortions if left uncorrected. We propose an online-compatible algorithm to correct these distortions in 2DFT and echo-planar imaging acquisitions, which is based on a k-space signal model that accounts for proton resonance frequency change-induced phase shifts both up to and during the readout. The method was evaluated with simulations, gel phantoms, and in vivo temperature maps from brain, soft tissue tumor, and uterine fibroid focused ultrasound surgery treatments. RESULTS Without chemical shift correction, peak temperature and thermal dose measurements were spatially offset by approximately 1 mm in vivo. Spatial shifts increased as readout bandwidth decreased, as shown by up to 4-fold greater temperature hot spot asymmetry in uncorrected temperature maps. In most cases, the computation times to correct maps at peak heat were less than 10 ms, without parallelization. CONCLUSION Heat-induced proton resonance frequency changes create chemical shift distortions in temperature maps resulting from MR-guided focused ultrasound surgery ablations, but the distortions can be corrected using an online-compatible algorithm. Magn Reson Med 76:172-182, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pooja Gaur
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ari Partanen
- Clinical Science MR Therapy, Philips Healthcare, Andover, Massachusetts, USA
| | - Beat Werner
- Center for MR-Research, University Children's Hospital, Zurich, Switzerland
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Rachelle Bitton
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| | - William A Grissom
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
139
|
Graessl A, Ruehle A, Waiczies H, Resetar A, Hoffmann SH, Rieger J, Wetterling F, Winter L, Nagel AM, Niendorf T. Sodium MRI of the human heart at 7.0 T: preliminary results. NMR IN BIOMEDICINE 2015; 29:1131-44. [PMID: 26082025 DOI: 10.1002/nbm.3290] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 05/05/2023]
Abstract
The objective of this work was to examine the feasibility of three-dimensional (3D) and whole heart coverage (23)Na cardiac MRI at 7.0 T including single-cardiac-phase and cinematic (cine) regimes. A four-channel transceiver RF coil array tailored for (23)Na MRI of the heart at 7.0 T (f = 78.5 MHz) is proposed. An integrated bow-tie antenna building block is used for (1)H MR to support shimming, localization and planning in a clinical workflow. Signal absorption rate simulations and assessment of RF power deposition were performed to meet the RF safety requirements. (23) Na cardiac MR was conducted in an in vivo feasibility study. 3D gradient echo (GRE) imaging in conjunction with Cartesian phase encoding (total acquisition time T(AQ) = 6 min 16 s) and whole heart coverage imaging employing a density-adapted 3D radial acquisition technique (T(AQ) = 18 min 20 s) were used. For 3D GRE-based (23)Na MRI, acquisition of standard views of the heart using a nominal in-plane resolution of (5.0 × 5.0) mm(2) and a slice thickness of 15 mm were feasible. For whole heart coverage 3D density-adapted radial (23)Na acquisitions a nominal isotropic spatial resolution of 6 mm was accomplished. This improvement versus 3D conventional GRE acquisitions reduced partial volume effects along the slice direction and enabled retrospective image reconstruction of standard or arbitrary views of the heart. Sodium cine imaging capabilities were achieved with the proposed RF coil configuration in conjunction with 3D radial acquisitions and cardiac gating. Cardiac-gated reconstruction provided an enhancement in blood-myocardium contrast of 20% versus the same data reconstructed without cardiac gating. The proposed transceiver array enables (23)Na MR of the human heart at 7.0 T within clinical acceptable scan times. This capability is in positive alignment with the needs of explorations that are designed to examine the potential of (23)Na MRI for the assessment of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Andreas Graessl
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Anjuli Ruehle
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | - Ana Resetar
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan H Hoffmann
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Lukas Winter
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Armin M Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
140
|
Deckers R, Merckel LG, Denis de Senneville B, Schubert G, Köhler M, Knuttel FM, Mali WPTM, Moonen CTW, van den Bosch MAAJ, Bartels LW. Performance analysis of a dedicated breast MR-HIFU system for tumor ablation in breast cancer patients. Phys Med Biol 2015; 60:5527-42. [DOI: 10.1088/0031-9155/60/14/5527] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
141
|
Dillon C, Roemer R, Payne A. Magnetic resonance temperature imaging-based quantification of blood flow-related energy losses. NMR IN BIOMEDICINE 2015; 28:840-851. [PMID: 25973583 PMCID: PMC4510856 DOI: 10.1002/nbm.3318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
This study presents a new approach for evaluating bioheat transfer equation (BHTE) models used in treatment planning, control and evaluation of all thermal therapies. First, 3D magnetic resonance temperature imaging (MRTI) data are used to quantify blood flow-related energy losses, including the effects of perfusion and convection. Second, this information is used to calculate parameters of a BHTE model: in this paper the widely used Pennes BHTE. As a self-consistency check, the BHTE parameters are utilized to predict the temperatures from which they were initially derived. The approach is evaluated with finite-difference simulations and implemented experimentally with focused ultrasound heating of an ex vivo porcine kidney perfused at 0, 20 and 40 ml/min (n = 4 each). The simulation results demonstrate accurate quantification of blood flow-related energy losses, except in regions of sharp blood flow discontinuities, where the transitions are spatially smoothed. The smoothed transitions propagate into estimates of the Pennes perfusion parameter but have limited effect on the accuracy of temperature predictions using these estimates. Longer acquisition time periods mitigate the effects of MRTI noise, but worsen the effect of flow discontinuities. For the no-flow kidney experiments the estimates of a uniform, constant Pennes perfusion parameter are approximately zero, and at 20 and 40 ml/min the average estimates increase with flow rate to 3.0 and 4.2 kg/m(3) /s, respectively. When Pennes perfusion parameter values are allowed to vary spatially, but remain temporally constant, BHTE temperature predictions are more accurate than when using spatially uniform, constant Pennes perfusion values, with reductions in RMSE values of up to 79%. Locations with large estimated perfusion values correspond to high flow regions of the kidney observed in T1 -weighted MR images. This novel, MRTI-based technique holds promise for improving understanding of thermal therapy biophysics and for evaluating biothermal models.
Collapse
Affiliation(s)
| | - Robert Roemer
- University of Utah, Mechanical Engineering, Salt Lake City, UT, USA
| | - Allison Payne
- University of Utah, Radiology, Salt Lake City, UT, USA
| |
Collapse
|
142
|
Medvid R, Ruiz A, Komotar RJ, Jagid JR, Ivan ME, Quencer RM, Desai MB. Current Applications of MRI-Guided Laser Interstitial Thermal Therapy in the Treatment of Brain Neoplasms and Epilepsy: A Radiologic and Neurosurgical Overview. AJNR Am J Neuroradiol 2015; 36:1998-2006. [PMID: 26113069 DOI: 10.3174/ajnr.a4362] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Minimally invasive stereotactic tumor ablation is a viable option for the treatment of benign and malignant intracranial lesions. Although surgical excision constitutes first-line therapy for various brain pathologies, it can cause irreversible neurologic deficits. Additionally, many patients who may benefit from surgery do not qualify as surgical candidates due to multiple comorbidities. Recent advancements in laser interstitial thermal therapy, namely the ability to monitor ablation in real-time under MR imaging, have improved the safety and efficacy of the procedure. MRI-guided laser interstitial thermal therapy is currently used as a minimally invasive treatment for brain metastases, radiation necrosis, glioma, and epilepsy. This article will discuss the principles, suggested indications, complications, and imaging characteristics of MRI-guided laser interstitial thermal therapy as they pertain to the treatment of brain pathology.
Collapse
Affiliation(s)
- R Medvid
- From the Department of Radiology (R.M., A.R., R.M.Q., M.B.D.), Division of Neuroradiology
| | - A Ruiz
- From the Department of Radiology (R.M., A.R., R.M.Q., M.B.D.), Division of Neuroradiology
| | - R J Komotar
- Department of Neurological Surgery (J.R.J., R.J.K., M.E.I.), Jackson Memorial Hospital/University of Miami Hospital, Miami, Florida
| | - J R Jagid
- Department of Neurological Surgery (J.R.J., R.J.K., M.E.I.), Jackson Memorial Hospital/University of Miami Hospital, Miami, Florida
| | - M E Ivan
- Department of Neurological Surgery (J.R.J., R.J.K., M.E.I.), Jackson Memorial Hospital/University of Miami Hospital, Miami, Florida
| | - R M Quencer
- From the Department of Radiology (R.M., A.R., R.M.Q., M.B.D.), Division of Neuroradiology
| | - M B Desai
- From the Department of Radiology (R.M., A.R., R.M.Q., M.B.D.), Division of Neuroradiology
| |
Collapse
|
143
|
Carluccio G, Bruno M, Collins CM. Predicting long-term temperature increase for time-dependent SAR levels with a single short-term temperature response. Magn Reson Med 2015; 75:2195-203. [PMID: 26096947 DOI: 10.1002/mrm.25805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 11/10/2022]
Abstract
PURPOSE Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). THEORY AND METHODS After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. RESULTS The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. CONCLUSION With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations.
Collapse
Affiliation(s)
| | - Mary Bruno
- New York University School of Medicine, New York, New York, USA
| | | |
Collapse
|
144
|
Dharmadhikari S, James JR, Nyenhuis J, Bansal N. Evaluation of radiofrequency safety by high temperature resolution MR thermometry using a paramagnetic lanthanide complex. Magn Reson Med 2015; 75:2121-9. [DOI: 10.1002/mrm.25792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Shalmali Dharmadhikari
- School of Health Sciences, Purdue University; West Lafayette Indiana USA
- Department of Radiology and Imaging Sciences; Indiana University School of Medicine; Indianapolis Indiana USA
| | - Judy R. James
- Department of Radiology; Mayo Clinic, Scottsdale; Arizona USA
| | - John Nyenhuis
- Department of Electrical and Computer Engineering; Purdue University; West Lafayette Indiana USA
| | - Navin Bansal
- Department of Radiology and Imaging Sciences; Indiana University School of Medicine; Indianapolis Indiana USA
| |
Collapse
|
145
|
Simonis FFJ, Petersen ET, Lagendijk JJW, van den Berg CAT. Feasibility of measuring thermoregulation during RF heating of the human calf muscle using MR based methods. Magn Reson Med 2015; 75:1743-51. [PMID: 25977138 DOI: 10.1002/mrm.25710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/04/2015] [Accepted: 03/09/2015] [Indexed: 11/06/2022]
Abstract
PURPOSE One of the main safety concerns in MR is heating of the subject due to radiofrequency (RF) exposure. Recently was shown that local peak temperatures can reach dangerous values and the most prominent parameter for accurate temperature estimations is thermoregulation. Therefore, the goal of this research is testing the feasibility of measuring thermoregulation in vivo using MR methods. THEORY AND METHODS The calves of 13 volunteers were scanned at 3 tesla. A Proton Resonance Frequency Shift method was used for temperature measurement. Arterial Spin Labeling and phase contrast scans were used for perfusion and flow measurements respectively. The calves were monitored during extreme RF exposure (20 W/kg, 16 min) and after physical exercise. RESULTS Temperature increases due to RF absorption (range of the 90th percentile of all volunteers: 1.1-2.5°C) matched with the reference skin temperature changes. Increases in perfusion and flow were defined on the whole leg and normalized to baseline. Perfusion showed a significant increase due to RF heating (ratio compared with baseline: 1.28 ± 0.37; P < 0.05), the influence of exercise was much greater, however (2.97 ± 2.45, P < 0.01). CONCLUSION This study represents a first exploration of measuring thermoregulation, which will become essential when new safety guidelines are based on thermal dose.
Collapse
Affiliation(s)
- Frank F J Simonis
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Esben T Petersen
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan J W Lagendijk
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
146
|
Huisman M, ter Haar G, Napoli A, Hananel A, Ghanouni P, Lövey G, Nijenhuis RJ, van den Bosch MAAJ, Rieke V, Majumdar S, Marchetti L, Pfeffer RM, Hurwitz MD. International consensus on use of focused ultrasound for painful bone metastases: Current status and future directions. Int J Hyperthermia 2015; 31:251-9. [PMID: 25677840 DOI: 10.3109/02656736.2014.995237] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Focused ultrasound surgery (FUS), in particular magnetic resonance guided FUS (MRgFUS), is an emerging non-invasive thermal treatment modality in oncology that has recently proven to be effective for the palliation of metastatic bone pain. A consensus panel of internationally recognised experts in focused ultrasound critically reviewed all available data and developed consensus statements to increase awareness, accelerate the development, acceptance and adoption of FUS as a treatment for painful bone metastases and provide guidance towards broader application in oncology. In this review, evidence-based consensus statements are provided for (1) current treatment goals, (2) current indications, (3) technical considerations, (4) future directions including research priorities, and (5) economic and logistical considerations.
Collapse
Affiliation(s)
- Merel Huisman
- Department of Radiology, University Medical Centre , Utrecht , The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Cao Z, Oh S, Otazo R, Sica CT, Griswold MA, Collins CM. Complex difference constrained compressed sensing reconstruction for accelerated PRF thermometry with application to MRI-induced RF heating. Magn Reson Med 2015; 73:1420-31. [PMID: 24753099 PMCID: PMC4205230 DOI: 10.1002/mrm.25255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/01/2023]
Abstract
PURPOSE Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency shift temperature imaging for MRI-induced radiofrequency heating evaluation. METHODS A compressed sensing approach that exploits sparsity of the complex difference between postheating and baseline images is proposed to accelerate proton resonance frequency temperature mapping. The method exploits the intra-image and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex vivo and in vivo studies by comparing performance with previously published techniques. RESULTS The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local proton resonance frequency temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo. CONCLUSION Complex difference based compressed sensing with utilization of a fully sampled baseline image improves the reconstruction accuracy for accelerated proton resonance frequency thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of radiofrequency heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Bioengineering, The Pennsylvania State University, Hershey, Pennsylvania, USA; Department of Radiology, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
148
|
Lam MK, Huisman M, Nijenhuis RJ, van den Bosch MAAJ, Viergever MA, Moonen CTW, Bartels LW. Quality of MR thermometry during palliative MR-guided high-intensity focused ultrasound (MR-HIFU) treatment of bone metastases. J Ther Ultrasound 2015; 3:5. [PMID: 25874113 PMCID: PMC4396149 DOI: 10.1186/s40349-015-0026-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/07/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Magnetic resonance (MR)-guided high-intensity focused ultrasound has emerged as a clinical option for palliative treatment of painful bone metastases, with MR thermometry (MRT) used for treatment monitoring. In this study, the general image quality of the MRT was assessed in terms of signal-to-noise ratio (SNR) and apparent temperature variation. Also, MRT artifacts were scored for their occurrence and hampering of the treatment monitoring. METHODS Analyses were performed on 224 MRT datasets retrieved from 13 treatments. The SNR was measured per voxel over time in magnitude images, in the target lesion and surrounding muscle, and was averaged per treatment. The standard deviation over time of the measured temperature per voxel in MRT images, in the muscle outside the heated region, was defined as the apparent temperature variation and was averaged per treatment. The scored MRT artifacts originated from the following sources: respiratory and non-respiratory time-varying field inhomogeneities, arterial ghosting, and patient motion by muscle contraction and by gross body movement. Distinction was made between lesion type, location, and procedural sedation and analgesic (PSA). RESULTS The average SNR was highest in and around osteolytic lesions (21 in lesions, 27 in surrounding muscle, n = 4) and lowest in the upper body (9 in lesions, 16 in surrounding muscle, n = 4). The average apparent temperature variation was lowest in osteolytic lesions (1.2°C, n = 4) and the highest in the upper body (1.7°C, n = 4). Respiratory time-varying field inhomogeneity MRT artifacts occurred in 85% of the datasets and hampered treatment monitoring in 81%. Non-respiratory time-varying field inhomogeneities and arterial ghosting MRT artifacts were most frequent (94% and 95%) but occurred only locally. Patient motion artifacts were highly variable and occurred less in treatments of osteolytic lesions and using propofol and esketamine as PSA. CONCLUSIONS In this study, the general image quality of MRT was observed to be higher in osteolytic lesions and lower in the upper body. Respiratory time-varying field inhomogeneity was the most prominent MRT artifact. Patient motion occurrence varied between treatments and seemed to be related to lesion type and type of PSA. Clinicians should be aware of these observed characteristics when interpreting MRT images.
Collapse
Affiliation(s)
- Mie K Lam
- />Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Merel Huisman
- />Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robbert J Nijenhuis
- />Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Max A Viergever
- />Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chrit TW Moonen
- />Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lambertus W Bartels
- />Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
149
|
Wi H, McEwan AL, Lam V, Kim HJ, Woo EJ, Oh TI. Real-time conductivity imaging of temperature and tissue property changes during radiofrequency ablation: An ex vivo model using weighted frequency difference. Bioelectromagnetics 2015; 36:277-86. [DOI: 10.1002/bem.21904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 02/05/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Hun Wi
- Department of Biomedical Engineering; Kyung Hee University; Yongin Korea
- Department of Computational Science and Engineering; Yonsei University; Seoul Korea
| | - Alistair Lee McEwan
- Department of Biomedical Engineering; Kyung Hee University; Yongin Korea
- The School of Electrical and Information Engineering; The University of Sydney; Sydney Australia
| | - Vincent Lam
- Faculty of Medicine; The University of Sydney; Sydney Australia
| | - Hyung Joong Kim
- Department of Biomedical Engineering; Kyung Hee University; Yongin Korea
| | - Eung Je Woo
- Department of Biomedical Engineering; Kyung Hee University; Yongin Korea
| | - Tong In Oh
- Department of Biomedical Engineering; Kyung Hee University; Yongin Korea
| |
Collapse
|
150
|
Abstract
In this review we present the current status of ultrasound thermometry and ablation monitoring, with emphasis on the diverse approaches published in the literature and with an eye on which methods are closest to clinical reality. It is hoped that this review will serve as a guide to the expansion of sonographic methods for treatment monitoring and thermometry since the last brief review in 2007.
Collapse
Affiliation(s)
- Matthew A. Lewis
- Department of Radiology, UT Southwestern Medical Center at Dallas
| | - Robert M. Staruch
- Department of Radiology, UT Southwestern Medical Center at Dallas
- Ultrasound Imaging & Interventions, Philips Research North America
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center at Dallas
- Advanced Imaging Research Center, UT Southwestern Medical Center at Dallas
| |
Collapse
|