101
|
Fratta E, Sigalotti L, Covre A, Parisi G, Coral S, Maio M. Epigenetics of melanoma: implications for immune-based therapies. Immunotherapy 2013; 5:1103-16. [DOI: 10.2217/imt.13.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malignant melanoma is a complex disease that arises and evolves due to a myriad of genetic and epigenetic events. Among these, the interaction between epigenetic alterations (i.e., histone modifications, DNA methylation, mRNA silencing by miRNAs and nucleosome repositioning) has been recently identified as playing an important role in melanoma development and progression by affecting key cellular pathways such as cell cycle regulation, DNA repair, apoptosis, invasion and immune recognition. Differently to genetic lesions, epigenetic changes are potentially pharmacologically reversible by using epigenetic drugs. Along this line, preclinical and clinical findings indicate that these drugs, given alone or in combination therapies, can efficiently modulate the immunophenotype of melanoma cells. The aim of this review is to provide a comprehensive summary of melanoma epigenetics and the current use of epigenetic drugs in the clinical setting.
Collapse
Affiliation(s)
- Elisabetta Fratta
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Luca Sigalotti
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Alessia Covre
- Division of Medical Oncology & Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Strada delle Scotte 14, 53100 Siena, Italy
| | - Giulia Parisi
- Division of Medical Oncology & Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Strada delle Scotte 14, 53100 Siena, Italy
| | - Sandra Coral
- Division of Medical Oncology & Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Strada delle Scotte 14, 53100 Siena, Italy
| | - Michele Maio
- Division of Medical Oncology & Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Strada delle Scotte 14, 53100 Siena, Italy
| |
Collapse
|
102
|
Liu Y, Yang S, Zhang X. WITHDRAWN: Down-regulation of long non-coding RNA TUG1 suppresses melanoma cell proliferation and induces apoptosis via up-regulating microRNA-9. Biochem Biophys Res Commun 2013:S0006-291X(13)01521-0. [PMID: 24055035 DOI: 10.1016/j.bbrc.2013.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/09/2013] [Indexed: 11/23/2022]
Abstract
This article has been withdrawn at the request of the author. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Yuchen Liu
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology,Hefei, Anhui, China
| | | | | |
Collapse
|
103
|
Bennett PE, Bemis L, Norris DA, Shellman YG. miR in melanoma development: miRNAs and acquired hallmarks of cancer in melanoma. Physiol Genomics 2013; 45:1049-59. [PMID: 24046283 DOI: 10.1152/physiolgenomics.00116.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Melanoma is a very aggressive skin cancer with increasing incidence worldwide. MicroRNAs are small, noncoding RNAs that regulate gene expression of targeted gene(s). The hallmark of cancer model outlined by Hanahan and Weinberg offers a meaningful framework to consider the roles of microRNAs in melanoma development and progression. In this systematic review of the literature, we associate what is known about deregulation of microRNAs and their targeted genes in melanoma development with the hallmarks and characteristics of cancer. The diagnostic and therapeutic potential of microRNAs for future melanoma management will also be discussed.
Collapse
Affiliation(s)
- Paige E Bennett
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | |
Collapse
|
104
|
How microRNA and transcription factor co-regulatory networks affect osteosarcoma cell proliferation. PLoS Comput Biol 2013; 9:e1003210. [PMID: 24009496 PMCID: PMC3757060 DOI: 10.1371/journal.pcbi.1003210] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/19/2013] [Indexed: 12/25/2022] Open
Abstract
Osteosarcomas (OS) are complex bone tumors with various genomic alterations. These alterations affect the expression and function of several genes due to drastic changes in the underlying gene regulatory network. However, we know little about critical gene regulators and their functional consequences on the pathogenesis of OS. Therefore, we aimed to determine microRNA and transcription factor (TF) co-regulatory networks in OS cell proliferation. Cell proliferation is an essential part in the pathogenesis of OS and deeper understanding of its regulation might help to identify potential therapeutic targets. Based on expression data of OS cell lines divided according to their proliferative activity, we obtained 12 proliferation-related microRNAs and corresponding target genes. Therewith, microRNA and TF co-regulatory networks were generated and analyzed regarding their structure and functional influence. We identified key co-regulators comprising the microRNAs miR-9-5p, miR-138, and miR-214 and the TFs SP1 and MYC in the derived networks. These regulators are implicated in NFKB- and RB1-signaling and focal adhesion processes based on their common or interacting target genes (e.g., CDK6, CTNNB1, E2F4, HES1, ITGA6, NFKB1, NOTCH1, and SIN3A). Thus, we proposed a model of OS cell proliferation which is primarily co-regulated through the interactions of the mentioned microRNA and TF combinations. This study illustrates the benefit of systems biological approaches in the analysis of complex diseases. We integrated experimental data with publicly available information to unravel the coordinated (post)-transcriptional control of microRNAs and TFs to identify potential therapeutic targets in OS. The resulting microRNA and TF co-regulatory networks are publicly available for further exploration to generate or evaluate own hypotheses of the pathogenesis of OS (http://www.complex-systems.uni-muenster.de/co_networks.html).
Collapse
|
105
|
Li X, Lu Y, Chen Y, Lu W, Xie X. MicroRNA profile of paclitaxel-resistant serous ovarian carcinoma based on formalin-fixed paraffin-embedded samples. BMC Cancer 2013; 13:216. [PMID: 23627607 PMCID: PMC3648441 DOI: 10.1186/1471-2407-13-216] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/25/2013] [Indexed: 11/10/2022] Open
Abstract
Background To assess the feasibility of validating microRNA (miRNA) profile related to paclitaxel-sensitivity in formalin-fixed paraffin-embedded (FFPE) samples of serous ovarian carcinoma (OC) patients. Methods Deregulated miRNAs identified by miRNA microarray were further detected in 45 FFPE OC samples using Realtime PCR. Correlations between paired FFPE and frozen tumor samples were analyzed. Survival times were compared between 6 high and low miRNAs groups. Western blot and luciferase reporter assay were used for validating the target of miRNA. Results Sixteen up-regulated miRNAs and twenty-three down-regulated miRNAs were revealed in pacilitaxel-resistant ST30 cells. The up-regulated miRNAs (miR-320a, 22 and 129-5p) and down-regulated miRNAs (miR-9, 155 and 640) were confirmed in paclitaxel-resistant FFPE tumor samples, compared with paclitaxel-sensitive samples. Higher miR-9 and miR-640 showed better survival time in OC patients. Expressions of miR-9, 155 and 22 in FFPE samples were closely mimicked by those in frozen tissues. RAB34 was validated as a direct target of miR-9. Conclusions We validated miRNA profile in pacilitaxel-resistant OC using FFPE samples, which might enable treatment stratification and help us to predict outcomes in OC patients. FFPE samples are feasible materials for miRNA research.
Collapse
Affiliation(s)
- Xiao Li
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
106
|
MicroRNA-9 enhances migration and invasion through KLF17 in hepatocellular carcinoma. Mol Oncol 2013; 7:884-94. [PMID: 23684102 DOI: 10.1016/j.molonc.2013.04.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 12/12/2022] Open
Abstract
Metastasis is one of the hallmarks of cancer malignancy that usually causes more detrimental effects than a primary tumor. Many microRNAs were reported to be involved in the process of tumor metastasis. Hep11 and Hep12 cells were derived from primary and recurrence (intrahepatic metastatic) sites of hepatocellular carcinoma (HCC), respectively. Hep12 exhibited a higher invasive and migratory potential than Hep11. There was also a significantly higher expression of miR-9 in Hep12 cells than in Hep11 cells. Further studies in HCC cell lines demonstrated that miR-9 could promote tumor cell migration and invasion. In addition, miR-9 downregulated KLF17 protein expression by targeting the 3'UTR region of the KLF17 gene directly. As a transcription factor, KLF17 directly acted on the promoters of EMT-related genes (ZO-1, Vimentin and Fibronectin (FN)) in HCC cell lines. Therefore, we conclude that miR-9 may possibly promote HCC migration and invasion through regulation of KLF17.
Collapse
|
107
|
Zheng H, Kang Y. Multilayer control of the EMT master regulators. Oncogene 2013; 33:1755-63. [PMID: 23604123 DOI: 10.1038/onc.2013.128] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 12/23/2022]
Abstract
Metastasis is the leading cause of cancer-associated death in most tumor types. Metastatic dissemination of cancer cells from the primary tumor is believed to be initiated by the reactivation of an embryonic development program referred to as epithelial-mesenchymal transition (EMT), whereby epithelial cells lose apicobasal polarity and cell-cell contacts, and gain mesenchymal phenotypes with increased migratory and invasive capabilities. EMT has also been implicated in the regulation of cancer stem cell property, immune suppression and cancer regression. Several transcription factors have been identified as master regulators of EMT, including the Snail, Zeb and Twist families, and their expression is tightly regulated at different steps of transcription, translation and protein stability control by a variety of cell-intrinsic pathways as well as extracellular cues. Here, we review the recent literature on the signaling pathways and mechanisms that control the expression of these master transcription factors during EMT and cancer progression.
Collapse
Affiliation(s)
- H Zheng
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Y Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
108
|
Mascaux C, Feser WJ, Lewis MT, Barón AE, Coldren CD, Merrick DT, Kennedy TC, Eckelberger JI, Rozeboom LM, Franklin WA, Minna JD, Bunn PA, Miller YE, Keith RL, Hirsch FR. Endobronchial miRNAs as biomarkers in lung cancer chemoprevention. Cancer Prev Res (Phila) 2013; 6:100-8. [PMID: 23268837 PMCID: PMC4159305 DOI: 10.1158/1940-6207.capr-12-0382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lung cancers express lower levels of prostacyclin than normal lung tissues. Prostacyclin prevents lung cancer in a variety of mouse models. A randomized phase II trial comparing oral iloprost (a prostacyclin analog) with placebo in high-risk subjects showed improvement in bronchial histology in former, but not current, smokers. This placebo-controlled study offered the opportunity for investigation of other potential intermediate endpoint and predictive biomarkers to incorporate into chemoprevention trials. Matched bronchial biopsies were obtained at baseline and at 6-month follow-up from 125 high-risk individuals who completed the trial: 31/29 and 37/28 current/former smokers in the iloprost and placebo arm, respectively. We analyzed the expression of 14 selected miRNAs by Real Time PCR in 496 biopsies. The expression of seven miRNAs was significantly correlated with histology at baseline. The expression of miR-34c was inversely correlated with histology at baseline (P < 0.0001) and with change in histology at follow-up (P = 0.0003), independent of treatment or smoking status. Several miRNAs were also found to be differentially expressed in current smokers as compared with former smokers. In current smokers, miR-375 was upregulated at baseline (P < 0.0001) and downregulated after treatment with iloprost (P = 0.0023). No miRNA at baseline reliably predicted a response to iloprost. No biomarker predictive of response to iloprost was found. MiR-34c was inversely correlated with baseline histology and with histology changes. Mir-34c changes at follow-up could be used as a quantitative biomarker that parallels histologic response in formalin-fixed bronchial biopsies in future lung cancer chemoprevention studies.
Collapse
Affiliation(s)
- Celine Mascaux
- Department of Medicine, Division of Medical Oncology, Colorado School of Public Health, Aurora, 80045, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Zheng L, Qi T, Yang D, Qi M, Li D, Xiang X, Huang K, Tong Q. microRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1. PLoS One 2013; 8:e55719. [PMID: 23383271 PMCID: PMC3561302 DOI: 10.1371/journal.pone.0055719] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/29/2012] [Indexed: 12/27/2022] Open
Abstract
Recent evidence shows that altered microRNA-9 (miR-9) expression is implicated in the progression of gastric cancer. However, the exact roles and underlying mechanisms of miR-9 in the proliferation, invasion and metastasis of gastric cancer still remain unknown. In this study, miR-9 was found to be down-regulated and inversely correlated with the expression of cyclin D1 and v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets1) in gastric cancer tissues and cell lines. Bioinformatics analysis revealed the putative miR-9 binding sites in the 3′-untranslated regions (3′-UTR) of cyclin D1 and Ets1 mRNA. Ectopic expression or knockdown of miR-9 resulted in responsively altered expression of cyclin D1, Ets1 and their downstream targets phosphorylated retinoblastoma and matrix metalloproteinase 9 in cultured gastric cancer cell lines SGC-7901 and AGS. In the luciferase reporter system, miR-9 directly targeted the 3′-UTR of cyclin D1 and Ets1, and these effects were abolished by mutating the miR-9 binding sites. Over-expression of miR-9 suppressed the proliferation, invasion, and metastasis of SGC-7901 and AGS cells in vitro and in vivo. Restoration of miR-9-mediated down-regulation of cyclin D1 and Ets1 by transient transfection, rescued the cancer cells from decrease in proliferation, migration and invasion. Furthermore, anti-miR-9 inhibitor promoted the proliferation, migration and invasion of gastric cancer cells, while knocking down of cyclin D1 or Ets1 partially phenocopied the effects of miR-9 over-expression. These data indicate that miR-9 suppresses the expression of cyclin D1 and Ets1 via the binding sites in their 3′-UTR, thus inhibiting the proliferation, invasion and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Liduan Zheng
- Department of Pathology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Clinical Center of Human Genomic Research, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Teng Qi
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dehua Yang
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Meng Qi
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Li
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuan Xiang
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Cardiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiangsong Tong
- Clinical Center of Human Genomic Research, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
110
|
Guenin S, Mouallif M, Hubert P, Jacobs N, Krusy N, Duray A, Ennaji MM, Saussez S, Delvenne P. Interleukin-32 expression is associated with a poorer prognosis in head and neck squamous cell carcinoma. Mol Carcinog 2013; 53:667-73. [PMID: 23359495 DOI: 10.1002/mc.21996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 12/07/2012] [Accepted: 12/08/2012] [Indexed: 12/29/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) represent the sixth most common malignancy diagnosed worldwide. Patient's survival is low due the high frequency of tumor recurrence. Inflammation promotes carcinogenesis as well as the formation of metastasis. Indeed, proinflammatory mediators are known to stimulate the expression of specific transcription factors such as Snai1 and to increase the ability of tumor cells to migrate into distant organs. The atypical interleukin-32 (IL32) was mainly described to exacerbate inflammatory responses in rheumatoid arthritis and inflammatory bowel diseases. IL32 is expressed in various cancers but its role in HNSCC physiology is still unexplored. Here, we analyzed the expression of IL32 and its implication on HNSCC aggressiveness. We showed that patients with tumor expressing high amounts of IL32 exhibit decreased disease-free periods (20.5 mo vs. 41 mo, P = 0.0041) and overall survival (P = 0.0359) in comparison with individuals with weak IL32 tumor expression. This overexpression was negatively correlated with gender (P = 0.0292) and p53 expression (P = 0.0307). In addition, in vitro data linked IL32 expression to metastasis formation since IL32 inhibition decreased Snai1 expression and tumor cell migration in a Boyden chamber assay. Our data provide new insight into the role of IL32 in HNSCC aggressiveness.
Collapse
Affiliation(s)
- S Guenin
- Laboratory of Experimental Pathology, GIGA Cancer, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Völler D, Ott C, Bosserhoff A. MicroRNAs in malignant melanoma. Clin Biochem 2013; 46:909-17. [PMID: 23360785 DOI: 10.1016/j.clinbiochem.2013.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/20/2012] [Accepted: 01/14/2013] [Indexed: 12/11/2022]
Abstract
Melanoma is the most aggressive form of skin cancer, and the incidence of melanoma has been increasing faster than that of most other cancers. While the survival rate following surgical resection of early-stage primary tumors is nearly 100%, the survival of patients with metastasized tumors is strongly reduced, likely due to resistance to conventional therapies. Therefore, it is important to use new molecular approaches to develop new biomarkers to better prevent and diagnose melanoma. MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate gene expression via repression of translation or direct degradation of their complementary mRNA. In this review, we summarize our current understanding of the involvement of miRNAs and their corresponding targets in melanomagenesis as well as the potential use of miRNAs as biomarkers.
Collapse
Affiliation(s)
- Daniel Völler
- Institute of Pathology, Molecular Pathology, University of Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
112
|
Holohan KN, Lahiri DK, Schneider BP, Foroud T, Saykin AJ. Functional microRNAs in Alzheimer's disease and cancer: differential regulation of common mechanisms and pathways. Front Genet 2013; 3:323. [PMID: 23335942 PMCID: PMC3547332 DOI: 10.3389/fgene.2012.00323] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/24/2012] [Indexed: 01/12/2023] Open
Abstract
Two of the main research priorities in the United States are cancer and neurodegenerative diseases, which are attributed to abnormal patterns of cellular behavior. MicroRNAs (miRNA) have been implicated as regulators of cellular metabolism, and thus are an active topic of investigation in both disease areas. There is presently a more extensive body of work on the role of miRNAs in cancer compared to neurodegenerative diseases, and therefore it may be useful to examine whether there is any concordance between the functional roles of miRNAs in these diseases. As a case study, the roles of miRNAs in Alzheimer's disease (AD) and their functions in various cancers will be compared. A number of miRNA expression patterns are altered in individuals with AD compared with healthy older adults. Among these, some have also been shown to correlate with neuropathological changes including plaque and tangle accumulation, as well as expression levels of other molecules known to be involved in disease pathology. Importantly, these miRNAs have also been shown to have differential expression and or functional roles in various types of cancer. To examine possible intersections between miRNA functions in cancer and AD, we review the current literature on these miRNAs in cancer and AD, focusing on their roles in known biological pathways. We propose a pathway-driven model in which some molecular processes show an inverse relationship between cancer and neurodegenerative disease (e.g., proliferation and apoptosis) whereas others are more parallel in their activity (e.g., immune activation and inflammation). A critical review of these and other molecular mechanisms in cancer may shed light on the pathophysiology of AD, and highlight key areas for future research. Conclusions from this work may be extended to other neurodegenerative diseases for which some molecular pathways have been identified but which have not yet been extensively researched for miRNA involvement.
Collapse
Affiliation(s)
- Kelly N Holohan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
113
|
Modulation of cancer traits by tumor suppressor microRNAs. Int J Mol Sci 2013; 14:1822-42. [PMID: 23325049 PMCID: PMC3565350 DOI: 10.3390/ijms14011822] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/28/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression. In mammalian cells, miRNAs typically suppress mRNA stability and/or translation through partial complementarity with target mRNAs. Each miRNA can regulate a wide range of mRNAs, and a single mRNA can be regulated by multiple miRNAs. Through these complex regulatory interactions, miRNAs participate in many cellular processes, including carcinogenesis. By altering gene expression patterns, cancer cells can develop specific phenotypes that allow them to proliferate, survive, secure oxygen and nutrients, evade immune recognition, invade other tissues and metastasize. At the same time, cancer cells acquire miRNA signature patterns distinct from those of normal cells; the differentially expressed miRNAs contribute to enabling the cancer traits. Over the past decade, several miRNAs have been identified, which functioned as oncogenic miRNAs (oncomiRs) or tumor-suppressive miRNAs (TS-miRNAs). In this review, we focus specifically on TS-miRNAs and their effects on well-established cancer traits. We also discuss the rising interest in TS-miRNAs in cancer therapy.
Collapse
|
114
|
Gao F, Zhao ZL, Zhao WT, Fan QR, Wang SC, Li J, Zhang YQ, Shi JW, Lin XL, Yang S, Xie RY, Liu W, Zhang TT, Sun YL, Xu K, Yao KT, Xiao D. miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells. Biochem Biophys Res Commun 2013; 431:610-6. [PMID: 23291181 DOI: 10.1016/j.bbrc.2012.12.097] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/23/2012] [Indexed: 01/12/2023]
Abstract
The functions of miR-9 in some cancers are recently implicated in regulating proliferation, epithelial-mesenchymal transition (EMT), invasion and metastasis, apoptosis, and tumor angiogenesis, etc. miR-9 is commonly down-regulated in nasopharyngeal carcinoma (NPC), but the exact roles of miR-9 dysregulation in the pathogenesis of NPC remains unclear. Therefore, we firstly used miR-9-expressing CNE2 cells to determine the effects of miR-9 overexpression on global gene expression profile by microarray analysis. Microarray-based gene expression data unexpectedly demonstrated a significant number of up- or down-regulated immune- and inflammation-related genes, including many well-known interferon (IFN)-induced genes (e.g., IFI44L, PSMB8, IRF5, PSMB10, IFI27, PSB9_HUMAN, IFIT2, TRAIL, IFIT1, PSB8_HUMAN, IRF1, B2M and GBP1), major histocompatibility complex (MHC) class I molecules (e.g., HLA-B, HLA-C, HLA-F and HLA-H) and interleukin (IL)-related genes (e.g., IL20RB, GALT, IL7, IL1B, IL11, IL1F8, IL1A, IL6 and IL7R), which was confirmed by qRT-PCR. Moreover, the overexpression of miR-9 with the miRNA mimics significantly up- or down-regulated the expression of above-mentioned IFN-inducible genes, MHC class I molecules and IL-related genes; on the contrary, miR-9 inhibition by anti-miR-9 inhibitor in CNE2 and 5-8F cells correspondingly decreased or increased the aforementioned immune- and inflammation-related genes. Taken together, these findings demonstrate, for the first time, that miR-9 can modulate the expression of IFN-induced genes and MHC class I molecules in human cancer cells, suggesting a novel role of miR-9 in linking inflammation and cancer, which remains to be fully characterized.
Collapse
Affiliation(s)
- Fei Gao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Inhibition of mTORC2 but not mTORC1 up-regulates E-cadherin expression and inhibits cell motility by blocking HIF-2α expression in human renal cell carcinoma. J Urol 2012; 189:1921-9. [PMID: 23147251 DOI: 10.1016/j.juro.2012.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2012] [Indexed: 11/22/2022]
Abstract
PURPOSE Molecular targeted drugs, such as mTORC1 inhibitors, have been clinically popularized for advanced renal cell carcinoma treatment but metastasis is still a serious concern. mTORC2 has several important functions, including HIF-2α activation in malignant cells. HIF-2α suppresses E-cadherin expression, which is associated with tumor invasion and metastasis. We investigated whether mTORC2 regulates E-cadherin expression and controls cell motility during HIF-2α down-regulation in renal cell carcinoma cells. MATERIALS AND METHODS We used PP242, a dual inhibitor of mTORC1/mTORC2 and the mTORC1 specific inhibitor rapamycin. E-cadherin expression in 786-O cells was examined using real-time polymerase chain reaction, Western blot and immunocytochemical staining. Cell motility was analyzed by time-lapse microscopy and wound healing assay. RESULTS High E-cadherin expression was found in RCC4/VHL cells but low levels were found in VHL defective RCC4 and 786-O cells. HIF-2α expression was suppressed only in RCC4/VHL cells. In 786-O cells HIF-2α inhibition induced by the dual mTORC1/C2 inhibitor PP242 (0.05 to 0.5 μmol/L) resulted in a dose dependent increase in E-cadherin expression and the restored E-cadherin was localized at cell-to-cell junctions. Treatment with the mTORC1 inhibitor rapamycin resulted in no significant change. The migration of PP242 treated cells was significantly suppressed compared with those treated with rapamycin. CONCLUSIONS Results show that mTORC2 might regulate E-cadherin expression and suppress cell motility by controlling the mTORC2-HIF-2α signaling pathway. The dual inhibitor of mTORC1/C2 as a cadherin regulatory agent may be a novel therapeutic strategy with tumoricidal agents for advanced renal cell carcinoma.
Collapse
|
116
|
Leibowitz-Amit R, Sidi Y, Avni D. Aberrations in the micro-RNA biogenesis machinery and the emerging roles of micro-RNAs in the pathogenesis of cutaneous malignant melanoma. Pigment Cell Melanoma Res 2012; 25:740-57. [DOI: 10.1111/pcmr.12018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
117
|
Sánchez-Tilló E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A, Postigo A. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 2012; 69:3429-56. [PMID: 22945800 PMCID: PMC11115078 DOI: 10.1007/s00018-012-1122-2] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 12/13/2022]
Abstract
Cancer is a complex multistep process involving genetic and epigenetic changes that eventually result in the activation of oncogenic pathways and/or inactivation of tumor suppressor signals. During cancer progression, cancer cells acquire a number of hallmarks that promote tumor growth and invasion. A crucial mechanism by which carcinoma cells enhance their invasive capacity is the dissolution of intercellular adhesions and the acquisition of a more motile mesenchymal phenotype as part of an epithelial-to-mesenchymal transition (EMT). Although many transcription factors can trigger it, the full molecular reprogramming occurring during an EMT is mainly orchestrated by three major groups of transcription factors: the ZEB, Snail and Twist families. Upregulated expression of these EMT-activating transcription factors (EMT-ATFs) promotes tumor invasiveness in cell lines and xenograft mice models and has been associated with poor clinical prognosis in human cancers. Evidence accumulated in the last few years indicates that EMT-ATFs also regulate an expanding set of cancer cell capabilities beyond tumor invasion. Thus, EMT-ATFs have been shown to cooperate in oncogenic transformation, regulate cancer cell stemness, override safeguard programs against cancer like apoptosis and senescence, determine resistance to chemotherapy and promote tumor angiogenesis. This article reviews the expanding portfolio of functions played by EMT-ATFs in cancer progression.
Collapse
Affiliation(s)
- Ester Sánchez-Tilló
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
| | - Yongqing Liu
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- Department of Ophthalmology and Birth Defects Center, Louisville Health Science Center, Louisville, KY 40202 USA
| | - Oriol de Barrios
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
| | - Laura Siles
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
| | - Lucia Fanlo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- Master Program in Biomedical Research, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Miriam Cuatrecasas
- Department of Pathology, Hospital Clinic and IDIBAPS’ Tumor Bank, 08036 Barcelona, Spain
| | - Douglas S. Darling
- Department of Oral Health and Rehabilitation, Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY 40202 USA
| | - Douglas C. Dean
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- Department of Ophthalmology and Birth Defects Center, Louisville Health Science Center, Louisville, KY 40202 USA
| | - Antoni Castells
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
- Institute of Digestive and Metabolic Diseases, Hospital Clinic, 08036 Barcelona, Spain
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- ICREA, 08010 Barcelona, Spain
| |
Collapse
|
118
|
Liu S, Tetzlaff MT, Cui R, Xu X. miR-200c inhibits melanoma progression and drug resistance through down-regulation of BMI-1. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1823-35. [PMID: 22982443 DOI: 10.1016/j.ajpath.2012.07.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/19/2012] [Accepted: 07/30/2012] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that play crucial roles in tumorigenesis and tumor progression. Melanoma is the most aggressive skin cancer that is resistant or rapidly develops resistance to a variety of chemotherapeutic agents. The role of miRNAs in melanoma progression and drug resistance has not been well studied. Herein, we demonstrate that miR-200c is down-regulated in melanomas (primary and metastatic) compared with melanocytic nevi. Overexpression of miR-200c in melanoma cells resulted in significantly decreased cell proliferation and migratory capacity as well as drug resistance. miR-200c overexpression resulted in significant down-regulation of BMI-1, ABCG2, ABCG5, and MDR1 expression and in a concomitant increase in E-cadherin levels. Knockdown of BMI-1 showed similar effects as miR-200c overexpression in melanoma cells. In addition, miR-200c overexpression significantly inhibited melanoma xenograft growth and metastasis in vivo, and this correlated with diminished expression of BMI-1 and reduced levels of E-cadherin in these tumors. The effects of miR-200c on melanoma cell proliferation and migratory capacity and on self-renewal were rescued by overexpression of Bmi-1, and the reversal of these phenotypes correlated with a reduction in E-cadherin expression and increased levels of ABCG2, ABCG5, and MDR1. Taken together, these findings demonstrate a key role for miR-200c in melanoma progression and drug resistance. These results suggest that miR-200c may represent a critical target for increasing melanoma sensitivity to clinical therapies.
Collapse
Affiliation(s)
- Shujing Liu
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, USA
| | | | | | | |
Collapse
|
119
|
Du Y, Liu Z, Gu L, Zhou J, Zhu BD, Ji J, Deng D. Characterization of human gastric carcinoma-related methylation of 9 miR CpG islands and repression of their expressions in vitro and in vivo. BMC Cancer 2012; 12:249. [PMID: 22703336 PMCID: PMC3517451 DOI: 10.1186/1471-2407-12-249] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/04/2012] [Indexed: 12/14/2022] Open
Abstract
Background Many miR genes are located within or around CpG islands. It is unclear whether methylation of these CpG islands represses miR transcription regularly. The aims of this study are to characterize gastric carcinoma (GC)-related methylation of miR CpG islands and its relationship with miRNA expression. Methods Methylation status of 9 representative miR CpG islands in a panel of cell lines and human gastric samples (including 13 normal biopsies, 38 gastritis biopsies, 112 pairs of GCs and their surgical margin samples) was analyzed by bisulfite-DHPLC and sequencing. Mature miRNA levels were determined with quantitative RT-PCR. Relationships between miR methylation, transcription, GC development, and clinicopathological characteristics were statistically analyzed. Results Methylation frequency of 5 miR CpG islands (miR-9-1, miR-9-3, miR-137, miR-34b, and miR-210) gradually increased while the proportion of methylated miR-200b gradually decreased during gastric carcinogenesis (Ps < 0.01). More miR-9-1 methylation was detected in 62%-64% of the GC samples and 4% of the normal or gastritis samples (18/28 versus 2/48; Odds ratio, 41.4; P < 0.01). miR-210 methylation showed high correlation with H. pylori infection. miR-375, miR-203, and miR-193b methylation might be host adaptation to the development of GCs. Methylation of these miR CpG islands was consistently shown to significantly decrease the corresponding miRNA levels presented in human cell lines. The inverse relationship was also observed for miR-9-1, miR-9-3, miR-137, and miR-200b in gastric samples. Among 112 GC patients, miR-9-1 methylation was an independent favourable predictor of overall survival of GC patients in both univariate and multivariate analysis (P < 0.02). Conclusions In conclusion, alteration of methylation status of 6 of 9 tested miR CpG islands was characterized in gastric carcinogenesis. miR-210 methylation correlated with H. pylori infection. miR-9-1 methylation may be a GC-specific event. Methylation of miR CpG islands may significantly down-regulate their transcription regularly.
Collapse
Affiliation(s)
- Yantao Du
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Fu-Cheng-Lu, No,52 Haidian District, Beijing 100142, China.
| | | | | | | | | | | | | |
Collapse
|
120
|
Segura MF, Greenwald HS, Hanniford D, Osman I, Hernando E. MicroRNA and cutaneous melanoma: from discovery to prognosis and therapy. Carcinogenesis 2012; 33:1823-32. [PMID: 22693259 DOI: 10.1093/carcin/bgs205] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Melanoma incidence and associated mortality continue to increase worldwide. The lack of treatments with durable responses for stage IV melanoma may be due, at least in part, to an incomplete understanding of the molecular mechanisms that regulate tumor initiation and/or progression to metastasis. Recent evidence supports miRNA dysregulation in melanoma impacting several well-known pathways such as the PI3K/AKT or RAS/MAPK pathways, but also underexplored cellular processes like protein glycosylation and immune modulation. There is also increasing evidence that miRNA can improve patient prognostic classification over the classical staging system and provide new therapeutic opportunities. The integration of this recently acquired knowledge with known molecular alterations in protein coding genes characteristic of these tumors (i.e., BRAF and NRAS mutations, CDKN2A inactivation) is critical for a complete understanding of melanoma pathogenesis. Here, we compile the evidence of the functional roles of miRNAs in melanomagenesis and progression, and of their clinical utility as biomarkers, prognostic tools and potential therapeutic targets. Characterization of miRNA alterations in melanoma may provide new angles for therapeutic intervention, help to decipher mechanisms of drug resistance, and improve patient classification for disease surveillance and clinical benefit.
Collapse
Affiliation(s)
- Miguel F Segura
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA
| | | | | | | | | |
Collapse
|
121
|
Genetics and epigenetics of cutaneous malignant melanoma: a concert out of tune. Biochim Biophys Acta Rev Cancer 2012; 1826:89-102. [PMID: 22503822 DOI: 10.1016/j.bbcan.2012.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 01/05/2023]
Abstract
Cutaneous malignant melanoma (CMM) is the most life-threatening neoplasm of the skin and is considered a major health problem as both incidence and mortality rates continue to rise. Once CMM has metastasized it becomes therapy-resistant and is an inevitably deadly disease. Understanding the molecular mechanisms that are involved in the initiation and progression of CMM is crucial for overcoming the commonly observed drug resistance as well as developing novel targeted treatment strategies. This molecular knowledge may further lead to the identification of clinically relevant biomarkers for early CMM detection, risk stratification, or prediction of response to therapy, altogether improving the clinical management of this disease. In this review we summarize the currently identified genetic and epigenetic alterations in CMM development. Although the genetic components underlying CMM are clearly emerging, a complete picture of the epigenetic alterations on DNA (DNA methylation), RNA (non-coding RNAs), and protein level (histone modifications, Polycomb group proteins, and chromatin remodeling) and the combinatorial interactions between these events is lacking. More detailed knowledge, however, is accumulating for genetic and epigenetic interactions in the aberrant regulation of the INK4b-ARF-INK4a and microphthalmia-associated transcription factor (MITF) loci. Importantly, we point out that it is this interplay of genetics and epigenetics that effectively leads to distorted gene expression patterns in CMM.
Collapse
|
122
|
Hinton A, Hunter S, Reyes G, Fogel GB, King CC. From pluripotency to islets: miRNAs as critical regulators of human cellular differentiation. ADVANCES IN GENETICS 2012; 79:1-34. [PMID: 22989764 DOI: 10.1016/b978-0-12-394395-8.00001-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) actively regulate differentiation as pluripotent cells become cells of pancreatic endocrine lineage, including insulin-producing β cells. The process is dynamic; some miRNAs help maintain pluripotency, while others drive cell fate decisions. Here, we survey the current literature and describe the biological role of selected miRNAs in maintenance of both mouse and human embryonic stem cell (ESC) pluripotency. Subsequently, we review the increasing evidence that miRNAs act at selected points in differentiation to regulate decisions about early cell fate (definitive endoderm and mesoderm), formation of pancreatic precursor cells, endocrine cell function, as well as epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Andrew Hinton
- Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|