101
|
McDannold N, Hynynen K, Jolesz F. MRI monitoring of the thermal ablation of tissue: effects of long exposure times. J Magn Reson Imaging 2001; 13:421-7. [PMID: 11241817 DOI: 10.1002/jmri.1061] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
MRI-derived thermometry based on the temperature-dependence of the proton resonant frequency (PRF) is extremely sensitive to changes in tissue unrelated to temperature changes, including tissue swelling. This study investigated the maximum amount of time that this phase-subtraction-based method can be used to accurately monitor temperature changes in vivo. Long-duration focused ultrasound sonications were delivered in rabbit thigh muscle with a phased-array transducer, and the time that tissue swelling began was monitored. Tissue swelling began to occur at about one minute. The temperature correlated well with an implanted thermocouple up to this time. After this time, severe artifacts in the phase-difference maps were observed. The thermal dose model predicted the extent of tissue damage well for subsequent one minute sonications. These results will have implications for MRI guidance of thermal therapies with long exposure times.
Collapse
Affiliation(s)
- N McDannold
- Department of Radiology, Division of MRI, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
102
|
McDannold N, Hynynen K, Oshio K, Mulkern RV. Temperature monitoring with line scan echo planar spectroscopic imaging. Med Phys 2001; 28:346-55. [PMID: 11318316 DOI: 10.1118/1.1350434] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
UNLABELLED A new magnetic resonance imaging method, line scan echo planar spectroscopic imaging (LSEPSI), is shown capable of providing rapid, internally referenced temperature monitoring from water and fat chemical shifts. METHODS Orthogonal 90 degrees and 180 degrees slice selective RF pulses inclined by 45 degrees from the image plane solicit a spin echo from a tissue column. The echo is read by asymmetric sampling of 32 gradient echoes spaced 1.4-1.8 ms apart. Sixty-four adjacent columns are sequentially sampled in 4.2-6.4 s with 4,096 voxels sampled with voxel volumes of 0.08-0.13 cm3. Mixed mayonnaise/water phantoms were used to correlate LSEPSI-derived chemical shifts and thermocouple-based temperature measurements from 23 to 60 degrees C with a 1.5 T scanner. Measurement artifacts unrelated to temperature were investigated with the phantom, as was the feasibility of applying the sequence in human breast in vivo. RESULTS The correlation between LSEPSI and thermocouple-based temperature measurements in the phantom was excellent (r2>0.99). Field drifts affecting the temperature measurements using the water peak alone were corrected by using the water/lipid peak difference. The sequence had an average temperature resolution of 1.4 degrees C in the phantom. The frequency difference measurement reduced the sensitivity to artifacts related to temperature. Both water and lipid peaks were detectable throughout many locations in the breast, suggesting the applicability of LSEPSI in this organ. DISCUSSION T1-saturation losses occur in conventional and echo-planar based 2D CSI sequences using phase encoding methods with short TR periods. These losses are eliminated when individual columns are sampled in snapshot fashion with LSEPSI since the effective TR becomes the time between scans rather than excitations. T1 saturation can make small spectral peaks difficult to detect at high temperatures and generally lowers the signal-to-noise ratio of the spectra. The rapid acquisition and insensitivity to T1 saturation effects make LSEPSI an attractive technique for monitoring thermal therapies in breast using the internally referenced fat/water frequency separation.
Collapse
Affiliation(s)
- N McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02155, USA.
| | | | | | | |
Collapse
|
103
|
Bohris C, Jenne JW, Rastert R, Simiantonakis I, Brix G, Spoo J, Hlavac M, Nemeth R, Huber PE, Debus J. MR monitoring of focused ultrasound surgery in a breast tissue model in vivo. Magn Reson Imaging 2001; 19:167-75. [PMID: 11358654 DOI: 10.1016/s0730-725x(01)00229-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The objective of this study was to investigate MRI methods for monitoring focused ultrasound surgery (FUS) of breast tumors. To this end, the mammary glands of sheep were used as tissue model. The tissue was treated in vivo with numerous single sonications which covered extended target volumes by employing a scanning technique. The ultrasound focus position was controlled by online temperature mapping based on the temperature dependence of the relaxation time T(1). This approach proved to be reliable and offers thus an alternative to proton resonance frequency methods, whose application is hampered in fatty tissues. FUS-induced tissue changes were visible on T(2)- as well as on pre- and post-contrast T(1)-weighted images. According to our initial experience, noninvasive MRI-guided FUS of breast tumors is feasible.
Collapse
Affiliation(s)
- C Bohris
- Department of Radiooncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Vykhodtseva N, McDannold N, Martin H, Bronson RT, Hynynen K. Apoptosis in ultrasound-produced threshold lesions in the rabbit brain. ULTRASOUND IN MEDICINE & BIOLOGY 2001; 27:111-117. [PMID: 11295277 DOI: 10.1016/s0301-5629(00)00275-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Focused ultrasound (US) surgery has been used to induce high temperature elevations in tissue to coagulate the proteins and kill the tissue. The introduction of noninvasive online temperature monitoring has made it possible to induce well-controlled thermal exposures. In this study, we used magnetic resonance imaging (MRI) thermometry to monitor thermal exposures near the threshold of tissue damage, and then investigated if apoptosis was induced. Rabbit brains were sonicated with an eight-sector phased array to create a large region of uniform temperature elevation at the end of a 30-s sonication. Histological examination demonstrated that apoptosis was induced in some cells. At 4 h after the sonications, the apoptotic cells constituted 9 +/- 7% of identifiable cells. By 48 h after the sonications, the number of apoptotic cells had increased up to 17 +/- 9%. The impact of this finding for therapy needs to be explored further.
Collapse
Affiliation(s)
- N Vykhodtseva
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
105
|
de Zwart JA, Vimeux FC, Palussière J, Salomir R, Quesson B, Delalande C, Moonen CT. On-line correction and visualization of motion during MRI-controlled hyperthermia. Magn Reson Med 2001; 45:128-37. [PMID: 11146494 DOI: 10.1002/1522-2594(200101)45:1<128::aid-mrm1017>3.0.co;2-m] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Displacement of tissue during MRI-controlled hyperthermia therapy can cause significant problems. Errors in calculated temperature may result from motion-related image artifacts and inter-image object displacement, leading to incorrect spatial temperature reference. Here, cyclic navigator echoes were incorporated in rapid gradient-echo MRI sequences, used for temperature mapping based on the proton resonance frequency. On-line evaluation of navigator information was used in three ways. First, motion artifacts were minimized in echo-shifted (TE > TR) gradient-echo images using the phase information of the navigator echo. Second, navigator profiles were matched for a quantitative evaluation of displacement. Together with a novel processing method, this information was employed to correct the reference temperature maps, thereby avoiding persistence of motion-related temperature errors throughout the hyperthermic period. Third, on-line visualization of displacement, together with temperature maps and thermal dose images, was developed, allowing physician intervention at all times. Examples are given of on-line corrections during hyperthermia procedures with focused ultrasound and radiofrequency heat sources. Magn Reson Med 45:128-137, 2001.
Collapse
Affiliation(s)
- J A de Zwart
- Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Victor Segalen University, Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
106
|
Peters RD, Chan E, Trachtenberg J, Jothy S, Kapusta L, Kucharczyk W, Henkelman RM. Magnetic resonance thermometry for predicting thermal damage: an application of interstitial laser coagulation in an in vivo canine prostate model. Magn Reson Med 2000; 44:873-83. [PMID: 11108624 DOI: 10.1002/1522-2594(200012)44:6<873::aid-mrm8>3.0.co;2-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Magnetic resonance image-guidance for interstitial thermal therapy has proven to be a valuable tool in its traditional role in device localization and, more recently, in monitoring heat deposition within tissue. However, a quantitative understanding of how temperature-time exposure relates to thermal damage is crucial if the predictive value of real-time MR thermal-monitoring is to be fully realized. Results are presented on interstitial laser coagulation of two canine prostate models which are shown to provide an opportunity to evaluate three models of thermal damage based on a threshold maximum temperature, an Arrhenius damage integral, and a temperature-time product. These models were compared to the resultant lesion margin as derived from post-treatment T(1)- and T(2)-weighted MR images, as well as from direct histological evaluation of the excised canine prostate. Histological evaluation shows that the thermal-injury boundary can be predicted from a threshold-maximum temperature of approximately 51 degrees C or an equivalent Arrhenius t(43) period of 200 minutes, but it is not reliably predicted using the temperature-time product. The methods described in this study are expected to have implications for the treatment of benign prostatic hyperplasia and prostate cancer with interstitial laser coagulation, which will be the focus of future human studies.
Collapse
Affiliation(s)
- R D Peters
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
Continuous thermometry during a hyperthermic procedure may help to correct for local differences in heat conduction and energy absorption, and thus allow optimization of the thermal therapy. Noninvasive, three-dimensional mapping of temperature changes is feasible with magnetic resonance (MR) and may be based on the relaxation time T(1), the diffusion coefficient (D), or proton resonance frequency (PRF) of tissue water. The use of temperature-sensitive contrast agents and proton spectroscopic imaging can provide absolute temperature measurements. The principles and performance of these methods are reviewed in this paper. The excellent linearity and near-independence with respect to tissue type, together with good temperature sensitivity, make PRF-based temperature MRI the preferred choice for many applications at mid to high field strength (>/= 1 T). The PRF methods employ radiofrequency spoiled gradient-echo imaging methods. A standard deviation of less than 1 degrees C, for a temporal resolution below 1 second and a spatial resolution of about 2 mm, is feasible for a single slice for immobile tissues. Corrections should be made for temperature-induced susceptibility effects in the PRF method. If spin-echo methods are preferred, for example when field homogeneity is poor due to small ferromagnetic parts in the needle, the D- and T(1)-based methods may give better results. The sensitivity of the D method is higher that that of the T(1) methods provided that motion artifacts are avoided and the trace of D is evaluated. Fat suppression is necessary for most tissues when T(1), D, or PRF methods are employed. The latter three methods require excellent registration to correct for displacements between scans.
Collapse
Affiliation(s)
- B Quesson
- Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Victor Segalen, University Bordeaux 2, F-33076 Bordeaux, France
| | | | | |
Collapse
|
108
|
Okuda S, Kuroda K, Oshio K, Mulkern RV, Colucci V, Morrison PR, Kainuma O, Jolesz FA. MR-based temperature monitoring for hot saline injection therapy. J Magn Reson Imaging 2000; 12:330-8. [PMID: 10931597 DOI: 10.1002/1522-2586(200008)12:2<330::aid-jmri16>3.0.co;2-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We applied magnetic resonance (MR) phase mapping methods to monitor the thermal frequency shift of water in order to study temperature changes from percutaneous hot saline injection therapy (PSIT) using in vitro swine livers and in vivo rabbit livers. The thermal coefficients calculated from the shifts of the water frequency with thermocouple based temperature measurements were -0.0085 +/- 0.0019 ppm/ degrees C for the in vitro studies and -0.0089 ppm/ degrees C for the in vivo studies. The error range was estimated to be +/- 3 degrees C and +/- 4.5 degrees C, respectively. Color-coded temperature maps were compared with macroscopic lesion sizes of the specimen. Regions defined using a 20 degrees C elevation in the initial images following hot saline injection (around 55 degrees C in absolute temperature) closely correlated with visible coagulation in size. We conclude that MR temperature monitoring of PSIT is quite feasible and may be helpful in expanding the clinical use of this thermal therapeutic tool for liver tumors.
Collapse
Affiliation(s)
- S Okuda
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
McDannold NJ, King RL, Jolesz FA, Hynynen KH. Usefulness of MR imaging-derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits. Radiology 2000; 216:517-23. [PMID: 10924580 DOI: 10.1148/radiology.216.2.r00au42517] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate in vivo the feasibility of using magnetic resonance (MR) imaging-derived temperature and thermal dose measurements to find the threshold of thermal tissue damage. MATERIALS AND METHODS Sonications were delivered in rabbit thigh muscles at varying powers. Temperature-sensitive MR images obtained during the sonications were used to estimate the temperature and thermal dose. The temperature, thermal dose, and applied power were then correlated to the occurrence of tissue damage observed on postsonication images. An eight-element phased-array transducer was used to produce spatially flat temperature profiles that allowed for averaging to reduce the effects of noise and the voxel size. RESULTS The occurrence of tissue damage correlated well with the MR imaging-derived temperature and thermal dose measurements but not with the applied power. Tissue damage occurred at all locations with temperatures greater than 50.4 degrees C and thermal doses greater than 31.2 equivalent minutes at 43.0 degrees C. No tissue damage occurred when these values were less than 47.2 degrees C and 4.3 equivalent minutes. CONCLUSION MR imaging thermometry and dosimetry provide an index to predict the threshold for tissue damage in vivo. This index offers improved online control over minimally invasive thermal treatments and should allow for more accurate target volume coagulation.
Collapse
Affiliation(s)
- N J McDannold
- Department of Radiology, Division of MRI, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Longwood Medical Research Center, 007c, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
110
|
Vykhodtseva N, Sorrentino V, Jolesz FA, Bronson RT, Hynynen K. MRI detection of the thermal effects of focused ultrasound on the brain. ULTRASOUND IN MEDICINE & BIOLOGY 2000; 26:871-880. [PMID: 10942834 DOI: 10.1016/s0301-5629(00)00216-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study tested the hypothesis that MRI thermometry can be correlated with the different degrees of tissue damage observed after focused ultrasound (US) exposure of brain. The brains of 6 rabbits were sonicated to calibrate the MRI proton resonant shift with temperature. In addition, 13 rabbits were sonicated at acoustic powers ranging from 3.5 to 17.5 W. The experiments were performed in a 1.5-T MRI scanner with the temperature-sensitive phase imaging used during the sonications of 4-5 different locations in each rabbit. MR images were obtained 2 h and 2 days after the sonications, depending on when the animals were sacrificed. Whole brain histologic evaluation was performed by sectioning the brain and performing a microscopic investigation. The MRI-derived temperature elevation was found to correlate well with the degree of tissue damage. In addition to the common histology findings, apoptotic cells were observed in the lesions. The T1-weighted contrast enhanced and T2-weighted scans both detected the brain damage. The applied acoustic power did not correlate well with the degree of damage. As a conclusion, the results showed that the measurement of temperature elevations by MRI during sonications can improve the accuracy and safety of clinical US brain surgery.
Collapse
Affiliation(s)
- N Vykhodtseva
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
111
|
Chopra R, Bronskill MJ, Foster FS. Feasibility of linear arrays for interstitial ultrasound thermal therapy. Med Phys 2000; 27:1281-6. [PMID: 10902557 DOI: 10.1118/1.599006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The feasibility of linear array transducers for interstitial ultrasound thermal therapy was evaluated. Theoretical acoustic power distributions were used to calculate spatial heating patterns using the bioheat transfer equation. The spatial heating patterns of linear array and single element planar rectangular transducers were compared. Scanned heating with both transducer geometries produced asymmetric heating volumes; however, a more uniform radial temperature profile with a sharper margin was achieved with linear arrays. Single element transducers produced excessive heating near the probe surface. Homogeneous blood flow is predicted to reduce the mean temperature within the heated region, with little effect on the spatial pattern.
Collapse
Affiliation(s)
- R Chopra
- Sunnybrook and Women's College Health Sciences Centre and Department of Medical Biophysics, University of Toronto, Ontario, Canada.
| | | | | |
Collapse
|
112
|
Stafford RJ, Hazle JD, Glover GH. Monitoring of high-intensity focused ultrasound-induced temperature changes in vitro using an interleaved spiral acquisition. Magn Reson Med 2000; 43:909-12. [PMID: 10861889 DOI: 10.1002/1522-2594(200006)43:6<909::aid-mrm20>3.0.co;2-p] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An interleaved, spoiled gradient-echo spiral acquisition technique was implemented to monitor high-intensity focused ultrasound heating of porcine kidney ex vivo by measuring temperature induced phase shifts in the detected MR signal. Echo time, flip angle, repetition time, number of interleaves, and readout time were varied to observes effects on temperature sensitivity and phase-difference noise. The temperature response of the interleaved spiral acquisition was found to be comparable to a spoiled fast gradient-echo sequence of comparable in-plane spatial resolution. However, when imaging with an optimal echo time, spiral acquisition offers dramatically increased temporal resolution for comparable spatial resolution. Magn Reson Med 43:909-912, 2000.
Collapse
Affiliation(s)
- R J Stafford
- Department of Diagnostic Radiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-0057, USA
| | | | | |
Collapse
|
113
|
Wu T, Kendell KR, Felmlee JP, Lewis BD, Ehman RL. Reliability of water proton chemical shift temperature calibration for focused ultrasound ablation therapy. Med Phys 2000; 27:221-4. [PMID: 10659760 DOI: 10.1118/1.598864] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Our purpose in this work was to assess the reliability of the calibration coefficient for magnetic resonance water proton chemical shift temperature mapping. Over a six month period, the calibration coefficient was measured 15 times in several different phantoms. A highly linear relationship between water proton chemical shift and temperature change was found. The average temperature calibration coefficient determined from all studies was 0.009+/-0.001 ppm/degrees C. Four of the 15 studies were conducted on the same day using the same phantom. The average temperature calibration coefficient of these four studies was 0.0096+/-0.0001 ppm/degrees C.
Collapse
Affiliation(s)
- T Wu
- Department of Diagnostic Radiology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | | | |
Collapse
|
114
|
|
115
|
Foldes K, Hynynen K, Shortkroff S, Winalski CS, Collucci V, Koskinen SK, McDannold N, Jolesz F. Magnetic resonance imaging-guided focused ultrasound synovectomy. Scand J Rheumatol 1999; 28:233-7. [PMID: 10503560 DOI: 10.1080/03009749950155607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To investigate the feasibility of magnetic resonance imaging (MRI)-guided high power focused ultrasound (FUS) to perform synovectomy noninvasively. METHODS Five New Zealand white male rabbit knees with experimentally induced arthritis underwent MRI-guided thermal surgery by high power (60 W/10 s) sonication. Evidence of tissue coagulation was monitored during the procedure and confirmed by gross and microscopic evaluation and MRI. RESULTS Partial synovectomy was performed in five animals. Necrotized synovial tissue was observed on gross and microscopic evaluation. Visible signal intensity alterations including high signal intensity on T2-weighted (T2W) images and lack of contrast-enhancement on T1-weighted (T1W) post-contrast, post-sonication images were characteristic and reproducible. CONCLUSION Our results demonstrate the ability of high power sonication to destroy synovial tissue in vivo.
Collapse
Affiliation(s)
- K Foldes
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Righetti R, Kallel F, Stafford RJ, Price RE, Krouskop TA, Hazle JD, Ophir J. Elastographic characterization of HIFU-induced lesions in canine livers. ULTRASOUND IN MEDICINE & BIOLOGY 1999; 25:1099-1113. [PMID: 10574342 DOI: 10.1016/s0301-5629(99)00044-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The elastographic visualization and evaluation of high-intensity focused ultrasound (HIFU)-induced lesions were investigated. The lesions were induced in vitro in freshly excised canine livers. The use of different treatment intensity levels and exposure times resulted in lesions of different sizes. Each lesion was clearly depicted by the corresponding elastogram as being an area harder than the background. The strain contrast of the lesion/background was found to be dependent on the level of energy deposition. A lesion/background strain contrast between -2.5 dB and -3.5 dB was found to completely define the entire zone of tissue damage. The area of tissue damage was automatically estimated from the elastograms by evaluating the number of pixels enclosed inside the isointensity contour lines corresponding to a strain contrast of -2.5, -3 and -3.5 dB. The area of the lesion was measured from a tissue photograph obtained at approximately the same plane where elastographic data were collected. The estimated lesion areas ranged between approximately 10 mm2 and 110 mm2. A high correlation between the damaged areas as depicted by the elastograms and the corresponding areas as measured from the gross pathology photographs was found (r2 = 0.93, p value < 0.0004, n = 16). This statistically significant high correlation demonstrates that elastography has the potential to become a reliable and accurate modality for HIFU therapy monitoring.
Collapse
Affiliation(s)
- R Righetti
- The University of Texas Medical School, Department of Radiology, Houston 77030, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Daum DR, Smith NB, King R, Hynynen K. In vivo demonstration of noninvasive thermal surgery of the liver and kidney using an ultrasonic phased array. ULTRASOUND IN MEDICINE & BIOLOGY 1999; 25:1087-1098. [PMID: 10574341 DOI: 10.1016/s0301-5629(99)00053-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A 256-element, continuous-wave ultrasonic phased array has been used to thermally coagulate deep-seated liver and kidney tissue. The array elements were formed on a 1-3 piezocomposite bowl with a 10-cm radius of curvature and 12-cm diameter. The 0.65 x 0.65 cm2 projection elements were driven at 1.1 MHz by a custom-built amplifier system. A series of in vivo porcine experiments demonstrated the ability to coagulate liver and kidney tissue using the large-scale phased array. The temperature response of the treatment was guided and monitored using magnetic resonance (MR) images. Focal lesion volumes greater than 0.5 cm3 in kidney and 2 cm3 in liver were formed from a single 20-s sonication.
Collapse
Affiliation(s)
- D R Daum
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | |
Collapse
|
118
|
Chung AH, Jolesz FA, Hynynen K. Thermal dosimetry of a focused ultrasound beam in vivo by magnetic resonance imaging. Med Phys 1999; 26:2017-26. [PMID: 10505893 DOI: 10.1118/1.598707] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Magnetic resonance imaging (MRI) thermometry has been utilized for in vivo evaluation of thermal exposure induced by a focused ultrasound beam. A simulation study of the focused ultrasound beam was conducted to select imaging parameters for reducing the error due to the spatial and temporal averaging of MRI. Temperature imaging based on the proton resonance frequency shift was utilized to obtain the temperature distribution during sonication in the skeletal muscle of eight rabbits. MRI-derived temperature information was then used to calculate the thermal dose distribution induced by the sonication and to estimate the coagulated tissue volume. The tissue changes were also evaluated directly by taking the T2-weighted and the contrast agent enhanced T1-weighted MR images. Errors in the temperature and thermal dose measurements were found to be minimal using the following parameters: slice thickness = 3 mm, voxel dimension = 0.6 mm, and scan time per image = 3.4 s. The estimated dimensions of the coagulated tissue volume were in good agreement with the tissue damages seen on the contrast agent enhanced T1-weighted images. The tissue damage seen on the histology was closely matched to the ones seen on the T2-weighted images. This study showed that MRI thermometry has significant potential for both monitoring the thermal exposure and evaluating the tissue damage. This would allow real-time control of the sonication parameters to optimize clinical treatments.
Collapse
Affiliation(s)
- A H Chung
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
119
|
de Zwart JA, Vimeux FC, Delalande C, Canioni P, Moonen CT. Fast lipid-suppressed MR temperature mapping with echo-shifted gradient-echo imaging and spectral-spatial excitation. Magn Reson Med 1999; 42:53-9. [PMID: 10398950 DOI: 10.1002/(sici)1522-2594(199907)42:1<53::aid-mrm9>3.0.co;2-s] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The water proton resonance frequency (PRF) is temperature dependent and can thus be used for magnetic resonance (MR) thermometry. Since lipid proton resonance frequencies do not depend on temperature, fat suppression is essential for PRF-based temperature mapping. The efficacy of echo-shifted (TE > TR) gradient-echo imaging with spectral-spatial excitation is demonstrated, resulting in accurate and rapid, lipid-suppressed, MR thermometry. The method was validated on phantoms, fatty duck liver, and rat thigh, demonstrating improvements in both the speed and precision of temperature mapping. Heating of a rat thigh with focused ultrasound was monitored in vivo with an accuracy of 0.37 degree C and a time resolution of 438 msec.
Collapse
Affiliation(s)
- J A de Zwart
- Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Victor Segalen University, Bordeaux, France.
| | | | | | | | | |
Collapse
|
120
|
Chung YC, Duerk JL, Shankaranarayanan A, Hampke M, Merkle EM, Lewin JS. Temperature Measurement Using Echo-Shifted FLASH at Low Field for Interventional MRI. J Magn Reson Imaging 1999; 10:108. [PMID: 10398987 DOI: 10.1002/(sici)1522-2586(199907)10:1<108::aid-jmri17>3.0.co;2-p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Temperature Measurement Using Echo-Shifted FLASH at Low Field for Interventional MRI. Yiu-Cho Chung, Jeffrey L. Duerk, Ajit Shankaranarayanan, Monika Hampke, Elmar M. Merkle, and Jonathan S. Lewin. (Article was originally published in the Journal of Magnetic Resonance Imaging, Volume 9, No. 1, 1999). In this article, some of the references were printed with the incorrect journal name. Here is the corrected list of references for this article.
Collapse
|
121
|
Abstract
High-intensity focused ultrasound (US) surgery guided by magnetic resonance imaging (MRI) is a very promising form of minimally invasive thermal therapy. To apply this technique optimally, the interaction mechanisms of high-intensity US with tissue need to be better understood, in particular, the variation of ultrasound absorption with frequency and temperature. However, agreement on the value of measured tissue US absorption is poor, largely because of intrinsic experimental complications of prior investigations. A new approach toward measuring tissue US absorption, based on a form of MRI calorimetry, is proposed here, which allows non-invasive energy measurement through spatial temperature mapping with MRI. A modified two-dimensional spoiled gradient-echo sequence has been implemented to map temperature based on proton resonance frequency (PRF) shift. Validation experiments show excellent agreement of MRI measured energy with that delivered by a calibrated source. MRI calorimetry of US heating of tissue-mimicking polyethylene glycerol material has been performed. Using a hydrophone measurement of the incident US field, its US absorption coefficient was measured as 0.032 cm-1. As this approach can be applied over a range of frequencies, tissues, and temperatures, it should provide a much improved means of measuring absolute tissue US absorption coefficients to improve US therapy planning, future transducer design, and US dosimetry models.
Collapse
Affiliation(s)
- Y Wang
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
122
|
Mastikhin IV, Teslenko VS, Gorchakov VN, Nikolin VP, Kolosova NG. Application of NMR-tomography and histological analysis to study cavitation processes induced by ultrasonic shock waves in biological objects. Bull Exp Biol Med 1999. [DOI: 10.1007/bf02433305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
123
|
Bohris C, Schreiber WG, Jenne J, Simiantonakis I, Rastert R, Zabel HJ, Huber P, Bader R, Brix G. Quantitative MR temperature monitoring of high-intensity focused ultrasound therapy. Magn Reson Imaging 1999; 17:603-10. [PMID: 10231187 DOI: 10.1016/s0730-725x(98)00196-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A new quantitative method has been developed for real-time mapping of temperature changes induced by high intensity focused ultrasound (HIFU). It is based on the temperature dependence of the T1 relaxation time and the equilibrium magnetization. To calibrate the temperature measurement, the functional relationship between T1 and temperature was examined in different samples of porcine muscle and fatty tissue. The method was validated by a comparison of calculated temperature maps with fiber-optic measurements in heated muscle tissue. The experiment showed that the accuracy of the MR method for temperature measurements is better than 1 degree C. Since the acquisition time of the employed MR sequence takes only 3 s per slice and the calculation of the temperature map can be performed within seconds, the imaging technique works nearly in real-time. The temperature measurement could be realized during HIFU showing no disturbances by ultrasound sonication. In comparison to other MR approaches, the advantages of the introduced method lie in a sufficient accuracy and time resolution combined with a reasonable robustness against motion as well as the feasibility for temperature monitoring in fatty tissues.
Collapse
Affiliation(s)
- C Bohris
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg.
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
McDannold NJ, Jolesz FA, Hynynen KH. Determination of the optimal delay between sonications during focused ultrasound surgery in rabbits by using MR imaging to monitor thermal buildup in vivo. Radiology 1999; 211:419-26. [PMID: 10228523 DOI: 10.1148/radiology.211.2.r99ma41419] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE To use magnetic resonance (MR) imaging to monitor thermal buildup and its effects in treated tissues during sequentially delivered sonications in vivo to optimize the intersonication delay for any set of ultrasound and tissue parameters. MATERIALS AND METHODS Sequential sonications were delivered next to each other in both thighs in 10 male New Zealand white rabbits. The time between sonications was 11-60 seconds. Phase-difference MR imaging was used to monitor temperature rise, which was used to estimate the thermal dose delivered to the tissue. T2-weighted and contrast agent-enhanced T1-weighted imaging were used to gauge the extent of tissue coagulation. RESULTS With a short intersonication delay (11-40 seconds), the estimated temperature rise and the extent of tissue coagulation increased dramatically in subsequent sonications. However, when the delay was long (50-60 seconds), the size and shape of the destroyed tissue with subsequent sonications was uniform, and the temperature buildup was substantially lower. CONCLUSION MR imaging can be used to monitor thermal buildup and its effects due to sequential, neighboring sonications in vivo to produce evenly shaped regions of tissue coagulation. The temperature information obtained from the monitoring can be used to optimize the intersonication delay for any set of ultrasound and tissue parameters.
Collapse
Affiliation(s)
- N J McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
125
|
Kallel F, Stafford RJ, Price RE, Righetti R, Ophir J, Hazle JD. The feasibility of elastographic visualization of HIFU-induced thermal lesions in soft tissues. Image-guided high-intensity focused ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 1999; 25:641-647. [PMID: 10386741 DOI: 10.1016/s0301-5629(98)00184-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The potential for visualizing high-intensity focused ultrasound (HIFU)-induced thermal lesions in biological soft tissues in vitro using elastography was investigated. Thermal lesions were created in rabbit paraspinal skeletal muscle in vivo. The rabbits were sacrificed 60 h following the treatment and lesioned tissues were excised. The tissues were cast in a block of clear gel and elastographic images of the lesions were acquired. Gross pathology of the tissue samples confirmed the characteristics of the lesions.
Collapse
Affiliation(s)
- F Kallel
- University of Texas Medical School, Department of Radiology, Houston 77030, USA.
| | | | | | | | | | | |
Collapse
|
126
|
Wlodarczyk W, Hentschel M, Wust P, Noeske R, Hosten N, Rinneberg H, Felix R. Comparison of four magnetic resonance methods for mapping small temperature changes. Phys Med Biol 1999; 44:607-24. [PMID: 10070804 DOI: 10.1088/0031-9155/44/2/022] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Non-invasive detection of small temperature changes (< 1 degree C) is pivotal to the further advance of regional hyperthermia as a treatment modality for deep-seated tumours. Magnetic resonance (MR) thermography methods are considered to be a promising approach. Four methods exploiting temperature-dependent parameters were evaluated in phantom experiments. The investigated temperature indicators were spin-lattice relaxation time T1, diffusion coefficient D, shift of water proton resonance frequency (water PRF) and resonance frequency shift of the methoxy group of the praseodymium complex (Pr probe). The respective pulse sequences employed to detect temperature-dependent signal changes were the multiple readout single inversion recovery (T One by Multiple Read Out Pulses; TOMROP), the pulsed gradient spin echo (PGSE), the fast low-angle shot (FLASH) with phase difference reconstruction, and the classical chemical shift imaging (CSI). Applying these sequences, experiments were performed in two separate and consecutive steps. In the first step, calibration curves were recorded for all four methods. In the second step, applying these calibration data, maps of temperature changes were generated and verified. With the equal total acquisition time of approximately 4 min for all four methods, the uncertainties of temperature changes derived from the calibration curves were less than 1 degree C (Pr probe 0.11 degrees C, water PRF 0.22 degrees C, D 0.48 degrees C and T1 0.93 degrees C). The corresponding maps of temperature changes exhibited slightly higher errors but still in the range or less than 1 degree C (0.97 degrees C, 0.41 degrees C, 0.70 degrees C, 1.06 degrees C respectively). The calibration results indicate the Pr probe method to be most sensitive and accurate. However, this advantage could only be partially transferred to the thermographic maps because of the coarse 16 x 16 matrix of the classical CSI sequence. Therefore, at present the water PRF method appears to be most suitable for MR monitoring of small temperature changes during hyperthermia treatment.
Collapse
Affiliation(s)
- W Wlodarczyk
- Clinic for Radiation Medicine, Charité Medical School-Campus Virchow-Klinikum, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
127
|
Smith NB, Buchanan MT, Hynynen K. Transrectal ultrasound applicator for prostate heating monitored using MRI thermometry. Int J Radiat Oncol Biol Phys 1999; 43:217-25. [PMID: 9989529 DOI: 10.1016/s0360-3016(98)00366-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE For potential localized hyperthermia treatment of tumors within the prostate, an ultrasound applicator consisting entirely of nonmagnetic materials for use with magnetic resonance imaging (MRI) has been developed and tested on muscle tissue ex vivo and in vivo. METHODS AND MATERIALS A partial-cylindrical intracavitary transducer consisting of 16 elements in a 4 x 4 pattern was constructed. It produced a radially propagating acoustic pressure field. Each element of this array (1.5 x 0.75 cm), operating at 1.5 MHz, could be separately powered to produce a desired energy deposition pattern within a target volume. Spatial and temporal temperature elevations were determined using the temperature-dependent proton resonant frequency (PRF) shift and phase subtraction of MR images acquired during ultrasonic heating. Four rabbits were exposed to the ultrasound to raise the local tissue temperature to 45 degrees C for 25 minutes. Six experiments compared thermocouple temperature results to PRF shift temperature results. RESULTS The tests showed that the multi-element ultrasound applicator was MRI-compatible and allowed imaging during sonication. The induced temperature distribution could be controlled by monitoring the RF power to each transducer element. Therapeutic temperature elevations were easily achieved in vivo at power levels that were about 16% of the maximum system power. From the six thermocouple experiments, comparison between the thermocouple temperature and the PRF temperature yielded an average error of 0.34+/-0.36 degrees C. CONCLUSIONS The MRI-compatible intracavitary applicator and driving system was able to control the ultrasound field and temperature pattern in vivo. MRI thermometry using the PRF shift can provide adequate temperature accuracy and stability for controlling the temperature distribution.
Collapse
Affiliation(s)
- N B Smith
- Brigham and Women's Hospital, Harvard Medical School, Department of Radiology, Boston, MA 02115, USA
| | | | | |
Collapse
|
128
|
Hutchinson EB, Hynynen K. Intracavitary ultrasound phased arrays for prostate thermal therapies: MRI compatibility and in vivo testing. Med Phys 1998; 25:2392-9. [PMID: 9874833 DOI: 10.1118/1.598450] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A 62 element MRI-compatible linear phased array was designed and constructed to investigate the feasibility of using transrectal ultrasound for the thermal therapeutic treatment of prostate cancer and benign prostatic hyperplasia. An aperiodic design technique developed in a previous study was used in the design of this array, which resulted in reduced grating lobe levels by using an optimized random distribution of unequally sized elements. The element sizes used in this array were selected to be favorable for both grating lobe levels as determined by array aperiodicity and array efficiency as determined by width to thickness ratios. The heating capabilities and MRI compatibility of the array were tested with in vivo rabbit thigh muscle heating experiments using MRI temperature monitoring. The array produced therapeutic temperature elevations in vivo at depths of 3-6 cm and axial locations up to 3 cm off the central axis and increased the size of the heated volume with electronic scanning of a single focus. The ability of this array to be used for ultrasound surgery was demonstrated by creating necrosed tissue lesions in vivo using short high-power sonications. The ability of the array to be used for hyperthermia was demonstrated by inducing therapeutic temperature elevations for longer exposures. Based on the acoustic and heating performance of this array, it has the potential to be clinically useful for delivering thermal therapies to the prostate and other target volumes close to body cavities.
Collapse
Affiliation(s)
- E B Hutchinson
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
129
|
Olsrud J, Wirestam R, Brockstedt S, Nilsson AM, Tranberg KG, Ståhlberg F, Persson BR. MRI thermometry in phantoms by use of the proton resonance frequency shift method: application to interstitial laser thermotherapy. Phys Med Biol 1998; 43:2597-613. [PMID: 9755948 DOI: 10.1088/0031-9155/43/9/012] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this work the temperature dependence of the proton resonance frequency was assessed in agarose gel with a high melting temperature (95 degrees C) and in porcine liver in vitro at temperatures relevant to thermotherapy (25-80 degrees C). Furthermore, an optically tissue-like agarose gel phantom was developed and evaluated for use in MRI. The phantom was used to visualize temperature distributions from a diffusing laser fibre by means of the proton resonance frequency shift method. An approximately linear relationship (0.0085 ppm degrees C(-1)) between proton resonance frequency shift and temperature change was found for agarose gel, whereas deviations from a linear relationship were observed for porcine liver. The optically tissue-like agarose gel allowed reliable MRI temperature monitoring, and the MR relaxation times (T1 and T2) and the optical properties were found to be independently alterable. Temperature distributions around a diffusing laser fibre, during irradiation and subsequent cooling, were assessed with high spatial resolution (voxel size = 4.3 mm3) and with random uncertainties ranging from 0.3 degrees C to 1.4 degrees C (1 SD) with a 40 s scan time.
Collapse
Affiliation(s)
- J Olsrud
- Department of Radiation Physics, Lund University Hospital, Sweden
| | | | | | | | | | | | | |
Collapse
|
130
|
Peters RD, Hinks RS, Henkelman RM. Ex vivo tissue-type independence in proton-resonance frequency shift MR thermometry. Magn Reson Med 1998; 40:454-9. [PMID: 9727949 DOI: 10.1002/mrm.1910400316] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The temperature sensitivity of the proton-resonance frequency (PRF) has proven valuable for the monitoring of MR image-guided thermal coagulation therapy. However, there is significant inconsistency in reported values of the PRF-thermal coefficient, as measured from experiments encompassing a range of in vivo and ex vivo tissue types and experimental conditions. A method of calibrating the temperature dependence of the PRF is described and results are presented that indicate a tissue-type independence. To this end, other possible mechanisms for variations in the PRF-thermal coefficient are suggested, including physiological perturbations and volume magnetic susceptibility effects from geometry and orientation.
Collapse
Affiliation(s)
- R D Peters
- Department of Medical Biophysics, University of Toronto, Sunnybrook Health Science Center, Ontario, Canada
| | | | | |
Collapse
|
131
|
Kettenbach J, Silverman SG, Hata N, Kuroda K, Saiviroonporn P, Zientara GP, Morrison PR, Hushek SG, Black PM, Kikinis R, Jolesz FA. Monitoring and visualization techniques for MR-guided laser ablations in an open MR system. J Magn Reson Imaging 1998; 8:933-43. [PMID: 9702896 DOI: 10.1002/jmri.1880080424] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Our purpose was to develop temperature-sensitive MR sequences and image-processing techniques to assess their potential of monitoring interstitial laser therapy (ILT) in brain tumors (n = 3) and liver tumors (n = 7). ILT lasted 2 to 26 minutes, whereas images from T1-weighted fast-spin-echo (FSE) or spoiled gradient-recalled (SPGR) sequences were acquired within 5 to 13 seconds. Pixel subtraction and visualization of T1-weighted images or optical flow computation was done within less than 110 msec. Alternating phase-mapping of real and imaginary components of SPGR sequences was performed within 220 msec. Pixel subtraction of T1-weighted images identified thermal changes in liver and brain tumors but could not evaluate the temperature values as chemical shift-based imaging, which was, however, more affected by susceptibility effects and motion. Optical flow computation displayed the predicted course of thermal changes and revealed that the rate of heat deposition can be anisotropic, which may be related to heterogeneous tumor structure and/or vascularization.
Collapse
Affiliation(s)
- J Kettenbach
- Department of Radiology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Mulkern RV, Panych LP, McDannold NJ, Jolesz FA, Hynynen K. Tissue temperature monitoring with multiple gradient-echo imaging sequences. J Magn Reson Imaging 1998; 8:493-502. [PMID: 9562081 DOI: 10.1002/jmri.1880080234] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inherent sensitivity of multiple gradient-echo sequences to the chemical shift is exploited to rapidly map muscle water frequency shifts caused by ultrasonic heating. The use of multiple echoes is shown to offer several advantages over single gradient-echo approaches previously proposed for temperature measurement. An increase in the effective bandwidth significantly reduces aliasing problems observed with single gradient-echo methods in high temperature applications. Of greater significance is the improved immunity to intrascan motion found for multi-echo versus single echo gradient methods, making the former more attractive for clinical applications. Finally, a sensitivity to the presence of multiple spectral components unavailable with single gradient-echo methods is obtained.
Collapse
Affiliation(s)
- R V Mulkern
- Department of Radiology at Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
133
|
Hutchinson E, Dahleh M, Hynynen K. The feasibility of MRI feedback control for intracavitary phased array hyperthermia treatments. Int J Hyperthermia 1998; 14:39-56. [PMID: 9483445 DOI: 10.3109/02656739809018213] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Temperature feedback control has the potential to enhance hyperthermia treatments by providing more uniform heating of the target volume and improving the transient temperature response. A multivariable least squares batch algorithm was used to estimate system parameters for simulated prostate hyperthermia treatments. A multi-input, multi-output (MIMO) linear quadratic regulator (LQR) controller was designed for prostate hyperthermia treatments with an intracavitary phased array. A parametric study was performed for the one-dimensional control case, investigating factors relevant to magnetic resonance imaging (MRI) feedback control such as spatial resolution of temperature measurements (size of the averaging volume), sampling rate (image acquisition time), thermometry noise, control width, control depth, physiological parameter changes and reference input structure. Simulations utilizing the two dimensional (2-D) thermometry of MRI and the 2-D focusing capabilities of phased arrays demonstrated that near field heating can be controlled such that the size and shape of the heated volume can be tailored in 2-D. The control algorithms developed in this study show promising potential for incorporation into a non-invasive prostate hyperthermia system utilizing MRI feedback.
Collapse
|
134
|
Hynynen K, Wolf D, Wolf G, Jolesz F. MRI evaluation of thermal ablation of tumors with focused ultrasound. J Magn Reson Imaging 1998; 8:91-100. [PMID: 9500266 DOI: 10.1002/jmri.1880080119] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MRI was used to target and evaluate the tissue effects of focused ultrasound ablation on tumors implanted in the skeletal muscle of rabbits in vivo. First, MRI was used to localize the tumors and plan the ultrasound therapy. Second, temperature-sensitive phase-difference images were acquired to monitor the location of the ultrasound focus and to estimate the effects of temperature rise. After the treatment, the spatial and temporal temperature profiles for defining boundaries of tissue coagulation were calculated. Finally, these boundaries were compared to T2-weighted and contrast-enhanced T1-weighted images obtained immediately after therapy. The results indicate that using MRI for planning and evaluating focused ultrasound surgery is feasible. We showed a linear relationship between applied power and shifts in the proton resonant frequency. Fluctuations in the location of the focus about the target location were on the order of the resolution of the MR images. The temperature rise and lesion size varied significantly. Regions of tissue coagulation calculated from MR data correlated well with post-therapy imaging.
Collapse
|
135
|
Kuroda K, Chung AH, Hynynen K, Jolesz FA. Calibration of water proton chemical shift with temperature for noninvasive temperature imaging during focused ultrasound surgery. J Magn Reson Imaging 1998; 8:175-81. [PMID: 9500277 DOI: 10.1002/jmri.1880080130] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present work was performed to calibrate water proton chemical shift change with tissue temperature in vivo to establish a method of quantitative temperature imaging during focused ultrasound surgery. The chemical shift change measured with a phase-mapping method using spoiled gradient-recalled acquisition in steady state (SPGR) (TR = 26 msec, TE = 12.8 msec, matrix = 256 x 128) was calibrated with the corresponding temperature elevation (0-50 degrees C, 32-84 degrees C in absolute temperature) measured with a copper-constantan thermocouple (.05-mm-diameter bare wires) in rabbit skeletal muscle (16 animals) under focused ultrasound exposures (10-100 W radiofrequency [RF] power, 20-second sonication). A linear calibration with a regression coefficient of (-8.76+/-.69) x 10(-3) ppm/degrees C (P < .01 [P, significance level]) was obtained. Temperature distributions during a 20-second sonication were visualized every 3.3 seconds with a 2.3-mm3 spatial resolution and 4 degrees C temperature uncertainty.
Collapse
Affiliation(s)
- K Kuroda
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
136
|
Stollberger R, Ascher PW, Huber D, Renhart W, Radner H, Ebner F. Temperature monitoring of interstitial thermal tissue coagulation using MR phase images. J Magn Reson Imaging 1998; 8:188-96. [PMID: 9500279 DOI: 10.1002/jmri.1880080132] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The temperature-dependent water proton frequency shift was investigated for temperature monitoring of interstitial thermal coagulation. A procedure for on-line temperature calculation was developed, and errors due to temperature-dependent susceptibility were investigated by finite element analysis and reference measurements. The temperature coefficient of magnetic susceptibility and proton chemical shift were determined for brain tissue and other substances. With the proposed procedure, the location of isotherms could be well visualized during laser-induced interstitial coagulation in vitro and in vivo. Systematic errors caused by magnetic susceptibility changes with temperature depend strongly on the characteristics of the heat source and can exceed susceptibility effects caused by physiologic tissue changes. For the laser applicators discussed here, however, a first order compensation for this effect was found to be satisfactory, because it reduces the absolute error to the range of +/- 1 degrees C. The proposed method represents a very promising approach for monitoring of the interstitial thermal coagulation.
Collapse
Affiliation(s)
- R Stollberger
- Magnetic Resonance Institute, Karl-Franzens-University Graz, Austria.
| | | | | | | | | | | |
Collapse
|
137
|
|
138
|
|
139
|
Daum DR, Hynynen K. Thermal dose optimization via temporal switching in ultrasound surgery. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 1998; 45:208-215. [PMID: 18244173 DOI: 10.1109/58.646926] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Temporal switching has been simulated and implemented in vivo experiments as a method to optimize thermal dose in ultrasound surgery. By optimizing the thermal dose over a tissue volume, the peak temperature is decreased, less average power is expended, and overall treatment time is shortened. To test this hypothesis, a 16 element, spherically sectioned array has been constructed for application in ultrasound surgery guided by magnetic resonance imaging. A simulation study for the array was performed to determine an optimal treatment from a set of multiple focus fields. These fields were generated using the mode scanning technique with power levels determined numerically using a direct weighted gradient search in the attempt to create an optimally uniform thermal dose over a 0.6x0.6x1.0 cm(3) tissue volume. Comparisons of the switched fields and a static multiple focus field indicate that the switching technique can lower power requirements and decrease treatment time by 20%. More importantly, the peak temperature of the sonication was lowered 13 degrees C, thus decreasing the possibility of cavitation. The simulated results of the 16 element array were then experimentally tested using MRI to noninvasively monitor temperature elevations and predict lesion size in rabbit thigh muscle in vivo. In addition, the results show that the switching technique can be less sensitive to tissue inhomogeneities than static field sonication while creating contiguous necrosis regions at equal average powers.
Collapse
Affiliation(s)
- D R Daum
- Department of Radiology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
140
|
Wlodarczyk W, Boroschewski R, Hentschel M, Wust P, Mönich G, Felix R. Three-dimensional monitoring of small temperature changes for therapeutic hyperthermia using MR. J Magn Reson Imaging 1998; 8:165-74. [PMID: 9500276 DOI: 10.1002/jmri.1880080129] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Radiofrequency hyperthermia of deep-seated pelvic tumors requires noninvasive monitoring of temperature distributions in patients. Methods of MR thermography were reported to be a promising tool in solving this problem. However, to be truly useful for monitoring hyperthermia treatments, MR thermography should be able to cover the entire pelvis in acquisition times no longer than for a breath-hold (< or = 15 seconds) and to resolve small temperature differences (< 1 degrees C). Three methods exploiting the temperature dependence of spin-lattice relaxation time (T1), of self-diffusion coefficient (D), and of chemical shift of proton resonance frequency (PRF) were applied in phantom experiments; the pulse sequences were the T1-weighted gradient echo, the pulsed diffusion gradient spin echo made faster through the keyhole technique, and the gradient echo with the phase reconstruction, respectively. The high planar resolution was compromised, and instead, coarse and more isotropic voxels were used. Experiments were performed in two consecutive steps, thus imitating a possible scenario for monitoring hyperthermia. In the first step, calibration curves were recorded, which were then used in the second step to obtain maps of temperature changes. The results show a clear superiority of the PRF method, followed by the D and the T1 methods. The uncertainty of temperature changes predicted both from calibration curves and from maps was less than 1 degrees C only with the PRF and the D-based methods.
Collapse
Affiliation(s)
- W Wlodarczyk
- Department of Electrical Engineering, Technical University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
141
|
Mulkern RV, Chung AH, Jolesz FA, Hynynen K. Temperature monitoring of ultrasonically heated muscle with RARE chemical shift imaging. Med Phys 1997; 24:1899-906. [PMID: 9434972 DOI: 10.1118/1.598103] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ability to monitor tissue temperature in ultrasonically heated rabbit muscle is demonstrated using a chemical shift imaging approach based on the rapid acquisition with relaxation enhancement (RARE) fast imaging method [Hennig et al., Magn. Reson. Med. 3, 823-833 (1986)] applied in a line scan format. A three echo sequence with a 16 Hz spectral resolution with 64 ms echo readouts and 78 ms echo spacings is shown capable of measuring relevantly small water frequency shifts in phantoms. Applied to the in vivo model of ultrasonically heated rabbit muscle, water resonance frequencies at the ultrasonic focal point were found to be linearly related to temperature with a slope of -0.007 +/- 0.001 ppm/degree C (N = 6 studies). Measurements of the frequency shift in unheated tissue located away from the ultrasonically heated tissue varied by approximately 0.011 ppm over the course of the experiments, leading to an estimated temperature accuracy of +/- 1.6 degrees C in vivo.
Collapse
Affiliation(s)
- R V Mulkern
- Department of Radiology, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
142
|
Steiner P, Botnar R, Goldberg SN, Gazelle GS, Debatin JF. Monitoring of radio frequency tissue ablation in an interventional magnetic resonance environment. Preliminary ex vivo and in vivo results. Invest Radiol 1997; 32:671-8. [PMID: 9387054 DOI: 10.1097/00004424-199711000-00004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RATIONALE AND OBJECTIVES The authors evaluate the feasibility of monitoring radio frequency (RF) ablation in an interventional, open-configuration, 0.5-tesla magnetic resonance (MR) environment. METHODS Ex vivo and in vivo RF coagulation necrosis were induced in porcine paraspinal muscle tissue using a 300 kHz monopolar RF generator applying 5 to 20 W over 3 to 9 minutes. Images were acquired simultaneous to RF application, after RF application, and in an intermittent mode (60 seconds of RF followed by 15 seconds of MR imaging). Temperature changes were monitored based on amplitude (ex vivo) and phase alterations (in vivo) of a T1-weighted graded refocused echo (GRE) sequence enabling an update every 2.5 seconds. A standardized color-coded subtraction technique enhanced signal changes. Additionally, T2- and T1-weighted spin echo (SE) images were acquired with and without intravenous contrast. Macroscopic coagulation size was compared with lesion size seen on MR images. RESULTS Although lesion diameters were related directly to applied RF power, the application mode had no significant impact on coagulation size (P > 0.05). As could be expected, MR imaging during RF ablation resulted in major image distortion. Radio frequency effects were seen on images acquired in the continuous and intermittent modes. Coagulation size seen on GRE images correlated well with macroscopy both ex vivo (r = 0.89) and in vivo (r = 0.92). Poorer correlation was found with postinterventional SE sequences (r = 0.78-0.84). CONCLUSIONS Magnetic resonance monitoring of RF effects is feasible both ex vivo as well as in vivo using temperature-sensitive sequences in an open-configuration MR environment.
Collapse
Affiliation(s)
- P Steiner
- Department of Medical Radiology, University Hospital Zurich, Switzerland
| | | | | | | | | |
Collapse
|
143
|
Kuroda K, Oshio K, Chung AH, Hynynen K, Jolesz FA. Temperature mapping using the water proton chemical shift: a chemical shift selective phase mapping method. Magn Reson Med 1997; 38:845-51. [PMID: 9358461 DOI: 10.1002/mrm.1910380523] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A proton-chemical-shift-based temperature imaging method, called chemical shift selective phase mapping, is proposed. The technique uses frequency-selective suppression to provide frequency selectivity to the phase mapping method. Separate imaging of the phase distributions of the water and nonwater signals reduced the error due to the presence of a nonwater signal in measuring the water proton chemical shift change in two-component samples. Imaging of the phase difference between water and oil yielded an internally referenced water proton chemical shift measurement to visualize the temperature change distribution, which was unaffected by motion-induced susceptibility changes.
Collapse
Affiliation(s)
- K Kuroda
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
144
|
Sinha S, Oshiro T, Sinha U, Lufkin R. Phase imaging on a .2-T MR scanner: application to temperature monitoring during ablation procedures. J Magn Reson Imaging 1997; 7:918-28. [PMID: 9307920 DOI: 10.1002/jmri.1880070522] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Proton phase shift imaging methods with keyholing were developed to rapidly monitor temperature during MR-guided radiofrequency (RF) interventional procedures on a .2-T open configuration scanner. Temperature calibration was performed on thermally controlled gel phantom and ex vivo bovine liver samples. Keyholing methods were implemented for rapid imaging and tested both in simulation experiments and in the gel phantom. Phase drifts from extraneous sources were monitored and compensated for using reference phantoms. Sequence parameters TE, TR, and flip angle (FA) were optimized for maximum temperature sensitivity and minimum noise. Reduction of phase noise from coupling of the magnetic field to external perturbations using navigator-echo-based correction schemes were also investigated. The extraneous phase drifts from the magnet could be minimized by keeping the electromagnet on continuously. Navigator echo corrected keyholed FLASH sequences (TE = 30 msec, TR = 60 msec, FA = 40 degrees, 64 x 128 matrix) were used to monitor the RF lesioning process in gel phantoms yielding images every 4 seconds with a temperature sensitivity of .015 ppm/degree C. RF ablation in the bovine tissue was monitored using navigator-echo-corrected keyholed fast low angle shot (FLASH) sequences (TE = 30 msec, TR = 100 msec, FA = 40 degrees, 128 x 256 matrix) with a temporal resolution of 13 seconds and a temperature sensitivity of .007 ppm/degree C. The results indicate that monitoring of an RF ablation procedure by mapping temperature with sufficient temporal resolution is possible using phase images of FLASH sequences on a .2-T open scanner.
Collapse
Affiliation(s)
- S Sinha
- Department of Radiological Sciences, UCLA School of Medicine 90024, USA.
| | | | | | | |
Collapse
|